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Abstract

Co-Training is a weakly supervised learning
paradigm in which the redundancy of the learn-
ing task is captured by training two classifiers
using separate views of the same data. This
enables bootstrapping from a small set of la-
beled training data via a large set of unlabeled
data. This study examines the learning behav-
ior of co-training on natural language process-
ing tasks that typically require large numbers
of training instances to achieve usable perfor-
mance levels. Using base noun phrase brack-
eting as a case study, we find that co-training
reduces by 36% the difference in error between
co-trained classifiers and fully supervised clas-
sifiers trained on a labeled version of all avail-
able data. However, degradation in the quality
of the bootstrapped data arises as an obstacle
to further improvement. To address this, we
propose a moderately supervised variant of co-
training in which a human corrects the mistakes
made during automatic labeling. Our analysis
suggests that corrected co-training and similar
moderately supervised methods may help co-
training scale to large natural language learning
tasks.

1 Introduction

Co-Training (Blum and Mitchell, 1998) is a
weakly supervised paradigm for learning a clas-
sification task from a small set of labeled data
and a large set of unlabeled data, using sepa-
rate, but redundant, views of the data. While
previous research (summarized in Section 2) has
investigated the theoretical basis of co-training,
this study is motivated by practical concerns.
We seek to apply the co-training paradigm to
problems in natural language learning, with
the goal of reducing the amount of human-
annotated data required for developing natural

language processing components. In particular,
many natural language learning tasks contrast
sharply with the classification tasks previously
studied in conjunction with co-training in that
they require hundreds of thousands, rather than
hundreds, of training examples. Consequently,
our focus on natural language learning raises
the question of how co-training scales when a
large number of training examples are required
to achieve usable performance levels.

This case study of co-training for natural lan-
guage learning addresses the scalability ques-
tion using the task of base noun phrase iden-
tification. For this task, co-training reduces by
36% the difference in error between classifiers
trained on 500 labeled examples and classifiers
trained on 211,000 labeled examples. While
this result is satisfying, further investigation re-
veals that deterioration in the quality of the la-
beled data accumulated by co-training hinders
further improvement. We address this prob-
lem with a moderately supervised variant, cor-
rected co-training, that employs a human anno-
tator to correct the errors made during boot-
strapping. Corrected co-training proves to be
quite successful, bridging the remaining gap in
accuracy. Analysis of corrected co-training il-
luminates an interesting tension within weakly
supervised learning, between the need to boot-
strap accurate labeled data, and the need to
cover the desired task. We evaluate one ap-
proach, using corrected co-training, to resolving
this tension; and as another approach, we sug-
gest combining weakly supervised learning with
active learning (Cohn et al., 1994).

The next section of this paper introduces is-
sues and concerns surrounding co-training. Sec-
tions 3 and 4 describe the base noun phrase
bracketing task, and the application of co-
training to the task, respectively. Section 5 con-



tains an evaluation of co-training for base noun
identification.

2 Theoretical and Practical
Considerations for Co-Training

The co-training paradigm applies when accu-
rate classification hypotheses for a task can be
learned from either of two sets of features of the
data, each called a view. For example, Blum
and Mitchell (1998) describe a web page classi-
fication task, in which the goal is to determine
whether or not a given web page is a univer-
sity faculty member’s home page. For this task,
they suggest the following two views: (1) the
words contained in the text of the page; for ex-
ample, research interests or publications; (2) the
words contained in links pointing to the page;
for example, my advisor.

The intuition behind Blum and Mitchell’s co-
training algorithm CT! (Figure 1) is that two
views of the data can be used to train two clas-
sifiers that can help each other. Each classifier
is trained using one view of the labeled data.
Then it predicts labels for instances of the unla-
beled data. By selecting its most confident pre-
dictions and adding the corresponding instances
with their predicted labels to the labeled data,
each classifier can add to the other’s available
training data. Continuing the above example,
web pages pointed to by my advisor links can
be used to train the page classifier, while web
pages about research interests and publications
can be used to train the link classifier.

Initial studies of co-training focused on the
applicability of the co-training paradigm, and in
particular, on clarifying the assumptions needed
to ensure the effectiveness of the CT algo-
rithm. Blum and Mitchell (1998) presented a
PAC-style analysis of co-training, introducing
the concept of compatibility between the tar-
get function and the unlabeled data: that is,
the target function should assign the same label
to an instance regardless of which view it sees.
They made two additional important points:
first, that each view of the data should itself be
sufficient for learning the classification task; and

We refer to Blum and Mitchell’s co-training algo-
rithm as CT, to distinguish it from alternative algo-
rithms that exploit the co-training paradigm, i.e. by us-
ing labeled and unlabeled data partitioned into distinct
views. CoBoost, mentioned below, is one such alterna-
tive algorithm.

repeat until done
train classifier A; on view V; of L
train classifier Ay on view Vo of L
allow hy to posit labels for examples in U
allow hs to posit labels for examples in U
add h1’s most confidently labeled examples to L
add hs’s most confidently labeled examples to L

Figure 1: An abstract schema of Blum and
Mitchell’s CT algorithm for co-training using
a small set of labeled data (L), a large set of
unlabeled data (U), and two views of the data
(V1, Vo).

second, that the views should be conditionally
independent of each other in order to be use-
ful. They proved that under these assumptions,
a task that is learnable with random classifica-
tion noise is learnable with co-training. In ex-
periments with the CT algorithm, they noticed
that it is important to preserve the distribution
of class labels in the growing body of labeled
data. Finally, they demonstrated the effective-
ness of co-training on a web page classification
task similar to that described above.

Collins and Singer (1999) were concerned that
the CT algorithm does not strongly enforce the
requirement that hypothesis functions should be
compatible with the unlabeled data. They in-
troduced an algorithm, CoBoost, that directly
minimizes mismatch between views of the un-
labeled data, using a combination of ideas from
co-training and AdaBoost (Freund and Shapire,
1997).

Nigam and Ghani (2000) performed the most
thorough empirical investigation of the desider-
atum of conditional independence of views un-
derlying co-training. Their experiments sug-
gested that view independence does indeed af-
fect the performance of co-training; but that
CT, when compared to other algorithms that
use labeled and unlabeled data, such as EM
(Dempster et al., 1977; Nigam et al., 2000), may
still prove effective even when an explicit feature
split is unknown, provided that there is enough
implicit redundancy in the data.

In contrast to previous investigations of the
theoretical basis of co-training, this study is mo-
tivated by practical concerns about the applica-



(a) In [happier news|, [South Korea], in establishing [diplomatic ties| with [Poland] [yesterday],
announced [$450 million] in [loans] to [the financially strapped Warsaw government).

(b) Ing [happier; news;] , [South; Korea] , ing establishing, [diplomatic; ties;] with [Poland,]
[vesterdayp] , announcedy [8; 450; million] ing [loans]| to, [the, financially, strapped,
Warsaw, government,] .
| Left Context | Focus Word | Right Context | Label |

(c) */* In/IN happier/JJR news/NN o/ I

’ o/ in/IN establishing/VBG | diplomatic/JJ ties/NNS O
with/IN  Poland/NNP yesterday /NN o/ announced/VBD B

Figure 2: The base NPs in (a) are indicated by square brackets, and in (b) by IOB tags. The
training instances in (c) consist of the focus word with part-of-speech tag, its context words with
part-of-speech tags, and its IOB label. The part-of-speech tags are from the Penn Treebank tag
set. Asterisks indicate missing features at the beginning or end of the sentence.

tion of weakly supervised learning to problems
in natural language learning (NLL). Many NLL
tasks contrast in two ways with the web page
classification task studied in previous work on
co-training. First, the web page task factors
naturally into page and link views, while other
NLL tasks may not have such natural views.
Second, many NLL problems require hundreds
of thousands of training examples, while the
web page task can be learned using hundreds
of examples.

Consequently, our focus on natural language
learning introduces new questions about the
scalability of the co-training paradigm. First,
can co-training be applied to learning prob-
lems without natural factorizations into views?
Nigam and Ghani’s study suggests a qualified
affirmative answer to this question, for a text
classification task designed to contain redun-
dant information; however, it is desirable to
continue investigation of the issue for large-scale
NLL tasks. Second, how does co-training scale
when a large number of training examples are
required to achieve usable performance levels?
It is plausible to expect that the CT algorithm
will not scale well, due to mistakes made by
the view classifiers. To elaborate, the view clas-
sifiers may occasionally add incorrectly labeled
instances to the labeled data. If many iterations
of CT are required for learning the task, degra-
dation in the quality of the labeled data may
become a problem, in turn affecting the quality
of subsequent view classifiers. For large-scale
learning tasks, the effectiveness of co-training

may be dulled over time.

Finally, we note that the accuracy of auto-
matically accumulated training data is an im-
portant issue for many bootstrapping learning
methods (e.g. Yarowsky (1995), Riloff and Jones
(1999)), suggesting that the rewards of under-
standing and dealing with this issue may be sig-
nificant.

3 Base Noun Phrase Identification

Base noun phrases (base NPs) are tradition-
ally defined as nonrecursive noun phrases, i.e.
NPs that do not contain NPs. (Figure 2a illus-
trates base NPs with a short example.) Base
noun phrase identification is the task of lo-
cating the base NPs in a sentence from the
words of the sentence and their part-of-speech
tags. Base noun phrase identification is a cru-
cial component of systems that employ par-
tial syntactic analysis, including information re-
trieval (e.g. Mitra et al. (1997)) and question
answering (e.g. Cardie et al. (2000)) systems.
Many corpus-based methods have been applied
to the task, including statistical methods (e.g.
Church (1988)), transformation-based learning
(e.g. Ramshaw and Marcus (1998)), rote se-
quence learning (e.g. Cardie and Pierce (1998)),
memory-based sequence learning (e.g. Argamon
et al. (1999)), and memory-based learning (e.g.
Sang and Veenstra (1999)), among others.

Our case study employs a well-known bracket
representation, introduced by Ramshaw and
Marcus, wherein each word of a sentence is
tagged with one of the following tags: I, mean-



ing the word is within a bracket (inside); O,
meaning the word is not within a bracket (out-
side); or B, meaning the word is within a
bracket, but not the same bracket as the pre-
ceding word, i.e. the word begins a new bracket.
Thus, the bracketing task is transformed into a
word tagging task. Figure 2b repeats the exam-
ple sentence, showing the IOB tag representa-
tion. Training examples for IOB tagging have
the form

<w*k/t*k7 .. '7w0/t07 .. 'awk/tk : l)

where wy is the focus word (i.e. the word whose
tag is to be learned) and {j is its syntactic cat-
egory (i.e. part-of-speech) tag. Words to the
left and right of the focus word are included for
context. Finally, [ is the IOB tag of wqg. Fig-
ure 2c¢ illustrates a few instances taken from the

example sentence.

We chose naive bayes classifiers for the study,
first, because they are convenient to use and,
indeed, have been used in previous co-training
studies; and second, because they are particu-
larly well-suited to co-training by virtue of cal-
culating probabilities for each prediction. For
an instance x, the classifier determines the max-
imum a posteriori label as follows.

P(l
S i P

= argmax P(l)P(x|l)

lmap =

k
= argmax P(l) H P(w;/t; | 1)
i=—k

In experiments with these naive bayes IOB clas-
sifiers, we found that very little accuracy was
sacrificed when the word information (i.e. w;)
was ignored by the classifier.? We therefore sub-
stitute the simpler term P(¢;]1) for P(w;/t; | 1)
above.

The probabilities P(¢;|l) are estimated from
the training data by determining the fraction
of the instances labeled [ that have syntactic

2This contrasts with other results, such as Ramshaw
and Marcus’ (1998), indicating that word information
is important for base NP identification. We speculate
that the naive bayes classifiers used here are simply not
sophisticated enough to take advantage of word informa-
tion.

category t; (on word w;), with m-estimation.

Pll) = N(l)+ 45

Here N(z) denotes the frequency of event z in
the training data. This estimate smoothes the
training probability by including virtual (un-
seen) samples for each part-of-speech tag (of
which there are 45).

4 Co-Training for IOB Classifiers

To apply co-training, the base NP classification
task must first be factored into views. For the
1OB instances (vectors of part-of-speech tags in-
dexed from —Fk to k) a view corresponds to a
subset of the set of indices {—k,...,k}. The
most natural views are perhaps {—k,...,0} and
{0,...,k}, indicating that one classifier looks
at the focus tag and the tags to its left, while
the other looks at the focus tag and the tags
to its right. Note that these views certainly vi-
olate the desideratum of conditional indepen-
dence between view features since both include
the focus tag. Other views, such as left/right
views omitting the focus tag, for example, may
be more theoretically attractive, but we found
that the left /right views including focus proved
most effectual in practice.

The 10B tagging task requires some minor
modifications to the CT algorithm. First, it is
impractical for the co-training classifiers to pre-
dict labels for each instance from the enormous
set of unlabeled data. Instead, a smaller data
pool is maintained, fed with randomly selected
instances from the larger set.? Second, the I0B
tagging task is a ternary, rather than a binary,
classification. Furthermore, the distribution of
labels in the training data is more unbalanced
than the distribution of positive and negative
examples in the web page task: namely, 53.9%
of examples are labeled I, 44.0% O, and 2.1%
B. Since it is impractical to add, say, 27 I, 22
O, and 1 B, to the labeled data at each step of
co-training, instead, instances are selected by
first choosing a label [ at random according to
the label distribution, then adding the instance

3This standard modification was introduced by Blum
and Mitchell (1998) in an effort to cover the underlying
distribution of unlabeled instances; however, Nigam and
Ghani (2000) found it to be unnecessary in their exper-
iments.



repeat until done
train classifier h; on view V; of L
train classifier Ay on view Vo of L
transfer randomly selected examples
from U to U’ until |U'| = u
for h € {hl, hz}
allow h to posit labels for all examples in U’
repeat g times
select label [ at random according to Dy,
transfer most confidently labeled
[ example from U’ to L

Figure 3: The modified co-training algorithm
maintains a data pool U’ of size u, and labels g
instances per iteration selected according to the
distribution of labels Dy. As in the original al-
gorithm, L is the labeled data, U the unlabeled
data, and Vi, Vs the views.

most confidently labeled [ to the labeled data.
This procedure preserves the distribution of la-
bels in the labeled data as instances are labeled
and added. The modified CT algorithm is pre-
sented in Figure 3.

5 Evaluation

We evaluate co-training for 10B classifica-
tion using a standard data set assembled by
Ramshaw and Marcus from sections 15 18
(training data, 211727 instances) and 20 (test
data, 47377 instances) of the Penn Treebank
Wall Street Journal corpus (Marcus et al.,
1993). Training instances consist of part-of-
speech tag and IOB label for a focus word, along
with contexts of two part-of-speech tags to the
left and right of the focus. Our goal accuracy
of 95.17% is the performance of a supervised
IOB classifier trained on the correctly labeled
version of the full training data. (In our experi-
ments the goal classifier uses the left view of the
data, which actually outperforms the combined
left /right view.) For initial labeled data, the
first L instances of the training data are given
their correct labels. We determined the best set-
ting for the parameters of the CT algorithm by
testing multiple values: L (initial amount of la-
beled data) varied from 10 to 5000, then u (pool
size) from 200 to 5000, then g (growth size) from
1 to 50. The best setting, in terms of effective-
ness of co-training in improving the accuracy of

the classifier, was L = 500,u = 1000,g = 5.
These values are used throughout the evalua-
tion unless noted otherwise.

Co-Training. We observe the progress of the
co-training process by determining, at each it-
eration, the accuracy of the co-training classi-
fiers over the test data. We also record the
accuracy of the growing body of labeled data.
These measurements can be plotted to depict
a learning curve, indicating the progress of co-
training as the classifier accuracy changes. Fig-
ure 4 presents two representative curves, one
for the left context classifier and one for the
labeled data. (The right context classifier be-
haves similarly to the left, but its performance
is slightly worse.) As shown, co-training results
in improvement in test accuracy over the ini-
tial classifier after about 160 iterations, reduc-
ing by 36% the difference in error between the
co-training classifier and the goal classifier.

Unfortunately, the improvement in test accu-
racy does not continue as co-training progresses;
rather, performance peaks, then declines some-
what before stabilizing at around 92.5%. We
hypothesize that this decline is due to degra-
dation in the quality of the labeled data. This
hypothesis is supported by Figure 4b, indicating
that labeled data accuracy decreases steadily
before stabilizing at around 94%. Note that the
accuracy of the classifier stabilizes at a point
a bit lower than the stable accuracy of the la-
beled data, as would be expected if labeled data
quality hinders further improvement from co-
training.

Furthermore, co-training for base NP identi-
fication seems to be quite sensitive to the CT
parameter settings. For example, with L = 200
the co-training classifiers appear not to be ac-
curate enough to sustain co-training, while with
L = 1000, they are too accurate, in the sense
that co-training contributes very little accuracy
before the labeled data deteriorates (Figure 5).

In the next sections, we address the problems
of data degradation and parameter sensitivity
for co-training.

Corrected Co-Training. As shown above,
the degradation of the labeled data introduces a
scalability problem for co-training because suc-
cessive view classifiers use successively poorer
quality data for training. A straightforward so-
lution to this problem is to have a human an-
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Figure 5: Learning curves for co-training with varying amounts of initial labeled data: (a) L = 200,

(b) L = 1000.

notator intervene by reviewing and correcting
instances labeled by the view classifiers.* By
arresting the deterioration of the labeled data,
we hope to prevent the ultimate decline in ac-
curacy for co-training.

To evaluate this possibility, we simulate a hu-
man annotator by automatically correcting each
newly labeled instance as it is added to the la-
beled data. Figure 6a presents the results of
this experiment. As hypothesized, the classi-

4The human could also simply discard incorrectly la-
beled instances to reduce the effort; but we do not eval-
uate this alternative.

fier accuracy no longer suffers a decrease, in-
stead increasing steadily to within about 0.5%
of the goal accuracy after 800 iterations. For a
real human annotator, the effort to achieve this
improvement would have included reviewing 10
instances per iteration, or 8000 instances, but
only correcting about 450 that were incorrectly
labeled. Thus corrected co-training, a “moder-
ately supervised” method, maintains the quality
of the labeled data, yet the effort on the part of
the human annotator remains small in propor-
tion to the amount of data ultimately labeled
and used for training.
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Figure 6: Corrected co-training (a) eliminates degradation of the labeled data by correcting labeling
errors. With u set to 100 (b), corrected co-training achieves essentially the accuracy of the fully

supervised classifier.

Furthermore, corrected co-training allevi-
ates another problem with the CT algorithm,
namely its sensitivity to the amount of initial
labeled data. When too little labeled data is
provided, the initial classifiers cannot sustain
co-training improvement. With supervised cor-
rection, however, the risk of starting with too
little labeled data is completely eliminated, so
that co-training can be initiated with arbitrarily
small amounts of labeled data.®

Note that corrected co-training is subtly dif-
ferent from co-testing (Muslea et al., 2000). One
might say that co-testing is an active learn-
ing process that uses co-training, whereas cor-
rected co-training is a co-training process that
uses active learning. To be more precise, co-
testing applies the compatibility concept from
co-training to identify examples for a human an-
notator to label: examples whose classifications
by the view classifiers differ (the contention set)
are considered prime candidates for active learn-
ing queries. Corrected co-training, on the other
hand, uses the view classifiers to select and la-
bel examples before presenting them to the hu-
man reviewer. Both methods have the goal of
alleviating human annotation effort: co-testing
by reducing the total number of instances an-
notated; corrected co-training by automatically
labeling many of the unlabeled instances.

5There is an additional concern that with too little
initial data, co-training may not be able to achieve ade-
quate coverage of the task. This issue is addressed below.

Task Coverage. Interestingly, there remains
a slight gap between the accuracy of corrected
co-training and the goal accuracy. To explain
this, we hypothesize that co-training does not
necessarily find the most useful unlabeled exam-
ples. More precisely, since unlabeled examples
are selected and labeled based on the learners’
confidence in their predictions, these examples
are most likely representative of the part of the
task space familiar to the classifiers, rather than
helpful for learning new aspects of the task. In
other words, with too little labeled data, co-
training classifiers only learn part of the task.

By happy coincidence, the data pool param-
eter u of the CT algorithm allows us to indi-
rectly explore this issue. Since the view clas-
sifiers must select instances to label from the
data pool U’, we can indirectly force them to se-
lect less certain, albeit potentially more useful,
instances to label by setting a small pool size.
By limiting the number of examples available
to label, we prevent the view classifiers from se-
lecting exclusively from familiar-looking exam-
ples. (Note that this is a terrible strategy for
the original formulation of co-training, but with
corrected co-training the labeled data remains
flawless even if the view classifiers, hobbled by
the small size of the pool of available examples,
make many mistakes.)

Figure 6b presents the results of a corrected
co-training experiment in which u is set to 100
(instead of 1000). The desired effect is real-



ized, as co-training achieves 95.03% accuracy,
just 0.14% away from the goal, after 600 itera-
tions (and reaches 95.12% after 800 iterations).
Additionally, the human annotator reviews 6000
examples and corrects only 358. Thus, by lim-
iting the number of unlabeled examples under
consideration—with the hope of forcing broader
task coverage we achieve essentially the goal
accuracy in fewer iterations and with fewer cor-
rections! Surprisingly, the error rate of the view
classifiers per iteration remains essentially un-
changed despite the reduction of the pool of un-
labeled examples to choose from.

We believe the preceding experiment illumi-
nates a fundamental tension in weakly super-
vised learning, between automatically obtain-
ing reliable training data (usually requiring fa-
miliar examples), and adequately covering the
learning task (usually requiring unfamiliar ex-
amples). This tension suggests that combining
weakly supervised learning methods with active
learning methods might be a fruitful endeavor.
On one hand, the goal of weakly supervised
learning is to bootstrap a classifier from small
amounts of labeled data and large amounts of
unlabeled data, often by automatically labeling
some of the unlabeled data. On the other hand,
the goal of active learning is to process (unla-
beled) training examples in the order in which
they are most useful or informative to the classi-
fier (Cohn et al., 1994). Usefulness is commonly
quantified as the learner’s uncertainty about the
class of an example (Lewis and Catlett, 1994).
This neatly dovetails with the criterion for se-
lecting instances to label in CT. We envision
a learner that would alternate between select-
ing its most certain unlabeled examples to la-
bel and present to the human for acknowledg-
ment, and selecting its most uncertain exam-
ples to present to the human for annotation.
Ideally, efficient automatic bootstrapping would
be complemented by good coverage of the task.
We leave evaluation of this possibility to future
work.

6 Conclusions

This case study explored issues involved
with applying co-training to the natural lan-
guage processing task of identifying base noun
phrases, particularly, the scalability of co-
training for large-scale problems. Our exper-

iments indicate that co-training is an effec-
tive method for learning bracketers from small
amounts of labeled data. Naturally, the re-
sulting classifier does not perform as well as a
fully supervised classifier trained on hundreds
of times as much labeled data, but if the dif-
ference in accuracy is less important than the
effort required to produce the labeled training
data, co-training is especially attractive.

Furthermore, our experiments support the
hypothesis that labeled data quality is a crucial
issue for co-training. Our moderately super-
vised variant, corrected co-training, maintains
labeled data quality without unduly increasing
the burden on the human annotator. Corrected
co-training bridges the gap in accuracy between
weak initial classifiers and fully supervised clas-
sifiers.

Finally, as an approach to resolving the ten-
sion in weakly supervised learning between ac-
cumulating accurate training data and covering
the desired task, we suggest combining weakly
supervised methods such as co-training or self-
training with active learning.
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