
Workshop TAG+5, Paris, 25-27 May 2000 265

Comparing and Integrating Tree Adjoining
Grammars

Fei Xia, Martha Palmer

Department of Computer and Information Science
University of Pennsylvania

Philadelphia PA 19104, USA
{fxia,mpalmer}©linc.cis.upenn.edu

Abstract
Grammars are core elements of many NLP
applications. Grammars can be developed in
two ways: built by hand or extracted from
corpora. In this paper, we compare a hand­
crajted grammar with a Treebank grammar.
We contend that recognizing substructures
of the grammars' basic units is necessary

tures and semantic information which are
rarely represented in the corpora. lt would
be ideal if we could combine the strengths
of both types of grammar. As a first step
towards addressing this issue, in this paper
we compare a hand-crafted grammar with
a Treebank grammar and propose a way of
integrating them to produce new grammars.

Two grammars
not only because it allows grammars to be
compared at a higher level, but also because 2.
it provides the building blocks f or consistent
and efficient integration of the grammars. The two LTAGs that we compare are the

XTAG English grammar (XTAG-Group,
1995) and a grammar extracted from Penn
English Treebank. The XTAG grammar
has 1004 tree templates.1 The Treebank
grammar that we use in this paper is ex­
tracted from the Penn English Treebank II
(Marcus et al., 1994) using the extraction
algorithm described in (Xia, 1999}. The ex­
tracted grammar has 3072 templates.

1. Introduction
A Lexicalized Tree Adjoining Grammar
(LTAG) is a core element of many NLP ap­
plications. lt often has hundreds of elemen­
tary trees (etrees), which can either be built
by hand (hand-crafted grammars), or ex­
tracted from anriotated corpora (Treebank
grammars}. Hand-crafted grammars have
rich representations (such as feature struc­
tures), and tend tobe more precise, but they
take a long time to build and their coverage
on naturally-occurring data is hard to de­
termine. In additiou, they lack statistical
information which is crucial for statistical
parsers. Treebank grammars, on the other
hand, require little hnman effort (Xia, 1999;
Chen & Vijay-Shanker, 2000) to build, once
the Treebank has been created. They have
rieb statistical information and will cover at
least the corpora from which the grammars
are extracted. However, Treebank gram­
mars are noise-prone because of annotation
errors in the corpora and they also lack fea-

For lack of space, we will not describe the
extraction algorithm, other than pointing
out that by design all the etrees extracted
from the Treebank fall into one of three
types according to the relations between the
anchor of the etree and other nodes in the
tree, as shown in Figure 1. Figure 2 shows a
bracketed sentence from the Penn Treebank.
From that sentence, five etrees are extracted
by the algorithm, as shown in Figure 3.

1 If we remove the anchor (s) from etrees, we get
tree templates. Each template indicates where the
anchor(s) of that etree will be instantiated.

266

.~

~ ..
,/"-.....

Y'. X .. •! 'L"• a:::' X„ ,,.--...
x'
I"---..
x~· zt
' .

caJ spint-tucc (b) mod-ctrce.

Y~f "·~1
):1
I"---..
xo ztt
1

1prcdicatc-01riumcn1 rdation> cmodifical.icn relatlon) (coordi~ation rcladonJ

Figure 1: Forms of extracted etrees

(SBAR (WHNP-l (WP who)}
(S (NP-SBJ (-NONE- *T*-1))

(VP (VBD worried}
(PP-CLR (IN about}

(NP (DTthe}
(NN flood)))))))

Figure 2: An example from the Treebank

3. Comparing two grammars
To compare the grammars, we need to find
out how many trees in one grammar match
trees in the other grammar. We define two
types of matching : t-match and c-match.
From now on, we use XTAG and Ext-G to
stand for the XTAG grammar and the ex­
tracted grammar respectively.

3.1. t-match

We call two trees t-match (t for tree) if they
are identical barring the type of informa­
tiön present only in one grammar, such as
feature structures and subscripts2 in XTAG
and frequency information in Ext-G. In Fig­
ure 4, XTAG tree 4(a) and 4(b) t-match
Ext-G tree 4(c).
XTAG also differs from Ext-G in that
XTAG includes multi-anchor trees to han­
dle idioms (Figure 5(a)), light verbs (Fig­
ure 5(b)) and so on. In each of these cases,

2The subscripts on the nodes mark the same
semantic arguments in related subcategorization
frames.

f'lll) .„
'

(II!) f<t..'I ''" ... NP~I „··· ··Yt' „
I "- IHI,,,-....._ J-" - /f /\
"

„. „
"' 1 , "" 1 ... y • ... ,

'
1

"'"

Figure 3: The extracted Etrees

Fei Xia, Martha Palmer

s s
/""-. /""-.

~ NP0 I VP NP1t VP

1 1
V V

1 1
sleep brc:ik

Ca) pure inlr.lnsitivt verbs (b) crgative vc:rbs
inXTAG inXTAG

s
/""-.

NPt VP

1
V
1

sleeplbreak

fc) intr:insitivc vcrbs
in Eu·G

Figure 4: An example of t-match

the multi-anchors form the predicate. These ·
trees are the same as the spine-etree in
Figure 1 (a) except that some nodes of the
XTAG trees (e.g. N P1 in Figure 5(a) and its
counterpart z„ in Figure 1) are expanded.
By having multi-anchors, each tree can be
associated with semantic representations di­
rectly (as shown in in Figure 5), which is an
advantage of LTAG formalism. Ext-G does
not have multi-anchor trees because seman­
tics is not marked in the Treebank and con­
sequentially the extraction algorithm can
not distinguish idiomatic meanings from lit­
eral meanings. Two trees are called t-match
without expansions if they t-ma.tch after the
expanded part is removed from the XTAG
trees. Figure 5 is such an example.

___...l.._
NPo 1 VP
~

V
~ 1

kick D N
1 1

lhe buckel

(•) idioms
lnXTAG

1cm: die(NJ\1)

s---....
NPn1 VP
~

V 1P, -==l>
1
t~kc N

1

welk

(b) lighl vcrbs
in XTAG

sem: ... atkCNJli)

s ____.......__
VP NP01
~

V NP,I
1

kiclJ1ake

(c) transitive verbs
inEx1·G

scm: l;Jck(NPo. N~)

Figure 5: t-match w/o expansion

3.2. c-match

t-match requires two trees to have exactly
the same structure, therefore, it do.~s not
tolerate minor differences between the trees.
For instance, in XTAG, relative pronouns
such as which and the complementizer that
occupy distinct positions in the etree for
relative clauses, whereas the Penn Tree­
ban k treats both as pronouns and therefore
they occupy the same position in Ext-G

' as shown in Figure 6. Because the circled

Comparing and lntegrating Tree Adjoining Grammars
267

subtrees will occur in every tree for relative
clauses and wh-movement, all these t rees
will not t-match their counterparts in the
other grammar . !\. evertheless, the two trees
share the same subcategorization frame (NP
V NP), the same subcategorization chain3

S ---+ l · P 4 F and the same modification
pair (.\'P, S). To capture this kind of simi­
larity, we decompose a mod-etree into a tu­
ple of (subcat frame, subcat chain, modifica­
tion pair). Similarly, a spine-etree is decom­
posed into a (su bcat frame, subcat chain)
pair, and a conj-etree into (subcat frame,
subcat cha in, coordination sequence). Two
etrees are said to c-match (c for component)
if they are decomposed into the same tuples.
According to this definit ion, the two trees in
Figure 6 c-match.

S cu mul

N~
"'" /'::..

NP,.. VP
1 ~
•p V@ NP

1
t

(a) in XTAG (b) in Ex1-G

F igure 6: Relat ive clause trees

3.3. Comparison results

So far , we have defined several types of
matching. Table 1 lists the numbers of tree
templates4 in one grammar that match some
tree t emplates in the other grammar.5 The
last row list s the frequencies of the matched
Ext-G templates. For instance, the fourth
column says 496 templates in XTAG match

3 A subcategorization chain is a subsequence of
the spine in a spine-etree where each node on the
chain is a parent of sorne argurnent(s) in the sub­
categorization frarne. The nodes on a subcatego­
rization chain roughly correspond to Yarious Jexical
projections in GB-theory.

4We cornpare tree ternplates, not trees, in the
two grarnrnars because we are focusing on general
syntactic structure.

5If a ternplate in one gramrnar matches several
templates in the other grarnmar and the rnatch
types are different, we labe! it with the strongest

: match type.

189 templates in Ext-G, and these 189 tem­
plates account for 57.1% of the template to­
kens in t he Penn Treebank. If we decompose
templates into components as mentioned in
Section 3.2, the components that are shared
by both grammars will cm·er 82.9% of all the
component occurrences, as shown in Table
2. Templates in Ext-G are missing from the
XTAG grammar for one or more of the fol­
lowing reasons:

T l: incorr ect temp lates in Ext-G These
templates result from Treebank annota­
t ion errors. Our extraction algorithm has
a filter that detects implausible templa tes
in Ext-G by decomposing a template
into parts and checking each part against
several small hand-crafted tables. T he
filter marks 2299 templates in Ext-G as
implausible a.nd they account for 5.2% of
the template tokens in the 'Treebank.

T 2: conj-etrees in XTAG Most conj-etrees
in XTAG are generated on-the-fly while
parsing (Sarkar & Joshi, 1996), and are
not part of the 1004 templates. Therefore,
many of the conj-etrees in Ext-G, which
account for 2.8% of the template tokens in
the Treebank, do not match any templates
in XTAG.

T 3: d ifferent analyses XTAG and Ext-G
often choose different analyses for the
same phcnomenon. For example, the two
grammars treat reduced relative clauses
differently. 6

T4: missing constructions in XTAG
Some constructions such as the unlike co­
ordination phrase (UCP) in t he Treebank
are not covered in XTAG.7

6 Also, in XTAG, adjectives and nouns directly
modify nouns, whereas in Ext-G, they rnodify noun
phrases. These two pairs - (N, NP) and (A, NP)
- account for 26.6% o! the modification pairs in
the Treebank, explaining XTAG's Jack of coverage
(53.1 %) of the modification pair occurrences in the
Treebank.

7The difference between rnatched templates
(58.03) and rnatched components (82.9%) imply
that some combinations of components are miss­
ing from XTAG, The problem is very common for
hand-crafted grammars because the the redundancy
arnong trees in the grammar makes it verv harrl

268 Fei Xia, Martha Palmer:

t-match t-match w/o c-match subtotal conj-etree no-match total
expansion ternplates

XTAG 73 107 316 496(49.43) 39 469 1004
Ext-G 59 5 125 189(6.153) 411 2472 3072

-[frequency II 53.93 j O.o3 1 2.73 1 57.13 112.8% 11 40.1% 111003 1

Table 1: Numbers of templates that match and their frequencies

subcat subcat modification coordination total
chains frames pairs pairs

in XTAG 44 115 72 25 256
in Ext-G 471 507 309 53 1340
matched types 35 45 31 10 121
matched tokens 977,218 954,776 357,563 22,937 2,312,494
frequency 93.7% 91.63 53.1% 77.73 82.93

Table 2: Numbers of components in the two grammars

3 .4. Integrating the two grammars References
Simply taking the union of the two i:em­
plate sets will only yield a more noisy and
inconsistent grammar. Our method has sev­
eral steps: First, starting from Table 2, use
the plausibility fitter to automatically rule
out all of the implausible components in
XTAG and Ext-G, then integrate the re­
maining plausible components into a new
set, one for each type of component (such as
subcat frames, subcat chains, etc.). l'iext,
generate a new grammar from the compo­
nent sets using Yarious grammar develop­
ment tools such as ?'11etarules(Becker, 1994)
or LexOrg(Xia et al., 1998). The new gram­
mar will be of high quality and have good
coverage of the Treebank.

4. Conclusion
In this paper, we compare the XTAG gram­
mar with the Penn Treebank grammar and
propose a way of integrating them in or­
der to deriYe a new grammar which has the
strength of both. We believe that recogniz­
ing components of elementary trees in the
two grammars is necessary because it not
only allows the grammars to be compared
at a more fine-grained level, but also pro­
vides the building blocks for integrating the
grammars in a consistent and efficient way.

to maintain the grammac by hand. Various tools
to semi-automatically generate templates (Becker,
1994; Candito, 1996; Xia et al„ 1998) could allevi­
ate the problem.

BECKER T. (1994). Patterns in metarules. In
Proceedings of the Srd International Workshop
an TAG and Related Prameworks(TAG+3),
Paris, France.

CANDITO M.-H. (1996). A principle-based hi­
erarchical representation of !tags. In Proceed­
ings of COLING-96, Copenhagen, Denmark.

CHEN J. & VIJAY-SHANKER K. (2000). Au­
tomated extraction of tags from the penn tree­
bank. In 6th International Workshop on Pars­
ing Technologies (IWPT 2000), ltaly.

MARCUS M„ KIM G. , MARCINKIEWICZ M. A.
et al. (1994). The Penn 'freebank: annotat­
ing predicate argument structure. In Proc of
ARPA speech and Natural language workshop.

SARKAR A. & Josm A. (1996}. Coordina­
tion in Tree Adjoining Grammars: Formaliza­
tion and Implementation. In Proceedings of the
18th COLING, Copenhagen, Denmark.

XIA F. (1999). Extracting tree adjoining gram­
mars from bracketed corpora. In Proc. of
NLPRS-99, Beijing, China.

XIA F „ PALMER M., VIJAY-SHANKER K. &
RoSENZWE!G J. (1998). Consistent Grammer
Development Using Partial-tree Descriptions
for Lexicalized 'free-Adjoining Grammar. In
Proc. of tag+4.

XTAG-GROUP T. (1995). A Lexicalized Tree
Adjoining Grammar for English. Technical Re­
port IRCS 95-03, University of Pennsylvania.

