
Workshop TAG+S, Paris, 25-27 May 2000

Abstract

Extending Linear Indexed Grammars

Christian Wartena

Universität Potsdam
Institut für Linguistik/ Allgemeine Sprachwissenschaft

Postfach 601553, 14415 Potsdam, Germany
wartena@ling.uni-potsdam.de

WWW home page: http://www.ling.uni-potsdam.derwartena

This paper presents a possibility to extend the fonnalism of linear indexed grammars. The
extension is based on the use of tuples of pushdowns instead of one pushdown to store indices
during a derivation. If a restriction on the accessibility of the pushdowns is used, it can be
shown that the resulting fonnalisms give rise to a hierarchy of languages that is equivalent
with a hierarchy defined by Weir. For this equivalence, that was already known for a slightly
different fonnalism, this paper gives a new proof. Since all languages of Weir's hierarchy are
known to be mildly context sensitive, the proposed extensions of L!Gs become comparable with
extensions of tree adjoining grammars and head grammars.

1. Introduction
lt is weil known that tree adjoining grammars (TAGs), head grammars (HGs) and linear in­
dexed grammars (LIGs) are weakly equivalent (Vijay-Shanker & Weir, 1994). Each of these
formalisms was developed independently for the description of natural languages. For TAGs
and HGs hierarchies of extensions were defined by increasing the number of auxiliary trees that
are inserted in one step and by increasing the size of the tuples that are handled, resp. (cf. (Weir,
1988)). The extensions of TAGs, multi-component TAGs (MCTAGs) (Joshi, 1987), were ar­
gued tobe useful for the description of natural languages by Kroch (1987) and Kroch and Joshi
(1987). For LIGs a Iinguistically motivated extension is defined by Rambow (l 994) that is how­
ever of a rather different nature than the extensions of HGs and TAGs and does not give rise to
a hierarchy of formalisms and language classes. Weir (1988; 1992) defines a hierarchy of linear
controlled grammars that are strongly related to LIGs. lt is however not immediately apparent
what use these formalisms could have for linguistics. In (Wartena, 1998) recently extensions
of LIGs, called context-free linear multi-pushdown grammars (CFL-MPD-Gs), were defined
that use tuples of pushdowns to store indices instead of a single pushdown. The use of tuples
was motivated by linguistic needs. These extensions form a hierarchy of formalisms with an
increasing number of pushdowns. lf no pushdown is available the grammars are strongly equiv­
alent to context-free grammars. If one pushdown is used we obtain LIGs. The nth element of
the hierarchy can be shown to be a subclass of the nth class of Weir's hierarchy of controlled
languages.
CFL-MPD-Gs seem to fill up an apparent gap in the square formed by TAGs, HGs and LIGs
on the first axis and their extensions on the other axis. In order to formally justify this square
we have to show that CFLr-MPD-Gs and MCTAGs1 or the extensions of head grammars are
equivalent. (The equivalence between the last two was shown by Weir (1988)). We will go

1There are two variants of MCTAGs, the first ofwhich allows only for simultaneous adjunction in one elemen-

208 Christian Wartena

the following way to show this equivalence. First we will prove the equivalence between the
hierarchy of CFL-MPD-Gs and Weir's hierarchy of linear controlled grammars. Subsequently
the equivalence between the latter hierarchy and MCTAGs has to be shown. In this paper we
will do the first of the two steps.

2. Grammars with storage
LIGs store their indices in pushdowns. For the description of non-Iocal dependencies in natural
languages this organization can be argued to be too restrictive. Thus we might want to define
formalisms similar to LIGs but with a more liberal Stack structure. We start defining abstract
storages, that will form the base of the subsequent extensions.

Definition 1 (storage) A storage is a 6--tuple S = (C, Co, CF, P, F, m), where C is a set of
configurations, Co ~ C and CF ~ C the sets of initial and final configurations, respectively, P
is a set of predicate symbols, F a set of instruction symbols. m is the meaning function, which
associates every p E P with a mapping m(p) : C -+ { true, false} and every .f E F with a
partial function m(.f) : C -+ C.

Usually we are interested in properties of classes of storages rather than in properties of indi­
vidual ones. Classes of storages are often called storage types.

Example 1 A trivial storage is defined as Striv = ({c},{c},{c} , 0, {id},m), where c is an
arbitrary object and m(id)(c) = c. Tue class of all trivial storages is denoted 6tri\'·

Example 2 A pushdown over some finite alphabet r can be defined as a storage2 Sµd(f) =
(r-, {€},{t:},P, F ,m) with P = {top(!)l1 Er}, F = {push(i) h Er} U {pop} U {id} and
for every a E f and ß E r·,

m(top(i))(aß) = (a = 7)
m(push(i))(ß) = 1ß

The class of all pushdowns is denoted 6pd·

m(pop)(aß) = ß
m(id)(ß) = ß

On the base of this. notion of storages we can define context-free linear-S grammars (CF&-S­
Gs) as a generalization of LIGs.

Definition 2 (CF linear S-gramrnar) If S = (C, C0 , CF, P, F, m) is a storage then a context­
free linear S-grammar is a five tuple G = (N, I:, R, Ain, c0), where N, I; denote the sets of
nonterminal and terminal symbols, respectively. Ain E N is a distinguished symbol, called
the start symbol, Co E Co is the initial configuration, and R is a set of production rules of the
following two forms:

A -+ if 7r then (1 (B, .f)(2
A ---+ if 7r then w

where A, BEN, 7r E BE(P)) and (i.(2 E (N U I;)•, f E F, w EI:*. BE(P) denotes the set
ofboolean expressions over P. ·

tary tree, the second ooe of which allows for adjuoction of a tuple in a tuple of elementary trees as weil. The first
variant is equivalcnt to (simple) TAGs, the second ooe gives rise to an hierarchy of languages. In this paper we
will only consider these more powerful MCTAGs.

2Throughout the paper the following notational conventions are used. The empty string is denoted by c. For
each sei V the notatioo V, is used as an abbreviation for V U { c}.

Extending Linear Indexed Gr.ammars

A string CT E o· is said to derive a string T E o·. written CT =i? r 1 if either (1) or (2).

(1) u = a(A,c)ß
A -t if 7r then (1Bf(2 E R
m(7r)(c) = true3

m(f) is defined on c
T = a(f(B,c')Gß

(2) u = a(A, c)ß
A -t if 7r then w E R
m(?r)(c) = true
T = awß

209

where A, B E N, a, ß E o•, w E E*, c E C, c' = m(f)(c) and Cf , G are obtained from (1
and (2 , respectively, by replacing every nonterminal D by (D, eo). The reflexive and transitive
closure of "i?· denoted by ~·, is defined as usual. The Janguage generated by Gis defined as
L(G) = { w E E* I (A;n, eo) ~ • w }. If 6 is a storage type and S E 6 then a CFL-S-G is called
a CFL-6-G as weil. The class of languages generated by CFL-6-Gs is denoted .CcFL(G)·

The way in which the storage is passed on during a derivation is the same as in LIGs. lt is easy
to check that CFL-6ix1-Gs are equivalent to LIGs. Now we can easily define extensions of
LIGs by choosing other storage types. Tue generative capacity of variants that are defined in
this way crucially depends on the storage type. In order to investigate the typical complexity
and generative capacity of a storage type we will use storage-automata.

Definition 3 (S-automaton) lf S = (C, C0 , CF, P, F, m) is a storage, then an S-automaton
M is a tuple (Q, E, ö, q0, eo, QF), where Q is a finite set of states, E is the input alphabet,
q0 E Q the initial state, eo E C0 the initial configuration, QF ~ Q the set offinal states, and ö,
the transition relation, a finite subset of Q x E, x BE(P) x Q x F.

The set ID(M) = Q x E* x C is called the set of instantaneous descriptions. For each
(qi,xw,c1), (q2 ,w,C2) E ID(M) with x E E, we write (qi.xw, ci) f--M (q2,w,c2) ifthere
exists (q1, x, 7r, q2, f) E ö such that m(1f)(ci) = true, m(f) is defined on c1 and m(f)(c1) = c2 •

The transitive and reflexive closure f-M- of 1--M is defined as usual. Sometimes conjunction of
function symbols is used. For two function symbols fi and f 2 the meaning of the composed
function symbol fi&h is defined as m(f1&h) = m(h) o m(f1). Tue language accepted
by M is defined L(M) == {wl(q0,w,eo) f-- M- (q,c,c) for some c E C and q E Qp} if
Qp f:. 0 and L(M) = {w\(qo,w,eo) 1--u (q„w',c1) f--M „ . (qn, E,cn) for somecn E CF,
qn E Q, e; E C - Cp and q; E Q with 1 $ i < n} otherwise. In the first case we say
that M accepts by final state. In the second case M accepts by final configuration. Let 6
be some storage type. If M is an S-automaton and S E 6 we say as weil that M is an
6-automaton. Take e.g. 6 = 6pd• then we can say as usual that an automaton M is an 6pd­
automaton or a pushdown-automaton without reference to the specific pushdown that is used.
Finally we set L0 (6) = {L(M) 1 M is an 6-automaton accepting by final configuration} and
LQ(6) = {L(M) 1 M is an 6 - automaton accepting by final state}. For some important Stor­
age types (like pushdowns and concatenations of pushdowns) LQ(6) = lc(6). In these cases
we drop the subscript. In (Wartena, 2000) these storage types are called well-behaved. The
reader is referred there for details. A subclass of the well-behaved storage types is constituted
by the concatenating storages types. In a concatenating storage Co = CF and the cardinality of
Ca is 1.

3. Concatenation of storages
lt was argued in (Wartena, 1998) that a tuple of pushdowns would be an adequate storage type
to describe non-local dependencies in a number of constructions in various languages. The

3In fact only m(11') for 7r E P has been defined so far. lt is straightforward to extend the domain of m to BE(P).

210 Christian Wartena

motivation there was that we have to distinguish between different types of non-loca! depen­
dencies, as proposed in theories like that of relativized minimality (Rizzi, 1990), and that there
has to be one stack for each type.

Definition 4 (product of storages) For arbitrary storages 51 = (C1
, CJ, C}, P 1

, F 1
, m 1) and

52 = (c 2 , CJ' C'j.., P 2, F 2' m 2) the product of 5 1 and 52 is defined as 5 1 052 = (C1
X C2

' CJ X

CJ, C} x C}, P, F, m) where P = P 1 U {test(p) 1 p E P 2
}, F = F 1 U {do(f) 1 f E F 2

} and
for every c1 E C 1 and c2 E C 2

m (p)((c1
, c2

)) = m 1 (p)(c1
) if p E P 1

m(f) ((c1
, c2

)) = (m1(f)(c1
), c2

) if f E F 1

m(test(p))((c1,c2
)) = m 2 (p)(c2

) if p E P 2

m(do(f))((c1
, c2

)) = (c1
, m 2(j)(c2

)) if f E F 2

The set of semi-final configurations of 5 1 o 5 2 is defined as CsF = (CJ U C}) x C2• For two
storage types 6 1 and 6 1 the product is defined straightforwardly as 6 1 o 6 2 = {5 1 o 5 2 1 5 1 E
6 1 and 5 2 E 6 2}.

Tupi es or products of pushdowns are from a formal point of view to powerful. Following an idea
of Breveglieri et al. (1996) we can reduce this power by restricting the Operations that can be
applied to the components. A similar idea to restrict the power of tuples of stacks was proposed
by Becker (1994). Here we will define concatenation by means of an explicit restriction on a
product of two storages. This general definition was suggested by Lothar B udach (p.c.).

Definition 5 (K-product of storages) For arbitrary storages 51 and 5 2 such that 5 1 o 5 2 =
(C, C0 , CF, P, F, m) and for a mapping [{ : F 2 -+ { true, false} the K-product of 5 1 and 5 2 is
defined as 5 1

OK 5 2 = (c, c~, Cp, P, F, m') with4

m'(cp) = m(cp) lcsF if cp = do(cp') and J{(cp') = true
m'(cp) = m(cp) otherwise.

For two storage types 6i. and 6 2 and any predicate [{ the J(-product is defined as 6 1 oK 6 2 =
{51 o 52 11\ 5 1 E 6 1 and 52 E 6 2

} .

Note that m(do(f))((c1 , c2)) is undefined for f E F 2 if J<(f) is true and c1 is not initial or final.
The I<- products for two predicates f{ are of special interest. The predicate r determines what
Operations are considered as reading operations. For any pushdown Jet r(pop) = true and Jet
r(push) = r (id) = false. The r·-product of two stores corresponds exactly with the concatena­
tion with regard to reading defined in (Wartena, 1998). The counterpart of the predicate r is w
which is defined by w(push) = true and w(pop) = w(id) = false for any (n-turn) pushdown.
The product ow is the same as concatenation with regard to writing. ·

Example 3 5pd denotes a pushdown storage. Consequently, (5pd o, 5pd) o, 5pd denotes the
concatenation w.r.t. reading of three pushdowns. Bach component behaves like a pushdown. At
each point in the computation elements can be pushed on each of the three pushdowns, popping,
however, is only possible from the first non empty one.

4For any (partial) function f : A --+ B and any U ~ A the restriction of f ro U, denoted flu, is defined as
Jlu (u) = f(u) if u E U and undefined olherwise.

Extending Linear Indexed Grammars

Using r- and w-products we can recursively define the following hieral"c~i~s of stq
and corresponding classes of languages. The hierarchy established in (Breveglieri llfal.\19'96)
can now be defined as ltll\ = L(S;) for each i ;::: 0 where So = Striv and S; == s;~~ o>$6d,
(<!: is intended as a mnemonic for concatenation, the superscript !n indicating that concatenatidi
w.r.t. reading is meant.) For natural language syntax (Wartena, 1998) argues that concatenati~li
w.r.t. writing is more.appropriate. Thus the hierarchy, that is defined by setting ([2l\ = L(Si)
for each i ;::: 0 where So = Striv and S; = S;_1 ow Spd• is of more interest for us. lt can
however be shown that ([llli ~ ([2Di+l and that ([21Ji ~ <!:!l\+I . Thus both hierarchies are very
similar. An interesting fact is that <!:9\ and <!:!ID2 are the classes of extended left and extended
right linear indexed Janguages (ELLILs and ERLILs), resp. , defined in (Michaelis & Wartena,
1999). ERLILs were proposed as an appropriate restriction of linear indexed Janguages w.r.t.
the paths along which a stack can be inherited.

4. Linear controlled grammars
The hierarchy of Weir can be expressed most easily in terms of linear control. Linear control of
context-free grammars (CFGs) is defined in (Weir, 1992).

Definition 6 (linear controlled grammar) A linear distinguished grammar (LDG) is a qua­
druple G = (N, I:, R, Ain), where N and I: are finite sets ofnon-terminal and terminal symbols,
respectively, A;n E N is the start symbol and where R is a finite set of production rules of the
form: A -t ß1X!ß2 with A E N, X E NU I:, called the distinguished symbol, ß1 ,ß2 E
(N U I:) •, and ! a special symbol not in (N U I;). A linear controlled grammar (LCG) is a pair
[{ = (G, H) , where G is an LDG and H is a language over R, called the control language.

The set of {nonterminal and terminal) objects in J{ is defined as O(J{) = (NU I:) x R*. A
string o- E 0 (K)* is said to derive a string T E 0 (K)", written o- ~ T, if

a = -y(A,w)ö
r = A -t ß1X'ß2 E R

T = -rßHX,wr)ß~ö

where A E N, X E NU I:, ß i.ß2 E (NU I:)*, -y,Ö E O(I<)*, w E R·, and ß~ and ß~
are obtained from ß1 and ß2 , resp. by replacing every symbol Y E N U ~ by (Y, t). In this
case (X, wr) is called the distinguished child of (A, w). The reflexive and transitive closure
of ~. denoted ~·. is defined as usual. The language generated by J{ is defined as L(K) =
{a1.„anl(S, t) ~· (a1,w1)„.(an,wn)anda; E ~,w; E Hforl Si Sn}. Theclassof
all LDGs is denoted by ®LD· Furthermore, for any class of grammars ® for which control
is defined let ©/!;, = {(G, H) \ G E ® and H E !;,} and for any class of grammars ® Jet
L(®) = { L(G) 1 G E ®}. The obvious relation between linear controlled grammars and
CFL--S-grammars was shown in {Wartena, 1998).

Proposition 7 L(®w/ Lo(S)) = l!cFL(s) 0

In order to refer to objects in a derivation it is sometimes assumed that the objects have addresses
in IN" .5 In the following we will use two different address assignments, leftmosr and inside-out
ad~ress assignment. Suppose a string a = aXß E O(I<t derives a string T rewriting the
object X with address (into new objects Yo Y1 ... Y; . . . Yn with Y; the distinguished child of
X. If the address assignment is Ieftmost then the address of each 1'k is (k with 0 S k S n.
In the case of inside--0ut assignment the address of Yk is ((i - k) for 0 S k S i and (k for

5IN denotes the set of all non-negative integers.

212
Christian Wartena

i < k ::; n. For each object in a and ß the address in a and r is the same. A sequence of
strings of objects ö = o-0 ..• <1n such that o-; => o-;+1 is called a derivation If in each step the
nonterminal object with the lexicographic6 smallest address is rewritten then the derivation is
called Jeftrnost in case the address assignment is leftmost and inside--out in case the address

. assignment is inside--out.

5. The hierarchy of Weir
The classes of Janguages constituting Weir's hierarchy can be defined by setting Wo = .Crcg

and !Z!J; = L(®w/ !ZVi-i) for each i > 0. The following proposition was already shown in
(Wartena, 1998).

Proposition 8 it!Ri ~ !ZV; 0

The languages of Weir's hierarchy of controlled grarnrnars are accepted by concatenated push­
downs as weII. Below we will show that the derivation of an LDG controlled by sorne 6-
automaton can be executed by an (6 o, (6pd o, 6pd))-autornaton. The idea is that the automa­
ton follows one spine using its finite control to store the element actually being expanded and
using the first component to cornpute the control word. Everything that is generated to the right
of the spine is written on the third pushdown, terminal and nonterminal symbols generated to
the left of the spine are written on the second pushdown. If the foot of the spine is reached the
second pushdown contains the left part of the derived sentential form in reversed order. The
automaton now continues expanding the nonterminals on that pushdown, starting with the non­
terminal directly to the left of the foot of the spine that just is reached. The automaton can read
that syrnbol, since the first component is empty, just having accepted a control word. Thus the
automaton simulates an inside--0ut derivation.

Lemma 9 Let S be a concatenating storage. Then the following holds.

L(®w/ L(6)) ~ L(6 Or (6p<1Or6„d))

Proof Let 6 be a concatenating storage type, !et S = (C, C0, CF, P, F, m) E 6 and Jet

J{ = (G, L(M)) be an LCG with G = (N, 2:, R, Ain) an LOG and M = (Q, R, ö, C-O, 0) an S-
automaton. Assume w.l.o.g. that each production of Gis of the form A--+ B 1B2!B3 or A--+ a
with A, B1, B2, B3 E N and a E ~" Construct an (S o, (S11d(f) or Spd(f))-automaton
M' = (Q x Ne, E, ö', (qo, Ain), (C-O, t:, t:), 0) with f = N U .E, by setting

ö' = {((q1, A), t:, 7r, (q1, B2), f &do(push(B1)&do(do(push(B2))) 1 (la)
r=A--+ B1B2!B3 E Rand(q11 r,7r,q2,f) EÖ}

u { ((q11 A), t: , 7r, (q2, t:),f &do(do(push(a))) 1 (lb)
r = A --+ a E R and (q1, r, 7r, q2, f) E c5}

u {((qi,A),e,7r,(q2,t:), f) 1 (q1,e.,7r,q2,J) E J} (2)
u {((q,e.),e.,test(top(A)),(q,A),do(pop)) 1 A E N} (3a)
u { ((q, e.), e, test(test(top(A))), (q0, A), do(do(pop))) 1 A E N} (3b)
u { ((q, e), a, test(test(top(a))) , (q, e:), do(do(pop))) 1 a E E} (4)

lt can be shown by induction on the number of steps in a cornputation and in a derivation,
respectively, that

((q1 , A), w , (ci, (t:, t:))) t~ ((q2, B), e, (c2, (oJl ,ß)))
iff

(A, t) =a-• wa'(B, w)ß' (inside--0ut) and (q11 w, ci) t• (q2, e. , c2)
6The lexicographic ordering relation <1ex on IN* is defined by: X <1ex xjw and xi,P <1ex xiw if i < j for all

:1;, Y,,w EIN* and i,j E JN.

Extending Linear Indexed Grammars 213

where c/, ß' are obtained from a and ß respectively by replacing every non terminal A E N by
(.4, c). In case A = Ain and a = ß = B = t: we see that L(M') = L(K). D

Proposition 10 for each i > 1; !ID; C ~\)t2i-1

Proof First we show by induction that !ID; ~ ~!ll2;_1 for i ? l. For i = 1 the proposition

is trivially true, since !ID1 = ~!ll1 = .Ccp, the class of all context-free languages. Suppose
that the assertion is true for some i E IN. Let 6; denote the concatenation w.r.t. reading of
i-pushdowns, for some i EIN. thus L(6i) = ![!lt;. For i + 1 we find

!ID;+l = L(<Bw /filJ;) (by definition)
:;;; L(<Bw/IL!ll2;-i) (by induction)
:;;; L(6; Or (6pd Or 6p<1)) (by Lemma 9)

= ~!Jl2i+I = ~!Jl2(i+ l)-1 (by definition)

For i > 1 the inclusion is proper since it is known that both ~!lli and filJ; contain the language
{ a~ ... a2; 1 n E IN} but not the language { a~' ... a2;+1 1 n E IN}. D

This result combined with Proposition 8 implies that the languages from the multi- pushdown
hierarchy are the same as those in Weir's hierarchy.

D

A similar result was found by Cherubini and San Pietro (l 999a; l 999b), using different proofs.
Finally, Jet us return to the context-free linear 6 - grammars. The extensions of LIGs we are
interested in are CFL-6-Gs with 6 a concatenation of pushdowns. Calling each storage type
formed by concatenation of pushdowns a multiple pushdown (MPD) we can refer to these gram­
mars as CFL-MPD-grammars. lt is straightforward to check that the languages generated by
CFL-MPD-Gs are included in the hierarchy of Weir as weil. Let 6 ; be the Storage that arises
from concatenation w.r.t. reading from i-pushdowns, for some i E IN. Then we find

.CcFL(S;) L(<!'Jw/ ~!Jl;)
:;;; L(®w / filJ;)
:;;; fil.1;+1

(by Proposition 7)
(by Proposition 8)

. (by definition)

Tue inclusion of the classes Weir's hierarchy in the classes of Ianguages generated by CFL­
MPD-Gs is even simpler, since it can be shown that .CcFL(S) :J L(6).

6. Conclusion
In this paper two hierarchies of storage types were presented that are based on tuples of push­
downs with restrictions on the accessibility of the components. These storage types can be used
to make new and linguistically interesting extensions of LIGs and besides for the construction
of automata. lt can be shown that automata based on a concatenation of two pushdowns accept
only a subset of the linear indexed Ianguages (LILs). Automata based on a triple of pushdowns
accept already Ianguages that cannot be generated by any LIG. A storage type corresponding
to LIGs, the nested pushdown, was defined by Weir (1994). Though this storage type is rather
different from ours, in a nested pushdown there are as well various possibilities for writing but
only one for popping symbols. Becker (1994) defined automata, as well accepting LILs, that
use two nested stacks with an explicit restriction on popping symbols from the second one,
similar to the restrictions defined above. Reading from the second nested stack is possible if the

214

top of the first one is a bottom of stack symbol of an embedded stack. Thus reading from the
second component is restricted but not only to situations in which the first component is empty.
Storage types based on tuples .with restricted possibilities for writing to our knowledge were
considered in any fonn up to now.
The main result of this paper is a new proof for the equivalence of the hierarchies of concate~
nated pushdowns and a hierarchy of controlled languages established by Weir (1988; 1992).
By this equivalence we know that the languages generated by the extensions of LIGs presented
here are mildly context sensitive and therefore are comparable with extensions of TAGs and
head grammars. Whether the languages studied in this paper and the languages generated by
MCTAGs coincide, is a question that remains for future research.

References
BECKER T. (1994). A new automaton model forTAGs.Computationallntelligence, 10 (4), p. 422-430.

BREYEGLIERI L .• CHERUB!Nl A„ CITRIN! c. & CRESPI REGHIZZI s. (1996). Multi-push-down
languages and grammars. International Journal of Foundations of Computer Science, 7 (3), p. 253-291.

CHERUBINI A. & SAN PIETRO P. (1999)a. On the relation between multi-depth grammars and tree­
adjoining grammars. Publ. Math. Debrecen, 54 (Supplement), p. 625-640.

CHERUB!Nl A. & SAN PJETRO P. (1999)b. On the relations between multi-depth grammars and label­
distinguishedcontrol grammars. In C. L. NEHANIY & M. ITO, Eds., Algebraic Engineering, Singapore:
World Scientific.

JOSH! A. K. (1987). An introduction to tree adjoining grammars. In A. MANASTER-RAMER, Ed.,
Mathematics of Language, p. 87-113. Amsterdam/Philadelphia: John Benjamins.

KROCH A. S. (1987). Unbounded dependencies and subjacency in a tree adjoining grammar. In A.
MANASTER-RAMER, Ed., Mathematics of Language, p. 143-172. Amsterdam/Philadelphia: John Ben­
jamins.

KROCH A. S. & IOSHI A. K. (1987). Analyzing extraposition in a tree adjoining grammar. In G. J.
HUCK & A. E. ÜJEDA, Eds., DiscontinuousConstituency, volume 20 of Syntax and Semantics, p. 107-
149. Academic Press.

MICHAELIS I. & WARTENA C. (1999). LIGs with reduced derivation sets. In G. BOUMA, G.-J. M.
KRUIJFF, E. HINRICHS & R. T. OEHRLE, Eds., Constraints and Resources in Natural Lar1guage Syntax
arul Semantics, volume II of Studies in Constrained Based Lexicalism, p. 263-279. Stanford, CA: CSLI
Publications.

RAMBOW 0. (1994). Formal and Computational Aspects of Natural Language Syntax. PhD thesis,
University of Pennsylvania.

R1zz1 L. (1990). Relativized Minimality. Cambridge, MA: MIT Press.

VUAY-SHANKER K. & WEIR D. J. (1994). Tue equivalence of four extensions of context- free gram­
mars. Mathematical Systems Theory, 27 (6), p. 511-546.

WARTENA C. (1998). Grammars with composite Storages. In Proceedingsoftlte Conference on Logical
Aspects of Computational Linguistics (LACL '98), p. 11-14, Grenoble.

WARTENA C. (2000). Operations on storage types. Submitted.

WEIR D. J. (1988). Characteriz.ing Mildly Context-Sensitive Grammar Formalisms. PhD thesis, Uni­
versity of Pennsylvania.

WE!R D. J. (1992). A geometric hierarchy beyond context-free languages. Theoretical Computer
Science, 104 (4), p. 235-261.

WEIR D. J. (1994). Linear iterated pushdowns. Computational lntelligence, 10 (4), p. 422-430.

