Workshop TAG+3, Paris, 24-27 May 2000 W

Even better than Supertags : Introducing Hypertags !

Alexandra Kinyon

TALaNa - LaTTice
UFRL, University Paris 7, case 7003
2, pl. Jussieu
F-75251 Paris Cedex 05
Email : Alexandra Kinyon@linguist.jussieu.fr

Abstract

i this paper, we iniroduce the notion of Hypertag, which allows o factor the information
contained in several Supertags into a single structure. We also discuss why this approach is
useful within frameworks other than LTAGs, and how it can be used for ammotating and
searching corpora,

Introduction

Traditional part of speech tagging assigns very limited information (i.e. morphological and
local) to lexical items, thus providing only limited help for parsing. To solve this problem,
(Joshi & Srinivas 94, Srinivas 97) extend the notion of POS by introducing Supertags, within
the framework of Lexicalized Tree Adjoining Grammars (LTAGs). Unfortunately, words are
assigned on average a much higher number of Supertags than traditional POS : On average
for English a word is associated with 1.5 POS and with 9 supertags (Josiil 90} Oine common
solution to the problem is to only retain the "best" supertag for each word, or eventually the 3
best supertags for each word, which is what (Snnivas 97) does in a probabilistic manner. But
then, early decision has an adverse effect on the quality of parsing if the wrong supertag(s)
have been kept : one typically obtains between 75% and 92% accuracy when keeping only one
supertag / item (depending on the type of text being supertagged and on the technique used)
(cf. Srinivas 97, Chen & al. 99) which means that it may be the case that every word in 4 will
have a wrong supertag, whereas typical POS taggers usually achieve an accuracy above 95%.

Solutions for packing several supertags into a single structure hava been proposed in the
past, for example by resorting to logical formulae (Kallmeyer 99) or linear types ot trees
{Halber 99). But as argued in (Kinyon {0a), these solutions are unsatisfactory because they
rely only on mathematical properties of trees, and lack a linguistic dimension.

In this paper, we introduce the notion of Hypertag, which allows to factor the information
contained in several Supertags, so that a single structure can be assigned to each word. In
addition of being well-defined computational objects, hypertags should also be "readable” and
also motivated from a linguistic point of view . In a first part, we explain the solution we have
_adopted, building up on the notion of MetaGrammar introduced by (Candito 96} & (Candito,
99). Finally, we discuss how this approach ¢an be used in practice, and why it is interesting for
frameworks other than LTAGs. We assume the reader is familiar with LTAGs and Supertags
and refer respectively to (Joshi 87) & to (Srinivas 97) for an introduction.

1. Exploiting a MetaGrammar

(Candito 96,99) has developed a tool to generate semi-automatically elementary trees She
uses an additional layer of linguistic description, called the metagrammar (MG), which imposes
a general organization for syntactic information in a 3 dimensional hierarchy

o Dimension I: initial subcategonization

142 Alexandra Kinyon

« Dimension 2: redistnbution of functions and transitivity alternations
e Dimension 3: surface realization of arguments, clause type and word order

Each terminal class in dimension | describes a possible initial subcategorization (i.e. a tree
family). Each terminal class in dimension 2 describes a list of ordered redistributions of
functions (e.g. it allows to add an argument for causatives). Finally, each terminal class in
dimension 3 represents the surface realization of a (final) function (e.g. cliticized, extracted ...).

Each class in the hierarchy corresponds to the partial description of a tree (ef Rogers &
Vijay-Shanker 94). An elementary tree is generated by inheriting from one terrninal class in
dimension L, from one terminal class in dimension 2 and from n terminal classes in dimension 3
(were n is the number of arguments of the elementary tree). ' The hierarchy is partially
handwritten. Then crossing of linguistic phenomena (e.g. passive + extraction), terminal classes
and from there elementary trees are generated automatically off line?. This allows to obtain a
grammar which can then be used to parse in real time. When the grammar is generated, it is
straight forward to keep track of the terminal classes each elementary tree inhented from :
Figure 1 shows seven elementary trees which can supertag “donne” (gives), as well as the
inheritance patterns” associated to each of these supertags. All the examples below wiil refer to
this figure,

The key idea then is to represent a set of elementary trees by a disjunction for each
dimension of the hierarchy. Therefore, a hypertag consists in three disjunctions (one for
dimension 1, one for dimension 2 and one for dimension 3). The cross-product of the three
- disjunctions can then be done automatically and from there, the set of elementary trees referred
to by the hypertag will be automatically retrieved We will now illustrate this, first by showing
how hypertags are built, and then by explaining how a set of trees (and thus of supertags) is
retrieved from the information rontained in a hypertag.

1.1 Building hypertags : a detailed example

Let us start with a simple exemple were we want "donner” to be assigned the supertags «l
([donwe une pomme G M) and @2 (J donne & M. une pomme). On figure 1, one notices that
these two trees inherited exactly from the same classes . the relative order of the two
complements is left vunspecified in the hierarchy, thus one same description will yield both
trees. In this case, the hypertag will thus simply be identical to the inheritance pattern of these
two trees :

Dimension 1: nfOvni{an2) 71
Dimension 2 : no redistribution
Dimermsion 3 }subj ;:nominal-canonical

obj : nominal-canonical
a-0bj: nominal-canonical

Let's now add tree a3 (J donne une ppmme) to this hypertag.This tree had its second
object declared empty in dimension 2 (thus it inherits only two terminal classes from dimension
3, since it has only two arguments realized). The hypertag now becomes” :

' “The idea to use the MG to obtain a compact representation of a set of SuperTags was brefly skeiched in
(Candito 99) and (Abeillé & al. 99). by resorting to MetaFeatures. but the approach here is slightly different
since only information about the classes in the hierarchy is used (and not explicil information about the
function of arguments)
* This point has been misunderstood by (Xia & al. 98, p.183) : terminal classes and classes for crossings of
E;henomcna ARE NOT manually created _

We call inheritance panerms the structure used to store all the terminal classes a tree has inherited from.
* What has been added to a supertag is shown in bold characters.

Fven better than Supertags : Introducing Hypertags !

‘ Supertags] bsm:hud Inhe ritance Patte maJ

@l

5 Dimension 1: n0vnl{an2)
Diimension 2 : no redistribution
le’ _— Dimention 3 :| snbj :nominal-canonical
obj : nominal-canounical
8-ob] : nominal-cunoulcal

donne a N2l
¢J. doroe upe pormume a M. /
J gives anapple to M)
@2 — —
S Dimension 1! a0vul(hn2)
Dimension 2 : no redistribntion
Nol ¥ PP N1i — Dimension 3 :| subj :ac minal-canonical
obj} : hominal-¢canouical
2-0bj : nominal-canonical

donne & N24

¢J, donhe & M. une pomme /
I gives to M an apple)

al [Dimension 1: e0vol{in2)
s Dimension 2 : 30bfjempry

- Dimension 3 :f subj :nominal-cenonical

obj : pominal-cangnical

Nodl Vv Nid

donne

(J. donne ure pomme/
I gives an apple)

p4
N Limension 1: nOvnl(anz)
Dimension 2 : wo redistriburon

T T
ﬁk TR Dimeasion 3 :’ subj :nominal-inverted

1

Comp ¥ NoO. PP obj : relativized-object
a-obj : nominal-capenical

que donne Prep N2§

|

a
La pornme que donne J. &4 M. -
The apple which gives J, to M)

B3
Dimension 1; nf*vnli(an2)
Dimension Z : go redisfribution

Nlﬂ b
A = Dimension 3 :| sub) :nominal-canobical

Cemp Nol ¥ T ebj ;: relativized-ebject

V™ | a-obj : Dominal-canonical

que donne Prep N2i

>z

&
(La pomme que J. dortne & M. 7
The appla which J. giver to AL)

[
‘L Dimension 1: n0vul(an2}
T Dimension 2 : aQObjempty
- L]
Nt et Dimension 3 :[sabj :nominal-inverted
Comp V NoOl obj : relativire d-object

gee donne

(La pownme que donne S/
The apple which gives J.)

DL Dimeusion 1: n0vol(anl)
Dimession 2 1 aObj-empry
o — pr—)

Ni- /K Dimension 3 ;| subj ;nominal-cenonica

H d-ob i
Comp NOJ % obj : relativixed-objec
|

que donne

(La pomme que J. donne /
The apple whick J. givas)

NS

isociated ioheritance pa

" . Alexandra Kinyen

Dim 1: nOvnl(an2)
Dim 2 : no redistribution OR a0b{ empty
Dim 3 }subj :nominal-canonical

obj : nominal-canonical

a-obj: nominal-canonical

Let's now add the tree B4 for the object relative to this hypertag. This tree has been
generated by inheriting in dimension 3 from the terminal class "nominal inverted" for its subject
and from the class "relativized object” for its obiect. This information is simply added in the
hypertag, which now becomes :

Dim. : nGvni{an2)
Dim. 2 : no redistribution OR 40bj- empty
Dim. 3} subj :nominal-cancnical OR nominakimverted
obj : nominal-canonical OR relativized-object
a-obj: nominal-canonical
Also note that for this last example the structural properties of B4 were quite different than
those of al, a2 and a3 (for instance, it has a root of category N and not S). But this has little
importance since a generalization is made in linguistic terms without explicitly relying on the
shape of trees. .
It is also clear that hypertags a:ie buiii in & monotonic iasiion . each supertag added to a
. hypertag just adds information. Also, the process of building hypertags is rather simple. We
observe that hypertags allow to label each word with a unique structure’. Moreover, hypertags
contain rich syntactic information about lexical items (For our example, the word "donne"},
and also contain functional information (not explicitly available in supertags). They are
linguistically motivated, but also yield a readable output. They can be enriched or modified by
human annotators or easily fed to a parser or shallow parser.

1.2 Retrieving information from hypertags

Retrieving information from hypertags is pretty straightforward. For example, to recover
the set of supertags contained in a hypertag®, one just needs to perform the crossing between
the 3 dimensiviic of the hypertag, as shown on Figure 2, in order to obtain all inheritance
patterns, These inhentance patterns are then matched with the izheritance ~atterns contained in
the grammar {i.e. the right column in Figure 1) to recover all the appropriate supertags.
Inheritance patterns which are generated but don't match any existing trees in the grammar are
simply discarded’.

We observe that the 4 supertags a1, a2 and o3 and B4 which we had explicitly added to
the hypertag in 2.1 are correctly retrieved, But also, the supertags B35, B6 and B7 are retrieved,
which we did not explicitly intend since we never added them te the hypertag. But this is not a
problem, since if a word can anchor the 4 first trees, then it will also necessarily anchor the
three last ones. In fact, the automatic crossing of disjunctions in the hypertag insures
consistency®.

*we presented a simple example for sake of clarity, but traditional POS ambiguity is handled in the same way.
except that disjunctions are then added in dimension 1 as well.)

® This is to show that supertags can be retrieved from a hypertag. But it is not indispensable to do so : using
hypertags directly is more appealing and will be addressed in future work.

" When the full 5000 trees grammar is generated with the MetaGrammar, these same trees are discarded by
general linguistic principles such as "canonical nominal objects prevent subject inversion™ (cf. Abeillé & al.
00}, So Hypertags do not "overgenerate”.

¥ Again, for the same reasons the MetaGratamar insures consistency.

‘Even better than Supertags : Intreducing Hypertags !

T TSmlkmiiun
Do diadlbpampty
-

Supertags corresponding to
inheritance Patterns (cf figure 1)

FIGURE 2 :Refrieving inheritance patterns and Supertags from a Hypertag

Also note that no particular mechanism is needed for dimension 3 to handie arguments
which are not realized : if aObj-empty is inherited from dimension 2, then only subject and
abject will inherit from dimension three (since only arguments that are realized inherit from
that dimension when the grammar is generated).

Information can also be modified at runtime in a hypertag, depending on the context of
lexical items, For example “relativized objeci” can be supressed 1n dimension Z fom the
hypertag shown on Figure 2, in case no Wh element is encountered in a sentence. Then, the
correct set of supertags will still be retrieved from the hypertag by automatic crossing (that is,
trees ct},a2 and a3), since the other inheritance patterns generated won't refer to any tree in
the grammar (here, no existing tree inherits in dimension 3 "subject:inverted-nominal”,
without inheriting also "ebject: relativized-object”)

2. Practical use

An LTAG can be seen as a dictionary, in which each lexical entry is associated to a set of
elementary trees. But with hypertags, each lexical entry is now paired with one unique
structure. Therefore, automatically hypertagging a text is easy (i.e. simple dictionary lookup).
The equivalent of finding the "right" supertag for each lexical item in a text (i.e. reducing
ambiguity) then consists in dynamically removing information from hypertags (i.e. suppressing
efements in disjunctions). We hope this can be achieved by specific rules, which we are
currently working on. It is important to note though that the resulting output can easily be
manually annotated in order to build a gold-standard corpus : manually removing linguistically
relevant pieces from information in 2 disjunction from a single structure is simpler than dealing
with a set of trees. In addition of obvious advantages in terms of display (tree structures,
especially when presented in a non graphical way, are unreadable), the task itself becomes
easier because topological problems are solved automatically: annotators need just answer
questions such as "does this verd have an exiracted object 7", is the subject of this verb

146 Alexandra Kimyoy;

inmverted ?" to decide which terminal classe(s) must be kept .We believe that these questiong:
are easier to answer than "Which of these trees have a node NI marked wh+ at address 1.1 7%
(for an extracted object).

Also, supertagged text are difficult to use outside of an LTAG framework, contrary tg
hypertagged texts, which contain general linguistic information. An example would ba
searching and extracting syntactic data on a large scale : suppose one wants to extract all the
occurrences where a given verb V has a relativized object. To do so on a hypertagged text
simply involves performing a "grep” on all lines containing a V whose hypertag contains
"dimension 3 : objet:relativized", without knowing anything about the LTAG framework:
Performing the same task with a supertagged text involves knowing how LTAGs encode
relativized objects in elementary trees, scanning potential trees associated with V... Another
example would be using a hypertagged text as an input to a parser based on a framework other
than LTAGs : for instance, hypertags could be used by an LFG parser to constrain the
construction of an F-structure, whereas it's unclear how this could be achieved with supertags.

3. Conclusion

We have introduced the notion of hvpertao vaertaos allow to assign one unique structure
to lexical items. Moreover this structure is readable, linguistically and computationally
motivated, and contains much richer syntactic information than traditional POS, thus a
hypertagger would be a good candidate as the front end of a parser. Tt allows in practice to
build large annotated resources which are useful for extracting svntactic information on a large
scale, without being dependant on a given grammatical formalism. Also, hypertags are being
used to develop a psycholinguistically motivated processing model for LTAGs (Kinyon 00b).

We have shown how hypertags are built, how information can be retrieved from them:
Further work will investigate how hypertags can be combined directly.

References

Abcillé A.. Candito M.. Kinyon A. 1999. FTAG: current status and parsing scheme. Proc. Vextal '99. Venice.

Abeillé A Candito M.H., Kinvon A, 2000. The current status of FTAG. Proc. TAG+3. Paris.

Candito M-H. 1996. A principle-based hierarchical representation of LT AGs, Proc. COLING'96 Kopenhagen.

Candito M.-H. 1999, Représentation modulaire et paramétrable de grammaires électroniques lexicalisées.
Application au frangais et a Vitalien. PhD dissertation. University Paris 7.

Chen J.. Srnivas B., Vijay-Shanker K. 1999 New Models for Improving Supertag Disambiguation. Proc.
EACL'99 pp. 183-193, Bergen.

Halber A. 1999. Stratégic d'analvse pour la compréhension de fa parale : vers une anproche 4 base de
Grammaires d'Atbres Adjoints Lexicalisées. PhD thesis. ENST. Paris

Joshi A. : 1987, An introduction 1o Tree Adjvining Grammars. [n Mathematics of Language. A.
Manaster-Ramer (eds). John Berjamins Publishing Company. Amsterdam.Philadelphia. pp. §7-114.

Joshi A. 1999. Explorations of a domain of locality. CLIN'9Y. Utrecht.

Joshi A. Srinivas B. 1994, Disambiguation of Super Pans of Speech (or Supertags) @ Almost parsing.
Proceeding COLING'94. Kyoto.

Kallmeyer L. 1999, Tree Description Grammars and Underspecified Representations. Phi) thesis. Universitit
Tubingen.

Kinvon A. 2000a. Hyperlags. Proceedings Coling'00. Sarrebrucken.

Kinvon A. 2000b. Towards a psycholinguistically motivated processing model for LTAGs. Proc. Cogsci' 2000.
Philadelphia.

Srinivas B.. 1997. Complexity of lexical descriptions and its refevance for partial parsing, PhD thesis. Univ. of
Pennsylvania.

Rogers J.. Vijay-Shanker K. 1994, Obtaining trees from their descriptions : an application to TAGs.
Computational Intelligence. 10:4 pp 401421,

Xia F. & Palmer M.. Vijay-shanker K.. Rosenzweig J. 1998, Consistent Gammar development using partial
tree description for LTAGs. Proc. TAG+4. Philadelphia.

? This of course implies that one must be very careful in choosing evocative names for terminal classes.

