Workshop TAG+35, Paris, 24-27 May 2000 123

How to solve some failures of LTAG

Sylvain KAHANE

LaTTiCe — TALaNa (Université Paris 7)
sk@cer.jussiev.fr

Abstract.

The paper presents a lexicalized dependency grammar which solves some failures of Lexicalized TAGs,
such as the combinatorial explosion of the number of elementary trees and the non adeguacy for the
analysis of some constructions.

Introduction

Wide coverage grammars for natural languages have been developed in Lexicalized TAG (cf.
Abeillé 1991, Candito 1999 for French and Paroubek et al. 1992, XTAG 1995 for English). These
implementations have brought to the fore some failures of the formalism for nawral language
description which cannot be solved without adopting a descriptively more powerful formalism.
These failures concern most of lexicalized grammars, including Categorial Gramimars (CG). In this
paper, we will present some of these faitures and propose <olutions in a lexicalized dependency
grammar based on Nasr 1995, 1996.

1. Lexicalized grammars

An LTAG is a particular case of lexicalized grammar (LG). A LG is a formal grammar that has
the form of a Jexicon: each lexical unit is associated to a set of elementary structures. The grammar
has an operation of combination' and each sentence {= a string of word) can be associated to set of
structures obtained by combinations of elementary structures associated to the words of the
sentence.

Formally, a LG is a 3-uple G=< L. 5. 5., @, ¢ > where:

- Listhelexicon;

- Sis the set of structures: it is an infinite set but it must be finitely defined;

- 5;is the subset of § of final structures;

- ¢ is a many-to-many map from £to0 §;

- cis the operation of combination of structures; it is 2 many-to-many map from SxS to 5.
Below c{re,®) will be noted a.p.

The operation ¢ induces an operation ¢* from 5* to § which associates to a sequence of structures

of Sall the structures of S obtained by combination of these structures. For instance, ¢*(o,B,y) 1s all

the structures obtained by the combinations (e.f)y and a.(p.y). The grammar G defines a

correspondence (= many-to-many map) ¢* between £* and Si: a sentence ¥ = x,x,...x, in £* and

a structure § in S are in correspondence if for each word x; there is a structure §; = @(x;) such that

c*(8,,55....8,) = §.

' Most of formalisms consider several operations of combinations (e.g. substitution and adjoining in
TAG), but we can suppose that there is only one, which is the union of all of them.
! We do not exclude that two structures can combine in several ways.

124 ,
Sylvain Kahane

We will now present an LG adapted from Nasr 1995, 1996, which we call Lexicalized Dependency
Grammar (LDG), The set of structures § of LDG is a set of dependency trees (Tesnitre 1959,
Mel’¢uk 1988); nodes are labeled by a lexical unit, its part of speech and some grammatical features
(not considered here), while branches are labeled by a syntactic relation and a weight {see below).
Moreover each label contains a feature type with value 0 (= white) or 1 (= black) sueh that
0u0=0, Oul=1 and 1ul = failure. 5; is the subset of dependency trees in § whose all
nodes and branches are black, that is have the value type:l. The feature type ensures that each
clement is build one and only one time: black elements can he remeids (G as cinent whicn are
build and white elernents, as requasts.

[1,N,Peter] [1,V likes] [ON] [ON] [1,N,bocok]
® . . @ @ *
[1subj-10] {1,08/410] [] der-10]7 [Lartr,-5] [0,det]
¢ o
[ON] [ON] [1,D.the] {1,A,red) [0,b]
T Peter tlikes Tthe Tred T book

Figure 1. Elementary trees

In the plain case, elements of § combine by unification of one node. In some cases, several nodes
and branches can unify (e.g., the combination of the tree of book with the tree of its determiner the.
Fig.2). The feature type allows a black element to unify only with a white element.

A sentence i corresponds to a tree T of S if:
e the nodes of T are labeled by the words of # and correspond one-to-one to them,

s the product structure Txu, that is the tree T with the linear order on the nodes induced by u, is
a projective ordered tree (no arcs cross each other and no arc covers the root);

¢ the local order consua.*< given by the weights on the branches are respected: the sign of
the weight (- or +) indicates if the aepe.. >+ i< hefore or after the governor and the absolute
value of the weight indicates the relative distance between tne dependent and the governos.

Fig. 2 shows the dependency tree resullting from the combination of the elementary trees of Fig, 1
and the correspondence between this tree and the sentence Peter likes the red book.

[1.V,likes] [1,V.likes]
il ,subj,-l(}]/‘\[1,057 ,+10]

[1,subj-10} [1,05j+10]
(I NPeter] O m [1,N,Perer]{{dtI}I[II,N.boak]
4 Ny EI 3 , e,- ’an ‘-5
erON] ' ? v gl

\L [1.D,tRhel [1,A, red]

Peter likes the red book

Figure 2. Combination

2. Avoid the combinatorial explosion of the number of elementary trees

The first failure of LTAGs is certainly the combinatorial explosion of the number of elementary
trees associated to a given lexical unit. Due to the fact that for each non-canonical position of an

How to solve some failures of LTAGs i35

argument (deletion, topicalization, inversion, relativization, cliticization, raising, heavy shift...) a
different tree is necessary and due to the crossing with the different arguments, several hundred of
elementary trees can corfespond to a same lexical unjt. Tools have been proposed to write

rammars in formalisms which avoid redundancies and allow to generate an LTAG (cf. Vijay-
Shanker & Schabes 1992, Candito 1996, 1999). But such formalism-—called a metagrammar in
Candito 1999—cannot be used directly as a grammar and must be compiled into a LTAG before
using. And due to the great number of elementary trees, LTAG parsers are not very efficient and
consume a lot of space memory.” Our proposition consists to propose a lexicalized grammar which
has more or less the property of a metagrammar, but which can be used directly as an LTAG,

We claim that the number of elementary trees associated to a lexical unit depends on two factors:
1) the repartition of the linguistic information;

2) the expressiveness of S and the powerfulness of ¢.
We will now study some examples and propose solutions with our LDG.

Attribute and predicative adjectives. In LTAG, adjectives receive two different elermnentary
structures for their attribute and predicative uses. Compare the red book and the book is red. The
LTAG's elementary tree of the attributive red has a nominal foot node in order to adjoin on a noun
(here book), while the LTAG’s elementary tree of the predicative red has a nominal substitution
node (occupied here by book) and a verbal node where the copulative verb will adjein. But the
particutar hehavior of predicative adjective can be attributed to the copulative verbs rather than to the
adjective and a same elementary tree should be attributed to attributive and predicative adjectives.
But the TAG formalism is not powerful enough for that. Qur LDG can be enriched to solve this
problem. We consider a nzv *ype of hranchee called auacl.danendency, with a fearre
+cuasi. Quasi-dependencies do not intervene in the tree hierarchy nor in the lineanization (they do
not bear a weight), but they can unify with a true dependency (the result is still a quasi-
dependency). The elementary tree twred (Fig.1), which is vsed for attributive constructions (Fig. 2),
can also be used for predicative constructions. In this case, the amr dependency adjoins with a
quasi-dependency of the elementary tree of the copula (Fig. 3). In other words, we have given the
copula the pawer to absorb this dependency and to give another syntactic governor to red than the
noun goveming it in its elementary tree. The problemn has been solved by adopting a different
repartition of linguistic information (properties of predicative constructions are attached to the
adjective to the copula, rather than to the adjective as in LTAG), which was made possible by an
enrichment of the formalism.*

[1,V.s} {O,N} [1,V.,is]
[1,subj,-10ﬁl,p1‘ed,+10} + 1 ar?‘r -5] __} [l,subj,-lﬂ]l[l,pred,+10]
OI:—I_[__:b[O’A] "y ON]- '*[I,A,red]
[0.N] [0,atrr,+quasi] [1LA,red] [0, {1.atir,+quasi}

Figure 3. Derivation of (The book) is red

* Parsing algorithm for LTAG have time complexity in C| Gl %n’ and space complexity in C| G n’,
where | G is the size of G, that is the number of elementary structures.

" The problem can also be solved in CG: the noun book will receive the category N and the adjective
red the category N/N, in order to adjoin on the noun, Then the copula receives the category
NAS/(N/N). Nevertheless, CG presents some failures; in paticular, CG has not a convenient treatment of
adjoining. For instance, if we want to specify that a noun must have a determiner we will give it the
category D\N, but, in this case, red must receive the category (DANY(DAN). And if several categories
are considered for nouns, several categories must be considered for red. Another point: at first view,
CG is not exactly a lexicalized grammar in the sense considered here, because the combination of
categories does not build. But a structure can be derived from the reduction process or categories can
be enriched with lambda terms whose combination gives a semantic structure,

126 Sylvain Kahane

Non-canonical position. In LTAG, all the arguments are positioned in the elementary tree of
their govemor. But the particular behavior of some elements (wh-words, clitics...) might be
attributed to them rather than to their govemor, And again the TAG formalism is not sufficiently
powerful for that.

Our LDG can be enriched to solve this problem. We consider a new type of feature value, called
priority value: rather to unify with another value. a priority value replaces it. Fig. 4 proposes a
solution for clitics in French. Object clitic e is positioned before the verb and the relative order of
clitics is very constrained (roughly se < le < lui < en < y). Therefore, the clitic e will receive an
elementary tree with a white obj governor dependency bearing a priority weight of —4;
conseguently, the clitic le can only combine with an obj request and its priority weight value will
ensure its correct positioning. In our figures, priority values are underlined.

[1,V.voif] [0V} 1,V voit}
[1 :ubj-lﬂ]n[l obj+10] 4+ [0 E 4] [1,subj qu[l obj.-4]
> (11 ,b 2 ,O‘J,-_ ———9 ¥ J, 3 J-:
[O,N] [ON] [1.ClIe] [ON] [1.CLle]

Figure 4, Derivation of Fr. [Pierre] le voit ‘Peter sees it’ (first proposal)

Non projective constructions, Cur first proposal for clitics operates only for projective case,
that is when the clitic is on the word that subcategorizes it. We will propose here a solution for
clitic climbing in French:

(1} Pierre l'a vu, lit. Peter LE has seen ‘Peter has seen it’
(2) Pierre en aime la fin, lit. Peter EN likes the end, ‘Peter likes the end of it’

Case (1) is solved in LTAG by adjoining the auxiliary verb a ‘has’ on the past participle v ‘seen’
(Abeillé 1991). It is not satisfactory because the auxiliary is the syntactic head of the clause; for
instance, it receives the negation ne...pas: Pierre ne 'a pas vu, Peter NE LE has not seen. ‘Peter
has not seen it’. This last sentence canuul Lw catisfactorily derived in LTAG. because the clitic ne,
which is borne by the auxiliary, cannot adjoin on it because of the clitic /e, whicn 18 on the tree or
the past participle. The case of {2) is even more probiematic: the only way to solve it is to use set-
lacal multi-component TAG (Bleam 1994).

Our solution is inspired from Hudson 2000 and can be compared to the Slash analysis: the clitic is
lifted from its syntactic governor (the word which subcategorizes it) to its linear governor
(the word on which it positions). As the dependencies are used for the linearization, the clitic must
depends on its linear governor by a true dependency (with a weight), while the dependency with its
syntactic governor (in the elementary tree of its syntactic governor) must become a quasi-
dependency. For these reasons, the elementary structure of a clitic has a dependency labeled aff(ix)
linked to its linear governor, which ensures its good linearization, and a quasi-dependency linked to
its syntactic governor, which must unify with the request of its syntactic govemor (Fig. 5).° The
most difficult problem is to ensure that the clitic climbs on the good node. The lifting is controlled
by a bubble, labeled B, containing both syntactic and linear governors of the clitic. We assume that
a dependency on a node of a B bubble will be contained in the § bubble if and only if it is labeled ip.
Therefore, when the clitic’s elementary tree tle combines with the auxiliary verb’s elementary tree
12, the aux dependency of 1a, which is labeled if, must be contained in the bubble f. Moreover the

* Note the particular treatment of the past participle: it has a subject but this subject is linked by a
guasi-dependency. This quasi-dependency unifies with the quasi-dependency of the auxiliary
elementary tree. The “subject” of the past participle cannot be realized (and linearized) without
being linked to the tree by a true dependency.

How to solve some failures of LTAGs 127

tree tle indicates that the linear govemor of the clitic must be a finite or infinite verb. As’ the.-
syntactic governor is not finite or infinite, the clitic climbing is needed.

[0V finfin] LVfina ~ B1,v fin,a)

[1.aff-4] B [1,:ubj.~10ﬁ1,aux,+10,iﬁ] [1,V.pp,vid) “.{(t)d]?li.m] ‘{Igux,ﬂﬂ,iﬁ]
. C[.[i]—l'_-o[o V] IO,N]. [0.V,pp] [l,subj;,;q] [1,0bf,+10] [l,subj,+q]-j ,—\'EI,V,PP,V.H]
L Moobieg] Osgival [N} (ON] [Laff-41 1.8 ley 1105 +<]

Figure 5. Clitic climbing (derivation of (1))

Even when there is no climbing, the same elementary tree can be used for the clitic: in this case, the
two nodes of the B bubble unify and there is a dependency and a guasi-dependency between the
clitic and its (syntactic and linear) governor (Fig. 6).

{3V, voif] [0,V finfinf] [1,V.voifl\§
ol ~, .
[l,subj,-lo]l[l,abj,+10]+ (1.aff-4] 3 [1,5ubj,-10] ‘El,obwq]
4 o 0 o
(0N [ON} [I,Q,!e]\ [0,V [ON] | [1.ClLle]
(0,08, +d] [1,aff,-4]

Figure 6. Derivation of Fr. [Pierre] Ie voit ‘Peter sees it’ (second proposal)

Let us come back to the problem of the negation rze...pas. which cannot be solved satisfactorily in
TAG. The negation simply adjoins to the finite verb, ne with a weight -5 and pas with a weight+2.

Kahane 2000 proposes a similar solution for extractions.

3. Syntax and semantics

One of the main interest of LTAG is that the derivation tree can be interpreted as a semantic graph
(= predicate-argument stroctures) (Candito & Kahane 1998a). To allow such an interpretation,
some principies are required: the lexical nodes of an elementary tree must correspond to exactly one
semantic unit (Abeiilé 1991} and the non-lexical leafs of an elementary tree comresponds one-to-one
1o the arguments of this semantic unit (predicate-argument co-pccurrence principle). But a strict
application of this principle is too strong: for instance, it forbids that a syntactic element such as a
copulative verb or a complementizer anchors its own tree. In the same way, it forbids that a lexical
unit combines with a syntactic argument which is not a semantic argument such as the subject of a
raising verb (such has Perer with seems in Peler seems to be sleeping). Such principles forbid also
having a separate tree for the copulative verb, which is semantically empty.

Qur solution consists in establishing the semantic connection, as in LTAG, while keeping the
syntactic comnections. In this case, it becomes necessary to indicate explicitly the semantic
connection. For this reason, each node receives a sem feature, whose value is the semanteme
corresponding to the word, and an arg feature, whose value is the list of the semantemes of its
arguments. The elements of this list are equal to the sem values of the argument, which is indicated
in the elementary tree by shared values.

[1,V,want,sem: ‘want’,arg: (x,y)] [1,V,seems,sem: seem’,arg:{x)]
[1,5ub _,',-10]’[I,inf,+10) il ,subj,-lﬂ]‘[l Jnf,+10]

oN Cf-(‘"b[O,V,to—inf,sam)’] [O,N}d"(~ D [0,V to-inf,sem:a]

[0,N,sem:x] (0,5ubj,+q) {0,subj,+d]

Figure 7. Control verb and raising verb

128 Sylvain Kahane

Fig. 7 gives us the elementary trees of the control verb want and r:_)f the raising ver_b seen; they. have
the same syntactic trees (in particular both _have a syntactic subject) but they differ semantically:
only the control verb has its syntactic subject as s_cmantic argument. Moreover, our formalism
allows recuperating directly the semantic dependencies even when there is a cycle (Fig. 8), which
TAG cannot allow vs.

[1.V,want,sem: ‘want’,
arg:('Peter’.'sleep’)] ‘want’
[].subj,-lo]’il inf,+10] ,1’.‘ EN
EI,N,Pefgr,‘---*[lsvaro Sleep! . .“,—I‘—. »
sem; ‘Peter’] & sem: ‘sleep’, Peter’ “sleep
[,subj+q] 279 :(‘Peter’)]

Figure 8. The structure and the corresponding semantic graph of Peter wants to sleep

4, Conclusion

Our conclusion is that the TAG formalism is not powerful enough to reach the objectives of
computational and linguistic adequacies required to it. Nevertheless, it is possible to develop near
formalisms which reach these goals, as well as they keep its advantages, such as lexicalization,
simplicity of the operation of combination or readability of the elementary structures.

5. References

ABEILLE Anne (1991): Une grammaire lexicalisée d'Arbres Adjoints pour le frangais, Thése de
Doctorat, Univ. Paris 7.

BLEAM Tonia, (1994): “Clitic Climbing and the Power of Tree Adjoining Grammar”, in
Symposium on TAG, Pans. To appcar ir heillé A, & Rambow O., Tree Adjoining Grammar, CSLL

CANDITO Marie-Hélene (1996): “A Principled-based Hierarchical Kepresenwuon oi LTAG™,
COLING'96, Copenhague, pp. 194.99.
CANDITO Marie-Hélene (1999): Organisation modulaire et paramétrable de grammaires
électroniques lexicalisées. Application au frangais er a l'italien, Thése de Doctorat, Univ. Paris 7,
CANDITO Marie-Hélene & KAHANE Sylvain (19%8a) : “Can the TAG Derivation Tree represent a
ggmantic Graph ? An Answer in the Light of Meaning-Text Theory”, TAG+4, Philadelphie, pp.

-28,

CANDITO Marie-Hélene & KAHANE Sylvain (1998b): “Defining DTG Derivations to get Semantic
Graphs”, TAG+4, Philadelphie, pp. 25-28.

GERDES Kim (1998) : Le cas allemand en TAG, Mémoire de DEA. Univ, Paris 7.

HUDSON Richard (2000) : “Discontinuity”, Special Issue on Dependency Grammar, T.AL, 41:1,,
Paris, 38p,

KAHANE Sylvain (1997): “Bubble Trees and Syntactic Representations”, in Becker & Krieger
{eds), Proc, MQL'5, Saarbriicken : DFKI, 70-76.

KAHANE Sylvain (2000) : “Une grammaire de dépendance 2 bulles pour traiter 1'extraction”,
Special Issue on Dependency Grammar, T.A.L, 41:1, Paris, 30p.

MEL'CUK Igor (1988) : Dependency Syntax: Theory and Practice, NY 1 State Univ. of NY Press.

NASR Alexis (1995) : “A Formalism and a Parser for Lexicalised Dependency Grammars”, 4" Int.
Workshop on Parsing Technologies, State Univ, of NY Press,

NASR Alexis (1996) : Un modéle de reformulation automatique fondé sur la Théorie Sens-Texte —
Application aux langues contrélées, These de Doctorat, Univ. Paris 7.

PAROUBEK Patrick, SCHABES Yves & JOSHI Aravind K. (1992): “XTAG; a graphical Workbench
for developing TAGs”, ANLP, Trento, 223-27.

RAMBOW Qwen (1994) : Formal and Computational Aspects of Natural Language Syntax, PhD
Thesis, Univ. Of Pennsylvania, Philadelphia.

TESNIERE Lucien (1959) : Eléments de syntaxe siructurale, Paris : Kliencksieck.

XTAG Research Group (1995) : A Lexicalized TAG for English, Technical Report IRCS 95-03, Univ.
of Pennsylvania, (updated version on the web),

