
Workshop TAG+5, Paris, 25-27 May 2000

Abstract

A Faster Parsing Algorithm
for Lexicalized Tree-Adjoining Grammars

Jason Eisnert and Giorgio Satta:j:

tDept. ofComputer Science
University of Rochester

P.O. Box 270226
Rochester, NY 14627-0226 USA
jason@cs.rochester.edu

tDip. di Elettronica e Informatica
Universita di Padova
via Gradenigo 6/ A

1-35131 Padova, Italy
satta@dei.unipd.it

79

This paper points out some comr"ntinnal i11<>(fi„;„„{'ies nf .~tandard TAG parsing algorithms
when applied to LTAGs. We propose a novel algorifhm with an asymptotic tmj>tvven;c;;;;,

Introduction

Lexicalized Tree-Adjoining Grammars (LTAGs) were first introduced in (Schabes et a/„ 1988)
as a variant ofTree-Adjoining Grammars (TAGs) (Joshi, 1987). In LTAGs each elementary tree
i,s specialized for some individual lexical item. Following the original proposal, LTAGs have
been used in several state-of-the-art, real-world parsers; see for instance (Abeille & Candito,
~000) and (Doran et al., 2000).

Like link grammar (Sleator & Temperley, 1991) and lexicalized formalisms from the statistical
parsing literature (Collins, 1997; Charniak, 1997; Alshawi, 1996; Eisner, 1996) LTAGs provide
two main recognized advantages over more standard non-lexicalized formalisms:

• subcategorization can be specified separately for each word; and

• each word can restrict the anchors (head words) of its arguments and adjuncta, c1~-:--:-ding

lexical preferences as weil as some effects of semantics and world knowledge.

To give a simple example, consider the verb walk, which is usually intransitive but can take an
object in some restricted cases. An LTAG can easily specify the acceptability of sentence Mary
wa/ks the dog by associating walk with a transitive elementary tree that selects for an indirect
object tree anchored at word dog (and some other words within a limited range).

LTAGs are)arge because they include separate trees for each word in the vocabulary. However,
garsing need consider only those trees of the grammar that are associated with the lexical syrn-

J. Eisner, G. Satta

~g. While this strategy reduces parsing time in all practical cases, since the
t6h~h tends to be considerably smaller than the grammar size, it also introduces

. 'öfiäff"actor in the runtime that depends on the input string length. This problem was
 e~pgrili~ early in (Schabes et al., 1988), but a precise computational analysis has not been
jjfävided in the literature, up to the authors' knowledge. See (Eisner, 1997; Eisner, 2000) for
reiated discussion on different lexicalized forrnalisms.

In this work we reconsider LTAG parsing in the above perspective. Under standard assumptions,
we show that existing LTAG parsing methods perform with 0(tg2 lwl8) worst case running time,
where t and g are smallish constants depending on the grammar and w is the input string. As our
main result we present an O(tg lwl6 max{g, lwl}) time algorithm, a considerable improvement
over the standard LTAG parsing methods.

1. The problem

We assume the reader is familiar with TAGs, LTAGs and related notions (Joshi, 1987; Joshi &
Schabes, 1992). Each node n in an elementary tree is associated with a selectional constraint
Adj(n) representing a (possibly empty) set of elementary trees that can be adjoined at n (we
treat substitution as adjunction at a childless node). We define the size ofn as 1 + IAdj(n)I.
The size of an LTAG G, written [GI, is the sum ofthe sizes of all nodes in the eleinentary trees
ofG.

Standard parsing algorithrns. for TAGs have running time O(IGI lwl5
), where G is the input

grammar and w is the input string. As already mentioned in the introduction, LTAGs allow
more selective parsing strategies, resulting in O(j(G, w) jwj5) running time,~'.)!' :::::ne fünction
J(G, w) that is independent ofthe size ofthe vocabulary treated by G (hence typically much
less than IG!). In order to give an estimate of the factor f (G, w), !et us define t as the maximum
number of nodes in an e!ementary tree (of G), and g as the maximum number of eleme~tary
trees that are anchored in a common lexical item. We argue below that J(G, w) is O(tg2 lwl2) .

We need to introduce some additional notation. We write w;,j to denote the substring of w from
position i to position j, 0 S i S j S lwl. (Position i is the boundary between the i -th and
the (i + 1)-th symbols of w.) We write wi for w ;-i,i· In the grammar, assume some arbitrary
ordering for the elementary trees with a given anchor and for the nodes of each elementary tree,
with the root node always being the first. Then (h, k) denotes the k-th elementary tree anchored
at Wh, (h, k, 1) denotes its root node, and (h, k, m} denotes its m-th node (for 1 S h S lwl,
1 S k S g, 1 S m S t).

By "tree" we now mean an elementary or derived tree that may contain a foot-node. The most
time-expensive step in TAG and LTAG tabular parsing is the recognition of adjunction at nodes
dominating a foot-node. Say that we have constructed a subtree that is rooted at the node
{h, k , m), which may be an interna/ node of some elementary tree, and covers substrings wi,p

and WqJ · Say also that we have constructed a complete tree ß rooted at (h', k', l }, covering sub­
strings wi' ,i and WjJ' . In a tabular method these two analyses can be represented, respeCtively,
by theitems [(h , k , m}, i,p,q,j] and [(h', k', l}T, i', i, j,j'].1 In items, the subscriptT on anode
indicates that no further adjunction is allowed to take place there (i.e., adjunction has already
occurred or has been explicitly declined). Adjunction of ß at the node (h, k, m) is then carried
out as illustrated by the following abstract inference rule (see for instance (Vijay-Shanker &

1Top-down tabular algorithrns, and those that enforce the valid-prefix property, might use more indices in item
representations, in addition to those shown in our example. In some cases this may de.mage the asymptotic runtime.

A Faster LTAG Parsing Algorithm

Joshi, 1985; Vijay-Shanker & Weir, 1993)):

[(h, k, m),i, p,q,j] [(~',k',1~1T,i
1,i,j,j'] (h',k') E Adj((h,k,m))

[(h,k,m)T,i ,p,q,J]

81

(1)

Item [(h, k, m)T, i',p, q, j'] represents a new partial analysis spanning wi',p and w9,j' ; no further
adjunction is possible at node (h, k, m) in this analysis.

In order to bound f (G, w), let us fix positions i', i, p, q, j and j'. Then step (1) can be executed
a number oftimes bounded by ((i - i') + (j' - j))(p + lwl - q)tg2

• This is because wi.' can
free!y range within w;',i or Wj,i'• w,,, can freely range within Wo,11 orwq,lwl• since the anchor wh of
tree (h, k) might not be dominated by node (h, k , m); also, k, k' and m can assume any values
within their respective ranges. We therefore conc!ude that J(G, w) = O(tg2 lwl2

).

Note that a better upper bound would be given by O(tg2 min{IVTl2
, jwj2}), VT the terminal

alphabet (vocabulary) of G, since each anchor can assume no more than IVTI different values.
However, in practical applications we have lwl « !VTI, and therefore in this paper we will
always use the former bound. We then conclude that standard LTAG parsing a!gorithms run
with a worst case time of O(tg2 lwl8) .

2. A novel algorithm

This section improves upon the time upper bound reported in § 1. Tue result is achieved by
splitting step (l) into three substeps. (A similar method may be applied to speed up parsing of
lexicalized context-free grammars (Eisner & Satta, 1999).)

We start by observing that at step (1) we simultaneously carry out two tests on the trees under
ana!ysis:

• we check that the tree (h', k') is found in the selectional constraint Adj ((h, k, m)); and

• we check that the tree yield w ;r,;, WjJ' "wraps around" the tree yield wi,p• wq,j, i.e., that
the two copies of i match and likewise j.

To some extent, the two computations above can be carried out independently of each other.
More precisely, the result of the check on the selectional constraint does not depend on the
value of positions p and q. Furthermore, once the check has been carried out, we can do away
with the anchor position h', since this information is not used by the wrapping test or mentioned
in the result of step (1).

In order to implement the above idea, we define two new kinds of items, which we write as
[(h, k, m}, i,j) and [(h, k, m)T,i', i,j, j'l Item [(h, k, m),i,j) packages together all items of
the form [(h, k, m), i , u, v, j]. Similarly, item [(h, k, m)T, i', i, j , j'J packages together all items
ofthe form [(h',k',l)T,i',i,j,j'] such that (h',k') E Adj((h, k,m)). We can then replace
step (1) with the following three steps:

[(h, k, m), i ,p,q,j]
[(h, k, m), i , j)

[(h,k,m),i,j) [(h',k',l)T,i' ,i,j,j'] (h' k') E Ad'((h km))
((h, k,m)T,i',i,j,j'] ' O ' '

(2)

(3)

J. Eisner, G. Satta

(4)

a.twnat analysis similar to the one carried out in § 1 shows the following overall time
step (2) takes time O(tg lwl5) , step (3) takes time O(tg2 lwl6) and step (4) takes time

O(tg jwi7). Thus the overall time cost for all the above steps is O(tg lwl6 max{g, lwl}).
All the remaining steps in standard LTAG tabular parsing algorithms that have not been consid­
ered here can easily be accoinmodated within the indicated upper bound. Thus, steps (2) to (4)
can be integrated into a standard LTAG parser, providing a new parsing algoritlun for LTAG
with worst case running time O(tg lwl6 max{g, lwl}).

3. Discussion

We have discussed standard LTAG, in which every elementary tree has exactly one lexical an­
chor. Multiply anchored trees can be handled straightforwardly and without additional cost: for
the analysis, simply consider one anchor tobe primary when defining the grammar constant g

and when naming the tree {h, k) . The parse table should be seeded with all of a tree's anchor
nodes if and only if all those anchor words appear in the input w in the correct order. (Recall
that it was always possible to construct subtrees over substrint;~ th<>t !io 110 t includc Üi~ p;:,„ l.llf

anchor.)

Our inference rules enforce the traditional prohibition against multiple adjunctions at the same
node (Vijay-Shanker & Joshi, 1985). This prohibition has been questioned on linguistic grounds
(Schabes & Shieber, 1994), since for example a verb may need to select lexically for each of its
multiple PP adjuncts. To relax the prohibition it is sufficient to drop the symbol T throughout
therules.

Our algorithm is an asymptotic improvement for any values of g, t, and lwl. However, we really
have in mind grammars where g is a smallish constant, much smaller than the vocabulary size.
In particular, we do not expect a word to anchor multiple elementary trees that have the same
labeled intemal structure as one another, differing only in their selectional constraints. Thus,
the selectional constraints at each node in an elementary tree only depend on the tree's head and
the intemal structure of the tree itself. Grammars satisfying this requirement have been called
node-dependent or SLG(2) in (Carroll & Weir, 1997), and bilexical in (Eisner, 1997; Eisner &
Satta, 1999; Eisner, 2000). If we drop the above assumption, the grammar can capture lexical
relations of arity !arger than two. For instance, in an LTAG which is not bilexi1:aL a verb V 1

could anchor many instances of the basic transitive-sentence elementary tree, in each of which
the selectional constraint at the object node required a specific object tree (with a specific head).
In this case, the selectional constraint at each V1 tree's subject node would depend on both V1

and its required object, thus establishing a relation between three lexical elements. Moreover,
an upstairs verb V 0 could select for certain of these V 1 trees and thereby restrict both V 1 and
the head ofV 1 's object, again establishing a relation between three lexical elements. This style
of grammar can dramatically increase g as a function of the vocabulary size. To overcome this
one would again have to substitute some factor that depends on the input string length.

Even in the bilexical grammars we expect, where g is unrelated to vocabulary size, g can still
be somewhat !arge in broad-coverage grammars such as those cited in the introduction, which
include !arge tree families for each word. The literature describes some further tricks for ef­
ficiency in this case. Similar trees in the same family may be made to share structure (Evans

A Faster LTAG Parsing Algoritlun 83

& Weir, 1997; Carroll et al., 1998). "Supertagging" techniques (Srinivas & Joshi, 1999; Chen
et al„ 1999) use contextual probabilities to eliminate some elementary trees heuristically before
parsing begins. Altematively, under a stochastic LTAG (Resnik, 1992; Schabes, 1992), one may
prune away unpromising items, such as those with low inside probability. lt should be possible
to combine any ofthese tricks with our technique.

References

ABE!LLE A. & CANDITO M.-H. (2000). FTAG: A lexicalized tree-adjoining grammar for french. In
A. ABE!LLE & 0. RAMBOW, Eds., Tree-Adjoining Grammar. Stanford, CA: CSU Lecture Notes. To
appear.

ALSHAWI H. (1996). Head automata and bilingual tiling: Translation with minimal representations. In
Proc. of the 34th ACL, p. 167-176, Santa Cruz, CA.

CARROLL J., NICOLOV N., SHAUMYAN 0., SMETS M. & WEIR D. (1998). Grammar compaction and
computation sharing in automaton-based parsing. In Proceedings of the 151 Workshop on Tabulation in
Parsing and Deduction (TAPD '98), p. 16-25, Paris, France.

CARROLL J. & WEtR D. (1997). Encoding frequency information in lexicalized grammars. In Pro­
ceedings of the 5th lnt. Workshop on Parsing Technologies, MIT, Cambridge, MA.

CHARNIAK E. (1997). Statistical parsing with a context-free gramrnar and word statistics. In Proc. of
AAAI-97, Menlo Park, CA.

CHEN J„ SR!NlVAS B. & VIJAY-SHANKER K. (1999). New models for improving supertag disam­
biguation. In Pl'Oc. of the 9th EACL, p. 188- 195, Bergen, r..;u, „.:.J.

COLLINS M. (1997). Three generative, lexicalised models for statistical parsing. In Proc. of the 35th

ACL, Madrid, Spain.

DORAN C„ HOCKEY B„ SARKAR A., SRINIVAS B. & XlA F. (2000). Evolution ofthe XTAG system.
In A. ABEILLE & 0. RAMBOW, Eds., Tree-Adjoining Grammar. Stanford, CA: CSU Lecture Notes.
To appear.

ElSNER J. (1996). Three new probabilistic models for dependency parsing: An exploration. In Proc. of
the 161" COLING, p. 340-345, Copenhagen, Denmark.

Ei SN ER J. (1997). Bilexical grammars and a cubic-time probabilistic parser. In Proceedings of the 5th
Int. Workshop on Parsing Technologies, MIT, Cambridge, MA.

EISNER J. (2000). Bilexical grammars and a cubic-time probabilistic parser. In H. C. BUNT & A.
NtJHOLT, Eds., Neiv Developments in Natural Language Parsing. KJuwer.

Et SN ER J. & SATTA G. (1999). Efficient parsing for bilexical context-free grammars and head automa­
ton grammars. In Proc. of the 37th ACL, p. 457-464, College Park, Maiyland.

EVANS R. & WEIR D. (1997). Automata-based parsing for lexicalized grammars. In Proceedings of
the 5th Int. Wo.rkshop on Parsing Technologies, MIT, Cambridge, MA.

JOSHI A. K. (1987). An introduction to tree adjoining grammars. In A. MANASTER-RAMER, Ed.,
Mathematics o/Language. Amsterdam: John Benjamins.

JOSHI A. K. & SCHABES Y. (1992). Tree adjoining grarnmars and lexicalized grammars. In M. NIVAT
& A. PODELSKY, Eds„ Tree Automata and Languages. Amsterdam, The Netherlands: Elsevier.

RESNIK P. (1992). Probabilistic tree-adjoining grammar as a framework for statistical natural language
processing. In Proc. ~f the J 4th COL!NG, p. 418-424, Nantes, France.

SCHABES Y. (1992). Stochastic lexicalized tree-adjoining grammars. In Proc. ofthe J4th COLING, p.
426-432, Nantes, France.

84
J. Eisner, G. Satta

SCHABES Y„ ABEILLE A. & JOSHl A. K. (1988). Parsing strategies with 'lexicalized' grammars:
Application to tree adjoining grammars. In Proc. of the 12th COLING, p. 578-583, Budapest, Hungary.

SCHABES Y. & SH!EBER S. M. (1994). An alternative conception oftree-adjoining derivation. Com­
putatio11al Linguistics, 20 (1), p. 91-118.

SLEATOR D. & TEMPERLEY D. (1991). Parsing English with a Link Grammar. Computer Science
Technical Report CMU-CS-91-196, Camegie Mellon University.

SRINIVAS B. & JOSHI A. (1999). Supertagging: An approach to almost parsing. Computational Lin­
guistics, 20 (3), p. 331-378.

VIJAY-SH ANKER K. & JOSHI A. K. (1985). Same cornputational properties oftree adjoining grammars.
In 23rd Meeting of the Associationfor Computational Linguistics, p. 82-93, Chicago, lllinois.

VIJAY-SHANKER K. & WEIR D. J. (1993). Parsing sorne constrained grammar fonnalisrns. Computa­
tional Linguistics, 19 (4), p. 591-636.

