
Workshop TAG+5, Paris, 25-27 May 2000

Practical aspects in compiling tabular TAG parsers

Miguel A. Alonsot, Djame Seddab+, and Eric Villemonte de la Clergerie*

toepartamento de Computaci6n, Universidad de La Corui'ia
Campus de Elvifia s/n, 15071 La Corui'ia (Spain)

alonso@dc.fi . udc.es
fLORIA, Technopöle de Nancy Brabois,

615, Rue du Jardin Botanique - B.P. 101, 54602 Villers !es Nancy {France)
Djame.Seddah@loria.fr
*INRIA, Domaine de Voluceau

Rocquencourt, B.P. 105, 78153 Le Chesnay (France)
Eric . De_La_Clergerie@inria.fr

This paper describes the extension of the system DyALog to compile tabular parsers from Fea­
ture Tree Adjoining Grammars. The compilation process uses intermediary 2-stack automata
to encode various parsing strategies and a dynamic programming interpretation to break au­
tomata derivations into tabulable fragments.

Introduction
This paper describes the extension of the system DyALog in order to produce tabular parsers for
Tree Adjoining Grammars [TAGs] and focuses on some practical aspects encountered during
the process. By tabulation, we mean that traces of (sub)computations, called items, are tabulated
in order to provide computation sharing and loop detection (as done in Chart Parsers).
The system DyALog1 handles logic programs and grammars (DCG). It has two main compo­
nents, namely an abstract machine that implements a generic fix-point algorithm with subsump­
tion checking on objects, and a bootstrapped compi!er. The compilation process first compiles
a grammar into a Push-Down Automaton [PDA} that encodes the steps of a parsing strategy.
PDAs are then evaluated using a Dynamic Programming [DP] interpretation that specifies how
to break the PDA derivations into elementary tabulable fragments, how to represent, in an op­
timal way, these fragments by items, and how to combine items and transitions to retrieve all
PDA derivations. Following this DP interpretation, the transitions of the PDAs are analyzed at
compile time to emit application code as weil as to build code for the skeletons of items and
transitions that may be needed at run-time.
Recently, (Vi!lemonte de Ja Clergerie & Alonso Pardo, 1998) has presented a variant of2-stack
automata [2SA] and presented a DP interpretation for them. These 2SAs allow the encoding of
many parsing strategies for TAGs, ranging from pure bottom-up ones to valid-prefix top~down
ones. For all strategies, the DP interpretation ensures worst-case complexities in time O(n6

)

and space O(n5
), where n denotes the length ofthe input string.

This theoretical work has been implemented in DyALog with minimum effort. Only a few
flies have been added to the DyALog compiler and no modification was necessary in the Dy A­
Log machine. Several extensions and optimizations were added: handling of Feature TAGs,

available at http: / / atoll. inria. fr / -clerger

28 Miguel A. Alonso, Djame Seddah, & Brie Villemonte de Ja CJergerie

use of more sophisticated parsing strategies, use of meta-transitions to compact sequences of
transitions, use of more efficient items, and possibility to escape to logic predicates.

2. Tree Adjoining Grammars
We assume the reader tobe familiar with TAGs (Joshi, 1987) and with the basic notions in Logic
Programming (substitution, unification, subsumption, ...). Let us just recall that Feature TAGs
are TAGs where a pair of first-order arguments top T„ and bottom B„ may be attached to
each node v Jabeled by a non-terminal.
We have chosen a Prolog-like linear representation of trees. For instance, the grammar count
(Fig. J) recognizes the language anbnecndn with n > 0 and returns the number n of performed
adjunctions. lt corresponds (omitting the top and bottom arguments) to the trees on the right
side. By default, the nodes are adjoinable, except when they are leaves or are prefixed with -.
Obligatory Adjunction [OA] nodes are prefixed with ++ and foot nodes by *· Node arguments
are introduced with the operators at, and, top, and bot and escapes to Prolog are enclosed with
{} (as done in DCGs).

tree top=s(X) and bot=s(O) at ++s("e").
auxtree top =s (XpI)

at -s("a",
top=s(X) and bot=s (Y)

at s("b", bot=s (Y) at H. "c"),
{ XpI is X+l},
"d").

++S

l
"e"

-S

/l~
a S "d"

/ l "-..
"b" *s "c"

Figure 1: Concrete representation of grammar count and corresponding trees

3. Compiling into 2SAs following a modulated Call/Return Strategy
2SAs (Becker, 1994) are extensions of PDAs working on a pair of stacks and having the power
of a Turing Machines. We restrict them by considering asymmetric Stacks, one being the Master
Stack MS where most of the work is done and the other being the Auxiliary Stack AS only
used for restricted "bookkeeping" (Villemonte de Ja Clergerie & Alonso Pardo, 1998). When
parsing TAGs, MS is used to save information about the different elementary tree tra\.;rsals
that are under way while AS saves information about adjunctions, as suggested in figure 2.

Calls

rq fI7'l
l"V] n ~ 1 ·v 1 1 1

transition ACALL

rvnJ . IV"+ "Br' c""iiff-r"fl 1 1 ~ ·r n
transition FCALL

Returns

fTv"l ~
1 · v II 1 ~ Pl n

transition ARET

~ ~
1 ·r 1 n ~ ff! 1 1

transition FRET

Figure 2: Illustration of some steps

Figure 2 also illustrates the notion of modulated Call/Return strategy: an elementary tree a
is traversed in a pre-order way (skipping Null Adjunction [NA] internal nodes) and when pre­
dicting an adjunction on node v , the traversal is suspended and some prediction infonnation

Practical aspects in compiling tabular TAG parsers
29

"T v relative to the top argument T„ of v is pushed on MS (step Call) and used to select some
auxiliary tree ß (step Select). Some information 17' (partially) identifying v is also pushed on
AS and propagated to the foot of the auxiliary tree. Then 17' is popped, combined with some
information "Br and pushed on MS in order to select the traversal of the subtree av rooted at
v. Once a:v has been traversed, we pop MS and resume the suspended traversal of ß. We also
push propagation information l!.n on AS about the adjunction node. Once ß has been traversed,
we publish some propagation information about ß (step Publish). We then pop both MS and
AS and resume the suspended traversal of a , checking with !!.n and T v • that the adjunction has
been correctly handled (step Return).
For each kind of suspension that may occur during a tree traversal, we get a pair of Call/Return
transitions and a related pair of Select/Publish transitions. For TAGs, we have three kinds of sus­
pension, occurring at substitution, adjunction, and foot nodes. We explicit here the transitions
relative to an adjunction on node v and to an auxiliary tree of root r and foot f. A transition 1

of the form (S, ~) f-+ (8 , 8) applies on any configuration (MS, AS) = ('lt'.=:', 1f;~') and returns
((w8)a, (1fJ8)a) whenever the most general unifier a = mgu(:=:~, :'.:'0 exists. 2

ACALL
 ASEL
FC ALL
FSEL

("v, €) f-+ (•v "T v, 17')
(

0 Tr,E) f--t ("r,E)
(.f,X) f--t (. f (.Br+X), E)
((.Bv+V'),E) i---t (0 11,E)

ARET
APUB
FRET

FPUB

(
0

11 T,/, l!.n) f-+ (v", €)
(r",t:) f--t (Tr", E)
(.f (Br. + Y), t:) i---+ (f. , Y)

(v.,E) f--t ((Bv. +l!.n), €)

In these transitions, X, Y denote free variables and dotted atoms "v, v• (resp . • v, v.) denote
computation points during a traversal that are just left and right of v including (resp. not in­

cluding) adjunction. The prediction atoms 0 T "' .B.., and propagation atoms T ,,: , B..,. are
 built using modulations from the node arguments Tv and Bv completed by position variables
 (•p "' P" ") and (. P „, P 11.) used to delimit the span of v including or not adjunction. 3 A mod­
ulation (Barthelemy & Villemonte de la Clergerie, 1998) is formalized as a r1!:- :: ;;::·: ~::-,..ti()n

morphisms C, _) such that, for all atoms A, B, mgu(A , B) = mgu(AA., B B). For TAGs, we

offer the possibility to have distinct modulations c1,_t) and cb,...Ji) for top and bottom argu­
ments, as weil as a third one r , -n) for nodes, leading to the following definitions: 4

"Tv = T„["Pv; Pv0
]

1

T 11° = T11 [
0 P11 ; P.,"]t

----~•b
. B„= Bv[.Pv; Pv.]

B„.= B„[.P v; P „.]b

Modulation is useful to tune the top-down prediction of trees and the bottom-up propagation of
recognized trees. It allows an uniform description of a wide family of parsing strategies, ran ging
from pure bottom-up ones to prefix-valid top-down ones and also including mixed strategies
5uch as Earley-like. In practice, a directive tag_mode(s/ 1,top,+(-),+,.:..) states that, for a node
irrgument T = s(X) and position variables (0 P , P") = (L,R), we get "T = call_s_l(L)
~nd T " = ret(R, X).
In practice, the transitions built following a Call/Return strategy may be grouped in meta­
transitions by (a) grouping pairs of related call and return transition and (b) considering dotted
hodes as continuations. For instance, figure 3 shows the skeleton of a meta-transition represent­
fog the traversal of an auxiliary tree with root r and some adjoinable node v . 5

2Transitions and configur.ations have been simplified in this paper for sake of clarity and space.
30f course, there are many congruence relations between the position variables. For instance, if v immediately

{precedes µin the traversal, we have P ~ • = •p I' ' When v is not adjoinable, we have •p v = . P v and P v • = P v • .
4There is also a specific modulation for substitution nodes.
5 Actually, we have considered the case of a mandatory adjunction at v. Tu handle non mandatory ones, we add

disjunction points in the meta-transitions and share common continuations between alternatives.

30

ASEL

Miguel A. Alonso, Djame Seddah, & Eric Villemonte de Ja Clergerie

select "Tr

right

r
call

ret
("Tv, ?)
(Tv",~„.)

[

select (.Bv +V')

r.:ir '"17 below [~ . LJJ · · · L..lQ right [!!'.] . . . v. pubhsh
FPUB

FSEL

l right (ZJ [.. . ~[publish· Tr • J]
ACALLRET

Figure 3: Sketch of a meta-transition for an auxiliary tree

4. Preparing the Dynamic Programming evaluation
The next compilation phase unfolds the meta-transitions and identifies which objects (items or
transitions) may arise at run-time. This analysis is based on a DP interpretation for 2SAs.

Items We consider two kinds of items, namely Context-Free [CF] Items ABC (also repre-·
sented by AB[oo]C) and Escaped Context-Free [xCF] Items AB[DE]C representing sub­
derivations passing by configurations A, ß, C, 1J and C:. 6 Computation sharing stems from
the fact that we don't save a full configuration X = (=:X, ~x) but rather a mini configuration
(X, x) or a micro configuration (X). Better, it is possible to keep, in some cases, only a fraction
E(X) of the information available in a stack element X. For instance, we take E("v) = 'T„
for an adjoinable node v, and €(.v) = .Bv for a foot node. Finally, A = (€A), B = (EB, b)
(when B =/. A), and D = (ED,d) (when D =/:. o). Table 1 shows some items relative to an
adjunction at v. If v dominates some foot g in an adjunction on µ,[DE] = [(, Bg, a)(Bg, +b)J
and (a,b) = (?' ,!!); otherwise [DE]= [oo] and (a,b) = (o, o) .

afterCALL before RET

on ADJ v ('Tv) ("T v)('Tv, V') ('Tv) ("Tv)[DE](Tv.' ~„)
onFOOT f ("T v)(.Br,?)(,Br +vn, a) ('Tv)(.Br, vn)11JET(i:1;:·+~n• b) 1

Table 1: Refined items at adjunction and foot nodes

Application rules Figure 4 shows (some of) the application rules used to combine items and
transitions. The antecedent transition and items are (implicitly) correlated using unification
with the restilting most general unifier applied to the consequent item. Component that need
not be consulted are replaced by holes *· Similar items occurring in different rules have been
supscripted by J, J , K and L. Note that these rules derive from more abstract ones, independent
of any strategy, that we have instantiated, to be more concrete, for the Call/Return strategies.

Projections Time complexity may be reduced by removing from objects the components that
are not consulted (marked by *), leading to tabulate one or more projected objects instead of
the original one. In particular, instead of tabulating K = ("T„)(.Br, ?)[DE)(Bv. +.!ln, b)

6The different conditions satisfied by these configurations are outside the scope of this paper.

Practical aspects in compiling tabular 'D\G parsers

(ACALL)

(FCALL)

(FRET)

(dxCF)

(ARET)

("v,€) 1----t ("v "Tu,V") A*("v,*)1

("Tu)("Tu)("Tv, V1}

A*(•v, a)1

(.f,V") t-----4 (.f(.Br +V"),t) ("Tv)*(.f,V")J
A (.Bf, V") (.Br +V", a)

("Tu)O(.f, V")J
A*("v, a)1

(.f (Br. +l:'.'.n) , €) 1----t (f. ,k'.n) A (. Br, V1)(D*](.Br +l:'.'.n• *)K
("T u)O((.Br, V")(.Br +l:'.'.n)] (f., ~)

*(.Br, V")[DEJ(Br. +k'.n, *)K
("T „) ("T„)[(.Br, a)(Br. +k'.n)J(Tu

0

)

("T 11)("T v)[[DE]](T„ ")L

AN("v, a)1
A*[DE](*, b)K

("v Tv" ,l:'.'.n) i----+ (v",e) ("T„)("T„)[[DE]](T„",l:'.'.n)L

AN[DE](v", b)

D = (*,a)

D= (.Bf,a)

Figure 4: Some application rules for the Dynamic Programming interpremuon

corresponding to the traversal of the subtree rooted at v, we tabulate 3 projections used with
Rules (FRET), (dxCF), and (ARET). The effectiveness of projections is still to be validated!

Partial and immediate applications To further reduce wor~t-r~~~ complexity, DyALog is
configured to combine, at each step, a single item with a single transition. It is therefore uec­
essary to decompose the application rules to follow this scheme, which is done by introducing
 intermediate pseudo transitions materializing partial applications. Subsumption checking can
 be done on these intermediate_rransitions, leading to better computation sharing. We get cas­
cades of partial applications as illu strated by figure 5. An object (Rule)0:1 ... ak represen ts the

~i~;~~~~~:~::~;~:';~~:di:~ i:::(~~~ ::::~p~ti1~n th:i~1~ul•) of o,, ... , '" •nd o;

Another advantage of partial application w.r.t. meta-transitions is the possibility to do imme­
diate partial application, with no tabulation of some items. For instance, when reaching an
adjunction node v , we should tabulate item I = A*(•v, a) and wait for other items to ap­
ply Rules (FCALL), (FRET), and (ARET). Instead, we immediately perform partial applica­
tions and tabulate the intennediate objects (see the underlined objects in fig. 5). We also apply
Rule (ACALL) and tabulate "Call Aux Item" CAI = ("T „) ("T v) ("T „, i7"). Immedic:.•e <.ppli­
cations are also done when reaching a foot f with item J = ("T v)O(.f, V").

Shared Derivation Forest They are extracted from tabu!ated objects. by recursively following
typed backpointers to their parents and are expressed as Context-Free Grammars(Vijay-Shanker
& Weir, 1993). Parsing aabbeccdd with the grammar of figure 1 retums the following forest:

s (2) (0, 9)

s(2) (0,9) * s(O) (4,5)

s(l) (1,8) * s(O) (3,6)

1 <-- 2 % Der. of elem tree with adj.
2 <-- 3 % Der. of aux. tree with adj.
3 <-- % Der. of aux. tree

31

32

(FCALL)2

(FCALL)rl

Miguel A. Alonso, Djame Seddah, & Brie Villemonte de Ja Clergerie

(FRET)r2 (FRET)l

f---J
(dxCF) l (FRET)-r12

.___ __ (ARET)2

Figure 5: Cascades of partial evaluations related to an adjunction

5. Analysis and conclusion
In the worst case andin the case of TAGs without features, the number of created objects (using
Subsumption checking) is in O(n5) and the number of tried appJications is in O(n6) . These
complexities come from the number of different instantiated position variables which may occur
in objects or be consulted (for applications). 7 These complexities remain polynomial when
dealing with DATALOG features (no symbol of functions) and may be exponentia1 vü1erv.:..,~.
Time complexity is directly related to the number of tried applications and created objects if
objects can be accessed and added in constant time. The indexing scheme of Dy ALog based on
trees of hashed tables ensures this property only for pure and DATALOG TAGs.
These different remarks about complexity have been confirmed for small "pathological" gram­
mars. However, some recent experimentations done with a prefix-valid top-down parser com­
piled from a French XTAG-like non lexicalized grammar of 50 trees (with DATALOG features)
have shown a much better behavior (0.5s to 2s for sentences of 3 to 15 words on a Pentium­
II 450Mhz). We hope to improve these figures by factorizing tree traversals and using (when
possible) ~pecialized left and right adjunctions.

References
BARTHELEMY F. & VILLEMONTE DE LA CLERGERIE E. (1998). Information flow in tabular interpre­
tations for generalized push-down automata. Theoretical Computer Science, 199, 167-198.

BECKER T. (1994). A new autornaton model for TAGs: 2-SA. Computational Intelligence, 10 (4).

JOSHI A. K. (1987). An introduction to tree adjoining grarnmars. In A. MANASTER-RAMER, Ed„
Mathematics of Language, p. 87-115. Amsterdam/Philadelphia: John Benjamins Publishing Co.

VUAY-SHANKER K : & WEIR D. J. (1993). The use of shared forest in tree adjoining grammar parsing.
In Proc. of the 6th Conference ofthe European Chapter of ACL, p. 384--393: EACL.

V!LLEMONTE DE LA CLERGER!E E. & ALONSO PARDO M. (1998). A tabular interpretation of a class
of 2-stack automata. In Proc. of ACUCOLING'98.

7Note that uninstantiated or duplicated instantiated position variables may occur.

