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The current status of FTAG

Annne Abeillé, IUF, TALaNa & LaTTICe, Paris 7
Marie-Héiéne Candito, TALaNa & LaTTICe, Paris 7 and Lexiquest
Alexandra Kinyon, TALaNa & LaTTICe, Paris 7 and TRCS, UPenn

abeille, kinyon, candito @linguist.jussieu.fr

Introduction

We describe the current status and organization of a French Lexicalized Tree Adjoining
Grammar (FTAG), developped over the last 10 years at TALaNa (Abeillé 91, Candito 99). The
new version grammar is generated semi-automatically, independently of any corpus or
application domain. It is intended to model speaker competence, and can be used both for
parsing and generation. As far as parsing is concerned, we describe a general processing
module which can rank the different parses produced based on linguistic information present in
FTAG.

1. General linguistic choices

Most of our linguistic analyses follow those of Abeillé 91 (except that clitic arguments are
substituted and not adjoined), complemented by Candito 99. We dispense with most empty
categories, especially in the case of extraction. ! Semantically void (or non autonomous)
elements, such as complementizers, argument marking prepositions or idiom chunks, are
coanchors in the elementary tree of their goveming predicates.

1.1 A minimal tagset

We depart from traditional part of speech wherever the modern linguistic analyses have better to
propose, especially in the generative tradition. We thus distinguish a special category for Clitics
(weak pronouns) following Kayne 75, and for Complementizers. We collapse proper names,
common nouns and pronouns into one category N, with features. We do not have a tag for
subordinating conjunctions which are either Prepositions (followed by a complementizer:
pendant que (during)} or (full} Complementizers (si (if), comme (as)...). Sentential structures
are 'flat’ (no internal VP). We thus have the following tagset.

Lexical categories: D (determiners), N {nouns, names, pronouns), V (verb), Cl (clitic
pronoun), Prep (preposition), A (adjective), Adv (adverb), Conj (Coordinating conjunction), C
(complementizer, subordinating conjunction),

Non lexical categories: SP {prepositional phrase), S (sentence). A and N are also used for
nominal or adjectival phrases.

1.2 A rich set of grammatical functions

Tree sketches of the French TAG are compiled out of the French metagrammar (Candito 99),
which expresses subcategorization in terms of grammatical functions. The functions used in the
French MG for verbs are the following:

subject, object, dat-object, obl-object, gen-objet, locative, source-locative, manner, goal-
infinitive, perception-infinitive, interrogative clause, "predicative complement"

All these functions can be both initial functions and final functions. An additional function “agt-
object" is used as final function only, and is beared by a by-phrase in the case of passive.

We use several "complement” functions for complements of adjectives, prepositions, nouns,
advgyps. And these categories may bear the function "modifier” with respect to the element they
modify.

1.3. A parsimonious use of features

Most of the syntactic properties handled by feature structures in unification based linguistic
theories (LFG or HPSG) are directly captured by the topology of the elementary trees in LTAG.

b We keep some empty categories for non realized arguments, such as PRO subjects (see Abeillé 91).
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12 Anne Abeillé, Marie-Héléne Candito, Alexandra Kinyon

No use has to be made of valence or slash fqatures to cnsurc‘subc_atcgorization req.uircmenls or

filler-gap relations. No feature passing princnp_les, besides umﬁcapon, are need_e,d either.

We only rely on atomic valued features (which guarantees against any cyclic structure), We

distinguish between: i ) ) o o

Morphological features, which are used in the morphological lexicon, in the syntactic lexicon

when an argument is constrained for them (eg frouver has only indicative sentential

complement) and for agreement in the elementary tree sketches, _

- Syntactic features, used in the syntactic lexicon (for a verb to dxsallpw passive for examp]ga)
and in the tree sketches (to distinguish betwen trees in the same family or to further constrain
tree combinations), _

- Semantic features : these are gross classifications used for arguments (human, locative etc)
which should be further refined.

We are currently using about 40 features as follows:

morphological features: <det>, <card>, <case>, <el>, <mode>, <num>, <ord>, <pers>, <P-

num>, <P-pers>, <tense>. )

syntactic features: <anl>, <ant-s>, <ant-v>, <aux>, <cq>, <det>, <extrap>, <gen>, <inv>,
<modif>, <neg>, <nom>, <passive>, <part-num>, <part-gen>, <pred>, <princ>, <pro>,
<quant>, <sanl>, <san2>, <suj-gen>, <suj-pers>, <suj-num>, <sym>, <tense>, <wh>.
semantic features: <conc>, <degre>, <hum>, <loc>, <man>.

2. The Internal organization of FTAG

2.1. 3 sources of information for lexicalized elementary trees

Strict lexicalization at execution time does not prevent from representing the elementary trees in
a less redundant way. Indeed it is required for any reasonably sized grammar, since for
instance a verbal form may anchor dozens or hundreds of elementary trees. A first level of
sharing between elementary trees was proposed within the XTAG system (XTAG group 1995)
: elementary trees are compiled out of three sources of information:

- asetof tree sketches (“pre-lexicalized"” structures, whose anchor is not instantiated)
- asyntactic lexicon, where each lexeme is assaciated with the relevant tree sketches
- amorphological lexicon, where inflected forms point to a lemma plus morphological features

Lexical selection of tree sketches is controiled by features from the syntactic and morphological
lexicons, and uses the notion of tree families : sets of tree sketches that share the same initial
argumental structure. The tree sketches of a family show all the possible surface realization of
the arguments (pronominal clitic realization, extraction, inversion...) and all the possible
transitivity altemations (impersonal, passive, middle..).

A lexerme selects one or several families (corresponding to one or several initial subcat frames)
and with the help of features selects exactly the relevant tree sketches : The features may rule out
some tree sketches of the selected family, either because of morphological clash (eg. the passive
trees are only selected by past participles) or because of “idiosyncrasies” (eg. the French
transitive verb peser -to weigh- disallows passive).

Figure 1 shows an elementary tree anchored by parlair (talked) and the corresponding tree
sketch.

s <inve=n,<moede>=ind <inve=x,<mode>=y
<tense>=imp, <qu»=+ / <AEMSED=Z, <QU>=W
. \ <inve=n, <qu>=- SP] <invs=x, <qurs-,
<func>=aso} S/ @e):ind. <tense>=imp <fum:)=ao§j / <mode>=y, <tense>=z
+ Prep NI V NO -
o <:>=+|-' ¥ <i“V)=nN0 <fune>=subj | P<qu;=:}=w <inv»=n=x <func>=subj
| " <mode>=ind  <nUM>=sg <mode>=y <hum>=y
A pariait <lense>=imp  <pers>=J A clenseez <pers»=v
<HumD>= sg <hum>=+ cnum>=n
<pers>=3 <pers>=v

Figure 1. Lexicalized tree and tree sketch
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The lexicalized tree is compiled out of the tree sketch and the following lexical entries with
feature unifcation, (cf Barrier et al 00):
Morphological database: ‘ .

arlait, V: [parler], {V.b:<mode>=ind, <tense>=imp, <num>=sg, <pers>=3}.
Syntactic database:
[parler], V: n0Vanl {N0:<h_uw+}.

The inflected form parlair points to the lemma PARLER, and the lexeme /PARLER/, that
comprise the single lemma PARLER, selects in turn the n0Vanl family, where the preposition
appears as a co-anchor (except in the case the argument 1 is cliticised).

2.2 The lexicons

Contrary to the English L.TAG which reuses existing dictionaries (Collins 1979 for the
morphological database, Oxford English Dictionary and COMILEX for the syntactic database),
our French lexicons had to be done by us. They currently comprise the following items:
hologica] lexicons: over 50 000 (inflected) forms: 45800 for verbs, 3500 for nouns and
pronouns, 950 for adjectives and 50 for determiners.
Syptactic lexicons : over 6000 (disambiguated) entries: 3700 for verbs, 500 for prepositions
and adverbs, 800 for adjectives, 80 for determiners, 2000 for nouns, 350 for idioms
The lexical itemns chosen have been extracted as the most frequent ones from the frequency lists
of Julliand 1970 and Catach 1984, except for idioms where one had to rely on personal
intuitions. They have been disambiguated {(and separated into different syntactic entries) with
standard dictionaries as well as LADL lexicon-grammar tables (Gross 1975). The
morphological lexicons have been automatically generated, using PC-Kimmo adapted to
French. Both lexicons are organised in lexical databases, and the features normalized with

templates,2

The morphological lexicon has nothing specific and associates lemmas, inflected forms and
relevant morphological features. The syntactic lexicon associates lemmas with constructions
(elementary trees or tree families with features) and performs some meaning disambiguation
(based on different syntactic constructions, for example for the French verb abattre - knock
down, shoot down) :

INDEX: abattre/1 (physical meaning)

ENTRY: abattre

POS: \Y

FAM: n0Vnl

FS:

INDEX: abattre/2 (psychological meaning, possible sentential subject)
ENTRY: abattre

PGS: v

FAM: s0Vn!

FS: #N1_HUM+, #N0_HUM-

Future developments include integrating a more complete full form lexicon (over 400 000 forms
independently developed for our tagger; cf. Abeillé et al 1998) into the morphological database,
and developing the syntactic lexicon (with shallow parsed corpora and reuse of LADL. valence
tables for French verbs, cf. Namer and Hathout 1998).

2.3, The metagrammar

We usc an additional layer of linguistic description, cailed the metagrammar (MG) (Candito
1996, 99) which imposes a general organization and formalizes the well-formedness conditions
for elementary tree sketches. It provides a general overview of the grammar and makes it
possible for a tool to automatically generate the desired tree sketches from the combination of
smaller descriptions.

MG thus represents a TAG as a multiple inheritance network, whose classes specify syntactic
structures as partial descriptions of trees (Vijay-Shanker & Schabes 92, Rogers & Vijay-

2 For unknown words, a default tree assignment is used.
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Shanker, 94). Partial descriptions of trees are sets of constraints that may leave underspecified
the relation existing between two nodes. The relation between two nodes may be further
specified by adding constraints in sub-classes of the inheritance network. Inheritance of partial

descriptions is monotonic.?

In order to build pre-lexicalized structures resp(_acting the Predicate Argument Coocurrence
Principle, and to group together structures belonging to the same free family, MG makesg use of
syntactic functions to express either monolingual or cross-linguistic generalizations (as in LFG
or Relational Grammar). Subcategorization of predicates is expressed as a list of syntactic
functions, and their possible categories. The initial subcategorization is that of the unmarked
case, and is modifiable by redistribution (or transitivity alternations). _

Structures sharing the same initial subcategorization are grouped in a tree family. For verbal
predicates, an elementary tree is partly represented with an ordered list of successive
subcategorizations, from the initial one to the final one. Elementary trees sharing a final
subcategorization, may differ in the surface realizations of the functions. MG represents this
repartition of information by imposing a three-dimension inheritance network :

Dimension [: initial subcategorization
Dimension 2: redistributions of functions
Dimension 3: surface realizations of syntactic functions.

Dimension 1 describes a possible initial subcategorization (and possibly frozen elements).
Dimension 2 describes a list of ordered rediswributions (including the case of no-redistribution)
which may impose a verbal morphology (eg. the auxiliary for passive). Dimension 3 represents
the surface realization of a function (independently of the inttial function).
The 3 dimension hierarchy is handwritten, the elementary trees are automatically generated with
a two-step process. First the compiler automatically creates additional classes of the inheritance
network : the "crossing classes”. Then each crossing class is translated into one or several tree
sketches (the minimal structures satisfying all inherited constraints). During the first step,
crossing classes are automatically built as follows (with unification):

- a ¢crossing class inherits ope terminal class of dimension 1

- then, the crossing class inherits one terminal class of dimension 2

- then, the crossing class inherits classes of dimension 3, representing the realizations of
every function of the final subcategorization.
The tree sketch of figure 1, for example, has been compiled, out of an initial subcategorization
with nominal subject and dative object (dimension 1), an active canonical redistribution
(dimension 2), a nominal inverted realization for the subject, and a fronted interrogative
realization for the dative object (dimension 3).

3. Elementary trees in FTAG

3.1 Linguistic principles for elementary trees

Within FTAG, elementary trees respect the following linguistic well-formedness principles:

(Kroch & Joshi 85, Abeillé 91, Franck 92, Candito 99, Candito & Kahane 98 }

- Strict Lexicalization : all elementary trees are anchored by at least one lexical element, the
empty string cannot anchor a tree by itself,

- Semantic Consistency : no elementary tree is semantically void (this ensures the
compositionality of the syntactic analysis),

- Semantic Minimality : no elementary tree correspond to more than one semantic unit
(module lexicalism : lexical anchors are not broken down into morphemes).

- Predicate Argument Cooccurrence Principle (PACP): an elementary tree is the minimal
syntactic structure that includes a leaf node for each realized sernantic argument of the
anchor(s). ’

Initial trees are used for arguments, verbs with non sentential arguments, auxiliary trees are
used for modifiers, determiners, modals, auxiliaries and verbs with sentential complement,

Some examples of elementary trees are the following:

3.In MG, nodes of partial descriptions are sugmented with specific feature structures, called meta-features,
canstraining for instance, the possible parts of speech of a node or the index in the case of argumental nodes.
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Figure 4. Elementary trees with functional co-anchors

In Figure 3, the relevant syntactic and semantic units are donner-a (give to) or penser-que (think
that),

3.2. The metagrammar for FTAG

The set of tree sketches in FTAG is comprises over 5000 elementary tree sketches (not counting

trees for causative constructions). Currently, all but 40 of them are compiled from the French

metagrammar. The 40 remaining tree sketches are trees for determiners (plain and complex),

nouns used as arguments, coordination conjunctions, clitics and "special” trees for deficient

verbs such as raising verbs and auxiliaries.

The French MG comprises the description for the tree sketches anchored by full verbs,

prepositions, adverbs, adjectives, and nouns {when used as modifiers).

Within dimension 1, it comprises 54 initial subcategorization frames for verbs (which means

there are 54 tree families for verbs in FTAG), 4 initial subcategorizations for adjectives, 12 for

adverbs, prepositions, subordinating conjunctions and nominal modifiers.

In dimension 2, primarily relevant for verbs, we have defined as redistributions the following

phenomena:

- Passive (with or without agent) : additional V-headed elementary trees with auxiliary étre
susbstituted .

- Causative constructions

- Reflexive

~ Impersonal constructions (active and passive)

- Middle se (ces robes se lavent facilement)

In dimension 3 , we define as realizations the following phenomena:

- Infinitival and sentential arguments (reated as S-complements)

- Relatives (qui, que, dont, Prep qui, Prep lequel), indicative, subjunctive

- Interrogatives (direct, indirect, est-ce-que)

- Cleft sentences (c'est que, c'est qui, ¢’est Prep N que)

- Clitic pronouns

- Subject inversion (nominal or subject clitic)

- Unbounded dependencies (with island constraints)

15
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- Participials (past or present part, NP modifiers), Past participle agreement.

- Null realization (empty subjects for infintiives, participials or imperatives)

- Factorization (for subjects in coordinated phrases)

- Word order variation (among complements) ) . )

Work remain to be done of the syntax of guantifiers (often discontinuous in French), on
negation (including negative concord), coordination and comparison (including superatives).

4. Evaluating FTAG

Evaluating a wide coverage grammar is a difficult task, especially in the absence of reference
tree banks for French. We performed a quantitative evaluation using the French test suite
developed in the TSNLP project (Estival & Lehmann 96). Further evaluation will be done on
newspaper corpora.

4.1. Evaluation using TSNLP '

We have performed an external evaluation using the TSNLP multilingual data base, which aims
at covering the major syntactic phenomena for each language, vsing a minimal vocabulary (a
few hundred words). We have extracted all the French items of the TSNLP data base, classified
by grammatical status (we only took 0 and 1), by length and by phenomenon (according to
TSNLP original classification). For all grammatical items, the results with the 1998 version of

our grammar are as follows:4

- over 80 % of the grammatical parsed, with an averrage of 2.9 parses per sentences

- over 82% of the agrammatical sentences have been correctly rejected,

There were no unknown words. The main failure cases are the following:

- missing lexical coding (transitive verb without object, transitive use of intransitives),

- missing elementary tree (causative trees, postverbal clitics with imperatives),

- feature unification clash (agreement with politeness forms: vous étes belle, or with
coordination ; dewx bandes bleue et jaune),

- missing phenomenon (tough construction, gapping...).

Cases of overanalysis either come from a disputable TSNLP coding (for example for sequence
of times), or from the incompleteness of our representation (for example for coordination or
negation, we overgenerate).

4.2, Comparison with other syntactic ressources

The lexicon-grammar developed at LADL for more than 20 years is an unrivaled source of
knowledge reusable in the sens that it is not designed for any program and not even depedent on
any special formalism. However, it cannot be directly used to analyse (or generate) a text since
it only lists some basic constructions (with their lexical head). It does not code the crossing of
constructions nor the productive phenomena which are not clearly lexically sensitive (such as
causative, quantifier floating or argument extraction for simple verbs). Thus, even though it is
crucial to know that transitive voler (to steal) must be distinguished from intransitive voler (to
fly), more general grammatical rules are needed to know that it is the transitive voler which is
instanciated in examples (1)-(2) without a postverbal NP object, or that it is the intransitive
voler which is instanciated in examples (3)-(4) (even though there is a postverbal NP);

(1)  Is veulent tout voler

(2)  les bijoux gu'ils ont finalement avoué avoir volé€...

(3)  Lufthansa fait voler ses avions 5 jours sur 7

(4) A une altitude a laquelle ne vole normalement aucun avion ...

M. Salkoff (1973, 79} string grammar has listed numerous grammatical sirings representative
of French syntax but has never been associated with a sizable lexicon and cannot be rensed
independently of the parsing scheme it was made for. The HPSG like grammar developed for
French by Namer and Schmidt 93 suffers from the same problems and is totally dependent
upon the ALEP developement platform.

4, A previous evaluation done in 1996 (Abeillé et al. 96), with a smaller coverage grammar (comprising about
830 elementary tree sketches), using the same lexicon, had the following results : 65% of the grammatical
sentences (excluding coordination) parsed, with an ambiguity rate of 1,5 parses per parsed sentence.
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The GB grammar developed for French at LATL (Wehrii 97), is more modular and associated
with a sizable dictionnary. But it is not clearly separated from the program that uses it
{extraction or passive phenomena are not handled as grammatical data but as types of action -
attachment, trace creation... - that the program does at a certain stage in the parsing scheme) and
thus cannot be reused as such for other applications.

5. Ranking parses

To be usable in pratice, our grammar must associate one best analysi.s per grammatical sentence.
The output of a TAG parser can be viewed as a derived tree (encoding phrase structure) or as a
derivation tree (encoding dependencies). Since it is both more compact and more informative,
we choose the derivation tree for parse ranking (contrary to Srinivas & al. 93).

5.1. General Disambiguation principies

Qur parse ranker is based on empirical (i.e. corpus-based) and psycholinguistic-based
preferences (Kinyon 99). It only uses Iexical and syntactic sources of information (whereas a
true disambiguator should also use semantic and discourse information). Since we work on the
derivation tree which exhibits the lexjcalized trees used for parsing, it is easy to mix lexical and
syntactic preferences. Our parse ranker thus uses 3 types of preferences : lexical preferences
(such as valence preference for verbs), grammatical preferences (construction types) and
general principles which are structore-based, domain, language and application independant.
The Jexical preferences code either a category preference or a valence principle. They have to be
computed for each word, but we rely on the general tendency in French to favor grammatical
categories over lexical categories for ambiguous forms (for example weak pronouns (clitics) to
strong pronouns, or auxiliaries over full valence verbs).

The grammatica) preferences code a construction preference, for example active over passive or
personal over impersonal, In i est venu une nuit, the personal interpretation (with il as personal
subject and une nuit as adjunct} is to be favored over the impersonal one (with une nuit as deep
subject).

The general principles assume the existence of a universal preference for economy (e.g.
adjunction is more costly than substitution) and therefore favor analysis that needs to perform
the fewer operations. Formnlating structural preference principles in terms of derivation tree
allows to capture widely accepted preferences, which turn out to be difficult to formalize in
terms of constituent trees : idioms are prefered over literal interpretations, arguments are
prefered over modifiers.

These general principles are the following :

1- Prefer the derivation tree with the fewer number of elementary trees (=fewer nodes)
2- Prefer to attach initiaf trees low
3- Prefer the derivation tree with the fewer number of auxiliary trees

Principle 1 favors the idiomatic interpretation of a sentence over its literal interpretation (a),
since the diferent idiom chunks belong to the same elementary tree. It also favors the attachment
prepositional phrases as arguments rather than modifiers (b). Principle 2 favors the low
attachment of arguments, when several alternative attachments are possible : in (¢) the PP de la
manifestation is an argument of the N organisateur rather than of the V soupgonne. In (d), the
PP & Jean is an argument of dir rather than of parle. Principle 3 favors the derivation tree
involving the fewer number of adjunctions (i.e. modifiers) : in () le matin could be a modifier,
but the attachment as an argument is prefered.

{a)  Jeanbrise la glace (Jean cuts the mustard > Jean breaks the ice )

(0)  Jean pense & la reunion (Jean thinks of the reunion > Jean thinks at the reunion)

(&  Jean remercie 1'organisateur de la manifestation (J. suspects the organizer of the
demonstration > for the demonstration)

(d)  Cest 2 Jean que Marie dit que Paul parle (I’s to Jean that Marie says that John thinks >
It's of Jean that ....)

(¢)  Jean attend Ie matin (Jean awaits the morning > J. waits in the morning)

In case of conflict, the priority is for lexical preferences, then grammatical preferences, then
general principles.

17
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5.2. Application to TSNLP 7 ) _ o
The parsed item from TSNLP had an average of 2.9 parses per 1tem. No categorial ambiguity
remained, Most feature ambiguities are handled via underspecification (eg "les enfants”
feminine ou masculine). The remaining (structural) ambiguities are the following (not all of
these are spurious) ! , N . . )

- modifier adjoined to S ou V after an intransitive verb (L'ingénieur viendra volontiers),

- prepositional phrase analysed as complement or modifier (L'ingénieur préfere le vin a l'eau; 1
passe pour un spécialiste), : - .

- passive with or without agent (the par-PP can be analysed as an agent phrase or as a modifier)
- several adjunction sites in case of multiple modifiers. ] o
After applying the general preference principles, we are left with only 2.17 derivations /
sentence (i.e. -24 %), while the number of sentences for which a “correct” parse is present only
marginally decreased. After applying the language specific preferences, we are left with 1,5
derivation / sentence (i.e. - 47 % in total). It turns out that one of the main sources of spurious
ambiguities lies in adverbial attachment. We are exploring how to add lexical preferences to deal
with this case.
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Abstract

A new definition of Embedded Push-Down Automata is provided. We prove this new definition
preserves the equivalence with tree adjoining languages and we provide a tabulation framework
to execute any automaton in polynomial time with respect to the length of the input string.

1. Introduction

Embedded Push-Down Automata (EPDA) were defined in (Vijay-Shanker, 1988) as an exten-
sion of Push-Down Automata that accept exactly the class of Tree Adjoining Languages, They
can also be seen as a level-2 automata in a progression of linear iterated pushdowns involving
nested stacks (Weir, 1994).

An EPDA consists of a finite state control, an input tape and a stack made up of non-empty
stacks containing stack symbols. A transition can consult the state, the input string and the
top element of the top stack and then change the state, read a character of the input string and
replace the top element by a finite sequence of stack elements to give a new top stack, and new
stacks can be placed above and below the top stack.

EPDA can describe parsing strategies for tree adjoining grammars in which adjunctions are
recognized top-down. The same kind of strategies can be described in strongly-driven 2-stack
automata (de la Clergerie & Alonso Pardo, 1998) and linear indexed automata (Nederhof, 1999},
which has associated tabulation frameworks allowing those automata to be executed in polyno-
mial time with respect to the size of the input string. In this paper we propose a redefinition of
EPDA in order to provide a tabulation framework for this class of automata.

2. EPDA without states

Finite-state control is not a fundamental component of push-down automata, as the current state
in a configuration can be stored in the top element of the stack of the automaton (Lang, 1991).
Finite-state control can also be eliminated from EPDA, obtaining a new definition that considers
a EPDA as a tuple (Vr, Vs, ©, $0,$;) where Vi is a finite set of terminal symbols, Vs is a finite
set of stack symbols, $; € Vj is the initial stack symbol, §; € Vs is the final stack symbol and
@ is a finite set of six types of transition:

SWAP: Transitions of the form C' —=+ F that replace the top element of the top stack while
scanning a. The application of such a transition on a stack Y [«B returns the stack T [aC.

* This research was partially supported by the FEDER of EU (Grant 1FD97-0047-C04-02) and Xunta de
Galicia (Grant PGIDT99X110502B).
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PUSH: Transitions of the form C' — C F that push F onto C. The appllcanon of such a
transition on a stack T [@C returns the stack T {aCF.

POP: Transitions of the form €' F' = @ that replace €' and F by (. The application of such
a transition on Y [«CF returns the stack T[aG.

WRAP-A: Transitions wrap-above of the form C = C, [ F that push a new stack [F on the
top of the automaton stack. The application of such a transition on a stack T [@( returns
the stack Y [aC[F.

WRAP-B: Transitions wrap-below of the form € +2+ [C, F that store a new stack [ just
below the top stack, and change from C to F the top element of the top stack, The
application of such a transition on a stack T [aC returns the stack Y [ClaF.

UNWRAP: Transitions of the form C, [F +=+ ( that delete the top stack [F and replace the
new top element by G. The application of such a transition on a stack T [aC [ F returns
the stack T [aG.

where C, F,G € Vo, T € ([V2)*, @ € V&, a € Vr U {¢} and [ & Vs is a new symbo} used
as stack separator. It can be proved that transitions of a EPDA with states can be emulated by
transitions in © and vice versa.

An instantaneous configuration is a pair (T, w), where T represents the contents of the automa-
ton stack and w is the part of the input string that is yet to be read. A configuration (T, ew)
derives a configuration (Y', w), denoted (T, aw) - (Y, w), if and only if there exists a transition
that applied to T gives Y and scans « from the input string. We use F * to denote the reflexive
and transitive closure of -, An input string is accepted by an EPDA if ([$;, w) r— [$ 71€). The
language accepted by an EPDA is the set of w € Vi such that ([$, w) F *([$, ¢

3. Compiling TAG into EPDA

We consider each elementary tree v of a TAG as formed by a set of context-free produc-
tions P(7): a node N and its g children NY ... N7 are represented by a production N7 —
NT ... Ny. The elements of the productions are the nodes of the tree, except for the case of
elements belonging to Vi U {£} in the right-hand side of production. Those elements may have
no children and can not be adjoined, so we identify such nodes labeled by a terminal with that
terminal. We use 3 € adj(/V?) to denote that a tree 3 may be adjoined at node N7, If ad-
junction is not mandatory at N7, then nil € adj(N7). We consider the additional productions
T* - R%, T# - R” and F¥ — L for each initial tree «« € I and each auxiliary tree 4 € A,
where R is the root node of o and ¥ and F# are the root node and foot node of g, respec-
tively. After disabling T7 and L as adjunction nodes the generative capability of the grammar
remains intact.

Figure 1 shows the generic compilation schema from TAG to EPDA, where symbols V7 have
been introduced to denote dotted productions. The meaning of each compilation rule is graph-
ically shown in figure 2, This schema is parameterized by N7, the information propagated
top-dewn w.r.t. the node N7, and by N:f, the information propagated bottom-up. When the
scherna is used to'implement a top-down strategy N7 = N7 and N7 = [, where [1 is a fresh
stack symbol. A bottom-u strategy requires N7 = [Jand N7 = N7. Fora Earley-like parsing
strategy, N7 = N7 and N7 = N7, where N7 and N7 are used to distinguish the top-down
prediction from the bottom-up propagation of a node.

We can observe in figure I that each stack stores pending adjunctions with respect to the node
placed on the top of the stack in a top-down treatment of adjunctions: when an adjunction node
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[INIT]
[CALL]
[SCALL]
[SEL]
[TAB]
[RET]
[SRET]
[SCAN]
[ACALL-a]
[ACALL-b]
[ARET]
[FCALL-a]
[FCALL-b]
[FRET]
[FINAL]

$o — 80 [ V5o
v1,— 91, [N
—
Vf,s — [Vf,s, Nfs+1
fT:,(: — Vo
V., — NI
Ve [m — Vi
vf,m [m — Vf,s+1
Vie— [V, 2y,
A7, — AT, '?ﬁ
v, [TP—o Vi,
Vig— [Vig, L
An, L— N
V2o, [N V2,

$o [V, — [$)

ael
N] .11 ¢ spine(7y), nil € adj(N::sH)
Nfs_i,l € spine((J), nil € adj(Nle)

N 11 ¢ spine(y), nil € adi(N] )
N..; € spine(f3), mil € adj(N’,, )
Ni—e

adj{N; 1) # {nil}

ge 3dj(N::s+1)

8 € adj(N],.))

Ni,=F°

Arfﬁ,ﬂ = Fﬁ: ﬁ € a'd.] (N:,s+l)

acl

Figure 1: Generic compilation schema from TAG to EPDA

Figure 2: Meaning of compilation rules
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Transition EPDA L-LIA
SWAP Ce F Cleo] =+ F{o0]
PUSH C+= CF Cloc]) =+ FloeC]

POP CF+— G FlooC] =+ Gleo]

WRAP-A C+ C,[F Cloo] — Cloo] F]

WRAP-B Cv= [C,F Cloo] == CT] Fleo]

UNWRAP ClF G Cloo] F[ ]+ Gloo]

WRAP-B+PUSH  C+ [C,XF  Cloo] s C[] Flo0X]
WRAP-B+POP XC+= [C,F  CleoX)+—+ C[] Floo]

Figure 3: Equivalence between EPDA and L-LIA

is reached, the adjunction node is stored on the top of the stack ({ACALL-a]) and the traversal
of the auxiliary tree is started (JACALL-b]}); the adjunction stack is propagated through the
spine ([SCALL]) down to the foot node, where the traversal of the auxiliary tree is suspended
to resume the traversal of the subtree rooted by the adjunction node ([FCALL-al), which is
eliminated of the stack (([FCALL-~b]). To avoid confusion, we store /_\,"!,S instead of V;”s to
indicate that an adjunction was started at node N, ,,. A symbol A can be seen as a symbol ¥
waiting an adjunction to be completed.

4. EPDA and Left-oriented Linear Indexed Automata

Left-oriented Linear Indexed Automata (L-LIA) is a class of automata defined by Neder-
hof (1999} that can be used to implement parsing strategies for TAG in which adjunctions are
recognized in a top-down way. Given a EPDA, the equivalent L-LIA is obtained by means of a
simple change in the notations: if we consider the top element of a stack as a stack symbol, and
the rest of the stack as the indices list associated to them, we obtain the correspondence shown
in figure 3.

This change ir notation is also useful to show that EPDA accept exactly the class of tree adjoin-
ing languages. That tree adjoining languages are accepted by EPDA is shown by the compila-
tion schema defined previously. To prove that the languages accepted by EPDA are tree adjoined
languages, we exhibit a procedure that, given an EPDA A = (Vr, Vs, ©, 8, $;), builds a linear
indexed grammar (Gazdar, 1987) G = (V, Vv, V4, 5, P) that recognizes the language accepted
by A. Non-terminals in Vi are pairs {4, B), where A, B € Vi, and V; = V5. Productions in P
are obtained from transitions in @ as follows:

» For cach trapsition ¢ +—— F and for each B € Vs, a production (C, E)[oo] —
o (I, E}[oo] is created.

* For each transition C +— CF and for each E € Vj, a production (C, E)[oc] —
a {F, E)[ooC] is created.

e For each transition ¢’ F +—— (¥ and for each E € Vg, a production (F, E)[0oC] —
o {7, F}[ec] is created.
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e For each pair of transitions C oy C [F'and C,[F 5 G, and for each E € Vg, a
production {C, E)[co] = b {F', F)[] a (G, E)[oc] is created.

« For each pair of transitions C —= [C, F' and C, [F +*+ G, and for each E € Vg, a
production {C, E}[oe] — b {F', F}[oo] a (G, E}| ] is created.

e Foreach E € Vs, a production {E, E){ ] — € s created.

The axiom of the grammaris S = (3¢, $). Applying induction in the length of derivations, we
can prove that {C, E}e] = w if and only if ([oC, w) F *([E,€).

5. Tabulation
The direct execution of EPDA may be exponential with respect to the length of the input string
and may even loop. To get polynomial complexity, we must avoid duplicating computations by
tabulating traces of configurations called items. The amount of information to keep in an item
is the crucial point to determine to get efficient executions,
The tabulation of EPDA using PUSH and POP transitions without restrictions seems to be
difficult. By studying the compilation schema of figure 1, we observe that the compilation
rujes JACALL-a] and [ACALL-b] can be combined to form a single rule [ACALL] generating
transitions WRAP-B+PUSH of the form C — [C, X F:

[ACALL} V), — [V7,, A7, T#
such that 4 € adj(N],,,). The [FCALL-a] and [FCALL-b] can be combined to form a single
rule generating transitions WRAP-B+POP of the form X C +— [C, F:

[RCALL] A7, Vi, [V5,, NI,

such that N7, = F# and # € adj(N],,).

In this section, we consider the tabulation of a subset of EPDA consisting of transitions SWAP,
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+PQOP.

In order to define items and attending to the form of the transitions, we classify derivations of
EPDA into the following types:

Call derivations. Correspond to the propagation of a stack by means of WRAP-B,
WRAP-B4PUSH and WRAP-B+POP transitions:

(T [O‘.’A, [ 73 T PO Gn)
B (T [A Tl [(IXB,G.I'.H S a.-,-,_)
F* (T[A T [@XC a4 ... a0)

where A, B,C, X € Vs, € V3 and T, T; € ([VZ)*. The two occumrences of o denote
the same stack in the sense that ¢ is neither consulted nor modified through the derivation.
These derivations are independent of T and a, so they can be represented by items

[A}h l B,i,X,C,j,X | _:“1_)'—]
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Return derivations. Correspond to the bottom-up propagation of unitary stack by means of
UNWRAP transitions:

(T [A, apsa ... a)
F* (T[A T [aXB,ai41...00)
F* (T[A T, [B T2 [aD,ap1 ... an)
S (TIA T [B 1o [Brap .. cn)
F* (T[4 Ty [Crajun.. an)

where A, B,C, D, B\ X € Vo, e VE, T, Ty, T2 € ([VS*)* and ¢ is passed unaffected
through derivation. These derivations are independent of T but not with respect to the
subderivation ([aD, Gpi1 ... 0n) F [E, {tg41 - - - @n), 50 they are be represented in com-
pact form by items -

[A, 0| B4, X,C,5,— | D,p, E, q]

Special point derivations. When aX = ¢ we have a particular case of previous derivations:
(T [@B,ais1...0,) F*{T [0C, aj41. .. an)
where B,C € Vs, and T € ([VS*)*. These derivations can be represented by items
[= =184, = Chy= | = = =]

To combine items, we use the set of inference rules shown in figures 4 and 5. Each
rule is of the form ™ "n',"”‘ wans, mMeaning that if all antecedents 7; are tabulated items and
there exist the transitions trans, then the consequent item 1’ should be created. In order to
simplify the inference rules, but without loss of generality, we have considered that scan-
ning is only performed by SWAP transitions. The computation starts with the initial item
[~,— | $0,0,—,8,0,— | —,—,—,—]. Aninput string a, ... a, has been recognized if the final
item [~, — | 8,0, —, ¢, n, — | —, —, —, —] is present. It can be proved that handling items with
the inference rules is equivalent to applying the transitions on the whole stacks,

To illustrate the relation between EPDA and L-LIA, figures 4 and 5 show the transitions of
both models of automata that must be considered to apply a given inference rule. Therefore,
the proposed tabulated technique can be also applied to L-LIA working with transitions SWAP,
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP.

6. Conclusion

Embedded Push-Down Automata have been redefined: finite-state control has been eliminated
and several kinds of transition have been defined. We have also shown that the new defini-
tion preserves the equivalence with tree adjoining languages and that tabulation techniques are
possible to execule these automata in polynomial time with respect to the length of the input
string.
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Rule EPDA transition L-LIA transition

[A,h\B,E',X,C,j,-’ E _1”:_1_]

Ak B,6 X kX | == =] Cry F Cloe] =5 Floc]
wherek = jifa=e¢andk =37+ 1ifa e V¢

PR O Okl e
wherek =jifo=candk=j+1ifa €V
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[A!h' I B,i,‘Y,C,j,— | DJPTE‘IQ]

3 s T
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T T T ""]
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Rule EPDA transition L-LIA transition

[—,*-IF',j,—,F,k,—-j—,—,"',—]

(4. k| B,i,X,C5,X |- — —, -] Cr— C, [F Cloa] +— Cloo] FI[}
(4K B4, X,G kX |-~ -] C[F— G Cloo} F{] r~— Gloo]
[—1_ ’ Fr‘nj:_sF:ka_ i —1_}_‘1_]

IA, k| B,i,X,C,5,— | D,p,E,q) Cv— C, [F Cloo] > Cloo] F/[]
[A | B, X,G & —|D,pE,qgj C[F— @G Cloo] F[]+— GJeo]
[A’h‘ ! F',j,.\’,F,k‘,— | D1P=Erq]

(4,0 | B4, X,C.0, X [ —,—,—,—] C— [C.F Cloo] — C[] F'{oo]
4,4 B,i,X,G,k,— | D,p,E,q] C[F—&G Cloo} F[] +— Gloo]
{_7_}F"’j7*aF‘)k:F— H-J‘-Jil-_}_‘]

IA;h!Ba'é:XaCuj:"|D7P1E7Q] CH[C1F! C{OO}I——)C[]F'IOO]
[A,h]B,i,X,G.k,— | D,p, E, q] C[F— G Cloo] F] +— Gloo]

[C'r.? I Ff:js‘”s F=k>— ‘ D1psE1QJ

Ak BLX,C5HX |-~ — ]

(A k1 D,p, X, E,q,— | O,u, P, v] Cr— [C,X'F Cloo) — €] F'jooX"]
(4,0 ] B4, X,G,k,~ | O,u, P,v] C,[Fr—aG Cfoo] F{1+— Goo]

[C. 5| FL 4, X Fk,—|O,u, P v

[Ah|B,i, X,C.4,— | D,p, E,q]

[~ -10,u,—8v,— |- —,—, -] Cr [C,X'F Cloo)v— ] F'looX]
[A 1] B,4LX,Gk - | DpE,ql C,[F— G Cloo] F[] +— Gloo]

[-ﬂiaﬂl ) F',j,X’SF,k,— J D1P1E:QJ
[*4: h ! B‘, i: -'Y1 Caj))( | T Ty T '_]
MmNt XN AN | == ==] XCr— [C,F  ClooX]r— C[] F'[00]

(4,7 B4, X,G,k,— | F',5, F, k] C[F—G Cloo] F[]+— Goo]

[—1_{Flvj!_sFak%_'_’s_v_,_I
[Ah] B4, X,C, 5, X | =, =, — —]
M, m | N,t, X' A h,~ | D,p, E,q) XC— [C F ClooX]— C[] F'[oo)
[A R B,i, X, G k,— | F', 3, F, k| C[Fr— G Cloo} F[]+— Gioo]

Figure 5: Tabulation rules
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Abstract

This paper describes the extension af the system DyALog to compile tabular parsers from Fea-
wre Tree Adjoining Grammars. The compilation process uses intermediary 2-stack automata
fo encode various parsing straregies and a dynamic progranuning interpretation fo break au-
tomata derivations into tabulable fragments.

1. Introduction

This paper describes the extension of the system DyALog in order to produce tabular parsers for
Tree Adjoining Grammars [TAGs] and focuses on some practical aspects encountered during
the process. By tabulation, we mean that traces of (sub)computations, called items, are tabulated
in order to provide computation sharing and loop detection (as done in Chart Parsers),

The system DyALog' handles logic programs and grammars (DCG). It has two main compo-
nents, namely an abstract machine that implements a generic fix-point algorithm with subsump-
tion checking on objects, and a bootstrapped compiler. The compilation process first compiles
a grammar into a Push-Down Automaton [PDA] that encodes the steps of a parsing strategy.
PDAs are then evaluated using a Dynamic Programming [DP] interpretation that specifies how
to break the PDA derivations into elementary tabulable fragments, how to represent, in an op-
timal way, these fragments by ifems, and how to combine items and transitions to retrieve all
PDA derivations. Following this DP interpretation, the transitions of the PDAs are analyzed at
compile time to emit application code as weil as to build code for the skeletons of items and
transitions that may be needed at run-time.

Recently, (Villemonte de la Clergerie & Alonso Pardo, 1998) has presented a variant of 2-stack
automata [25A] and presented a DP interpretation for them. These 25As allow the encoding of
many parsing strategies for TAGs, ranging from pure bottom-up ones to valid-prefix top-down
ones. For all strategies, the DP interpretation ensures worst-case complexities in time O{n®)
and space O{n°), where n denotes the length of the input string.

This theoretical work has been implemented in DyALog with minimum effort. Only a few
files have been added to the DyALog compiler and no modification was necessary in the DyA-
Log machine. Several extensions and optimizations were added: handling of Feature TAGs,

'Freely available at http: / /atoll . inria. fr/~clerger
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use of more sophisticated parsing strategies, use of meta-transitions to compact sequences of
transitions, use of more efficient items, and possibility to escape to logic predicates.

2. Tree Adjoining Grammars

We assume the reader to be familiar with TAGs (Joshi, 1987) and with the basic notions in Logic
Programming (substitution, unification, subsumption, ... ). Let us just recall that Feature TAGs
are TAGs where a pair of first-order arguments top T, and bottom B, may be attached to
each node v labeled by a non-terminal.

We have chosen a Prolog-like linear representation of trees. For instance, the grammar count
(Fig. 1} recognizes the language a"b"ec™d” with n > () and returns the number n of performed
adjunctions. It corresponds (omitting the top and bettom arguments) 1o the trees on the right
side. By default, the nodes are adjoinable, except when they are leaves or are prefixed with —.
Obligatory Adjunction [OA] nodes are prefixed with ++ and foat nodes by . Node arguments
are introduced with the operators at, and, fop, and baet and escapes to Prolog are enclosed with
{} (as done in DCGs).

tree top=s(X) and bot=s(0) at ++s("e") ++8 -5

auxtree top=s(Xpl) ' l /l\

at _ S ( . a " liel’ GSaV, S “d”
top =s({X) and bot=s{Y) /l\
at s("b", bot=s(Y) at »s5, "c"), “p" *3 He”
{Xpl is X+1},
d"y.

Figure 1: Concrete representation of grammar count and corresponding trees

3. Compiling into 25As following a modulated Call/Return Strategy

25As (Becker, 1994) are extensions of PDAs working on a pair of stacks and having the power
of a Turing Machines. We restrict them by considering asymmetric stacks, one being the Master
Stack MS where most of the work is done and the other being the Auxiliary Stack AS only
used for restricted “bookkeeping” (Villemonte de la Clergerie & Alonso Pardo, 1998). When
parsing TAGs, MS is used to save information about the different elementary tiee tras orsals
that are under way while AS saves information about adjuncticns, as suggested in figure 2.

Calls Returns
.Tp .1'/’-" C 1 A i g \ i TV. ..Lin,
] — ) ! N | v — [ ]
transition ACALL transition ARET
7| By Calli ¥+ B Yy
L= el B Rt || [ [T
transition FCALL transition FRET

Figure 2: Tllustration of some steps

Figure 2 also illustrates the notion of modulated Call/Return strategy: an clementary tree o
is traversed in a pre-order way (skipping Nuil Adjunction [NA] internal nodes) and when pre-
dicting an adjunction on node v, the traversal is suspended and some prediction information
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*T, relative to the top argument T,, of v is pushed on A4 S (step Call) and used to select some
avxiliary tree § (step Select), Some information 7 (partially) identifying v is also pushed on
AS and propagated to the foot of the auxiliary tree. Then U™ is popped, combined with some
information “By and pushed on MS in order to select the traversal of the subtree «, rooted at
v. Once a, has been traversed, we pop MS and resume the suspended traversal of 3. We also
push propagation information p,, on AS abaut the adjunction node. Once [ has been traversed,
we publish some propagation information about 3 (step Publish). We then pop both MS and
AS and resume the suspended traversal of @, checking with p, and T,* that the adjunction has
been correctly handled (step Return).

For each kind of suspension that may occur during a tree traversai, we get a pair of Call/Return
transitions and a rejated pair of Select/Publish transitions. For TAGs, we have three kinds of sus-
pension, occurring at substitution, adjunction, and foot nodes. We explicit here the transitions
relative to an adjunction on node v and to an auxiliary wree of root r and foot f. A transition 7
of the form (=, £) — {©, §) applies on any configuration (MS, AS) = (P=',4¢") and returns
((¥@)e, (¥8)o) whenever the most general unifier ¢ = mgu (=€, Z'¢') exists. 2

ACALL (*v,¢)— (‘v *T.,7") ARET (*v T, p,) — {1°¢)
ASEL (T, ¢)+— (*r,e) APUB  {r'.¢) — (T:",¢)

FCALL {,f.X) s (uf (JBe-+X), €) FRET {.f(Br.+Y),e) — (f., )
FSEL (LB, +7),¢) — (v, ) FPUB  (v.,¢) — ({By. +v,).¢)

In these transitions, X, Y denote free variables and dotted atoms v, v° {resp. .V, 1.} denote
computation points during a traversal that are just left and right of v inclueding (resp. not in-
cluding) adjunction. The prediction atems *T,, B, and propagation atoms T,%, B,, are
built using modulations from the node arguments T, and B, completed by position variables
(*P,, P,*) and (,P,, P..) used to delimit the span of v including or not adjunction. * A mod-
ulation (Barthélemy & Viliemonte de la Clergerie, 1998) is formalized as a pair ©f zr2jortion
morphisms (7, _) such that, for all atoms A4, B, mgu(4, B} = mgu(zé, BB). For TAGSs, we
offer the possibility to have distinct modulations (*,_,) and (", _,) for top and bottom argu-
ments, as well as a third one (T, _,) for nodes, leading to the following definitions: 4

‘T, =T Fa B B=ElP, Tl
T'=T'PuiPS],  B=BLP.; P,

Modulation is useful to tune the top-down prediction of trees and the bottom-up propagation of -
recognized trees. It allows an uniform description of a wide family of parsing strategies, ranging
from pure bottom-up ones to prefix-valid top-down ones and also including mixed strategies
such as Earley-like. In practice, a directive tag_mode(s/1,top,+(—),+,—) states that, for a node
argument T' = s(X) and position variables (*P, P*) = (L, R), we get *T = call_s_1(L)
and T* = ret(R, X).

In practice, the transitions built following a Call/Return strategy may be grouped in meza-
transitions by (a) grouping pairs of related call and return transition and (b) considering dotted
nodes as continuations. For instance, figure 3 shows the skeleton of a meta-transition represent-
ing the traversal of an auxiliary tree with root r and some adjoinable node v. ¥

Transitions and configurations have been simplified in this paper for sake of clarity and space.

%0f course, there are many congruence relations between the position variables. For instance, if v immediately
Precedes u in the traversal, we have P,* = "P,. When v is not adjoinable, wehave *P, = P, and P,* = P,,.

There is also a specific modulation for substitution nodes.

SActually, we have considered the case of a mandatory adjunction at 1. To handle non mandatory ones, we add
disjunction points in the meta-transitions and share common continuations between alternatives,
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fselect  *T,
[ [call  (*T
ret (T,

It' TJ

) A

2

select  {,B, +77)

right Co .. [ below right [ publish (Bu.+gn)}]
FPUB

FSEL
right [ . [publish' T,']J
APUB J
L ACALLRET® _ J

ASEL
Figure 3: Sketch of a meta-transition for an auxiliary tree

4. Preparing the Dynamic Programming evaluation

The next compilation phase unfoids the meta-transitions and identifles which obiects (items or
transitions) may arise at run-time. This analysis is based on a DP interpretation for 2SAs.

Items We consider two kinds of items, namely Context-Free [CF] Items ABC (also repre-
sented by A B{o0}C) and Escaped Context-Free [xCF] ltems AB[IDE]C representing sub-
derivations passing by configurations 4, B, €, D and £. ° Computation sharing stems from
the fact that we don’t save a full configuration X = (ZX, £x) but rather a mini configuration
{X.z}or amicro configuration {X). Better, it is possible to keep, in some cases, only a fraction
€{X) of the information available in a stack element X. For instance, we take e{ *») = T,
for an adjoinable node v, and ¢( ,v) = ,B, for a foot node. Finally, A = {(¢A), B = (¢B,b)
(when B # A), and D = {eD, d) (when I? # o). Table 1 shows some items relative to an
adjunction at ». If v dominates some foot g in an adjunction on p, [DE] = [( Bg, a}{ By, +b)]
and (a,b) = (7", p_); otherwise [DE] = [o¢] and {a, ) = (o, ¢},

after CALL before RET
on ADT v | ("I T, T, 7% ("To) (C"THDENT 1)
on FOOT [ | ("T.) (B, 7 (B +7", @) | (" L) (B, VD E]( Bty +, 87 |

Table 1: Refined items at adjunction and foot nodes

Application rules  Figure 4 shows (some of) the application rules used to combine items and
transitions. The antecedent transition and items are (implicitly) correlated using unification
with the resulting most general unifier applied to the consequent item. Component that need
not be consulted are replaced by holes . Similar items occurring in different rules have been
supscripted by I, J, K and L. Note that these rules derive from maore abstract ones, independent
of any strategy, that we have instantiated, to be more concrete, for the Call/Return strategies.

Projections Time complexity may be reduced by removing from objects the components that
are not consulted (marked by *), leading to tabulate one or more projected objects instead of
the original one. In particular, instead of tabulating K = {*T.){(.Be, 7" }[DE|(B,, +z,, b}

6The different conditions satisfied by these configurations are outside the scope of this paper.
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("v,e) — (‘v °Ty,7™)  Ax("v,x)!
(T (T ("T, 7
Ax{*v,a)!
(£,7%) — (F(,Br+7),¢)  (° ,,)*(,f, )’
A(chwvn)<0Bf+V ,ﬂ.)
("T.)0 (1,7’
Ax{*v,a)
(of (Bf- +Hn):f) — (fn n A( B, 7" }[D*] oBr +—n=*>K

(.TU> [(oBfaV )(-Bf +Hn. I(fﬂ-—n>

*{ By, 7" DE]{ By, +v,, %)%
(*T,)("Tu)[{Br, a)(Bro +2,){ T, ")
(*T){("TH{|DE{T. )"
AN{*v,0)
A*[DE] (%, by
(*v T, up) — (2%¢)  OTCTH[DET, g,)*
ANI[DE|(v*,b)

{ACALL)

(FCALL)

(FRET) D = (xa)

(dxCF)

(ARET) D ={,B:a)

Figure 4: Some application rules for the Dynamic Programming interpretanon

corresponding to the traversal of the subtree rooted at 1, we tabulate 3 projections used with
Rules (FRET), (dxCF), and (ARET). The effectiveness of projections is still to be validated!

Partial and immediate applications To further reduce worsr-case complexity, DyALog is
configured to combine, at each step, a single item with a single transition. It is therefore nec-
essary to decompose the application rules to follow this scheme, which is done by introducing
intermediate pseudo transitions materializing partial applications. Subsumption checking can
be done on these intermediate transitions, leading to better computation sharing. We get cas-
cades of partial applications as illustrated by figure 5. An object (Rule)e; . . . 2 represents the
{intermediate) structure associated to the partial application with (Rule) of cy, ..., ap and o
being either the transition = or the ith item (from the top) in the rule,

Another advantage of partial application w.r.t. meta-transitions is the possibility to do.imme-
diate parrial application, with no tabulation of some items. For instance, when reaching an
adjunction node v, we should tabulate item I = Ax(*v,n) and wait for other items to ap-
ply Rules (FCALL), (FRET), and (ARET), Instead, we immediately perform partial applica-
tions and tabulate the intennediate objects (see the underlined objects in fig. 5). We also apply
Rule (ACALL) and tabulate “Call Aux Item” CAY = {*T,}{*T.,){*T,, 7). immediaic apph-
cations are also done when reaching a foot f with item J = (*T,)O{.f, 7).

Shared Derivation Forest They are extracted from tabulated objects by recursively folfowing
typed backpointers to their parents and are expressed as Context-Free Grammars(Vijay-Shanker
& Weir, 1993). Parsing aabbeccdd with the grammar of figure 1 returns the following forest:

5{2)(0,9) 1l <-- 2 % Der. of elem tree with adj.
5(2){0,9) * =s{0)(4,5) 2 <-- 3 % Der. of aux. tree with adj.
s(1)}¢1,8) * s(0)(3,6) 3 <-= % Der. of aux. tree
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(dxCF)2 (ARET)712

(ARET)3 J
. *

)
(FCALL)? 2 (FRET)72 (FRET)1
j . (FRET)3 ' +
(FCALL)r1 -' (dxCF)1| (FRET)r12
(ARET)2

Figure 5: Cascades of partial evaluations related to an adjunction

5. Analysis and conclusion

In the worst case and in the case of TAGs without features, the number of created objects (using
subsumption checking) is in O{n®) and the number of tried appiications is in O(n®}. These
complexities come from the number of different instantiated position variables which may occur
in objects or be consulted (for applications). 7 These complexities remain polynomial when
dealing with DATALOG features {no symbol of functions) and may be exponentiar viiiciwio..
Time complexity is directly related to the number of tried applications and created objects if
abjects can be accessed and added in constant time. The indexing scheme of DyALog based on
trees of hashed tables ensures this property oniy for pure and DATALOG TAGs.

These different remarks about complexity have been confinmed for small “pathological™ gram-
mars. However, some recent experimentations done with a prefix-valid top-down parser com-
piled from a French XTAG-like non lexicalized grammar of 50 frees (with DATALOG features)
have shown a much better behavior (0.5s to 2s for sentences of 3 to 15 words on a Pentivm-
1 450Mhz). We hope to improve these figures by factorizing tree traversals and using (when
possible) specialized left and right adjunctions.
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Abstract

Previous stochastic approaches to sentence realization do not include a tree-based representa-
tion of syniax. While this may be adequate or even advantageous for some applications, other
applications profit from using as much syntactic knowledge as is available, leaving to a stochas-
tic model only those issues that ave not determined by the grammar. In this paper, we present
three results in the context of surface realization: a stochastic tree model derived from a parsed
corpus outperforms a tree model derived from unannotated corpus; exploiting a hand-crafted
grammar in conjunction with a tree model outperforms a tree model without a grammar,; and
exploiting a tree model in conjunction with a linear language model outperforms just the tree
model.

1. Introduction

Most sentence realizers (systems that take a fairly shallow semantic or lexico-syntactic repre-
sentation and return a surface string in the target language) are entirely grammar-based, includ-
ing quite a few based on TAG (starting with (McDonald and Pustejovsky1985)). Generators
using hand-crafted grammars are useful for constrained applications, when strict control over
the output is needed, and when a sufficiently large grammar is available. Recently, (Langkilde
and Knight1998a) and (1998b) have used stochastic techniques in NLG, by mapping semantic
primitives to a set of possible ordered sequences of tokens, and assembling theses into a lattice.
They then -use a linear language model to select the best path through the lattice. Stochastic
generators are useful when a large grammar is not available, or when the range of generated
utterances is large.

To date, generators are either fully hand-crafted or entirely syntax-free, and use a stochastic
model only at the level of linear strings. In this paper we present FERGUS (Flexible Empiri-
cist/Rationalist Generation Using Syntax), FERGUS follows Knight and Langkilde’s seminal
work in using an n-gram language model, but we augment it with a tree-based stochastic model
and a TAG grammar. We argue that the combination of all three key modules of our approach
- tree model, TAG grammar, linear model ~ is crucial and improves over models using only a
subset of these modules.

The structure of the paper is as follows. In Section 2, we start out by describing a modification
to standard TAG that we have followed for the sake of generation. In Section 3, we describe the
architecture of the system, and some of the modules, In Section 4 we discuss three experiments.
We conclude with a summary of on-geing and future work.
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2. ~-Trees

We depart from standard TAG practice in our treatment of trees for adjuncts (such as adverbs
or adjectives), and instead follow (McDonald and Pustejovsky1985) and (Rambow et a1.1995).
While in XTAG the elementary tree for an adjunct contains phrase structure that attaches the
adjunct to a node in another tree with the specified label (say, VP) from the specified direction
(say, from the left}, in our system the trees for adjuncts simply express their own phrase and
argument structure (active valency), but not how they connect to the lexical item they modify
(passive valency). Information about passive valency is kept in the adjunction table which is
associated with the grammar. We call trees that can adjoin to other trees (and have entries in
the adjunction table) y-trees, the other trees (which can only be substituted into other trees) are
a-trees, while [ trees are now restricted to predicative avxiliary trees. Note that each ~y-tree
corresponds to a set of predicative auxiliary trees in a traditionat TAG grammar (which share
common phrase structure but attach differently).

3. System Overview

FERGUS is composed of three modules: the stochastic Tree Chooser, the grammar-based Un-
raveler, and the stochastic Linear Precedence (LP) Chooser. The input to the system is a depen-
dency tree as shown in Figure 1 on the left. Note that the nodes are labeled only with lexemes,
not with supertags. The Tree Chooser then uses a stochastic tree model to choose TAG trees for
the nodes in the input structure. This step can be seen as analogous to supertagging (Bangalore
and Joshil999), except that now supertags (i.e., names of trees) must be found for words in a
iree rather than for words in a linear sequence. The Unraveler then uses the XTAG grammar
(XTAG-Group1999} to produce a lattice of all possible linearizations that are compatible with
the supertagged tree and the XTAG grammar, The LP Chooser then chooses the most likely
traversal of this lattice, given a language model. We discuss the input representation and the
three components in turn. For a more detailed overview over the system, see (Bangalore and
Rambow?2000b).

estimale

estimate N

there was no cost for

there was no cost for AN G.Vvs GDumx G_MNn I CrxPux
I phase
phase /\A_NXN
AN the second
the second G.Dmx  G_An
Figure 1: 80

3.1. The Input fo FERGUS

As mentioned, the input to FERGUS is a dependency tree, We make three remnarks.

First: we see the task of FERGUS as one of incremental specification. Clearly, 2 TAG derivation
tree fully specifies a derivation. It consists of three types of information for each node: the
supertag, the lexical anchor, and the address at which this tree is attached at the tree of the
mother node (except of course for the root). In FERGUS, we assume that the input contains
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only the lexeme, and the other information is added during the generation process. As a result,
the input tree is actuaily semantically underspecified - for example, from the tree on the left in
Figure 1, we could in theory obtain a sentence such as cost was no estimate for the second phase
there, by choosing an c-tree for cost and an adverbial auxiliary tree for there. Thus we leave it
to the corpus to determine how the lexemes relate to each other. Clearly, for many applications,
we know which role the dependents of a lexeme play in the argument structure of their head,
and FERGUS allows us to annotate dependents with a role feature (adj for adjuncts, fune for
function words, or for arguments an integer referring to the numbering of argument slots in the
XTAG grammar). However, the option of leaving the role underspecified is useful in machine
transtation applications (when the parser cannot fully determine the syntactic roles in the source
languzage), and for all applications becanuse often it is difficult to determine whether a dependent
is an argument or an adjunct (for example, Baton Rouge in he disappeared from Baton Rouge).
In realizers that do not allow for underspecification, it is necessary to consult the linguistic data
base (lexicon) of the realizer in order to construct valid inputs; FERGUS allows us to leave the
role of some dependents open.

Second: in the system that we used in the experiments described in Section 4, all words (in-
cluding function words) need to be present in the input representation, fully inflected. This is of
course unreatistic for applications. In this paper, we only aim to show that the use of our three
modules improves performance of a generator.

Third: as is well known, because of lexicalization, the derivation tree of TAG is a dependency
tree. However, because of the definition of adjunction, there are cases in which the derivation
tree is not the dependency tree as commonly assumed, in particular cases of clausal embedding
using predicative auxiliary trees (Rambow and Joshi 1996). Because our training corpus is anno-
tated with standard dependency trees and not derivation trees, we assume standard dependency
trees as input, and treat the footnode of predicative auxiliary trees as a substitution node. As a
consequence, we do not currently exploit the full formal power of TAG and we are not able to
generate [ong-distance dependencies. We intend to address this issue in future work,

3.2. The Tree Chooser

In general, for a given dependency tree, each node can be given more than one supertag in order
to turn the tree into a valid derivation tree. If the syntactic roles of the daughter nodes are not
fixed, then the subcategorization frame of the mother node needs to be chosen, but even if they
are fixed, choices remain such as voice, and how to realize the arguments (for example, dative
shift or topicalization). Ideally, we would have a correct set of rules for each choice and enough
data in the generation process so that we can make the decision. (Stone and Doran1997) have
shown how to integrate such rules into a TAG framework. However, the required research to
find the correct rules is nowhere near completed and the data required in order to make such
decisions is not always available in generation. An alternative is to assume a default ordering
of choices, as does (Becker1998). This cuts back on the required off-line theoretical work and
on-line data, but represents a rather inflexible solution. We have chosen to use a stochastic tree
model sensitive to the lexemes of the mother and daughter nodes to make this choice.

The Tree Chooser draws on a tree model, which is a representation of an XTAG derivation for
1,000,000 words of the Wall Street Journal, It makes the simplifying assumptions that the choice
of a tree for a node depends only on its daughter nodes, thus allowing for a top-down dynamic
programming algorithm. Specifically, a node » in the input structure is assigned a supertag s so
that the probability of finding the treelet composed of  with supertag s and all of its daughters
(as found in the input structure) is maximized, and such that s is compatible with ’s mother
and her supertag s,,. Here, “compatible” means that the tree represented by s can be adjoined or
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substituted into the tree represented by s, according to the XTAG grammar. FFor our example
sentence, the input to the system is the tree shown in Figure 1 on the left, and the output from
the Tree Chooser is the tree as shown in Figure 1 on the right. Note that while 2 derivation
tree in TAG fully specifies a derivation and thus a surface sentence, the output from the Tree
Chooser does not, because for us adjunct auxiliary trees are -trees and thus underspecified with
respect to the adjunction site and/or the adjunction direction (from left or from right) in the tree
of the mother node, and they may be unordered with respect to other adjuncts (for example, the
famous adjective ordering problem). (See Section 2 above.) Furthermore, supertags may have
been chosen incorrectly or not at ail.

TAG Denvation Tree
without Supertags

Tree Chooser - Tree
Madel

One single semi-specified
TAG Derivation Trees

{

Unraveler | =———— | XTAG

¥ord Latice

Grammar

LP Chooser | ——

&

String

Lanpuage
Madel

Figure 2! Architecture of FERGUS

3.3. The Unraveler

The Unraveler takes as input the semi-specified derivation tree (Figure 1 on the right) and pro-
duces a word lattice. Each node in the derivation tree consists of a lexical item and a supertag.
The linear order of the daughters with respect to the head position of a supertag is specified in
the XTAG grammar. This information is consulted to order the daughter nodes with respect to
the head at cach level of the derivation tree. In cases where a daughter node can be attached
at more than one place in the head supertag (as is the case in our example for was and for), a
disjunction of all these positions are assigned to the daughter node. A bottom-up algorithm then
constructs a lattice that encodes the strings represented by each levef of the derivation tree. The
lattice at the root of the derivation tree is the result of the Unraveler,
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3.4. The Linear Precedence Chooser

The latice output from the Unraveler encodes all possible word sequences permitted by the
derivation structure. Again, it might be possible to develop rules to choose among possible ad-
junction sites for adverbs, or for choosing possible orderings of adjuncts at the same adjunction
site (such as for the notorious adnominal adjective ordering problem). However, such research
is not completed, and we instead propose to use a stochastic model in order to make this choice.
We rank the word sequences encoded by the lattice in the order of their likelihood by composing
the lattice with a finite-state machine representing a trigram language model. This model has
been constructed from 1,000,0000 words of Wall Street Journal corpus. 'We pick the best path
through the lattice resulting from the composition using the Viterbi algorithm, and this top
ranking word sequence is the output of the LP Chooser.

4. Experiments and Results

In order to show that the use of a tree model, a grammar, and a linear model does indeed help
performance, we performed four experiments:

e For the baseline experiment, we impose a random tree structure for each sentence of the
corpus and build a Tree Model whose parameters consist of whether a lexeme l; precedes
or follows her mother lexeme [,. We call this the Baseline Left-Right (LR) Model. This
model generates There was estimate for phase the second no cost . for our example input.

¢ In the second experiment (TM-LM), we derive the parameters for the LR model from
an annotated corpus, in particular, the XTAG derivation tree corpus. Thus, we use a tree
model and a Hinear language model, but not the TAG grammar. This model generates
There no estimate for the second phase was cost . for our example input,

¢ In the third experiment (TM-XTAG), we use a tree model which has been trained on a
corpus annotated with traditional TAG derivation trees (using 3-trees rather than y-trees).
Except in very rare cases, this entirely determines linear order. So in this experiment we
use a tree model and the XTAG grammar, but no linear language model.!

¢ In the fourth experiment (TM-XTAG-LM), we use the system as described in Sec-
tion 3. Specifically, we employ the supertag-based tree model whose parameters consist
of whether a lexeme [; with supertag s4 is a dependent of I, with supertag s;,. Fur-
thermore we use the supertag information provided by the XTAG grammar to order the
dependents, but using -y-trees rather than f3-trees. This model generates There was no cost
estimate for the second phase . for our example input, which is indeed the sentence found
in the WST,

The test corpus is a randomly chosen subset of 100 sentences from the Section 20 of WSI, The
dependency structures for the test sentences were obtained automatically from converting the
Penn TreeBank phrase structure trees, in the same way as was done to create the training corpus.-
The average length of the test sentences is 16.7 words with a longest sentence being 24 words
in length.

As in the case of machine translation, evaluation in generation is a complex issue, We use a
metric suggested in the MT literature (Alshawi et al.1998) based on string edit distance between

'In fact, we use the linear language model in those rare cases when a 3 trees can be adjoined in more than one
position.
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the output of the generation system and the reference corpus string from the WSJ. This met-
ric, generation accuracy, allows us to evaluate without human intervention, antomatically and
objectively. Clearly, the metric does not provide a complete assessment of the quality of a gen-
erator since often there is mare than one “good” result, but we assume that the requirement is
to model the corpus as ¢losely as possibie (as is the case in some, but not all, applications). We
have also independently verified the metric by asking human subjects for subjective judgments;
the judgments show significant correlation with the metrics (Bangalore and Rambow2000a).
Generation accuracy, shown in Equation (1}, is the number of insertion (I}, deletion (2) and
substitutions (S) errors between the target language strings in the test corpus and the strings
produced by the generation model except that it treats deletion of a token at one location in
the string and the insertion of the same token at another location in the string as one single
movement error (M). This is in addition to the remaining insertions (I} and deletions (1),

M+I'+D'+5
GenerationAccuracy = (1 — _L%__t_) (I

The average generation accuracy for the four experiments are tabulated in Table 1. As can be
secn, the use of a tree model improves results over the baseline, but the use of a linear model
also improves results if the XTAG grammar is used: the best results are obtained when the tree
model, the XTAG grammar, and the linear model are used.

Tree Model Generation Accuracy
Baseline 56.2%
T™M-LM 66.8%

TM-XTAG 68.4%

| TM-XTAG-LM 72.4%

Table 1: Performance results from the three tree models.

5. Featurization of Supertags
5.1. Features

As pointed out by {Candito1996) and (Xia et al.1998), a supertag is a composite representa-
tion of a few orthogonal linguistic dimensions such as the subcategorization (argument list) of
the head (Subcat) and the way in which specific arguments arc realized syntactically (Trans-
formation). These dimensions can be represented as features that can potentially be assigned
independently of one another. A featurized representation of supertags helps in a more fine-
grained error analysis and may allow for better stochastic supertag assignment models. In this
section, we will describe our attempt to represent supertags as features and some preliminary
results of error analysis using featurized supertags.

Table 2 shows the list of features and their values used in representing the supertags, (Thé Mod-
ifiee features only are used if ADJ is T.) Although the set of features are directly based on those
proposed in (Candito1996) and (Xia et al.1998), we have made a few additions, most notably,
FRR2, SGP1 and SGP2. While FRR (for “Function Reassignment Rule) is used to represent
changes in the valency of a supertag, FRR2 is used to represent the linear order variations of
arguments in the supertag such as dative shift and particle shift. Note that FRR, FRR2, and
Transformation are all orthogonal to each other. SGP features are used to represent strongly
govemed prepositions for supertags that use a preposition in the realization of an argument
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Features ; Possible Values

POS 10 different part-of-speech tags —

Subcat Different argument frames (eg. NP, NP_NP,NP_S .. .)
Transformation | Type Declarative, WH, Relative, Resumptive_Relative, Gerund,

Imperative, Inversion
. Argument ( NIL,0,1,2
FRR Type NIL Ergative,Equative,Passive Passive_by,Predicative

Argument | NIL,1,2
Modifiee Type NIL,NES,VP,N,Ad,PPA,D, AP PDetP,V
Direction | NIL,left,right
FRR2 DativeShift, ParticleShift1,ParticleShift2
SGP1 Strongly Governed prepositions for objects
SGP2 Strongly Governed prepositions for indirect objects
ADIJ Flag to indicate adjunct status

Table 2: The set of features and their values used to represent the supertags.

(SGP1 for the direct object, SGP2 for the indirect object). The value of this feature is derived
from PP complements present in the corpus.

5.2. Error Analysis

We replaced the supertags in the TM-XTAG-LM model with the featurized representation
treated as a single string. Since the featurized representation is just a notational variant for
supertags, we got the same performance figures. However, the feature representation allows us
to analyze the errors with respect to each of the features. We see that the most error occur in the
features ADJ, SUBCAT, and POS {with about equal frequency). Errors also occur in TRANS
and FRR, but much less frequently, and even less frequently in the other features. A sample of
the individual errors with frequency is shown in Table 3.

Correct FERGUS Assigned | Number
| ADJ=NIL ADJI=T 134
ADIJ=T ADI=NIL .49 |
SUBCAT=NP SUBCAT=NIL 46
SUBCAT=NIL SUBCAT=NP 30
POS=N POS=D 16
TRANSARG=NIL | TRANSARG=0 16
POS=V POS=N 14
POS=G POS=NIL 14
FRR=NIL FRR=Predicative 14
TRANS=decl TRANS=REL 13

Table 3: List of most frequent individual errors by features

We are working on developing models that better predict each of the individual features using
modeling technigues from the Machine Learning community such as Bayesian Nets. The use
of “featurized” supertags also has the advantage that they allow us to use FERGUS even when
the TAG grammar is much less complete than the English XTAG grammar.
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6. Future Work

FERGUS as presented in this paper is not ready to be used as a module in applications. Specifi-
cally, we will add a morphological component, a component that handies function words (aux-
iliaries, determiners), and 2 component that handles punctuation. In all three cases, we will
provide both knowledge-based and stochastic components, with the aim of comparing their
behaviors, and using one type as a back-up for the other type.
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Abstract

In this paper we present LEXIK. a tool which allows to maintain apd gather data on wide coverage
grammars based on the XTAG format, We present the tool, show how it is used within the FTAG
project (Abeillé & al. 2000a), and compare it to similar work done on the Xiag grammar for English
(Sarkar & Winter 99).

Introduction

Over the past ten years, FTAG, a wide coverage LTAG has been developed at Talana,
building up on the work of (Abeillé, 91). Thanks to the MetaGrammar developed by (Candito
96,99), which allows to generate semi-automatically an LTAG, the number of trees has
augmented drastically: from 650 trees for the manually written grammar, we have now reached
5000 elementary trees {cf. Abeillé & al 99,00). Although this has improved the coverage of
the grammar, new maintenance issues have appeared :
‘To remedy this problem, we have developed a tool which we call Lexik, The goal is twofold

‘s Insuring consistency in the grammar
»  Easily extracting information on a large scale

In the first part of this paper, we review the main characteristic of FTAG and present the
problems encountered for maintaining and updating the Grammar. In a second part, we present
our tool, as well as its utility. Especially, we compare it to the work presented in (Sarkar &
Wintner 99). Finally, we show how this tool is used in other projects.

1. Main characteristics of FTAG

We assume some familiarity with the LTAG formalism. We recall that elementary units of
an LTAG are lexicalized constituent trees, which encode all the surface constructions available
for a given language. Within FTAG, elementary trees respect the following linguistic well-
formedness principles: (Kroch and Joshi 1985, Abeillé 1991, Frank 1992) :

s Strict Lexicalization : all elementary trees are anchered by at least one lexical element, the
empty string cannot anchor a tree by itseif,

¢ Surfacism: an elementary tree encodes all word order variations, all basic syntactic
phencmena (passive, extraction...) and crossing of phenomena.

¢ Semantic Consistency : no elementary tree is semantically void (this ensures the
compositionality of the syntactic analysis),

e, Semantic Minimality : elementary trees correspond to no more than one semantic unit

s. Predicate Argument Cooccurrence Principle : the elementary tree is the minimal syntactic
structure that includes a leaf node for each realized semantic argument of the anchor(s).
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Semantic minimality and consistency imply that function words appear as co-anchors (cf
Figure 1, the relevant syntactic and semantic units are donner-i (give to) and penser-que

(think that)).
The elementary irees are combined by substitution or adjunction, and the features of nodes in
contact must unify. They thus directly represent all the syntactic rules of the language.

wol v s’

Nod v N1l SP o
NC 4 - func>= P
g Sl AN C sie
y objet  Prep | <mode>=ind
[donner] PNz [penser] <fune>=obet
B <finc>=a-ohjet i

1.1. Factorization of Lexicalized Elementary trees

Strict lexicalization at execution time does not prevent from internally compacting the
common parts of the elementary trees. This compacting is required for any reasonably sized
gramimar, since for instance a verbal form may anchor dozens or hundreds of elementary trees.
In practice, lexicalized elementary trees are compiled out of three sources of information:

e a set of tree sketches ("pre-lexicalized" structures, whose lexical anchor(s) is not

instantiated)
s asyntactic lexicon, where each lemma is associated with the relevant tree sketches
* a morphological lexicon, where inflected forms point to a lemma associated to
morphological features

Lexical selection of tree sketches is controlled by features from the syntactic and
morphological lexicons, and uses the notion of tree families, grouping sets of tree sketches that
share the same (initial) subcategorization frame, The tree sketches of a family show all possible
surface realizations of arguments (pronominal clitic realization, extraction, inversion...) as well
as all possible transitivity alternations (impersonal, passive, middle..).

A lemma selects one or several families {corresponding to one or several initial subcat
frames) and with the help of features selects exactly the relevant tree sketches.

Figure 3 shows the canonical elementary tree anchored by parlait (talked)! and Figure 2 the
three sources of information associated with its internal representation.

Morphological Lesicon p bowd bamds=2 5\
. = <whr=x
trarlait : PARLER, V A
{<mode> =ind, /\ ot <nde=z
“<tps> =impy il t<oode>=z o b <ame=w
camresg, o0t Y e ; =y
= t: X . //\\\ ,NO.L r<amunde> = imdl
Kyatactic Lericon ey PRy N gy V' dmemip PP
P V: Vel - <qurm = w Prep NI PS>y | m:;‘m
ARLER/, V' K amdr=w Lo e =
{NO.t <> = +) a 2 parlait

1 Information coming from the lexicon appears in bold characters,
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The inflected form pariait points to the lemma PARLER, and the lexeme /PARLER/ selects in
turn the nOVan1 family, where the preposition appears as a co-anchor (except when argument
1 is cliticized).

Currently, our morphological lexicon comprises 50000 inflected for ms, our syntactic
texicon has more than 6000 entries, and the bulk of the grammar consist in 5280 tree sketches.
Concretely, each family is a file were a set of trees is stored.

Maintaining and updating such a large database is difficult : for example, one can generate a
large grammar using Candito's tool, but integrate it with manually written tree sketches for
idioms (since trees for idioms are not automatically generated). Then one needs to make sure
that the features used in those 2 parts of the grammar are identical. Also, while the automatic
generation of the grammar insures consistency (i.e. all features are generated automatically
from a hand written hierarchy), errors may still propagate in the grammar, but on a larger scale
. if a feature has a typo in the hand written hierarchy (ex : aggreement instead of agreement),
then this error will be propagated in hundreds of trees when the grammar is generated (with
dramatic effects if it remains undetected). Also, consistency between the grammar and the
lexicons is an important issue : for example one would like to detect lexical items which refer
to trees that do not exist in the grammar (either because of an error or of an update).

Also, we just said that that a verb can anchor several dozens of trees, but we would like to
have a more precise measure of this, and be able to answer questions such as : how many trees
does verb X anchor ? How many trees on average are anchored for French verbs ?

This is were Lexik comes in.

2. Lexik : presentation of the tool

Lexik allows to lexicalize tree sketches, that is it takes the morphological lexicon, the syntactic

lexicon and the tree sketches as input (e.g. figure 2} and outputs on the one hand fully

lexicalized trees (figure 3) anchored by each inflected form?, and on the other hand, if

necessary, an error file. A sample output file can be seen on figure 4, a sample error file can be
~ seen on figure 3.

LEMME: abaisser Opening synlax Files...

ENTRY: abaiss'e Opening verbes.txt... Done

TREES: n0Vnlas2-sz2 n0Vnlas2 R1n0Vnlas2- Opening tree Files...

532 R1n0Vnlas2 Cln0Vnlas2-sa2 ClndVnlas2 Opening lex.new... Done

n0Vnlas2cll-sa2 n0Vnlas2cll WinOVnlas2- Opening modif.new... Done

sa2 WinGVnlas2 n0Vnlas2-inf-sa2 n0Vnlas2- Opening Family n0Vnlas2,., Done

inf R1n0Vnlas2-inf-sa2 R1n0Vnlas2-inf #V_DAT- not found (from syntax file)

CIndVnlas2-inf-sg2 Cln0Vnlas2-inf n0Vnlas2- reduire n'a pas d'entrée dans le dictionnaire morpho

inf-cl1-sa2 n0Vnlas2-inf-cll W1n0Vnlas2-inf- Opening Family n0Vanl-a... Done

522 W1n0Vnlas2-inf n0Vnlas2-coord-sa2 #V_DATH- not found (from syntax file)

n0Vnlas2-coord n0¥nlas2-coord-cli-sa2 Family VAdpn not found... Skapping all entries

p0Vnlas2—coord<ll n0Vnlas2-im-sa2 Family VAd not found... Skipping all entries

.|n0Vnlas2-im n0Vnlas2<linv-sa2 n0Vnlas2- #V_BEFL+ not found (from syntax file)

clinv n0Vnlas2-clinv-cl1-sa2 n0Vnlas2-clinv-cll Opening Family ¢l0V-a... Done

Wiln0OVnlas2-clinv-sa2 WInOVnlas2<cliny #V_SING not found {from syntax file)

n0Vnlas2-cl0-sa2 n0Vnlas2-cl0 R1n0Vnlas2- Opening Family a0Ad .. Done .

c10-sa2 R1n0Vnlas2-cl0 C1n0Vnlas2-cl0-sa2 desespere n'a pas d'entrée dans le dictionnaire
morpho

N ferme-p n'a pas d'entrée dans le dictionnaire morpho
Opening Family nOV_locl__sbut2_-... Done

2 This is done at runtime by the Xtag parser, but in an opaque manner, which prevents error detection and repair
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2.1. Consistency issues
The error file outputed by Lexik allows to detect 4 types of errors :

1. Inconsistencies between the morphological and syntactic lexicons (i.e. lemma with no
corresponding inflected forms and vice-versa)
2. Organization problems in the grammar (e.g. missing trees or families)
3. Feature problems (e.g. unknown features)
A simplé script allows to extract the most common (and hence damaging) errors, which can
then be repaired (cf figure 5)
This work on consistency can be compared with that of (Sarkar and Wintner 99), who
validate the consistency of feature structures by imposing type discipline. Contrary to us, their
approach focuses on features to detect the 4 following kinds of problems :

1- ambiguous features (e.g. gen : genitive or gender 7)

2- typos : relpro instead of rel-pro

3- Undocumented features (i.e. used in previous versions of the grammar)
4- type ertors ; e.g. assign-case is relevant only for verbs, not for nouns

Their tool runs on a wide-coverage LTAG for English (cf Xtag group 95), while ours runs
on FTAG for French (ef Abeille & al 99). Since the 2 grammars resort to similar formats, it
would be interesting to couple the 2 approaches.

2.2, Gathering information

In addition of detecting errors in the grammar, Lexik allows to gather information that was
unavailable previously.

& ¢ famille 32 tamities W3 famikes
o 4ramiltes 05 famifes B¢ tamikes
W7 famiftes B3 famillas O9 ramilles.

Up to now, we could only gather data at the level of families, This allowed to know for
instance that the two tree families nOVnl (transitive} and n0Vnl-a-n2 (ditransitive) are
anchored by two thirds of lemmas (cf NBarrier 99). To have a clearer idea, we extracted 1060
inflected forms of verbs from the 1 million word corpus LeMonde (cf Abeillé & Clément 99)
and found that verbs anchor on average 2.8 families / verb (Figure 6), whereas other parts of
speech (i.e. nouns, adverbs, adjectives) only anchor between 1 & 2 trees. Only 7 of these
verbs anchor 8 families or more3 (cf SBarrier 99) and only 2 out of these 7 verbs are among
the most 100 frequent ones {(étre (be) most often used as an auxiliary, and parler (talk)).
Intuitively, one could expect that verbs anchoring the more famihes will also be anchoring the

3 These verbs are : amuser (amuse), étre (be), parler(talk), répendre(spill), revenir (come back), heurter (bump into),
dresser {put up)



more trees, and conversely that verbs anchoring the more trees will be verbs anchoring the
more families, despite the fact that some verbs anchor only some of the trees contained in a
family?.

But by going down to the level of trees, Lexik allows to show that this is not the case : it
turns out that the inflected form anchoring the more trees (1164) is "envoyés" (past participle
for the verb "envoyer®/send) whereas it selects only 3 families. More generally, we have
reached the conclusion that the number of families anchored by a given lexical item does not
indicate how many trees this item will anchor. Figure 7 illustrates this phenomenon for a few
common verbs. We also found that the morphological properties of the item (eg. past-
participles ...} are actually important to predict how many trees an item can anchor.

Lemme Nombre de famitles | Forme fléchie Nombre de

associées retenue schémas d’arhres
associés

Amuser 9 Amusés 112

Parler 9 Parlés 333

Répondre 8 Répondus 595

Revenir 8 Revenus 210

Rendre 7 Rendus 452

Parier 6 Parier 93

Louer 5 Loués 931

Envover 3 Envovés 1164

Visiter [ Visités

On average, each of the 1060 inflected verbs from LeMonde anchors 139,17 tree schemata
(ranging from 1 to 1164). Figure 8 shows the inflected forms which anchor the most trees. It is
noticable that all the examples on Figure 8 are past-participles: for exemple for "envoyer" the
past-participle anchors 1164 trees, but other inflected forms of this verb (e.g. "envoyons” :
Present st person plural) anchors only 596 trees. Similarly, if we examine the 2nd most
ambigous form (racheté(es) / rebuy), it anchors 966 trees. But "rachetez", which is the 2nd
person plural for the same verb in the present, anchors only 498 trees.

Nombre de schémas d'arbres associés

emvoydle)(s) racheté{e)(s) louéfel(s) rapportée, reportde.  relenu(el(s) rappeide, repris  erleviie)(s), causdie)(s)

rapportés,  fepoftés, rappelds, ot{e)(s)
rapporides  reportdes rappaibes

4 E.g. couter (cost) is a transitive verb which does not passivize, hence it will select all elementary trees in the transitive
family, excluding trees for passive,
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We also ran Lexik on partial data ;. we used the same 1060 inflected verbs but kept in the
grammar only one tree family nOvnl for transitive verbs. This family consists in 78 trees. We
than ranked the 1060 forms by the number of trees they anchor. It turned out that classes of
items bearing morphological similarities appeared : past-participles were at the top of the list
{(anchoring all 78 trees), followed by infinitivals (anchoring approximately 46 of these trees)
and by past participles (anchoring roughly 12 of these trees).

Conclusion

We have presented Lexik : a tool which allows to detect inconsistencies in a wide coverage
LTAG for French, and which allows to extract information on a large scale.

1t is 3 first step towards online disambiguation, similarly to what was done for English in
(Srinivas & al 94), by allowing to refine a first-pass strategy during parsing {cf Kinyon 99a),
and by coupling it with a parse-ranker for TAGs (cf Kinyon 99b,c)

Also, Lexik is being extended to serve as a front end to a function annotation tool, in order
to create a large treebank for French (cf. Abeillé & al 00b).

1t is also used as the front end of a rule-based supertagger for French, and to collect data in
order to build a psycholinguistically relevant processing model for TAGs (cf Kinyon 99d,00)
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Abstract

The HPSG-to-TAG compilation algorithm proposed in {Kasper et al., 1995) has been the basis
of large scale experiments in VerbMobil, a speech—to—speech dialouge translation system in
the scheduling and travel domain. The results here refer to the English HPSG grammar devel-
oped at CSLI. Several non-trivial theoretical problems have been discovered by the practical
application of this algorithin. This paper presents these experiments, the main shortcomings of
the initial algorithm and some of the solutions we have developed in order to use the resulting
compiled LTAG grammar in a real world system.

1. Introduction

The LTAG formalism is a mathematical tool that has proven to be attractive for the modeling
of natural language syntax. In parallel to pure-LTAG grammar developments, some researches
have addressed the relation between LTAG and existing formalisms both for theoretical and
practical reasons. In particular, compiling a LTAG grammar from a HPSG grammar has been
proposed by (Kasper, 1992). Such a compilation is interesting for several reasons:

¢ Sharing of resources between the two formalismus, in particular the syntactic lexicon.
For instance, since both formalisms are lexicalized, the syntactic lexicon which gives all
possible predicative frames for each lemma is very costly to write.

e Speed efficiency: The precompilation process allows to identify substructures of the
HPSG grammar that are not context-dependent. The extracted partial backbones can be
tabulated (chart parsing, memoization) which results in more time efficient systems than
a direct HPSG parser/generator.

e Capturing dependencies: An LTAG elementary tree directly encodes a full syntactic
context by the way of an extended domain of locality. Elementary trees are combined
in order to realize dependency relations between the syntactic contexts they represent.
Thus the construction of a sentence can be obtained very easily just with a dependency
tree indicating the elementary trees that are involved and their mutual dependencies. This
information is represented only indirectly in an HPSG derivation.

¢ Exploiting HPSG's expressivity as well as utilizing existing HPSG grammars is inter-
esting for the LTAG community. HPSG grammars usually include the syntax-semantics
interface and a semantic level that is ignored in existing LTAG grammars. HPSG gram-
mars also define explicitely all dependency relations (Pollard & Sag, 1994) while LTAG
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grammars are limited by a tree structure which is problematic for, e.g. coordination and
equi-verbs. Finally, there is a large amount of linguistic research which done in the HPSG
framework.

Moreover, studying how such a compilation can be performed is an opportunity to identify
the assets and the limits of the L.TAG formalism. Which relations given in a HPSG grammar
should be localized in the LTAG elementary trees in order to obtain a grammar that is either
linguistically meaningful or computationally efficient?

We first recapture the basic principles of the compilation algorithm as described in (Kasper
et al., 1995), Then we present the various problems and limits of this initial algorithm and the
adaptations that have been necessary for the practical HPSG-to-TAG compilation of a wide-
COverage Erammar.

2. The initial compilation algorithm

F HEAD
s| Lic| suBl <>
comps  [3]<> [ HEAD 'l
{ SuUSi -~

HEAD  |[1] comps [3]<> |
HEADDTR | s|Ljc| supr  <[2)> /
COMPS wean I \
comp-otR [ s | ] [ suBl  <|2]> (2]
COMPS

Figure 1: HPSG Head-Subj Schema and its representation as a local tree.

We assume that the rule schemata in the HPSG grammar only correspond to binary or unary
rules. For instance, the Head-Subj-Schema given in figure 1 can be represented by a partial tree.
The algorithm presented in {Kasper ef al., 1995) is based on the following mechanisms:

» Selection/Reduction process: The features which constrain a possible argument are
called Selection Features (SF). Given a binary schema S, if some SF are expressed in
S, we say that the daughter which contains these features is the Selection Daughter (SD),
the other one is the non-SD. The single daughter of unary rules is the SD. Given the SF
of the SD, we say that a schema reduces the SF, if the value of af Jeast one of the features
that select the non-SD for this schema is not contained in the feature value of the mother
node. In the example figure 1, we see that the SF of attribute SUBT is reduced.

e Tree production iteration: The basic algorithm starts with the creation of a node for the
lexical type. A root node 7 is first added to this initial node with a copy of ail its features.
Then we instantiate each schema S which actually reduces at least one SF of n when n is
unified as the SD of S. Finally, we add an additional root node dominating the instantiated
scherna, This step is repeated until the termination condition is met (sec below).

¢ Raising Features Across Domination Links: this principle determines which features
are raised (copied) into the additional root nodes, In the first phase of the algorithm, all
and only the SF are raised. In the additional phases, some SF are not raised (see below),
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e Detecting foot nodes: A tree is an auxiliary tree if the root node and one of the leaf
nodes (non-anchor) have some non-empty SF value in commot. This leaf node becomes
the foot node of the auxiliary tree.

o Termination: A SF is not reduced anymore if its value is an empty list or it shares its
value with a feature at a leaf node other than the foot node.

¢ Additional phases: Systematically raising all possible SF across domination Hnks (i.e.,
considering only complete projections) results in redundant projections for multiple de-
pendency structures as raising verbs or equi-verbs and consequently corresponding trees
that can not be combined. In order to avoid these redundant projections, (Kasper et al.,
1995) propose additional phases in order to create new trees without redundant projec-
tions for double dependencies. Their decision is to keep the redundant dependencies in
the auxiliary trees and consequently re-compile all initial trees, ignoring the SF which are
responsible for the redundancy.

At the end of the process, the SF can be deleted from the resulting trees since they express
constraints that have been captured in the tree structure. The next section will show that this
initial algorithm raises both practical and theoretical problems.

3. Algorithmical problems
3.1. Choice of Selection Features

A given phrase structure (derived tree} can be obtained with different LTAG grammars, where
the derivation trees might differ. A lot of choices in the compilation process (SF & SD) depend
on the kind of derivation tree we want to obtain and its role given a particular task (generation or
parsing). Moreover, the algorithm proposed in (Kasper ef al., 1995) aims to capture the phrase
structure of the HPSG grammar in the LTAG structure, which is only one cheice among other
possibilities.

However, even the original algorithm leaves open the choice of SF. This choice, together with
the termination criteria influences the resulting elementary trees (and thus the dependency struc-
tures) while the derived trees are still isomorphic to the HPSG derivation. In theory, the SF must
be chosen such that at least one of them is reduced in every HPSG schema. In practice no such
set of SF can be determined and some schemata must be applied in the compilation algorithm
with less strict criteria such as a mere change (without reduction) of SF or even (non-recursive)
applications with both daughters as possible SD.

The interface between deep syntax and derivation trees highly depends on the LTAG grammar
resulting from the compilation algorithm and thus from the choice of SF and termination crite-
ria. Since HPSG is based on lexical projections as expressed, e.g., in the head feature principle,
there is a certain straightforward choice of SE However, the HPSG schemata localize syntactic
dependencies and not semantic dependencies as classically in LTAG grammars. Especially in
generation, when mapping from semantic dependencies, this mismatch becomes apparent, e.g.
in auxiliaries (see section 5), raising and equi-verbs, medifier extraction, etc.

As an example for how the choice of selector feature can change the selector daughter for
an HPSG schema and thus the resulting elementary TAG trecs, we look at the Head-Specifier
schema in the HPSG grammar we use. Figure 2 shows how choosing either SPR or SPEC as a
SF results in an auxiliary tree anchored at DET (f;) or an initial tree anchored at N (;) respec-
tively. The surprisingly different structures are possible due to a case of double dependencies,
where the SPR and SPEC features mutually constrain each other.
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b5 N(P} Bz N(P)

/ \ SF: SPEC / \ SF: SPR
SD:DET SD:N

DET¢ N DET] NG
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N

DETS 5.5-R.ADV.ADV-R. ADY-D.PP-N.FP-LPP-S.N.NP.ADJ.YEV.DET %

Figure 2: Possible projections for the HPSG Head-Specifier Schema.

Whenever the selector daughter is not the head daughter, the property of HPSG that it is head
driven becomes important: because almost all information (i.e., features) that is raised comes
from the head (the non-selector daughter in this case), the root node is very much underspecified
in these cases. Thus, e.g. the category of root and foot node is highly underspecified. See the
example 3;" in figure 2 (the dot in the node labels indicates a disjunction of categories),

Note however, that in the case of the Adjunct-Head schema, where the selector daughter is
clearly not the head danghter, the MOD feature supplies a lot of constraints about the head.
Thus the MOD feature is used as a selector feature, However, the HPSG grammar often encodes
constraints in the semantics of the MOD feature which does not immediately constrain the
category.

3.2. Adequacy of HPSG and LTAG categories

The HPSG grammar does not define statically the syntactic categaries of nades oz in e &}
ementary trees of LTAG grammars, The original algorithm assumes that all possible values
of the SF appear during the compilation and thus can be mapped (collapsed) to a finite set of
not obviously meaningful categories. In the HPSG framework, syntactic categories are usually
computed only for complete derived trees and they are represented as {disjoint) underspecified
feature structures (typically with values only for the SF) such that in a derived tree only one
syntactic category (feature structure) unifies with a node. Using these HPSG categories, one
gets a set of meaningful categories.

But since clementary trees resulting from the compilation algorithm correspond to parrial pars-
ing trees obtained by the application of several HPSG schema, it is not possible to determine a
unique syntactic category per node in the compiled LTAG elementary trees. As a consequence,
nodes of elementary trees must often be labeled with a disjunction of syntactic categories. Du-
plicate trees in order to avoid such disjunctions would result in a critical explosion of the number
of trees. Note that we can observe in our resulting compiled grammar disjunction of more than
twenty syntactic categories.

3.3, Raising of non-SF features

Following (Kasper et al., 1995), only SFs are raised across dominance links. In practice, non-
SFs features are very important for the selection and the filtering of the HPSG schema that are
applicable in production of an elementary tree, Without raising them across dominance link, too
many HPSG schema would be applied, resulting in an dramatically overgenerating and much
larger grammar. Naturally, raising non-SF features can result in an undergenerating grammar.
But in generation, this is often less of a problem than overgeneration. Also, by extending
(relaxing) the termination criteria, we can ensure the generation of all necessary elementary
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trees,

3.4. Anchoring the Projection

In HPSG as in LTAG, there is a separation between the grammar and the lexicon such that a
lexical entry specifies the word, its semantics and a lexical type or tree family. If this separation
is clean in the HPSG grammar, as it is in our case, the compilation process can start from the
lexical types and becomes independent from the lexicon,

However, many lexical types only differ wrt. semantics and the compilation process only ex-
tracts the syntactic part, so either (i) for a set of lexical types that generate the same tree-families,
we must determine the most specific subsuming type in the type hierarchy or (ii) eliminate re-
dundancies in a post-process.

Note that since the HPSG grammar has the option to locate constraints cither in syntax or
semantics, some of the syntactic features are highly underspecified. This leads to the above-
mentioned redundancies between the syntax of lexical-types and also to the underspecifications
in the syntactic categories.

We also have found another source of redundancy: a sizable number of trees appear in more
than one tree-family and a further reduction could be achieved by storing them only once an
introduce pointers to the tree-families.

Note that this kind of underspecification seems very undesirable but it is inherent in the spec-
ifications of the HPSG grammar and therefore cannot be avoided casily. The only principled
solution is a change of the HPSG grammar.

4. Specific linguistic phenomena
4.1. Coordination

Coordination is problematic in the LTAG formalism since the tree structures are not able to
localize the multiple dependencies that this phenomena introduces. The HPSG analysis of this
phenomena exploits at the syntactic level the type hierarchy of features, particularly by intro-
ducing new morpho-syntactic ones. Feature coindexing at the level of the semantics are also
used for crossed-dependencies for instance. These techniques are really far from the existing
ones in the LTAG-world based on explicit structural dominance tink (Sarkar & Joshi, 1996},
The processing solutions of this phenomena in the two respective formalisms are too specific ta
expect the capture of the HPSG approach by TAG.

4.2. Double Dependencies

‘The double dependencies, where a given phrase structure js the argument of two different pred-
icates, are a problem in the LTAG formalism which can only capture one of these dependencies
in the structure of elementary tree. For equi-verbs for instance, as the verb want, the classi-
cal choice corresponds to the elementary trees given in figure 3. These trees are obtained by
the initial HPSG-to-TAG compilation algorithm {(#; and ) but the additional phases gener-
ate also some other trees ignoring some SF, i.e. some predicate-argument relations (£, and
o). Considering that the elementary trees generated for the main verbs localize all possible set
of predicate-argument relations (see figure 3), we obtain redundant projections of substitution
nodes. One can see that we obtain the same derived tree by combining #, and oy or £ and o4,
but in both cases only a part of the dependencies are captured.

Consequently we can question the relevance of the multiple phase part of the algorithm. Fully
executing the additional phases as described in the original algorithm is impractical since it gen-
erates far too many trees. Therefore, we have added by hand those extensions of the termination
and raising criteria that are needed to obtain the elementary trees needed in our domain.
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/ suB)  <[z]>
[2) COMPS <>
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{ SUE! <[z]> ] [ SUB) <[] > J
3

Figure 3: Elemenary trees for equi-verbs.

In general, the construction of elementary trees stops when SF are reduced to empty features
or lists. In practice however, SF often are never empty and only a detailed analysis of the
content (e.g., the type) of the SF can determine whether the projection must stop, i.e., that the
SF can/must not be reduced further. Also, in order to mimie the effect of the additional phases
(see paragraph below), we have to relax the termination criteria to apply even when some SF are
not reduced. E.g., the projection of auxiliaries results in VP substitution nodes, thus adding VP
nodes (with a reduced COMP feature and an unreduced SUBJ feature) to the list of terminating
nodes.

ay: Full projection of SF ap: Additional phase
suBl <> sue; 1]
COMPS <> COMPS <>
SLASH <> SLASH <>

N\ / N
/ SUBJ < n > ’
SUBJ
[ COMPS :‘;l) [ COMPS  <|2|> }

SLASH <> SLASH T
< mein verk >

comps  <[2]>
SLASH <>
< main verb >

Ve
suBl < [1]» \
2
¥

Figure 4: Elemenary trees for main verbs.
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4.3, Idioms

LTAG can represent idiems directly, including the fact that idioms have a single (non-compositional)
semantic representation. Since HPSG grammars cannot do this directly, this is also true for the
compiled TAG grammar. Even multiple anchors (like in particle verbs and the (semantically
empty) prepositions of prepositional arguments) are not incorporated into the resulting trees of
the compilation algorithm. One solution would be the extension of the compilation algorithm

to expand those leaf nodes (e.g., prepositional complements) that include semantically empty,
syntactic arguments. Le., instead of a PP substitution node, expand it to its anchored P daughter
and its NP substitution daughter. Since this would add even more trees, we have instead chosen

10 include these expansions either in the microplanning or the preprocessing (see section below)
phases.

4.4. Futher issues

The LTAG formalism can not capture all long dependencies that can be represented easily in
HPSG with feature percolation. One way to capture these phenomena is to compile the HPSG
grammar into an extension of the LTAG formalism as the DTG formalism (Rambow et al,,
1993).

In the current version of the algorithm, semantics is not taken into account. We have conducted
some experiments by compiling the semantic level in a specific LTAG grammar that could be
synchronized to the classical compiled LTAG grammar. The interest of this approach highly
depends on the compositionality of the resulting semantic grammar which stili needs some
futher investigations.!

One can also note that some linguistic constraints are not represented in the usual HPSG gram-
mars, such as modifier, e.g. adjective, ordering and topic/focus distinctions.

5. Interface to the non-syntactic level of HPSG

As discussed above, the dependency structure of the resulting TAG grammar depends mainly
on the dependencies that are specified in the HPSG grammar and the choice of selector features
only has a limited effect. This is especially important when generating with the resulting TAG
grammar. Typically, the input to a syntactic realizer that is based on TAG will be a dependency
structure that can be interpreted as the derivation structure. As an example from our system,
the HPSG grammar specifies auxiliaries as the lexical heads of sentences, taking a subject and
a VP as arguments, So the microplanning step in the generator that maps from the semantic
input to the syntactic dependencies must not only plan word choice and map the semantic roles
to syntactic arguments (e.g., the giver to a subject), it also must be prepared to insert an aux-
iliary (e.g., have) and rearrange syntactic arguments (e.g., ensure that the giver becomes the
subject of have and not give in We have given..). In order to keep a more general interface
between microplanner and syntactic realizer, we have chosen not to include the auxiliaries in
the microplanner but rather add a preprocessing module to the syntactic realizer which adapts
the dependernicy structure to the specifics of the HPSG/TAG grammar. Thus we can sw1tch to
other syntactic realizers (based on other TAG grammars} more easily.

This touches on a more general point which is not really discussed in the original work: The
interface between the extracted subgrammar and the full HPSG grammar. As proposed, the
compiled TAG grammar actually overgenerates since it represents all possible phrase structures

1Since the extraction of just a subset of the features of the HPSG grammar amounts to an {overgenerating)
approximation, it is very important to include as many of the constraining features as possible. Many of them are
entangled into the semantics though, 50 a clearer separation in the HPSG grammar is needed. See also the work on
contexi—free approximation of HPSG in (Kiefer & Krieger, 2000).
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but omits some of the constraints, especially those of semantics. Ideally, the semantics of the
HPSG grammar would be purely compositional, thus the compiled TAG language would be
identical. However, in practice there are non-compositional elements in the HPSG semantics
and it tumed out to be impractical to extract the semantics for every compiled elementary tree
and use these partial semantic expressions for microplanning.? Thus we have developed the
microplanning rules only semi-automatically which also allowed the inclusion of a large subset
of planning rules that deal robustly with all kinds of problems in our input (Becker et al., 2000).

6. Practical Results and Conclusion

In the context of the generation module of the Verbmobil project (Becker et al., 1998), we have
implemented our adaptation of the compilation algorithm in Common Lisp as an addition to
the PAGE system which is used to specify and parse the HPSG grammars. We currently cover
an English and a Japanese grammar; the English grammar has around 350 lexical types and 40
schemata and a lexicon with around 6,800 entries. The Japanese grammar has a similar size,
with a smaller lexicon. Compilation takes about 15 minutes CPU time on a 400MHz Ultrasparc
resulting in around 2,500 elementary trees,

We found the adapted compilation process to be useful in a real system, since we could influence
the design of the HPSG grammars, which is an important factor. Also, work on a German HPSG
grammar is under way. Given the growth in computational power, we hope to be able to explore
a complete application of the original algorithm in the near future,
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Abstract

We discuss a number of practical issues that have arisen in the development of a wide-coverage
lextcahzed grammar for English. In particular, we consider the way in which the design of the
grammar and of its encoding was influenced by issues relating to the size of the grammar,

L. Introduction

Hand-crafting a wide-coverage grammar is a difficult task, requiring consideration of a seem-
ingly endless number of constructions in an attempt to produce a treatment that is as uniform
and comprehensive as possible. In this paper we discuss a number of practical issues that have
'éj:isen in the development of a wide-coverage lexicalized grammar for English: the LEXSYS
grammar. In particular, we consider the way in which the design of the grammar and of its
encoding—from the viewpoint both of the grammar writer and of the parsing mechanism—was
influenced by issues relating to the size of the grammar.

One criterion that is often used as a judge of grammar quality is the extent to which ‘linguistic
pgeneralizations’ have been captured. -Generally speaking, concern over this issue leads to a
preference for smaller rather than larger grammars. A second reason for preferring smaller
gratmar sizes is on the basis of parsing efficiency, since the running time of parsing algorithms
generally depends on the size of the grammar.

However, a rather different criterion determining grammar quality has to do with the analyses
that the grammar assigns to sentences: in particular, the extent to which they provide a good
basis for further, perhaps deeper processing. It is not necessarily the case that this criterion is
compat;ble with the desire to minimize grammar size.

In developing the LEXSYS grammar we have explored the consequences of giving the grammar
_Writer the freedom to write a grammar that maximizes analysis quality without any regard for
grammar size. In the next three sections we present detailed statistics for the current LEXSYS
grammar that give an indication of what the grammar contains, its current size, and why it has
grown to this size.

In order to ease the process of engineering such a large grammar, we have made usé of the
lexical knowledge representation language DATR (Evans & Gazdar, 1996) to compactly encode
the elementary trees (Evans et al., 1995; Smets & Evans, 1998). In Section 5 we present some
figures that show how the size of the encoding of the grammar has increased during the grammar
':development process as the number and complexity of elementary trees has grown.

We have addressed problems that result from trying to parse with such a large grammar by using
a technique proposed by (Evans & Weir, 1997) and (Evans & Weir, 1998) in which all the trees
that each word can anchor are compactly represented using a collection of finite state automata.
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In Section 6 we give some data that shows the extent to which this technique is successful in
compacting the grammar.

2. Coverage of the LEXSYS Grammar

The LEX5YS grammar has roughly the same coverage as the Alvey NL Tools grammar (Grover
et al., 1993), and adopts the same set of subcategorization frames as in the Alvey lexicon. There
are at present 143 families in the grammar. Each family contains the basc tree of the family, and
definitions of lexical rules which derive trees from the base tree. There are currently 88 lexical
rules. Possible rule combinations are determined automatically (see (Smets & Evans, 1998)).
There are 7 noun and pronoun families. The noun families include trees for bare nouns, for
small clauses headed by a noun, for noun-noun modifiers and for coordination. Coordination
can be at the N, N or NP levels. There are 19 adjective families, distinguished according to the
position of the adjective and its subcategorization frames. Trees derived by lexical rules include
small clauses headed by an adjective, comparative constructions, trees with unbounded depen-
dencies for adjectives which subcategorize for a complement (wh-questions, relative clauses,
topicalization), a tree for tough-movement, and trees for coordination.

Numerals also anchor adjective trees. Rules derive from the base tree uses of numerals as
pronouns and nouns, and coordination of cardinal numbers (for example, hundred and ten).
However, the grammar does not as yet have a complete account of complex numerals. For
ordinals, there are rules to derive fractions with complement, fractions without complement,
and the use of ordinals as degree specifiers.

Adverbs are distinguished according to whether they are complements or modifiers. Modifier
trees differ according to the modified category and the relative position of the adverb and its
argument. Rules derive coordinated structures headed by adverbs, and also adverb distribution.
Long distance dependencies possibly involving adverbs (for example, How did he behave) are
handled in the PP modifier family.’

The grammar contains an account of constituent and sentential negation (but in the latter disre-
garding scope issues arising when an adverb comes in between the auxiliary and the negation).
Specifier families include families for determiners, quantifying pre-determiners and genitive
determiners. There is also a family for adjective and adverb specifiers.

Prepositions followed by an NP are divided into two families: a family for case-marking prepo-
sitions and a family for predicative prepositions, These two types of prepositions differ in their.
semantic content, and syntactically also: case-marking prepositions do not head PP-modifiers.
The case-marking preposition family includes trees for long-distance dependencies with prepo-
sition stranding (wh-questions, relative clause, fough-constructions) and trees for coordination.
The family of predicative prepositions inherits these trees, and also contains trees for adjunct
preposition phrases and long-distance dependencies involving adjunct pps. There are also fam-
ilies for prepositions introducing $s, VPs, PPs and AP. There are two families for complemen-
tizers (introducing an § or a VP).

The 94 verb- families constitute the bulk of the grammar, Verb families include trees? for
gerunds (nominal and verbal), long-distance dependencies (topicalization, relative clause and
wh-gquestions), VP complements, VP complements for fough-constructions, small clauses (headed
by a present participle or a passive verb), for-1o clauses, extraposition, imperative, passive with-
or without by, inversion (for auxiliaries and modals), vP-ellipsis (after auxilaries and modals),
dative alternation, movement of particles, and coordination (at v, VP and 8).

Finally, we have recently extended the grammar to include semantic features capturing predicate

Tt would be redundant also to have such a rule in the adverb family,
20F course, these constructions are not relevent for every single family.
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argument structures, We have not implemented quantification yet. The grammar adopts a se-
mantic representation inspired by the Minimal Recursion Semantics (MRS) framework (Copes-
take er al., unpublished). MRS representations are flat lists of elementary predications, with
relations between predications being expressed through coindexation.

3. Localization of Syntactic Dependencies

The LEXSYS grammar has been designed to localize syntactic dependencies, not only un-
bounded dependencies between filler and gap, but agreement relations, case and mode of the
clause, etc. {Carroll et al., 1999). One immediate advantage is that there is no need for feature
percolation during parsing: all syntactic features are grounded during anchoring. There are,
however, a few cases where all syntactic features cannot be localized in the same tree. This
happens when the values of syntactic features are determined by more than one constituent.
This is the case, for example, in raising constructions: the subject raising verb agrees with
its syntactic subject but the complement of the raising verb (adjective or verb) determines the
category of the subject. In such cases, feature percelation is needed, unless one define trees for
all the possible feature combinations. This is what we have done in the grammar, and 9 more
trees are needed to that effect.

In there-constructions, the NP following the verb {be) determines the agreement of the verb.
This does not represent a problem if the dependency is local. However, if a subject raising verb
comes in between there and the rest of the sentence, agreement cannot be determined locally
anymore. We need one more tree to cover bath possible instantiations of agreement features.
Finally, PP phrases can involve a wh-NP or a rel-NP, thne mngt be snecified ag such, Because the
head of PPs does not set that feature, feature percolation would be needed between the NP and
the root of the PP. Tn the grammar, we define three PP trees, one for each possible instantiation
of that feature. Thus, two more trees are needed than if we had feature percolation.

In all the above cases, the specification of all possible feature combinations does not involve the
creation of many more trees. However, from a linguistic point of view, we do miss generaliza-
tions,

With coordination, however, the problem is not the loss of linguistic generalizations, but the
substantial increase in the number of trees. Indeed, coordination® trees are anchored by the
head of one of the coordinated constituents. The advantage of this is that constraints on the
coordination phrase are defined at anchering. But the disadvantage is that this doubles the
number of trees in the grammar: every structure can occur in coordination.

4. Anchored Trees

The previous two sections discussed the coverage of the grammar, and how some decisions have
increased the number of unanchored trees. Another important property of the grammar is the
number of trees that result from anchoring with lexical items,

We find that some verbs induce a very large number of anchored trees: for example, get results
in 2847 trees, pur 3465, come 2656, and rurm 1425, To illustrate why, consider get. First,
get has 17 different subcategorization frames (it can be transitive, ditransitive, it can have a
prepositional complement, be followed by one or more particles, etc.). It therefore belongs to
17 different families, and each family contains a number of trees (for example, the v. PP family,
selected by ger, has 33 trees, and the v_NP_PPto family contains 146 trees).

Moreover, when a lexical item anchors a tree, features get grounded, and different feature in-
stantiations characterize different trees. For example, gef can be fellowed by one of 12 different
rrepositions which means that there are at least 12 x 33 trees for the single subcategorization

30nly same constituent coordination has been implemented so far.



58
Carroll et al,

# trees #sets | # merged # minimized | ratio merged /
in set states (mean) | states (mean) minimized
1-10 112 17.9 6.9 2.6
11-20 83 539 13.1 4.1
21-50 69 133 18.1 7.4
51-100 47 364 - 281 13.0
101200 68 687 330 20.8
201-500 56 1815 42.8 424
501-10600 23 3654 48.9 74.7
1001-5000 16 10912 60.1 181.5
Totals 474 927.7 23.5 394

Table 1: Grammar compaction statistics

frame V_PP, Similarly, there are 16 different particles which can follow ge/, and this also mul-
tiplies the number of trees.

Finally, there are other features that get instantiated and are responsible for the creation of
new trees, such as agreement features of the anchor, verb form feature of the anchor and of
its verbal complement. Thus the different instantiations of features together with the various
subcategorization frames that a word selects explain the very high number of trees anchored by
some individual words,

5. Encoding for Grammar Development

Following (Evans ef al., 1995) and (Smets & Evans, 1998) the LEXSYS grammar is encoded
using DATR, a non-monotonic knowledge representation language. .
In 1998, the grammar contained 620 trees organized into 44 tree families and produced using.
35 rules. This grammar was encoded in 2200 DATR statements, giving an average of 3.55 DATR
statements per tree. The grammar currently contains around 4000 trees in 143 families produced
with 88 rules. This grammar is encoded with around 5300 DATR statements, giving an average
of 1.325 staternents per tree. Thus, as the grammar has grown the number of DATR statements
needed to encode it has grown, but not as rapidly.

6. Encoding for Parsing _
Following (Evans & Weir, 1997) and (Evans & Weir, 1998} each elementary tree is encodec
as a finite state automaton that specifies an accepting traversal of the tree from anchor to roof
For cach input word, the set of all the alternative trees that can anchor an input word can b
captured in just one such automaton, which can be minimized in the standard way, and the
used for parsing. :
In order to assess the extent to which this technique alleviates the problem of grammar size
we produced automata for the words appearing in the 1426 sentences (mean length 5.70 words
forming the Alvey NL Tools grammar development test suite. Bach sentence was processe
by a morphological analyser, and the result was then used in conjunction with the lexicon
determine for each word in the sentence the complete set of anchored trees, feature value
being determined by the morphological aralyser or lexicon as appropriate. 474 distinct sets «

anchored trees (‘tree sets’) were produced in this way, ranging in size from 1 to 3465 tree

The total number of anchored trees was 24198, with a mean of 175.5 trees in each tree s

4We have excluded from this figure around 700 DATR statements that specify the semantics associated w
elementary trees.
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# #sets | #treesin | # minimized states
occurrences sets (mean) in sets {mean)
1 98 256 258
2-5 178 205 26.6
6~10 68 182 23.0
11-20 56 © 83 19.6
21-50 48 64 16.7
51--100 12 84 21.2
101-200 9 54 112
201-500 3 21 13.0
501-1000 2 5 6.0

Table 2: Occurrences of tree sets in test senfences

Before parsing, the trees in each tree set are stripped of their anchor, merged into a single
automaton and minimized; at parse time the relevant automaton is retrieved and the appropriate
anchoring lexical item inserted. Table 1 shows what happens when the tree sets are converted
into automata and minimized, giving figures for the distribution of tree sets, mean numbers of
merged and minimized states in each tree set, and ratios of numbers of merged and minimized
states.

What is not clear from Table 1 is how often each of the 474 distinct tree sets occurred in the
test sentences. This is shown in Table 2 which gives the numbers and mean sizes of tree sets
(number of trees and minimized states) relative to the number of times they occurred in the test
suite sentences. This shows that the larger tree sets tend to occur less often than smali ones, and
that very few of those tree sets containing more than 100 trees anchored more than 10 of the
more than 8100 word tokens in the test sentences.

The results we have presented in this section appear to show that by encoding the anchoring pos-
sibilities for words with minimized automata we are able to alleviate the grammar size problem
1o a considerable extent.
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Abstract

We ezplore some properties of the synchronous formalism introduced in Dras (1999),
showing that it handles an interaction, noted in Schuler (1999), between bridge and raising
verbs which s problematic for synchronous TAG. We also show that it has greater formal
power then synchronous TAQ end discuss its compulational complezity.

1. Introduction

Synchronous TAG (S-TAG), as defined by Shieber (1994}, defi..es relatinns hetween lan-
guages by assembling paired elementary structures into isomorphic derivations. This iso-
morphism requirement is formally and computationally attractive, but for practical appli-
cations somewhat too strict. For this reason, Shieber suggests relaxing this requirement
by treating bounded subderivations as elementary, but there are a few cases which remain
problematic because they involve unbounded non-isomorphisms.

One such case is described by Schuler (1999). If a predicate is analyzed as a VP-adjunct in
one language but, an S-adjunct in another, then an unbounded non-isomorphism will arise
when this predicate interacts with other VP-adjuncts. Consider the following sentences
from English and Portuguese:

(1) X is supposed to (be going to ...) have to fly.
(2) E pressuposto que X (vai ...) tem/ter que voar.

We might apalyze these sentences with the trees in Figure 1, but the resulting derivations
for (1) and (2) would be non-isomorphic (see Figure 2).

Shieber (1994) describes this situation as “elimination of dominance”; in this case the
non-isomorphism is potentially unbounded because the tree for supposed to adjoins into
the lowest VP-adjunct on the derivation tree in English, but into the highest tree (that
is, the initial tree) in Portuguese.

Schuler (1999) describes a solution to this problem based on a compositional semantics
for TAG (Joshi & Vijay-Shanker, 1999) which relies on a mapping of contignous ranges
of scope in source and target derivations, but because it does not map subderivations in
the source to subderivations in the target, this solution can only be used on individual

*This research is partially supported by ARO AASERT grant NO0014-97-1-0603, ARQ grant
DAAGS55971-0228, and NSF grant SBR-89-20230-15.
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Figure 3: Paired derivation trees

derivation trees and not (tractably) on entire shared forests of possible derivations (Vijay-
Shanker & Weir, 1993). Thus, for example, it is not directly possible to parse a natural
language question and prune the chart using constraints on a semantic target.!

This paper shows that Schuler’s example of unbounded non-isomorphism can be han-
dled by the use of a meta-grammar, as in Dras (1999); specifically, by using a TAG
meta-grammar in the regular form of Rogers (1994). (We will refer to this formalism as
RF-2L(cvel) TAG.) In addition, this paper explores how synchronous RF-2LTAG is more
powerful than S-TAG: even though the weak generative capacity of the component TAGs
is not altered by the synchronisation, the extra strong generative capacity of synchronous
RF-2LTAG (that is, the extra structural descriptions it can produce) enables it to describe
more relations between languages (that is, languages of pairs of strings)., We also discuss
the computational complexity of this formalism,

2. Using a meta-grammar

Dras (1999) describes what is in effect a relaxation of the requirement in the standard
definition of S-TAG that paired derivation trees be isomorphic (as unordered trees). Since
TAG derivation trees can be thought of as generated by context-free rules (Weir, 1988), we
can likewise think of isomorphic derivation trees as generated by paired context-free rules
(Aho & Ullman, 1969). For example, the derivation trees of Figure 3 would be generated
by the following:

(¢ — 41 HBE , o = 53@ ﬁ{@}
(5L — B0 BB | g — 5 35

The relaxation proposed by Dras (1999) is to allow some other type of grammar to specify
the pairings,? namely, TAG: with its greater domain of locality than CFGs, it can specify
relationships between nodes of a derivation tree pair which are arbitrarily far apart. A
meta-grammar thus pairs substructures in the derivation tree, rather than individual
nodes; there is consequently an isomorphism between the trees representing the derivations
of the derivations (the ‘meta-derivations’).

If the TAG meta-grammar is in the regnlar form of Rogers (1994), then the set of deriva-
tion trees is recognizable, and the weak generative capacity of the formalism is unchanged
{Dras, 1999). Nevertheless, the additional strong generative capacity allows more map-
pings to be specified. .

For example, a TAG meta-grammar can resolve the English-Portuguese mismatch noted
above. If we use the same elementary tree pairs from Figure 1, the resulting derivation tree

'Ordinary synchronous TAG could use semantic target expressions to filter parse forests, but only if
the target grammar were designed to accommodate a particular source grammar, with artificial notions
of ‘bridge’ and ‘raising’ logical forms.

%Shieber’s suggestion of treating bounded subderivations as elementary would be analogous to using
a tree substitution grammar instead of a CFG to specify the pairings.
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affly]
o | avoar|
A: | pypihave/going/...]
By plsupposed] By pltem/vaif...] Bslpressuposto]

N ﬁvp[have/lgoing/. ] ,va[feml/vai/. N

* =

Bvp Bvp

Figure 4: One possible meta-grammar for the supposed/pressuposio translation

Ap Ap
| l
By By
l I
I i
B Br

Figure 5: Meta-derivation trees.

structures (Figure 2) are non-isornorphic: in the English case, B{fly] and B[suppesed] get
stretched apart by an unbounded number of raising verbs, whereaa in the Portuguese case,
Blpressuposto] attaches directly to alvoer] and does not get stretched away. A TAG meta-
grammar can be used to factor out the recursive material with pairs of auxiliary trees,
like the pair B in Figure 4. An initial tree pair .4 specifies the difference between the En-
glish ‘linear’ derivation structure versus the Portuguese ‘branching’ derivation structure.
The meta-derivation trees are as in Figure 5, with Ay and Ap being the left and right
projections respectively of A4, and similarly for B; they are clearly isomorphic, as desired.

3. Formal properties

Synchronous RF-2LTAG has the weak language preservation property {(Rambow & Satta,
1996)-—that is, the left and right projection languages of synchronous RF-2LTAGs are
all TALs. However, as we have suggested, synchronous RF-2LTAG can specify relations
between TALs which synchronous TAG cannot, as the following two claims show:

Claim (synchronous pumping lemma). If L is a language of pairs defined by a syn-
chronous TAG, then there is a constant n such that if {z,2’) € L and |z|] > n and
|z'l 2 n, then (z,2') may be written a5 (ugv; ) VoUWV, U VWi vguhTRWITUL), With
lntavstan vhrguyl > 0, [viwrvguawgus] € n, [jawlvviwiuy) < n, such that for all ¢ > 0,
{(ur vy vhugviweviug, vl viw viubviwiviug) € L.

The proof is similar to that of the normal pumping lemma for TALs {Vijay-Shanker, 1987).
The intuition is that the pumping lemma for local sets is applied to the derivation trees,
and since paired derivation trees are isomorphic, the pumping constant can be chosen so
that the pumping lemma holds for both sides simultancously.
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o o
| | B B B B2
Jid) B2 l ] | |
i ! at , i oy , B
ﬁ? N 181

Figure 6: TAG meta-grammar for defining L

a: X B AN B Awa
| /l\ /I\
€
a X d 1 X 4
N T
b X* ¢ 2 X* 3

Figure 7: Object level trees for defining L

chronous TAG,

Proof. Assume that L is definable by a synchronous TAG. If n is the constant given by the
pumping lemma, let (z, z') = (a"1"27b "3 4"d", 1"a"b"2"3%c"d"4") Then z and 2’ have
to be written so that the v; and u] are all letters or all numerals, or else the “pumped”
pairs will not be in L. But if they are all letters, then Juyunvauywavy > n; if they are
all numerals, then jujw]vhugwivy] > n. Since (z, 2') cannot be rewritten in the manner
indicated by the pumping lemma, I must not be definable by a synchronous TAG.

L can, however, be defined by the synchronous RF-2LTAG in Figure 6, where «, g3, and
[y are the same for both sides, shown in Figure 7.

So synchroncus RF-2LTAG is more powerful than synchronous TAG; however, just as
RF-TAG can be parsed in @(n®) time like CFG, RF-2LTAG can be parsed in O(n%) time
like TAG. We can do this by keeping track of meta-adjunctions using stacks inside the
chart items (Rogers, 1994). Because of the regular-form condition, the stacks will have
bounded depth.

¥ we wish to transfer entire shared forests of derivations (Vijay-Shanker & Weir, 1993)
rather than single parses, we may incur additional complexity, but this problun can still
be solved in polynomial time, because there is a subderivation in the target grammar
for every subderivation in the source. In contrast, the method of (Schuler, 1999) would
require exponential time because it is defined only on completed parses.

One remaining question is, is it sufficient to use a TAG as a meta-grammar? For any £,
define a language over the alphabet {ay,a,,...,a;}: SEPARATE-k = {{w,a{'a? ---a¥) |
w has exactly ¢; occurrences of a;}. SEPARATE-8 can be generated by a synchronous RF-
2LTAG (the grammar is not complicated, but large}, but SEPARATE-9 cannot. This can
be seen by left-intersecting with (ajap---ag)™ (this can be done without disrupting the
synchronization): the right projection of the result will be {afa}---a}}, which is not
generable by any 2LTAG.

More generally, SEPARATE-251! can be generated by a synchronous k-level TAG, but sEP-
ARATE-(2F*1 4 1) cannot. These are all well-behaved relations between reguler languages;
thus the weak language preservation property does not provide a natural ceiling on how
powerful a meta-grammar can be. It remains to be seen what kinds of meta-grammars
are actually practically useful, and what bounds can be placed on their computational
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complexity.

4. Conclusion

In the future we hope to explore the possibility of using meta-ievel structures for linguistic
description (in particular, shifting the Condition or Extended Tree Minimality (Frank,
1992) to meta-level elementary trees}; in such an approach it becomes possible to eliminate
the supposed/pressuposto non-isomorphism entirely.

Under the present approach, however, we have shown that a synchronous TAG meta-
grammar provides the extra strong generative capacity needed to localize certain un-
bounded non-isomorphisms, overcoming some of the limitations of standard synchronous
TAG while preserving the essential idea of local synchronization and its attendant advan-
tages.
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Abstract

We present a bottom-up bidirectional parser for Tree Adjoining Graminars that is an extension
_bf the parser defined by De Vreught and Honig for Context Free Grammars, Although this
parser does not improve the complexity of the parsers defined in the literature, it presents several
characteristics thar can be of interest for practical parsing of natural languages.

1. Imtroduction

Several algorithms have been proposed for parsing tree adioining grammars (TAGs), most of
them derived from context-free tabular parsers, ranging from simple bottom-up algorithms,
like CYK, to sophisticated extensions of Earley’s algorithm (Alonso er al., 1999). However,
some of the bidirectionat parsers proposed are not applicable in alt the cases. Lavelli and Satta
parser (1991) is restricted to elementary trees with only one anchor. Van Noord parser (1994)
introduces several improvements to Lavelli and Satta parser: the substitution operation, the
foot-driven recognition of auxiliary trees and the notion of headed elementary trees in order to
take advantage of lexicalization,

According to Van Noord, a headed TAG is a TAG in which each elementary tree is a headed tree.
For each internal node in a headed tree, there must be a daughter which is the head of the subtree
rooted in that node. The reflexive and transitive closure of the head relation is called the head-
corner relation. In order to establish the head-comer relation we must fulfill the following two
constraints: (i) the anchor of an initial tree must be a head-corner of the root node of the initial
tree and (i) the foot node of an auxiliary tree must be head-comer of the root of the auxiliary
tree. Since there exists the notion of anchor in the context of lexicalized TAG, it seems that the
notion of head, as defined by Van Noord, is redundant. Moreover, in the case of anchor siblings
the definition of head requires to select only one anchor as the head.

In this paper we present a bidirectional bottom-up parser for TAG, called dVH, derived from
the context-free parser defined by de Vreught and Honig (de Vreught & Honig, 1989; Sikkel,
1997), which presents several interesting characteristics: (i) the bidirectional strategy allows
us to implement the recognition of the adjoining operation in a simple way, (ii) the bottom-
up behavior allows us to take advantage of lexicalization, reducing the number of trees under
Consideration during the parsing process, (i) in the case of ungrammatical input sentences, the
parser is able to recover most of partial parsings according to lexical entries, and (iv) the parser
can be applied to every kind of anchored elementary trees without introducing the notion of
head
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1.1, Notation

Let G = (Vp, Viy, 5, I, A) be a TAG where Vg and Viy are the terminal and non-terminal alpha-
bets, S € ¥ the axiom symbol, and I and A the set of initial and auxiliary trees respectively.
As usual, I U A consist of the set of elementary trees. :
Parsing aigorithms for context-free grammars usually denote partial recognition of productions
by dotted productions. We can extend this approach te the case of TAG by considering each
elementary tree -y as formed by a set of context-free productions P(7): anode N7 in 4 and its
g children N ... N7 are represented by a production N7 — N{ ... NJ. The elements of the
productions are the nodes of the tree, except for the case of elements belonging to VyuU{e} in the
right-hand side of productions. Those elements may not have children and are not candidates
to be adjunction nodes, so we identify such nodes labeled by a terminal or ¢ with the label’.
We use 8 € adj{/V7?) to denote that § € A may be adjoined at node N7, If adjunction is not
mandatory at N7, then nil € adj(N7). With respect to substitution, we use v € sub(M7) to
denote that o € I can be substituted at node A™.

To simplify the description of parsing algorithms we consider additional productions: T — R?2,
T =+ R and F# — i foreach o € I and each 8 € A, where R™ is the root node of & and
R# and F# are the root node and foot node of 3, respectively. Afier disabling T and | as
adjunction nodes the generative capability of the grammars remains intact.

2. The parser dVH

The definition of the parser is based on deductive systems similar to Parsing Schemara (Sikkel,
1997). Given the input string w = a;...a, with n > 0 and a TAG grammar, the formulas
(called items in this context) in the deductive system will be of the form:

[NT = vedewijp,qg

where N7 — vdw € P(v) is a production decorated with two dots indicating the part of the
subtree dominated by N7 that has been recognized. When v and w are both empty, the whole
subtree has been recognized. The two indices 7 and j denote the substring of w spanned by §.
If v € A, p and g are two indices with respect to w indicating the substring spanned by the foot
node of 4. In other case p = g = —, representing they are undefined.

With respect to deduction steps, we have that

. Ini £ Inc Conc Foot, Ad] Subs
Dyy = DPavn U Dgvy YU Dgiiy U Dl U Daviji U Doy U Davni

The injtializer steps deduce those items associated to productions whose right hand side includes
a terminal that matches with an input symbol. The position of the terminal in the input string
determines the values of the indices. Empty-productions are considered to match any position
in the input string. The indices associated to the foot node in the consequent of both deduction
steps are undefined since no foot has been recognized yet:

Dlni — — .
dvi [N" s veagew,j—1,5—,+] e=4

& —_
i [N’T - '.,j,j, _:"]

Once the subtree dominated by a node M™ has been recognized completely, a include step in
Dirc, continues the bottom-up recognition of the supertree dominated by M when no adjoining

'Without lost of generality, we assume that if a node is labeled by e then it has no siblings.
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is mandatory on that node. Indexes are not modified when a step of this type is applied:

(M7 -5 obe 1, 4,p,4q]

Inc - % i T
Dyve VS ve M ewigpd nil € adj{M7)

Given a node N7 such that N7 — v;8,w, the concatenate steps in DS try to combine two
partial analysis spanning consecutive parts of the input string, in order to recognize &, and Js.
The indices ¢ and j in the consequent cover the whole recognized substring. The values of the
indices p and g, corresponding to the foot node, are propagated bottom-up:

[NT —Svede 62(1.?,3‘,].'1191‘?]'
[NY s vby e dy 0w, 7,5,9,¢]
[Nlr —+ Ve 6162 -w,i,j,pUp’,qu’]

Conc ___
DdVH -

where p U g is equal to p if g is undefined and is equal to ¢ if p is undefined, being undefined in
other case.

The foot steps D4vss introduce in a bottom-up way a new instance of an auxiliary tree 3 in an
adjunction node M7 where 3 € Adj(M™). The recognition of the auxiliary tree begins with
the introduction of the foot node. The string spanned by the node M7 between position % and
! determines the values of the indices in the consequent. The indices p and ¢ in the antecedent
are ignored in the consequent because a new adjoining has been introduced. The values of these
indices will be considered by adjoining steps in order to conclude the adjoining of 5 in M™;
[A7 — ede, kI, p, 0

Foot : :
Divy = [F_ﬁ—}TJ_o—,_fc_,_l', A:_,E—] g€ adi{M7)
When the recognition of the auxiliary tree 8 reaches the root node, the adjoining steps DQ{HQ
conclude the adjoining on A7, continuing the bottom-up recognition of the supertree of -y with
respect to A7, This step is only applied when the string spanned by the foot node of # is
equal to the string spanned by the adjunction node M7, Indices p and g in the consequent are
obtained from the antecedent associated to the adjunction node. Now, the string spanned by the
adjunction node A{” corresponds with the string spanned by the oot of the auxiliary tree 5:

{T -_> .Rﬁ.ijl mJ k! l]7
[AY — wde, k,1,p. q)

DAdj —
NT > veM7ew ,m,p,q

b= 5 € adj(M™)

A substitution is performed when an initial tree o has been completely recognized. The initial
tree establishes the string spanned by the node M7 where « can be substituted.

DSubs —— [T - .Ra.r it js — _‘j

N
Ty ¥ T o € sub(M7)

The input string must belong to the language defined by the grammar, given @ € I rooted
with the axiom symbol, whenever an item [T — eR®s,0,n, —, —] is deduced. The algorithm
so described is just a recognizer. However, it is not difficult to construct an actual charf parser
based on the specification presented above. From the set of derived items (the chart}), a parser
of the input can be constructed retracing the recognition steps in reverse order or annotating the
items computed by the recognition algorithm with information about how they were obtained.
The time complexity of the algorithm with respect to the length n of the input is Q(n®). This
complexity is due to deduction steps in DQ\S{{ since they present the maximum number of rele-
vant input variables (j, m, k, {, 7, g). The space-complexity of the parser is O(n?) since every
itemn is composed of four input positions ranging on the length of the input string.
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The number of items deduced by the parscr, as stated before, can be reduced if we apply a filter
on the concatenate steps. We can note that these steps produce redundant derivations when the
trees are not binary branching. If we do so, the parser obtained will not actually be bidirectional.
We will not consider this version because of clarity in the exposition. :

3. A new parser dVH’

In the context of parsing lexicalized grammars for natural languages, the parser dVH can be
slightly modified in order to speed up the recognition process. In this way, we will consider
the characteristics of the English grammar defined in (XTAG, 1999). The study will be mainly
centered on DY, D5y and D55 deduction steps. We will call dVH' the new parser obtained
after modifications.
First of all, we must note that DI, steps can be applied on anchors as well, In the case of
multi-anchors, the step wili deduce one item for every anchor in the elementary tree with the
suitable positions respect to the input. Furthermore, this step implies an important reduction
in the search space since only those clementary trees with anchors matching the input will be
consider in the recognition. In this way, D5e3t and D5U% deduction steps will not introduce any
elementary tree except for those trees considered by D deduction steps.
When substitution nodes are siblings of no-substitution nodes the application of D344 steps can
introduce itemns that are not necessary in order to recognize the input string. The reason is that
D3 deduction steps always try to include an initial tree when this tree is completed. To avoid
these redundant substitution operations we can introduce a filter as follows: this step will anly
applied when M7 is a substitution node whose daughters do not dominate a terminal or the foot
node of 7. In other cases, the substitution operation will be performed by the new deduction
steps D3R and DAL,

[T — eR%a 3, k,—, -],

DR - [N s vedoe M"’w,'ti,j,p, g)
[NY 5 vedMTew, i k,p.q

[T -+ .Ra.,i,j,—, "]:
tDSu?bsrL — {NT — vM7Yed .W,j,k,j,p, Q}
dVH [N’T—}UOIIJ'TtSCw,i,k,p,q]

With respect to € productions, the number of itemns deduced by D5« steps can be an important
drawback in the application of the parser when the grammar has a lot of elemeniary trees with
£ productions. As an example, in the English grammar (XTAG, 1999), it is usual that left
hand sides of empty productions present a null adjoining constraint. The practical behavior
of the parser can be improved if we filter the steps deating with empty productions. Given a
production M” — ¢ such that {nil} = adj{M7™), where {nil} = adj{A{”) represents a null-
adjoining constraint on M7 and M has at least a daughter that dominates a terminal or the foot
node of -, the following deduction steps

o INT -y vebeMwi,jp,q]
[NT = vedlMTew,i,j,p 4

‘DdVH’ =

[NT" > vMY e dew, i, j,p,q]
[NT = veMYéew,i,jp,q)

el
DdVH* -

drastically reduce the number of items generated. When the above constraints are not satisfied,
a Dgyy step must be applied.
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Input [dVH][dVH [VN| E [Ned| [Input[[dVH | dVH' [VN| E [Ned]
Transitives and Ditransitives ‘ Auxiliary Verbs
11016 | 005 10.10]0.33] 0.33 14 ] 060 ] 022 [0.44{0.66] 0.77
2 0.27 | 0.05 |0.16 | 0.38 | 0.44 Extraction
Argements and Adjuncts 15 0.16 | 0.05 0.16|0.33 0.33
3 0.38 | 0.11 |0.22|0.49( 0.55 16 0.22 | 0.05 |0.11]0.33] 0.33
4 0.33 | 0.05 |0.16]0.44 | 6.49 17 0.16 | 0.05 |0.11]0.381 0.33
5 0.16 | 0.01 |0.050.27 | 0.33 Unbounded Dependencies
Ergatives and Intransitives 18 0.22 | 0.65 [0.11{0.22 | 0.27
6 0.33 | 0.11 1022038 0.44 19 0.39 | 011 ]0.22|0.71] 0.61
7 0.16 | 0.056 | 0.11!10.27 ] 0.27 20 (.28 | 0.11 | 0.16|0.55 | 0.49
8 0.16 | 0.05 |0.11/0.33} 0.33 21 0.82 | 016 |0.49|1.54]1.26
9 016 | 0.05 [ 0.11 | 0.27] 0.27 | | Adjectives
Sentential Complements 22 0.11 | 0.06 |0.05]0.22] 0.27
10 0.16 | 0.05 |0.1110.55| 0.44 23 0.16 | 0.05 {0.11]0.27 | 0.27
11 0.22 | 0.05 |0.17]0.66| 0.49 24 0.22 | 0.05 |0.1110.27|0.27
Relative Clauses 25 0.33 | 0.05 | 0.160.33] 0.33
12 0.60 ¢ 0.16 |0.38]0.77 | 0.88
13 0.55 | 0.16 }0.38|0.66| 0.77

Table 1: Parsing time in seconds

4. [Experimental results

The resuits we are going to discuss have been obtained using o nave singicnicntation in Prolog
of the deductive parsing machine presented in (Shieber et al., 1995) running on a Pentium IL.
We have implemented and tested the following parsers; E is an Earley-based parser without
prefix valid property (Alonso er al., 1999), Ned is an Earley-based parser with prefix valid
property (Nederhof, 1999), VNN is the bidirectional parser defined by Van Noord, and dVH
and dVH' are the parsers defined in this paper.

The study is based on the English grammar presented in (XTAG, 1999). From this document we
have selected a subset of the grammar consisting of 27 elementary trees that cover a variety of
English constructions: relative clauses, auxiliary verbs, unbounded dependencies, extraction,
etc. In order to compare only the behavior of the parsers, we have not consider the feature
structures of elementary trees. In this way, we have simulated the features using local con-
straints, Also, we have selected from the document 25 correct and incorrect sentences grouped
with respect to the aspect treated. Every sentence has been parsed without previous filtering of
elementary trees, Table 1 shows the time in seconds used for every algorithm and sentence.

From table 1; we can observe that VIN, dVH and dVH' obtain better time results than predic-
tive parsers E and Ned. However, in terms of the more expensive step, the adjoining operation,
predictive parsers perform equal or less adjoining operations than bottom-up parsers, There-
fore, we can argue that this result is a consequence of the implicit filtering of elementary trees
of bottom-up strategies.

On the other hand, we can also note that although dVH presents worse time than VIN, we can
see dVH' improves the results of VIN. Since the adjoining operations performed by all the
bottom-up parsers are practically the same, we can conclude that this improvement is basically
due to the reduction of items removed by the filter in the rules related to £ productions.
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5. Conclusion

A bottom-up bidirectionat parser for TAG has been defined based on the parser defined by De
Vreught and Honig for CFG. The parser does not improve the worst-case bounds of already
known parsing methods for TAG but the experiments show similar or better time results than
classical parsers, Other benefits can be argued to consider this algorithm of interest in the
context of bidirectional parsers. In particular, with respect to Lavelli-Satta parser the dVH
schema can be applied to multi-anchor auxiliary trees. With respect to Van Noord parser, this
new approach does not introduce the concept of head and it is applicable to every kind of
anchored elementary tree.

As further work, it would be interesting to investigate the effects of compacting elementary
trees, as performed by Lopez (2000}, in the real performance of the parser.
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Abstract

Just as people make use of information from punctuarion to structure and understand fext, NLP
systems can use Information from puncruation in processing texts automatically. The aim of the
‘research presented here was to explore the feasibility of treating a sizable core of punctuation
phenomena at the level of the sentence grammar. A large set of punctuation rules were manually
derived from naturally occurring data, and added to the XTAG English grammar. Our results
confirm that punctuation can be used in analyzing sentences to increase the coverage of the
grammay, reduce the ambiguity of certain word sequences and facilitate later processing of
larger text units, without either adversely impacting the existing granunar or deriving analyses
which would be incompatible with later levels of processing.

1. Motivation

Punctuation helps us to structure, and thus to understand, texts. Many uses of punctuation strad-
dle the line between syntax and discourse, because they serve to combine multiple propositions
within a single orthographic sentence. They allow us to insert discourse-level relations at the
level of a single sentence. Just as people make use of information from punctuation in process-
ing what they read, natural Janguage processing systems can use information from punctuation
in processing texts automatically.

Most current NLP systems [ail to take punctuation into account at all, losing a valuable source
of information about the text. Those which do mostly do so in a superficial way, again failing
to fully exploit the information conveyed by punctuation. To be able to make use of such
information in a computational system, we must first characterize its uses and find a suitable
representation for encoding them.

Previous work on punctuation was mostly of the descriptive variety, of which Quirk et al. (1985)
and Sampson (1995) are particularly good instances. Some linguistic work has been done by
Chafe (1988), Schmidt (1995), Jones (1996b) and Meyer (1987). Nunberg (1990) offers the
most comprehensive linguistic discussion of punctuation to date, with an extensive analysis
of the interactions of different punctuation marks. He is primarily interested in characterizing
punctuation as a formal system, independent from syntax. Briscoe (1994) presents an treatment
of punctuation within the Alvey Natural Language Tools grammar. He and Carrol} (1995) show
that this analysis considerably reduces ambiguity in parsing the SUSANNE corpus (a subset of
the Brown corpus) and Jones shows similar results.

The work discussed here differs from previous work in a number of ways. It includes an analy-
sis of the syntax of punctuation which has been implemented and integrated into a large English

This work was done while the author was a graduate student at the Universily of Pennsylvania, and was
partially supported by NSF Grant SBR8920230 and ARO Grant DAAH0404-94-G-0426. Thanks to Aravind Joshi
and Ted Briscoe for their helpful comments at all stages of this work, and to the members of the XTAG Project.
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grammar that is being used on an everyday basis. In addition, the analysis differs consider-
ably from those of Jones and Briscoe in treating punctuation within a framework which al-
lows for more concise characterization of the non-local aspects of certain uses of punctuation.
Furthermore, neither of their implementations cover the range of punctuated constructions our
treatment does.

2. Analysis

Many parsers require that punctuation be stripped out of the input. Where punctuation is op-
tional, as is often the case, this may have no effect. However, there are a number of constructions
where punctuation is obligatory. Adding analyses of these to the grammar without the punctu-
ation can lead to severe over-generation, possibly to the point where it is better to not add the
constructions at all.

The work here focuses on extending a lexicalized syntactic grammar to handle phenomena
occurring within a single sentence which have punctuation as an integral component. The main
job of the sentence grammar, then, is to produce a structure that makes the appropriate units
easily accessible to fater levels of processing—not just basic grammatical elements like subject
noun and verb group, but more complex relations like nominal apposition as well. Punctuation
marks are treated as full-fledged lexical items in a Fearure-Based Lexicalized Tree Adjoining
Grammar (Foshi, [985; Schabes, 1990; Vijay-Shanker & Joshi, 1991). The localization of both
syntactic and semantic dependencies provides an elegant framework for encoding punctuation
in the sentence grammar. The elementary units of LTAG are of a suitable size for stating most of
the constraints we are interested in, and the derivation histories it produces contain information
that later stages of processing will need about whirh slemantary nnits have been used and how
they have been combined, Each punctuation mark or pair of marks anchors 1 uvwn Jicoiontory
trees and imposes constraints on the surrounding lexical items. The TAG adjunction operation
is advantageous in handling paired punctuation marks, because it allows us to keep both pieces
of the complex object, e.g. a pair of parentheses or commas, in the same elementary tree,
regardless of the size of the constituent they enclose.

We have analyzed naturally-occurring data (primarily from the Brown Corpus) representing a
wide variety of constructions, and added treatments of them to the XTAG English grammar.
The new trees are of two types. The first have the punctuation marks as anchors, reflecting the
fact that they do not strongly constrain the lexical content of the constructions they participate
in. For example, any NP except a pronoun can be an appositive, and this is reflected in the
analysis by having the NP position as a substitution site in the NP appositive tree (Figure 1),
The sccond type of tree has the punctuation marks as substitution sites, for instance the tree for
parenthetical adverbs, where the lexical material may vary, some punctuation mark is required,
but any of several types of punctuation mark is permissible. This is illustrated by the tree for a
quoting clause shown in Figure 2. There are a total of 47 trees containing punctuation marks in
the current implementation. Doran (1998) discusses all of the trees in more detaii.

The full set of punctuation marks is divided into three classes: balanced, structural (ferm from
(Meyer, 1987)) and terminal. The balanced punctuation marks are quotes and parentheses,
structural are cominas, dashes, semi-colons and colons, and terminal are periods, exclamation
points and question marks. These three types of punctuation are essentially independent sub-
systemns, and a given constituent will typically have only one of each type. Structural and
terminal punctuation marks de not occur adjacent to other members of the same class, but
may occastonally occur adjacent to members of the other class, e.g. a question mark on a
clause which is separated by a dash from a second clause. Balanced punctuation marks are
sometimes adjacent to one another, e.g. quotes immediately inside of parentheses as in example
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NP,
NPf* Punct NP. pron : - Pul’lCtz
case : nom/ace

Figure 1: The non-peripheral NP appositive tree, showing relevant features,

S!‘

PN

5% Punct! S

SN

NP. VP

Yo

Figure 2: Tree for a quoting clause which follows the quote; the tree would be anchored by e.g.
mutter in a sentence such as Liver again, Mary muttered.

(1). Features allow us to control these local interactions. We also use these features to control
non-local phenomenon such as quote alternation, whereby single and double quotes alternate
when embedded, and also to control the embedding of colons and semi-colons.
(1) Each enjoys seeing the other hit home runs (“T hope Roger hits 8("’, Mantle says), and
each enjoys even more seeing himself hit home runs (“and T hope I hit 817"). [Brown:ca39]

2.1, How punctuation improves the grammar

There are’two primary ways in which adding punctuation improved the coverage and perfor-
mance of the XTAG English grammar. First, it allowed us to add some syntactically “exotic”
constructions which would have previously been considered too unconstrained in their unpunc-
tuated forms. Many such constructions occur with great frequency in naturally cccurring texts.
As an example, consider noun appositives, where an NP modifies another NP. Example (2) has
two appositives. Without access to punctuation, the parser would derive every combinatorial
possibility of NPs in noun sequences, which is obviously undesirable (especially since there is
already unavoidable noun-noun compounding ambiguity). These phrases must be “bracketed”
by punctuation, which provides precisely the sort of additional constraint we need to make the
parsing task manageable. By adding a treatment of punctuation to the grammar, we can rec-
ognize and correctly analyze appositive constituents. Other similar such constructions include
parenthetical elements, reported speech, compound sentences, comma coordination and voca-
tives. None of these constructions were handled by our English grammar before it was extended
to treat punctuation.
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{2) But Tony Robinson, the curvent sheriff of Nottingham — a job that really exists
rejected the theory, saying that “as far as we are concerned, Robin Hood was a
Nottinghamshire lad.” [clari.living.celebrities]

Second, punctuation provides additional constraints for parsing constructions already handled
by the grammar. In developing a large grammar for any language, one of the fundamental
concerns is the increase in ambiguity of derivations which invariably accompanies any increase
in coverage of the langnage’s constructions. Adding punctuation to the grammar reduces the
ambiguity of analyses by marking the boundaries of clauses and phrases. Adding analyses of
subordinate clauses, the majority of whose variants include punctuation, was found in (Doran,
1996) to improve the coverage of the XTAG English grammar by 6.6% on Brown corpus data.

2.2. Previous Work

Information from punctuation has only recently been taken into consideration in parsing and
grammar development (see (Briscoe, 1994; Jones, 1996b)). The only other such grammar to
treat punctuation integrally is a POS-tag sequence grammar developed by (Briscoe & Carroll,
1993) using the Alvey Natural Language Tools as a starting point, which includes Briscoe’s
analysis of punctuation. Unlike the present work, they do not look at the particular lexical items
in the input string, only the POS sequence. However, they do treat punctuation “lexically” to a
certain extent, in the sense that each punctuation mark occurs in a range of (discourse) grammar
rules.

3. Evaluation

Ideally, we would evaluate the punctuation rules using full parsing—take a corpus of suffi-
ciently complex sentences, parse it both with and without the punctuation rmarks, and measure
the improvements in coverage and accuracy when the punctuation is taken into consideration.
However, such an experiment proved impossible for practical reasons because our current parser
runs out of memory on sentences of any interesting length with their punctuation stripped.’

Another way to measure the improvement in the grammar is to use the supertagging technique
developed by (Srinivas, 1997). Supertagging takes the trees of an LTAG, and uses them as comn-
plex part-of-speech tags. To evaluate the LTAG punctuation analysis, we used a supertagger
trained on just over 1 million words of Wal] Street Journal data whose supertags were derived
by conversion from the (hand-corrected) Treebank parses. We first trained the tagger on the
data with all punctuation stripped, and tested it on 2012 held-out sentences, also with punctua-
tion stripped. We then retrained the tagger on the full million words, and tested it on the same
test data with punctuation retained. The performance ts shown in Table 1. The most impor-
tant line is the middle one, showing performance of both sets of training data on exclusively
non-punctuation tokens. We achieved an error reduction of 10.9% on non-punctuation tokens,
showing that the presence of punctuation does indeed improve the accuracy of analysis of the
surrounding texts. Qur result reflects an increase in the number of non-punctuation tokens to
which the correct structural tag was assigned only when punctuation was present. This figure
is not directly comparable to the coverage improvement obtained by (Briscoe & Carroll, 1995)
of 8%, which reflects an increase in the number of sentences for which some parse (not nec-
essarily correct) was obtained. Nor can it be compared with their improved crossing brackets
performance on SUSANNE sentences, which looks at the number of correct constituents. Su-
pertagging accuracy is measured on a per word basis, and always assigns a tag to every word,

Jones (1996a) encounters the same problem in atiempting to evaluate his grammar. His chart-based parser
cannot enumerate the number of parses possible for many of the unpunctuated sentences in his test set, and he has
to turn to a special estimation process which interrupis the parser before jt actually builds any parses.
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so there is no notion of complete failure on a sentence. In that sense, supertagging does assign
a structure to every sentence, but without assembling the supertag sequence assigned, you do
not know what the hypothesized constituents are. The most appropriate comparison is with the
evaluation presented in (Briscoe, 1994), where he finds a 2% improvement in “rule application”
on SUSANNE sentences (i.e. the correct derivational step applied at a given point) since we
can think of each LTAG tree as a rule (or possible several rules) to be applied.

Trained and tested
on text without punctuation | with punctuation
% Correct
Overall 87.1% 88.0%
On non-punct tokens 87.1% 88.5%
On punct tokens — 83.7%

Table 1: Accuracy of supertagging with and without punctuation

One important thing to remember is that the supertagger has only a three-token window in
assigning tags, and constructions involving punctuation often span a fairlyr 1ovre numhber of
tokens (e.g. the comma around a relative clause, parentheses around sentences). This suggests
that performance might be much more dramatically improved if we were able to use the full
parser. The baseline performance for supertagging punctuation marks (i.e. assigning simply the
most likely tag to each mark) is 65.9%. This is considerably lower than regular part-of-speech
tagging at around 20% and supertagging overall at 77.2% for this corpus. The baseline for
punctuation is lower because the average number of candidate supertags per token is higher:
6.5 supertags per punctuation mark compared with 1.5 parts-of-speech per word in standard
part-of-speech tagging.
The difference in performance can be seen on example (3). When the comma preceding the
lexical conjunction and is removed, the supertagger incorrectly assigns a relative clause tag to
the verb gave. With the comma present, the verb correctly gets a main verb tag for gave.

(3) He left his last two jobs at Republic Airlines and Flying Tiger with combined stock-option
and UAL gave NOnxQVnxInx2

. and UAL gave_nx0Vnxnx2 him a $15 million bonus when he

gains of about $22 million

was hired .

4. Conclnsions

Our aim in undertaking this research was to find out how feasible it was to handle a sizable
core of punctuation phenomena at the level of the sentence grammar, without either adversely
impacting the existing grammar or deriving analyses which would be incompatible with later
levels of processing, in particular at the discourse level. Our resuits confirm that punctuation
can be used in analyzing sentences to increase the coverage of the grammar, reduce the ambi-
guity of certain word sequences and facilitate discourse-level processing of the texts.? We have
implemented quite an extensive grammar for punctuation which has been incorporated into the
XTAG English grammar, and found that the punctuation rules do indeed improve the coverage
of the existing grammar with no negative impact on the rest of the grammar.

n (Doran, 1998), we also show that the LTAG analysis of the text adjunct variant is fully compatible with a
discourse grammar of the sort proposed by Webber and Joshi (1998).
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Abstract

This paper points out some comprrintinnal inefficiancies nf standard TAG parsing algorithms
when applied to LTAGs. We propose a novel algorithm with an asymptotic improvement,

Introduction

Lexicalized Tree-Adjoining Grammars (LTAGs} were first introduced in (Schabes et al., [988)
as a variant of Tree-Adjoining Grammars {TAGs) (Joshi, 1987). In LTAGs each elementary tree
is specialized for some individual lexical item. Following the original proposal, LTAGs have
been used in several state-of-the-art, real-world parsers; see for instance (Abeillé & Candito,
2000) and (Doran e¢ al., 2000).

Like link grammar (Sleator & Temperley, 1991) and lexicalized formalisms from the statistical
parsing literature (Collins, 1997; Charniak, 1997; Alshawi, 1996; Eisner, 1996) LTAGs provide
two main recognized advantages over more standard non-lexicalized formalisms:

« subcategorization can be specified separately for each word; and

¢ each word can restrict the anchors (head words) of its arguments and adjuncts, caroding
lexical preferences as well as some effects of semantics and world knowledge.

To give a simple example, consider the verb walk, which is usually intransitive but can take an
object in some restricted cases. An LTAG can easily specify the acceptability of sentence Mary
walks the dog by associating walk with a transitive elementary tree that selects for an indirect
object tree anchored at word dog (and some other words within a limited range).

LTAGs are large because they include separate trees for each word in the vocabulary. However,
parsing need consider only those trees of the grammar that are associated with the lexical sym-
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prit string, While this strategy reduces parsing time in all practical cases, since the
ength tends to be considerably smaller than the grammar size, it also introduces
ditiondl factor in the runtime that depends on the input string length. This problem was
ized early in (Schabes et al., 1988), but a precise computational analysis has not been
prov1ded in the literature, up to the authors’ knowledge. See (Eisner, 1997; Eisner, 2000) for
related discussion on different lexicalized formalisms.

In this work we reconsider LTAG parsing in the above perspective. Under standard assumptions,
we show that existing LTAG parsing methods perform with O(tg? |w|*) worst case running time,
where t and ¢ are smallish constants depending on the grammar and w is the inpuf string. As our
main result we present an O{tg [w|® max{g, [w|}) time algorithm, a considerable improvement
over the standard LTAG parsing methods.

1. The problem

We assume the reader is familiar with TAGs, LTAGs and related notions (Joshi, 1987; Joshi &
Schabes, 1992). Each node n in an elementary tree is associated with a selectional constraint
Adj(n) representing a (possibly empty) set of elementary trees that can be adjoined at n (we
treat substitution as adjunction at a childless node). We define the size of n as 1 + |Adj(n)|.
The size of an LTAG G, wrtten |G|, is the sum of the sizes of all nodes in the elementary trees
of G.

Standard parsing algorithms for TAGs have running time (G} {w|®), where G is the input
grammar and w is the input string. As already mentioned in the introduction, LTAGs allow
more selective parsing strategies, resulting in O(f(G, w) {w|") running time, f2r zome function
F(G, w) that is independent of the size of the vocabulary treated by G (hence typically much
less than |G|). In order to give an estimate of the factor f(G, w), let us define ¢ as the maximum
number of nodes in an elementary tree (of &), and g as the maximum number of elementary
trees that are anchored in a common lexical item. We argue below that f{G, w) is O(¢g? |wi?).

We need to introduce some additional notation. We write w; ; to denote the substring of w from
position § to position 7, 0 < ¢ < 7 < |w|. (Position { is the boundary between the i-th and
the (¢ + 1)-th symbols of w.) We write w; for w;_y,. In the grammar, assume some arbitrary
ordering for the elementary trees with a given anchor and for the nodes of cach elementary tree,
with the root node always being the first. Then {k, k) denotes the k-th elementary tree anchored
at wy, (h, k,1) denotes its root node, and (h, £, m} denotes its m-th node (for 1 < 2 < |w),
1<k<gl<m<i).

By “tree” we now mean an elementary or derived tree that may contain a foot-node. The most
time-expensive step in TAG and I'TAG tabular parsing is the recognition of adjunction at nodes
dominating a foot-node. Say that we have constructed a subtree that is rooted at the node
{(h, k,m), which may be an internal node of some elementary tree, and covers substrings w;,
and w, ;. Say also that we have constructed a complete tree / rooted at (I, ', 1}, covering sub-
strings wy ; and w; ;. In a tabular method these two analyses can be represented, respectively,
by the items [{k, k,m), 4, p, ¢, j] and [(K, k', 1}1,4',4, §, 5].! Initems, the subscript T on a node
indicates that no further adjunction is allowed to take place there (i.e., adjunction has already
occurred or has been explicitly declined). Adjunction of 3 at the node (h, k, m} is then carried
out as illustrated by the following abstract inference rule {see for instance (Vijay-Shanker &

!Top-down tabular algorithms, and those that enforce the valid-prefix property, might use more indices in item
representations, in addition to those shown in our example. In some cases this may damage the asymptotic runtime.
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Joshi, 1985; Vijay-Shanker & Weir, 1993)):

h’k’m ’i"p’q’j] [(h'1 k’! l)T:i!,i-lj!jl] .
: ) (R k,m)1, 7, P, g, 7] (W, k') € Adj((h, k,m))

(1)

Item [{h, k, m)T, ', p, g, j'] represents a new partial analysis spanning wy p and tw,,;; no further
adjunction is possible at node (h, k,mm) in this analysis.

In order to bound f{G, w), let us fix positions ¢, 4, p, g, 7 and j°. Then step (1) can be executed
a number of times bounded by ((i — ') + (7 — 7)){(p + {w]| — ¢)tg*. This is because wy can
freely range within wy ; or wy,;r, Wy, can freely range within wq p OF wg 1wy, Since the anchor wy, of
tree (h, k) might not be dominated by node {h, k, m); also, k, k' and m can assume any values
within their respective ranges. We therefore conclude that f(G, w) = O(tg? [w[*).

Note that a better upper bound would be given by O(tg? min{| V|2, [w[*}), Vi the terminal
alphabet (vocabulary) of G, since each anchor can assume no more than |Vi| different values.
However, in practical applications we have |w| < |Vr|, and therefore in this paper we will
always use the former bound. We then conclude that standard LTAG parsing algerithms run
with a worst case time of O(tg? |w|®).

2. A novel algorithm

This section improves upon the time upper bound reported in §1. The result is achieved by
splitting step (1) into three substeps. (A similar method may be applied to speed up parsing of
lexicalized context-free grammars (Eisner & Satta, 1999).)

We start by observing that at step (1} we simultaneously carry out two tests on the trees under
analysis:

o we check that the tree (h', k') is found in the selectional constraint Adj({f, k, m)); and

o we check that the tree yield wy ;, w;; “wraps around” the tree yield w;,, wy 4, i.e., that
the two copies of ¢ match and likewise j.

To some extent, the two computations above can be carried out independently of each other.
More precisely, the result of the check on the selectional constraint does not depend on the
value of positions p and ¢. Furthermore, once the check has been carried out, we can do away
with the anchor position A/, since this information is not used by the wrapping test or mentioned
in the result of step (1).

In order to implement the above idea, we define two new kinds of items, which we write as
[{f, k, m}, 2, 5T and [{h, k, m)T, 4,4, 7, 5. Ttem [{h, k, m),, 7] packages together all items of
the form [{k, k, m}, 1, u, v, j]. Similarly, item [{h, k, m)~, 7, 1, 7, 7'] packages together all items
of the form [{F',k',1)+,',4,7, 7] such that (k',k"} € Adj{{h,k,m)). We can then replace
step (1) with the following three steps: ’

Kh’a k,m},i, 0.9, .3']
[{h, &, m), 1, il (2)

I[(hﬁk:m>1i:j] [(h',k', 1)77 il:’:,j,j‘} o .
[k k)7, 4,4, 9, 7] (R, k) € Adj({h, k,m))

(3}
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[n, & myr, @4, 57 [(hkim), 420, ] |
[{h, k,myT, 2,0, 7] 4)

A comiputational analysis similar to the one carried out in §1 shows the following overall time
COsts step (2) takes time O(tg [w[’), step (3) takes time O(tg? {w|®) and step (4) takes time
O(tg |w|"). Thus the overall time cost for all the above steps is O{tg ||’ max{g, |w]}).

All the remaining steps in standard LTAG tabular parsing algorithms that have not been consid-
ered here can easily be accommodated within the indicated upper bound. Thus, steps (2) to (4)
can be integrated into a standard LTAG parser, providing a new parsing algorithm for LTAG
with worst case rnning time @ (tg |w|® max{g, |w(}).

3. Discussion

We have discussed standard LTAG, in which every elementary tree has exactly one lexical an-
chor. Multiply anchored trees can be handled straightforwardly and without additional cost: for
the analysis, simply consider one anchor to be primary when defining the grammar constant g
and when naming the tree (h, k). The parse table should be seeded with all of a tree’s anchor
nodes if and only if all those anchor words appear in the input w in the correct order. (Recall
that it was always possible to construct subtrees over substringe that do not include e priny
anchor.)

Qur inference rules enforce the traditional prohibition against multiple adjunctions at the same
node (Vijay-Shanker & Joshi, 1985). This prohibition has been questioned on linguistic grounds
(Schabes & Shieber, 1994), since for example a verb may need to select lexically for each of its
multiple PP adjuncts. To relax the prohibition it is sufficient to drop the symbol T throughout
the rules.

Our algorithm is an asymptotic improvement for any values of g, £, and |w|. However, we really
have in mind grammars where g is a smallish constant, much smaller than the vocabulary size.
In particular, we do not expect a word to anchor multiple elementary trees that have the same
labeled internal structure as one another, differing only in their selectional constraints. Thus,
the selectional constraints at each node in an elementary tree only depend on the tree’s head and
the internal structure of the tree itself. Grammars satisfying this requirement have been called
node-dependent or SLG(2) in (Carroll & Weir, 1997), and bilexical in (Eisner, 1997; Eisner &
Satta, 1999; Fisner, 2000). If we drop the above assumption, the grammar can capture lexical
relations of arity larger than two. For instance, in an LTAG which is not bilexical. a verb V,
could anchor many instances of the basic transitive-sentence elementary tree, in each of which
the selectional constraint at the object node required a specific object tree (with a specific head).
In this case, the selectional constraint at each V; tree’s subject node would depend on both V4
and its requifed object, thus establishing a relation between three lexical elements. Moreaver,
an upstairs verb V, could select for certain of these V trees and thereby restrict both ¥V, and
the head of V,’s object, again establishing a relation between three lexical elements. This style
of grammar can dramatically increase ¢ as a function of the vocabulary size. To overcome this
one would again have to substitute some factor that depends on the input string length.

Even in the bilexical grammars we expect, where g is unrelated to vocabulary size, ¢ can still
be somewhat large in broad-coverage grammars such as those cited in the introduction, which
include large tree families for each word. The literature describes some further tricks for ef-
ficiency in this case. Similar trees in the same family may be made to share structure (Evans
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& Weir, 1997; Carroll et al., 1998), “Supertagging” techniques (Srinivas & Joshi, 1999; Chen
et al., 1999) use contextual probabilities to eliminate some elementary trees heuristically before
parsing begins. Alternatively, under a stochastic LTAG (Resnik, 1992; Schabes, 1992), one may
prune away unpromising items, such as those with low inside probability. It should be possible
to combine any of these tricks with our technique.
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1. On the role of economy in grammatical derivations

Much recent work within generative grammar has made use of the idea that grammatical deriva-
tions exhibit a certain type of economy. The intuition behind this application of economy is a
familiar one: that the well-formed sentences of a language are as simple as they can be {given
the demands of expressiveness), and do oot involve any unnecessary lexical items or disloca-
tions. There have been a variety of formalizations of the relevant notion of economy, with a
range of empirical consequence. Let us look at one of these, proposed by Chomsky (1995, ch.4)
to account for the contrast between the examples in (1).

(1y a There seems {f to be [a unicorn in the garden}]
b. * There seems [a unicomn to be [¢ in the garden]]

From a certain perspective, the derivations of both of these sentences are equally complex: both
involve a single instance of syntactic movement. In (1a), it is there which raises from the subject
of the infinitival to the subject of seems. In (1b}, a unicern undergoes raising, from within the
small clause to the subject position of the infinitival clause. Why, then, should (1b} be blocked?
Chomsky adopts a derivational model in which phrase structure is built in a bottom-up fashion.
In such a model, the derivation of both exampies in (1) will begin by constructing the following
representation:

2) IT to be [a unicom in the garden]]

Chomsky assumes that every T(ease) head (for example, fo) has a feature that must be checked
during the derivation by the insertion of a DF subject in its specifier position, an instantiation
of the Extended Projection Principle (EPP). At the point in the derivation depicted in (2), then,
some element must be inserted into the specifier of TP position. Under the assumption that
merging a new lexical item into a structure is a simpler operation that syntactic movement,
Chomsky formulates the following prineiple of derivational economy:

(3) Prefer Merge over Maove

By (3), we are forced to merge there into the specifier of the TP in (2), rather than moving a
unicorn. When we reach the matrix clause, however, the fact that no additional [exical items
remain to merge forces us to employ the more costly move operation, (Note that the presence
or absence of there in these examples is, for Chomsky, determined prior to the onset of the
derivation. Further, on Chomsky’s theory structures with distinct numerations are not compared
for economy. See Chomsky (1995; 1998) for further discussion. )

* Thanks to Colin Wilson, and Paul Hagstrom for helpful discussion, to two anonymous reviewers for com-
ments, and to the National Science Foundation for their monetary support in the form af grant SBR-9710247.
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2. FEhminating the need for economy with TAG

What becomes of the contrast in (1) in a TAG context? Under the assumptions of Frank (1992;
to appear) concerning elementary trees, example (1a) derives from the adjoining of the seems-
headed auxiliary in (4a) to the T node of the tzee in (4b).

4y a. ¥ h. TP
T //\
B DP T
there
! T VP
seems | /\
to
v PP
ble /\
DP PP

municorn  in the garden

What about the exampie in (1b), then? On analogy with the derivation of (1a), we might derive
(1b) by adjoining (4a} into the initial tree in (5) at the higher T node.

(5) TP
/\

DP T
PN
there /\
DP; T
_— T

aunicorm -} VP

oy 133

in the garden

The ill-formedness of this example would then derive from the impossibility of elementary
trees like (3), which I take to derive from the absence in English of so-cailed transitive expletive
canstructions (TECs}, in which both an expletive and lexical DP appear in VP-external subject
positions.

(6) a. *There a cat has eaten the mice.

h. * There has a cat eaten 3 mice.

This analysis makes the immediate prediction that a language that permits TECs, and therefore
elementary structures like (5), cught to permit examples like (1b). This prediction is confirmed
in Icelandic. As seen in (7}, Icelandic permits both transitive expletive constructions and the
partizl raising construction (examples from Bobaljik and Thrdinsson (1998) and Jonas (1996)).

(7) a. pad hefur einhver kduur & mysnar
there has some c¢at  eaten mice-the

‘A cat has eaten mice.

-

b. had virdast margir menn vera { herberginu
there seem many men be-infin the room



87

Econamy in TAG

3. Expletives and the return of economy

It seems then that by using TAG we are able to explain the contrast motivating Chomsky's
principle of derivational economy in (3) without resort to any such principle. This constitutes
another case in which the use of TAG allows us to eliminate otherwise needed stipulations
from the grammar. There remains a hole in this line of argument, however, as there exists
an alterative derivation for the example (1b) that we have not yet ruled out. This derivation
involves the combination {either by substitution or adjotning) of the elementary tree in (8a)
with the seems-headed tree in (8b).

(8 a. TP b. TP
DP, ¥ DP/\T
e T T T
aunicon | VP lhere T Vp
| Py TN
o v PP ‘If TP
|
be i,-//\PP seems
in ihe garden

Clearly, there is nothing wrong with the elementary tree in (8a), as we take this tree to participate
in the derivation of well-formed examples like the following:

(9) A unicom seems to be in the garden.

The culprit, therefore, must be the elementary tree in (8b). What then is wrong this tree?

To answer this question, we must first face the issue of what licenses the presence of there
within an elementary tree. For Chomsky, the insertion of there is driven by the need to check
the EPP feature of T, which guarantees the insertion of a specifier. The proposal that T always
demands a specifier is not easily incorporable into a TAG context, at least not as a constraint
on elementary trees: otherwise we would exclude trees like {(4a) whose T heads lack specifiers.
Nonetheless, there are situations in which we will need to invoke some form of the EPP to
constrain elementary trees, For example, we will want to prevent the possibility of an auxiliary
tree like the following, in which the subject Bill has not raised to the specifier of TP position:

(10) T

T VP
| /N
had 5P
_— TN
Bill v T.
I
expected

Such an auxiliary tree, if aliowed in the grammar, could adjoin into a TP infinitival elementary
tree like (Ba), just as a raising auxiliary like (4a) would. In this case, however, the result would
be anomalous: .

(11) * A unicorn had Bill expected to be in the garden
{meaning ‘Bil} had expected a unicom to be in the garden”)

I suggest that TAG elementary trees are in fact subject to an EPP requirernent along the lines
that Chomsky suggests. That is, I assume that elementary trees are constructed in a derivational
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process along the lines proposed by Chomsky, but one which is restricted in the size of the
structures that it may construct. Every T head that occurs in such a derivation will include an
EPP feature that can be checked only by a DP in its specifier position. However, while Chomsky
assumes that all such EPP features must be checked at the eonclusion of the derivation, | assume
that the checking of such featres is subject to the following economy condition that constrains
the process of elementary tree formation:

(12) Maximal Checking Principle (MCP): Check as many features (i.e., satisfy as many
grammatical requirements) as possible within an elementary tree.

The MCP renders violable within an elementary tree domain the requirement that features that
need to be checked, if there is no way for them to be satisfied within an elementary tree.! This
means that the unchecked EPP feature in the tree in (10) is fatal since there is an element within
the elementary tree, the DP Bill. that could be raised to check this feature. The elementary tree
in (10) is therefore blocked by the alternative elementary tree in which the subject is raised to
specifier of TP.

Under the MCF, what becomes of the elementary tree in (4a)? One might reasonably expect that
this tree would be blocked by the tree in (8b), since the latter facks an unchecked EPP feature
(having been checked by the insertion of there).? I suggest, however, that the set of elementary
trees that are compared for the purposes of the MCP is restricted to those that are constructed
from the same set of lexical resources. or numeration in Chomsky’s terms. In the TAG context,
I assume that a numeration will also include the non-projected non-terminals that become the
foot nodes of auxiliary trees and sites for substitution. Since the elementary trees in (4a) and
(8b) are derived, respectively, from the distinct pair of numerations given halowi, the MCP does
not choose between these trees.

(13) a {T,seems T}
b. { there, T, seems, TP }
This leaves us in the position of correctly allowing the tree in (4a), but incorrectly allowing (8b)

as well, To rule out the latter tree, I assume that feature checking in elementary trees abides by
the following principle:

(14) All or Nothing Checking Regimen (ANCR): In an elementary tree, if some of the
features of head are checked, they must all be checked.

1 assume that T possesses not only its EPP feature, but also contains agreement features that
must be checked. Thematic subjects in specifier of TP will typically check both of these fea-
tures, satisfying the ANCR. Since there does not determine agreement, as seen in (15), I will
assume that its insertion into specifier of TP does not suffice to check T's agreement features.

(15) a. There is a unicorn in the garden.

b. There are three unicomns in the garden.

'I maintain Chomsky's original intuition that all uninterpretable features must eventually be checked, though
the relevanpt point here is the conclusion of the TAG derivation. To ensure this, we will translate all features
that remain unchecked within an elementary tree into canstraints on adjoining. One can do this in lerms of the
unification-based system of adjeining constraints of Vijay-Shanker (1988}, though alternatives are possible that
more direcily link up with the feature checking machinery discussed here. See Frank (to appear, ch.4) for more
discussion.

2For the purposes of simplicity. | assume that expletives can be present in a verbally-headed elementary tree,
without inducing a violation of the Conditicn of Elementary Tree Minimality (Frank, 1992; Frank, tc appear).
Altematively, we can assume the presence of a DP fromier node containing features that restrict substitution to
expletive-headed DPs.
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As a result, after insertion of there, only the EPP features of the T head in the elementary tree
in (8b) are checked. Since there are no lexical DPs within this clementary tree that could check
the agreement features of T, as occurs with the post-copular DPs in (15), the agreement features
will necessarily remain unchecked in this elementary tree, leading to a violation of the ANCR.
An anonymous review suggests that the ill-formedness of (8b) receives a simpler explanation
under a constraint I gave in Frank (1992} that was called, perhaps misleadingly, the Projection
Principle:

(16) If o is a non-terminal which appears along the frontier of an elementary tree 7, then
¢ is part of a chain whose tail is selected in 7, either through theta role assignment or
predication.

Under this constraint, T cannot project past T in an elementary tree headed by a raising predicate
because there is no thematic role or predication relation that could be assigned to (the chain) of
an element in the specifier of TP position. While the lack thematic role is clear enough, it is less
clear that there is no licensing predication relation. In Frank (1992}, I discussed two instances
of predication relations, the first between a modifier and the XP foot node of its elementary tree,
irrelevant to current concerns, and the second between a T head and an expletive subject. This
was meant to allow for the presence of expletive ff in subject position in constructions like the
following:

{17y a. It appears that Gabriel has finally fallen asleep.

b. Ila ¢ tiré sur la bateau
it has been fired upon the boat

“The boat was fired upon.’
To generate (17a), we will need an elementary of something like the following form:

(18) i

TN
P

T
it T VP
T
\ Cp
|
appears

This tree is stoikingly similar to the illicit one in (8b), and differs only in the content of the
expletive. Since the projection ponciple in {16) imposes no restriction on the content of ele-
ments that can enter into a predication relation, and indeed there seems no principled reason
for assuming that there cannot enter in a predication relation with T, it leaves unexplained the
contrast between {8b} and (18).

The ANCR, in contrast, allows us to explain why the elementary tree in (18) is well-formed. To
see how, observe first that iz, unlike there, systematically induces third person singular agree-
ment on the verb, even in the face of a clausal conjunct that could induce plural agreement on
the verb when in subject position (McCloskey, [992). ’

(19) a. It seems/*seem equaily likely at this point that the president will be reclected and
that he will be impeached.

b. That the president will be reelected and that he will be impeached seem equally
likely at this point.

89



9%

Robert Frank

Consequently, we will assume that iz, unlike there is able to check T's agreement features. As a
result, T's EPP and agreement features are both checked in the elementary tree in (18}, with no
ANCR violation.?

If the preceding discussion is correct, we must assume that dative experiencers, as oceur in
raising examples like {20). are incapable of maving te subject position to check the EPP feature
of T.

(20) A unicomn seems fto Gabriel] to be in the garden.

If such movement were possible, the presence of a dative in a seem-headed elementary tree
would affect the potential satisfaction of T's EPP features (putting aside for the moment ques-
tions about checking of agreement features and the ANCR). And as a result, the MCP would
rule out an auxjliary tree in which this dative was not raised to specifier of TP position, effec.
tively blocking raising past experiencer arguments as in (20). In a language in which datives
could move to subject position, checking EPP and agreement features, we would expect to find
just this pattern, where raising without experiencers is grammatical, but raising across experi-
ences, as in (20), is impossible. In fact, this is exactly what is observed in Icelandic (Sigurdsson,
[996).* Tt has been convincingly demonstrated that Icelandic alows dative arguments to surface
in subject position {see. among others, Zaenen et al. (1985)).

(21) Sirdakunum [feiddist
the boys-dat bored-3sg
‘The boys were bored.’

As seen in (22), [celandic allows raising when the raising verb has no experiencer argument,

(22) Margir menn virdast vera i herberginu
mary men seem-3pl to be in the room

However, when the raising verb projects an experiencer, such raising is impossible, with the
grammatical form having the experiencer in subject position.?

(23) a *Margir menn virdast mér vera { herberginu
many men seem-3pl to me be-inf in the room

b.  Mér virdast margir menn vera { herberginu
to me seem-3pl many men be-infin the room

4. Further implications of the MCP; superiority effects

The effects of the MCP can also be observed in the context of wh-movement. Let us assume
that wh-movement is driven by a wh-feature in the C head to whose specifier movement takes
place. This means that in the standard TAG derivation of examples like (24), the auxiliary tree
representing the matrix clause will contain an C head with an unchecked wh-feature.

3Though space considerations prevent me from demonstrating this here, the ANCR has a number of conse-
quences, allowing us to predict the differing distributions of if and rfiere, as well as deriving Burzio's generalization
that the possibility of structural case assignment by a verb implies the existence of an extemal argument {Burzio,
1986). See Frank (to appear, ch.4) for datails.

4See also Boeckx ([999) for extensions to Romance. .

*For reasons of space, | omit discussion of how the matrix T's agreement features are checks! or the NP in
the lower subject position, and how the elementary tree with the dative experiencer subject satisfies the ANCR.
In brief, ) assume that T enters into an agreement relation with the dative subject and also (at least oplionaily)
with Lhe raising verb's TP complement, into which the agreement features of the embedded nominative subject
have percalnted, Evidence in favor of this view comes from the optionality of such agreement, and the locality
conditions on such agreement. See Frank (1o appear, ch.4) for extended discussion,
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(24) Which song did Daniel think that Gabriel was playing?

As before. the presence of this unchecked feature, per se. is not problematic for the well-
formedness of this elementary tree. since there is no element within this tree capable of checking
the feature. If however such an elementary tree included a wh-phrase capable of checking this
feature, the MCP would ntle out any elementary tree in which the C feature remains unchecked,
for example (17a}, in favor of one where it is checked, as in (17b).

(25) a. Cc b. CP
C TP DP; C
T
op ] who C TP
A&h- - f,‘/\T
who thinks C s

thinks C
This leads us to predict the impossibility of long-distance extraction of a wh-element into the
specifier of CP of a clause which itself contains a wh-phrase. Such extractions are, in fact,

impossible, as shown in the following English and German examples (the [atter from Heck and
Miiller (2000)}):

(26) a. *Which song does who think that Gabriel was playing?
b. Who thinks that Gabriel was playing which song?

(27) a. *Wen hat wer gesapgt, dal Maria liebt?
whom has who said  that Maria loves

b.  Wer hat gesagt, daf Maria wen  liebt?
who has said  that Maria whom loves

This explanation does not extend to local “superiority™ cases, in wiuvi wie ©h-phrase mavas
across another within a single clause, as the MCP does not dictate which element must move
when there are two local possibilities. Consequently, all else being equal, we would expect that
such cases to be well-formed, an expectation that is bome out for German:8

€28 & Wen habwergetroffen? -

whomn has who met
b.  * Which song was who playing?

As seen in (28b), however, even these local cases are ill-formed in English, This does not falsify
the MCP, but tmerely renders its effects untestable. One might fear that there is redundancy
between the principle responsible for the ill-formedness of (28b) and that underlying the ill-
formedness of (26a). However, there is evidence that these are distinct. As noted originatly by
Baker {1970), loca! superiority violations are obviated in multiple wh-questions so long as the
in-situ wh-phrase, whe in the example below, is interpreted in a higher clause.

(29) Q: Who asked which song who was playing?
A Alice asked which song Gabriel was playing/™ Alice did.

The effect of this higher interpretation is that both the matrix and subordinate occurrences of
who must be answered. This avoidance of superiority effects is not possible, however, when
the superiority viclation is of the long-distance sort governed by the MCP. Thus, the following
example is not possible, regardless of the scopal interpretation of the in-situ wh-phrase wha.

SThe German pattern of well-formed local superiority, and ili-formed long-distance superiority is replicated in
Serbo-Croatian (Richards, 1997, p.32).
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(30) * Who asked which song who thought that Gabriel was playing?

5. Conclustons

1 take the range of data discussed here to provide substantial support for the role of economy in
determining the well-formedness of TAG elementary trees, particularly in the form of the MCP
and ANCR. The fact that these econamy principles apply to TAG elementary trees enforces a
certain locality on the process of determining which structures are most economical. Such a
local notion of ecenomy has in fact been proposed by a number of authors including Collins
(1997) and Chomsky (1999) on rather different emipirical grounds. I would like to sugpest
that we are seeing a convergence to the idea, familiar from work in the TAG tradition, that
syntactic structure is composed from non-recursive structural elements whose well-formedness
is independently determined.
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Abstract

In Korean, a class of lexemes of Chinese origin exhibit both nominal and verbal behavior.
Specifically, they can assign lexically idiosyncratic case, but require a semantically vacuous
fight verb in order to form a sentence and ave themselves marked with accusative case. In this
papet, we propose a TAG-based account of this behavior, and propose some generalizations
towards a pure representation of lexical argument structure.

1. Linguistic Facts and Issues

In this paper, we provide a syntactic analysis of Sino-Korean light verb constructions (LVC
henceforth) that are composed of the light verb ha and an activity-denoting noun of Chinese
origin.! We will refer to this activity-denoting noun as the ‘base’ of the LVC. The argument
structure of LVCs come from the base, and the light verb is semantirally wocuous ond doos net
assign any theta roles. This is shown by the fact that although the examp}es‘ in (1) all contain
ha, they have different argument structures.

(I) a John-i swuhak-ul yenkwu-lul ha-yess-ta.
John-Nom math-Acc research-Acc HA-Past-Decl

‘John researched math.’

b. Kicha-ka Seoulyek-ey  tochak-ul ha-yess-ta.
train-Nom Seoul-station-at arrival-Acc HA-Past-Decl

" “The train arrived at Seoul station.’

c. Kicha-ka Seoulyek-eyse chwulpal-ul  ha-yess-ta.
train-Nom Seoul-station-from departure-Acc HA-Past-Decl

“The departed from Seoul station,’

For instance, the arguments in (la) are agent and goal, those in (Ib) are patient and goal, and
those in (1c) are patient and source.

If, however, the theta roles in LVCs are aSSIgncd by the base, it is puzzling why the argument
NPs are syntactically realized outside of the base NP. The case postpositions such as Acc, -ey
and -eyse on the argument NPs indicate that they are daughters of VP, and not the base NP. An

"Han has been partially funded by the Army Research Lab via a subcontract from CoGen'Tex, Inc., and by NSF
Grant SBR 8920230, We would like to thank Aravind Joshi, Teny Kroch, Martha Palmer, and Anoop Sarkar for
useful discussions,
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daughter of another NP requires genitive or null case postposition in Korean, We
o the first kind of case as VERBAL CASE, and the second as NOMINAL CASE.

a5 noted by (Grimshaw & Mester, 1988), there are restrictions on argument reahza—
‘which can be ¢learly shown with ditransitive LVCs, as in (2).

2y a John-i Mary-eykey inhyung-ul senmwul-ul ha-yess-ta.
John-Nom Mary-to  doll-Acc  gift-Acc  HA-Past-Decl

‘John gave a gift of a doll to Mary.’

b. John-i Mary-eykey inhyung(-uy) senmwul-ul ha-yess-ta.
John-Nom Mary-to doll(-Gen) gift-Acc  HA-Past-Decl

c. *John-i inhyung-ul Mary-eykey-uy senmwul-ui ha-yess-ta.
John-Nom doll-Ace  Mary-to-Gen  gift-Acc  HA-Past-Decl

d. *John-i Mary-eykey-uy inhyung(-Gen) senmwul-ul ha-yess-ta.
John-Nom Mary-to-Gen  doll(-Gen) gift-Acc  HA-Past-Decl

The base semmwul (‘gift’) assigns agent, goal and theme. In (2a), all the argument NPs are
realized outside of the base NP. In (2b}, the agent and goal arguments are realized outside of
the base NP, but the theine argument is realized inside the base. However, it is not possible to
realize theme argument outside of the base when the goal argument is realized inside the base,
as shown in (2c), and it is not possible to realize both theme and goal arguments inside the base,
as shown in (2d).

(Grimshaw & Mester, 1988) (G&M henceforth) summarize the restrictions on argument real-
ization as follows: (i) the subject argument must always be outside the base NP; (ii) at least
one argument apart from the subject must be outside the base NP; and (iii) for nouns that take
a theme and a goal, if the theme argument is realized outside the base NP, the goal must also be
realized outside the base NP. In what follows, we first briefly discuss some previous analyses
and their shoricomings, and present our own analysis using the framework of Feature Based
Lexicalized Tree Adjoining Grammar. We discuss English data in comparison, and conclude
with a discussion of noun phrases.

2. Previous Analyses

According to G&M, a light verb such as fig has no argument structure on its own and it occurs
with a noun which is ‘theta-transparent.” Theta-transparent nouns can transfer some or all of
their arguments to the argument structure of the light verb. This mechanism allows the light verb
to directly assign theta roles to the argument NPs in syntax and such argument NPs are realized
outside the base NP. They further assume (following much previous work) that arguments have
a hierarchy according to protninence. For instance, the agent is more prominent than the goal,
which is more prominent than the theme. Based on this assumption, they propose that when
a theta role is transfered (e.g., the theme), any theta roles that are higher in prominence must
transfer as well (i.e, the agent and goal). This explains the ungrammaticality of (2¢). G&M also
stipulate that the base noun must transfer at least one internal argument in order to be licensed.
Otherwise, the theta-criterion is violated, since the base noun does not receive a theta role from
anywhere. This is why (2d) is vngrammatical under G&M’s system.

G&M wrongly predict that intransitive LVCs do not exist, since there is no internal argument to
participate in the transfer. But intransitive LVCs clearly do exist, as shown in (3) and (4). Note
that while (4) may be ambiguous between a heavy and light verb reading of ha, (3) is not, since
the subject is not an agent.
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'(3) John-i samang-ul ha-yess-ta. (4) John-i swuynong-ul  ha-yess-ta,
John-Nom death-Acc HA-Past-Dec] John-Nom swimming-Acc HA-Past-Decl
*John died’ ‘John was swimming.'

For this reason, (Yoon, 1991) rejects G&M’s argument transfer theory and proposes ‘argument
sharing’ mechanism. He argues that the light verb is thematically underspecified and so unsat-
urated. This forces the base noun which has theta structure and the light verb to undergo the
operation of Theta Identification, allowing the argument structure of the base noun and that of
the light verb to be shared. This sharing is viewed as the unification of the argument structure
of the base noun into the underspecified argument structure of the light verb. Yoon’s theory
predicts that when there are more than one internal arguments, they must all be realized outside
of the base NP. But this is an incorrect prediction: in ditransitive LVCs, while the goal argument
is realized outside the NP, the theme argument can be realized inside NP, as shown in (2b).

The same problem persists in (Park, 1992). He argues that the categorial status of the base is not
a noun, but a verb. Thus, it assigns theta-roles just as any other verbs. The light verb is simply
an auxiliary verb that supports inflection. But if the base is simply a verb, then (2b) is wrongly
predicted to be ungrammatical.

3. TAG Amalysis

The key to our analysis is the assumption that the base is underspecified with respect to word
class (verb or noun). We propose that this base is the anchor of an elementary tree with all its
arguments and that it acquires a noun status only after the light verb adjoins into the clementary
tree. The assumption that the category of the base is unspecified is well-motivated for two
reasons: (i) The base form crigir~fe< from Chinese, in which the same form is used both as a
noun and a verb, (ii) there is no consensus in the literature as to Wiai tho cofanary of the hoca
is and positing that it is either a noun or a verb leads to difficulties, as discussed in §2, We
represent this by using the label X for its category {which projects to XP). We also assume that
each node in a tree is associated with a category feature CAT with values such as V(ERB)} and
N(OUN). The CAT feature of nodes labeled V, VP, or S is necessarily v for both the top and
bottom feature structures, while nodes labeled N or NP necessarily have [CAT:N1.2 But the CAT
feature of the base of LVC is unspecified. In addition, we assume that nodes in a projection have
a full set of morpho-syntactic features. In this paper we use only the binary feature [TENSED: 1.
We assume that the base is [TENSED:-] (since it carries no tense morphology), that the S node
is marked [TENSED:+], and that the TENSED feature is shared among the nodes of a projection.
We assume that when a lexeme (of any category) forms a syntactic predication structure it
projects to a maximal verbal projection (VP) and we refer to this VP as the PREDICATE. Fur-
thermore, following (Heycock & Lee, 1989), we assume that in Korean, nominative case is
assigned by the predicate, not by Infl. (Heycock & Lee, 1989) use as evidence the presence of
multiple nominative constructions and the fact that infinitivals can have nominative case-marked
subject. As a result, all clausal structures need a VP node as a sister to the subject argument to
license nominative case.” We also assume that the lexeme projects all of its argument pésitions
in canonical order according to theta hierarchy. That is, the most prominent argument attaches

2The node labels are not actually used in our analysis, and we could alsa label all nodes XP. We retain the
traditional labels for clarity.

*This is compatible with the XTAG analysis of the predicative use of nouns and adjectives in English, the trees
for which project from N (or A) to § via NP (AP) and VP {though perhaps the VP is less motivated in English than
in Korean because the adjoined auxiliary provides the nominative case in English, not the predication structure
itself).
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to the highest projection, and the least prominent attaches to the lowest projection.® We assume
that each lexeme idiosyncraticaily fixes a case grid for its arguments,” which is only realized
in appropriate syntactic contexts. (Thus, rather than speak of unified case assignment, we will
henceforth speak of case assignment by the lexical head and subsequent case realization in a
particular syntactic context.)

[sal v tn.nsu!=+:|
[cn: ¥ ensed = ISIJ

/\ [m =¥ tensed m [53]

[ ““:"“'“:] NPI ‘ vP [wl=VEl]l.chiEdl|f-l]

/\ [eat = L1 senses = 165

[ ase = epey] NP, } XP) P12 emea = 7F]

/\ [eut = 2h1emset = 171

[ cuse = imc] NP] * )(Pz [r.-mn[S]chﬂl"lM:l

[cm ={3] tenstd = lﬁlj
)l: [cal = |4} 1epsed = ]

senmwul

Figure 1: Sino-Korean base lexeme senmwul ‘gift” projecting to a predicative structure

In Korean, a verbal case such as Nom, Ace, eykey is realized when the head has feature [CAT: v];
while if the head has feature [CAT:N], Nom and Acc are realized as Gen or null, while any
other postpositional case is realized as that postposition followed by Gen.® As an example, the
elementary tree for the base senmwul ‘gift’ is shown in Figure 1, which is a ditransitive structure:
Assuming the argument hierarchy agent - goal — theme, as in G&M, agent (as indicated by
{case:nom]) is attached to S, goal (as indicated by [case:eykey]) is attached to VP and theme;
(as indicated by [case:acc]) is attached to XP,. (The subscripts on nodes are used only for
distinguishing different nodes, they play no role in the analysis.) :
‘We now tumn to the light verb. Its properties can be best explained in comparison to heavy ha.
Heavy ha (Figure 2, left) is a standard transitive verb: it has two arguments (i.e., theta-marked:
dependents), to which it assigns nominative and accusative case, respectively. (Nominative case
is realized in a syntactic predication environment, while accusative case is realized whenever
the lexical head is verbal, which it is by assumption.) The light verb ha (Figure 2, right} differs
from the heavy ha in that the light ha loses its ability to assign theta roles: it has no arguments
of its own. Furthermore, jt has lost its ability to create a predication structure. Thus it can no
longer assign nominative case. It therefore does not project to a VP after taking its complement,
but only to an XP, with [CAT:v]. However, light ha retains its ability to assign accusative case
as well as the feature [CAT:N] to its complement. Since there is only one substitution node left,
and since both root and substitution node are labeled XP, the tree is optionally an auxiliary tree
{as is the case for English predicative auxiliary trees).

4We do not deal with the issue of optional arguments in this paper.

3Alternatively, we could assume cach Iexemne idiosyncratically chooses a set of theta-roles and then devise 2
functional mapping that derives the cases of a lexeme from the set of theta roles. Such an approach is only a
notational variant of ours, and, as it has no additional content, we do not pursue it here,

%In other languages, the mapping between verbal and nominal case may not be as straightforward and each may
be marked idiosyncratically from the head.
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Figure 2: Heavy ha (left) and light ha (right)

The feature clash between [TENSED:-] on the base and [TENSED:+] at the root of the tree in
Figure 1 forces the adjunction of light ha. We can adjoin this tree at either of the two XP nodes in
the tree in Figure 1: if we adjoin at XP,, the [owest argument NP, is realized with genitive/null
case (as in (2Zb)); if we adjoin at XP,, the lowest argument is realized with verbal case (as
in (2a)). In both cases, NP, and NP, are realized with verbal cases. Our analysis predicts
the pattern of data introduced in §1, while specifically avoiding the less appealing aspect of
G&M’s and Yoon’s analyses, nameiy tue cuinbu.soine mochunizme of argnment transfer or
theta-identification, and the stipulation that agent and at ]east one internal argument must be
transferred from the base. In fact, our analysis correctly predicts the existence of intransitive
LVCs such as (3). The unique argnment is the most prominent argument trivially and so it
simply attaches to S, and receives nominative case from the predicate VP.?

4. Comparison to English Light Verb Constructions

Unlike in Korean, in English LVCs, all the internal arguments are realized within an NP. For
instance, in a ditransitive light verb construction such as make a donation, the theme and goal
arguments are nominal, as shown in (5). The theme 70,000 dellars requires of, indicating that
it is a sister of a noun, not a verb, Although it is rather difficult to tell whether the goal to the
charity is nominal or verbal, it clearly has the possibility of being nominal, as shown in (6).

(5) a. *John made a donation 10,000 dollars to the charity last year.
b.  John made a donation of 10,000 dollars to the charity last year.

(6) ‘Twenty donations of 10,000 dollars to the charity occurred last year.

In the spirit of (Larson, 1988), we assume the structure given in Figure 3 (left) for ditranstives
with a dative NP. We do not postulate a privileged predicate VP for English, in contrast to
Korean, since nominative case assignment in English is done through a tensed verb. This is
supported by the fact that infinitivals in English cannot have a nominative case-marked subject
NP, We propose that the light verb make anchors the auxiliary tree given in Figure 3 (right). The
light verb tree is similar to the Korean light verb tree in that the root node has [CAT:V] and the
foot node has [CAT:N]. This tree can only adjoin to XP1, constrained by the English SVO word

"In the English XTAG grammar (The XTAG-Group, 1998), the light verb and the base noun are anchors of
a single elementary tree. Although this analysis works for English for all practical purposes, extending it to
Korean forces us to postulate multiple elementary trees for a single Sino-Korean lexeme, failing to account for the
systematic variation in the syntactic realization of its argument structure. In §4, we will show that our analysis can
also be extended to Bnglish, allowing a uniform anaylsis of LVCs in both Korean and English.
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order. Once the adjunction takes place at XP1, the [CAT: ] feature on XP2, X2', X2, X1’ and
X1 will all come to have the value N. Thus, NP2 must be realized with a preposition af, and
X1 must be realized as a nominal form donation. Further, the adjoined light verb make assigns
a nominative case to subject NPy, and an accusative case to its NP complement a donarion of
10,000 dollars to the charity.

—————

51] -7 o
feet = VIII] -7 o
2 ™
NP1 XPi [cat=[1]] )
} Nt =21 /XT| B
Xi'[cat=[2]] I e
car=[31]
. XP2 [cat = [3)] ’

x1{c]nt 50 [eal = (4]} "

Adonatet| NP2 * X2 [eat = [4]]
/[{m 511
Xfeat=(51] PP
% P NPS}

Figure 3: Ditransitive with Dative NP (left) and Light Verb make (right)

According to Larson, ditransitive sentences can undergo dative shift deriving a double object
construction. If dative shift applied to the ditransitive structure in Figure 3, one might expect to
derive from (5b) a string as in (7).

(7) ¥ John made the charity a donation of 10,000 dollars last year.

If we blindly apply dative shift to the ditransitive structure in Figure 3, abstracting away from
details, the case marking fo on the goal argument NP; (the charity in (5b)) would disappear,
and so it could in principle move up to [Spec, XP1] to receive case. But gnce the adjunction
of the light verb takes place at XP1, ail the projections of X2 and X1 would become nominal,
disallowing any case assignment to NPs. This leads us to conclude that dative shift cannot apply
to sentences such as (5b), which means that the only way to derive (7} is through a ditransitive
full verb make as in John made Mary a cake. But then, this ends up in semantic conflict between
full ditransitive make and dorartion. In (7), make requires a direct object who is a beneficiary of
John's action, but the direct object the charity is behaving as a recipient due to the presence of
the nown donation. .
Our analysis on the Korean LVC therefore can be extended to the English LVC, allowing for a
unified account of LVCs in both langrages as well as accounting for their differences.

5. Towards a Pure Representation of Lexical Argument Structure
In Korean, the Sino-Korean lexemes that we have discussed in §1 can also project to an NP, Ini
this case, all arguments are obligatorily realized using genitive case marking.

{8) Johnm-uy Mary-eykey-uy inhyung(-uy) senmwu)
John-Gen Mary-to-Gen  doll(-Gen}  gift
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‘JTohn's gift of a doll to Mary’

The question arises how these NPs are represented. We assume that the same Sino-Korean lex-
eme can project to an NP or to an S with the same argument structure, and thus we need a unique
representation of lexical argument structure. Our current representation is fixed to project to S.
We propose to extend our analysis by assuming that there is an underlying lexical argument
frame (LAF), a representation of pure argument structure in which syntactic categories (i.c.,
node labels and the CAT feature) are not yet fixed. Node labels are added (as features) during
the lexical phase of a derivation, when an LAF is instantiated with syntactic features prior to
the syntactic derivation involving other trees {also see (Chomsky, 1970)).

Specifically, we will now represent all node labels as XP, X', or X. The difference between the
verbal and nominal node labels will now be represented at all nodes using the feature [CAT: |.
But [CAT: ] does not yet account for the difference between VP and S, so we need to introduce
new features in order to represent our analysis of the LVC (which crucially relies on the VP/S
distinction).

As discussed in §3, in Korean, the VP represents an unsaturated syntactic predication structure,
the nominal argument is the subject of predication, and the § represents a saturated predication
structure. We will capture this analysis with two new binary features, PRED and SUBYPRED,
which indicate the presence or absence of an unsaturated predication structure and of a saturated
predication structure, respeciivoly. e ulat |[PRED:- SUBJPRED:+] does not make sense and is
assumed not to occur.

= ad = - ; - cal sV ensed = +
XP [:al =V lensed =+ pred = # subjfired ‘+:| XPr [pred. = subipred = - ]
[cnt =V tensed = (3] pred & + subjpred = +:|
cat=V Lansed = 4
pred = - subjpred = -
Xp ‘ < [cal:Vunsed:[S] pred =+subjPre.d=‘:| XP? YpP [ﬂﬂl=Vh'r|sed=+ :|
3 [Cnl: &= ¥[1] tensed = [6] pred = + subjpred = -:I ‘ pred = - subjpred = -
cake = acc
case = flom cal="V ented =+ ]
[ caoreN } cal= [{] tensed = [6) st x N [pred--mhjpmd=-
pied =- subjpred =- tensed: - v cote ¥ tensed = + :|
XF; J’ XE, cal = (2] 1epsed = 7] pred=- I:P"d = - subjpred =-
pred = - sobjpred = - subjpred =-

cnse = eykey ha
cat=N
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XE, § ]

P2 cat = [3] tensed = {B] pred = - subjpred =-:|

I: case = a:c:l
cat=N [cal = [5] tensed = [8] pred = - subjpreu = j
)l( [:u\:'m tenged = - pred = - subjpred = - :l

senmwul

Figure 4: Base lexeme senmwul ‘gift’ (left) and light verb ha (right), not using node labels

We now show how our new way of representing node labels accounts for the LVC data by
assigning the new features to the nodes in our example (Figure 1). Clearly, none of the nodes
labeled XP in Figure 1 form predication structures, so all feature structures associated with
them are [PRED:-, SUBJPRED:-]. The subtree anchored at the VP node represents the predicate,
so the hottom feature structure of the VP node is [PRED:+, SUBJPRED:-]. Since no further
adjunction at the VP node can alter the fact that a predication structure exists, the top feature
structure is also [PRED:+, SUBJPRED:-]. Finally, the subtree rooted at the 8§ node {(even if
adjuncts are adjoined to it later} is the saturated predication structure, so both bottom and top
feature structures get [PRED:+, SUBIPRED:+]. The new tree for semnwul is shown in Figure 4
on the left.
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fight ha. Since it is a light verb, it contributes the {CAT:V] information, but
actic predication structure on its own (since it is semantically vacuous),
re, it cannot be adjoined into an already existing predication structure, because pred-
ion structures are necessarily verbal (by assumption) and ha’s footnode is labeled {CAT:N].
refore, the root and foot nodes of light ha have top and bottom features labeled [PRED:-,
SUBIPRED:-]. The new tree for light ha is shown in Figure 4 on the right. It is clear that our
previous analysis of the light verb construction facts carries over essentially unchanged to the
new representation.

Thus, we have shown that we can represent the information contained in node labels as features
in a motivated manner. We can now define an LAF (i.e., a syntactically neutral representation
of lexical argument structure) as a tree projected from a lexeme with substitution nodes for all
its arguments, in which all syntactic features (CAT, PRED, SUBJPRED, TENSED) are undefined,
Specifically, if we take the representation in Figure 4 on the left and set all syntactic features
to undefined, then we obtain the LAF for semnwul. This LAF is the starting peint for lexical
derivations. Not all assignments of values for the four syntactic features are valid. In fact,
as mentioned above, in Korean, only verbal structures (with [CAT:V]) can create nodes with
[PRED:+], [SUBJPRED:+], or [TENSED:+] -— the features simply don’t make sense for [CAT:N].
Thus, if the choice of projecting to a verbal predication structure is made, then the analysis
presented in §3 follows. If instead we choose [CAT:N] at the root node, then we do not get a
predication structure, light sz cannot be adjoined, and all arguments are realized in the genitive,
as desired.

6. Conclusion

We have shown how we can derive wic Siwe IIorzo» TV by assumine that the base lexemes
have a single entry in the lexicon and a single light verb ha is adjoined into them to obtam
the LVC. We have suggested that our analysis extends to English light verb constructions as
well. Finally, we have shown how this analysis points to a TAG-based representation of lexical
argument structure independent of syntactic categories such as lexical class. In future work, we
intend to investigate more cross-linguistic data on LVCs in order to verify that our approach
carries over to different types of LVCs, and we intend to verify our TAG-based representation
of lexical argument structure by investigating nominalization in different languages.
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Abstract This paper investigates the time and
space complexity of word order compuiation in
the psycholinguistically motivated grammar for-
malism of Performance Grammar {PG). In PG,
the first stage of syntax assembly yields an unor-
dered free (mobile’) consisting of a hierarchy of
lexical frames (lexically anchored elementary
trees). Associated with each lexical frame is a
linearizer—a Finite-Stare Automaton that locally
computes the left-to-right order of the branches
of the frame. Linearization takes place after the
promotion compenent may have raised certain
constiruents (e.g. Wh- or focused phrases) into
the domain of lexical frames higher up in iic
syntactic mobile. We show rthat the worst-case
time and space complexity of analyzing input
strings of length n is O(n’) and O(n'), respec-
tively. This result compares favorably with the
fime complexity of word-order computations in
Tree Adjoining Grommar (TAG). A comparison
with Head-Driven Phrase Structure Granmar
(HPSG) reveals that PG yields a more declara-
tive linearizarion method, provided that the FSA
is rewritten as an equivalent regular expression.

1. Performance Grammar

Performance Grammar (PG; Kempen, 1999)
is a psycholinguistically motivated grammar
formalism for analysis and generation. Some-
what simplified, and in the terminology of
TAGs (cf. Joshi & Schabes, 1997), PG de-
fines lexically anchored initial trees and gen-
erates derived trees synchronously linked to
conceptual struectures described in the same
formalism (as in Synchronous TAGs; Shieber
& Schabes, 1990} and it factors dominance
relationships and linear precedence in surface
structure trees (Joshi, 1987), PG differs from
recent TAG versions in that there are no
auxiliary trees, and that adjunction is re-
placed by a combination of substitution—the

Gerard Kempen
Dept. of Psychology, Leiden Univ.
PO Box 9555, NL-2300 RB Leiden/NL
kempen@fsw.leidenuniv.nl

only composition operation—and finite-state
linearizers that take care of vertical move-
ment (promotion’) of phrases and of the lin-

ear order of branches of derived trees.
g

summ

NP v 5 ADVP|PP|S
/ kKnow \\
NP 8
hL SUFJ HF DﬂBI
Pf|° NP \I' NP
wle // hate \
hd hL

[
SO p—

Dana
Fig. 1. Simplified lexical frames underlying the sen-
tences We know Dana hates Kim and Kim we know
Dana hates (example from Sag & Wasow, 1998} Or-
der of branches is arbitrary. The lines containing filled
circles denote substitution (feature unification).
More precisely, PG's initial trees, called lexi-
cal frames, are 4-tiered mobiles. The top
layer of a frame consists of a single phrasal
node (called the root'; e.g. S, NP, ADJP, PP},
which is connected to one or more functional
nodes in the second layer (e.g., SUBJect,
HeaD, Direct OBJcct, CoMPlement, MOD-
fier). At most one exemplar of a functional
node is allowed in the same frame, except for
MOD nodes, which may occur several times
(cf. the Kleene star: MOD*). Every func-
tional node dominates exactly one phrasal
node ('foot'} in the third layer, except for HD
which immediately dominates a lexical (part-
of-speech} node. Each lexical frame is 'an-
chored' to exactly one lexical item: a 'lemma’
printed in the fourth layer below the lexical
node serving as the frame's HeaD (Fig. 1).



ydes in the first and the
martrices (not discussed
re), which can be wnified with
matrces as part of the substitution
 “The unification operation is non-
'recur'si\-e and always involves one root and
one foot node of two different lexical frames
(see the filled circles in Fig. 1), Only local in-
formation can prevent a substitution, No
feature information is percolated through the
derived tree.

Left-to-right order of the branches of a lexi-
cal frame is determined by the linearizer’as-
sociated with a lexical frame. We assume that
every lexical frame has a one-dimensional ar-
ray specifying a fixed number af positions
(slots, ‘landing sites’} for constituents. For
instance, verb frames (i.e., {frames anchored
to a verb) have an array whose positions can
be occupied by a Subject NP, a Direct Object
NP, the Head verb, etc. Fig. 2 shows the 12
slots where constituents of English verb
frames can ga. The positions numbered F1
through F3 make up the Forefield (from Ger.
Vorfeld) M1 through M7 belong to the Mid-
field (Mintelfeld), Bl and B2 are the Back-
field (Machfeld). The annotations at the arcs
denote possible fillers of the slots. For ex-
ample, slot FI can be occupied by one con-
stituent: either a focus carrying constituents
(in Main clauses only), a subordinating con-
junction (in an adverbial MODifier clause), a
Wh-phrase ‘promoted’ out of a lower lexical
frame (see below), or a non-promoted Wh-
phrase. The HeaD verb of a clause is as-
signed the first Midfield slot {M1), possibly
preceded by the complementizer o and fal-
lowed by a particle. Lexical frames anchored
to other parts of speech than verbs (e.g. NP-
or PP-frames) have their own specialized
linearization arrays.

A key property of linearization in PG is that
certain constituents may move out of their
'own' array and get 'promoted' to a position in
an array located at a higher Ievel in the hier-
archy of lexical frames. Promotion takes
place when, due to subcategorization con-
straints, a linearization array is ‘truncated’,
that is, instantiated incompletely. For in-
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stance, if a verb takes a non-finite comple-
ment clause, the whole Forefield (slots Fl
through F3) will be missing from the com-
plement's array. Due to incomplete instantia-
tion of the linearization array of a lexical
frame, one or more constituents of that lexj-
cal frame may be deprived of its landing site.
In that case, these constituents move up the
hierarchy of lexical frames, looking for an
instantiation of their landing site in a higher
array. The first (i.e. lowest) landing site is
always chosen as the final destination.

Truncation of linearization arrays only affects
lareral (i.e. left- or right-peripheral) slots.
The slot occupied by the head of the phrase is
never truncated away, which implies that the
head of a lexical frame is never promoted.
How many slots at either side of the head are
actually instantiated, is determined strictly
locally, i.e. depends only on information
containad bw the lexical frame the array be-
longs to, and its parent Traus {15 unifination’

partner).
Main Cl: Foer
MOD Cl: CMPR/ conj Comysl. Cl: CMPR that
Tormoted -consiit.
Wh-constit./non-5UB]
e SUBJ/NP | Wh @ CMPR fo < HD < PRT
. SUBI/NP____ . DOB)/pess.|1efl. pro

@ 10B] / pers. | refl. pro .__@ 10B] >
Y
@@=
CMP-§

Extraposed constit.
@ >® posed constit. g,

Fig. 2. Linearization array for constituents of §-
frames. Placement conditions are amnotated on the
arcs. E.g., ,SUBJ/NP|WR" at slot F3 means: SUB/Ject,
provided it is an NP or a Wh-phrase; ,<" indicates
the precedence relation berween constituenis sharing a
slor. MODifiers have not been depicted.

The mechanism controlling the distribution
of constituents avey the instantiated slots of a
linearization array, is modeled as a Finie

Stare Automaron (FSA). The FSA associated
with a lexical frame traverses the instantiated
slots of its array from left to right. At each
slot, it inspects the set of constituents that are
waiting for placement in the array, and in-
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srfs there any constituents meeting the
scement conditions (arc labels in Fig. 2).

jg. 3 illustrates promotion of a focused Di-
¢t Object. Examples (1)-(4), taken from
acgeman (1994), demonstrate some subtle
onsequences of PG’s word ordering scheme
for Wh-questions'.

9 s

/\

bow ar
';j.; NP £ NP Ml v w
Y T
im we know
: SUBJ HD
7o
Lara hate

Figure 3. Promotion/linearizarion at work for the sen-
teice Kim we know Dana hates. The Direct OBJect of
Jiates carries focus and therefore needs an F1 slor as
landing site. Because the linearization array of hates
fas been instantiated incomplerely, Kim is promoted
into the array of the main clause.

{1) Who do you think left?
[S{F! Who M! do M2 you B
[S[M/ think B}
[S[FF=2F3 M1 left]]]1]

(2) *Who do you think that left?
{S[Fi Who M} do M2 you B
[S[M/! think B
S F2 that F2 M1 left]jN])

(3) Whoe do you think Bil} saw?
[S[FI Who M7 do M2 you BY
[S[M ] think Bf
[S[FH2 F3 Bill M1 saw]]l]]]
(4) Who do you think that Bill saw?
[S[FI Wha MJ do M2 you B

[S[M/ think BI
[S[F# F2 that F3 Bill M7 saw]])]]]

As outlined in Kempen & Harbusch (1998)
and Kempen (1999), the PG’s word ordering
scheme enables generating the mildly con-
text-sensitive language a"bfc, as well as to
account for the movement and word order

" Our promotion scheme differs from the ‘lifting'
scheme recently proposed by Kahane, Nasr & Ram-
bow (1998} in that we allow promotion exclusively
along lateral (i.e. truncated) regions of a linearization
array (thus ruling out, e.g., the promotion pattern in
example (2) above). Lifting does not seem to embody
an non-ad-hoc equivalent restriction.

patterns in English, German and Dutch, in-
cluding certain rather complicated scram-
bling phenomena in German. The complexity
of these phenomena in contrast with the rela-
tive simplicity of this scheme suggests that
PG may give rise to very efficient methods of
analyzing linear order. Below we show that
the worst-case time and space complexity is
O(r’) and O("), respectively.

2. Time and Space Complexity

Consider input string w=w,,...,w, of length n,

The overall analysis is divided into two steps:

1. Enumerating the complete set of lexical
frame hierarchies dominating all permuta-
tions of w (henceforth called the set of
dominance structures), and

2. Checking linear order on the basis of the
FSA, taking into account the pussibilicy of
promotion of phrases in valid dominance
structures,

Step 1. Any lexical frame is rewritable in
terms of a context-free rule because the func-
tional nodes in the second layer of a lexical
frame can be viewed simply as annotations
on edges descending from the root node.
Every word in w is associated with one or (in
case of word-class ambiguity} several (O(1))
lexical frames, and every lexical frame has
exactly one lexical anchor.

Since a lexical frame is an unordered tree, it
can be viewed as an Immediate Dominance
rule with an empty set of Linear Precedence
rules (ID/LP); and parsing with lexical
frames could proceed as outlined in Shieber
(1984). However, this method would not take
the full set of valid dominance structures into
account, For instance, the sentence Kim we
know Dana hates cannot be analyzed by an
ID/LP grammar because Kim has moved
outside the locality scope of hate.

Therefore we follow an indirect course. We
interpret the input string as a multiset, i.e. as
the set of all permutations of input words, so
that any scope of locality is included. Moreo-
ver, we ‘freeze’ the lexical frames into an
arbitrary but fixed left-to-right order of
branches, which gives a context-free gram-
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ample in Fig. 3 (as one of the permutations of
Ve ‘lmow Dana hates Kim). Hence, the first
step enumerates afl locality domains’.

In order to deal efficiently with multisets in
the input, we use a slightly extended version
of Earley parsing which overgenerates with
respect to repetitions of the same input sym-
bol. The reason is that we do not check here
whether any symbol occurs more than once.

First, a subgrammar G’ is constructed which
only provides the lexical frames of any input
symbol s, i=1,...,n. The only modification of
the Earley algorithm concerns the scanning
step. Instead of exploiting only the items (X,
cetf} where r=w,, in the original input
string, the parser scans all items and produces
(X, aep) according to subgrammar G’. Ob-
viously, this modification performs as bad as
ordinary scanning does in the worst case,
without introducing additional time and
space requirements are introduced. Moreo-
ver, the modified scanning method implies
that all permutations of the input string aie
explored. Consequently, given the extended
Earley algorithm for subgrammar G°, the
time complexity and the space complexity for
the construction of all dominance structures
of the multiset of w remains O(+) time and
() space units’.

Step 2 is based on the linearizer FSAs and
linearization arrays associated with the
phrases (‘items’) in the dominance structures,
An array represents a hypothetical order of
the input elements w,...w_ under the assump-
tion that the input elements w,...w,, have been
ordered successfully. These orderings are li-

*Without foss of generality, we assume that the left-
most branch contains the head of the frame. Hence we
deploy a contexi-lree prammar in Greibach normatl
Jorm: (X, 1Y, ... Y.}, with X and Y, ...Y, non-terminal,
and { terminal,

3Thr0ughout the paper we assume a condensed repre-
sentation of the set of potential dominance structures;
cf. ‘items’ in Earley parsing (Earley, 1970).

“ Since the unification operation in PG is non-
reecursive, it only involves testing a finite list of con-
straints. Hence, it does not increase time complexity.
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censed by the finite number of slots in the
FSA. As the grammar is in Greibach normal
form, one ordered symbol must equal the
terminal in the rule. All other symbols may
go to the finite set of promotion sites pro-
vided by the FSA. Therefore, the task of step
2 can be reformulated as follows: For any
denvation, compute al} bijective functions
from the terminals in the context-free rules 1o
the input symbols.

In order to deal efficiently with the Q@)

items that are provided as input to step 2,

ordinary Earley processing is assumed along
the backpointers inserted in step 1. Initially,

this yields all items of the form (§, 1X,...X,e)

in 1. These O(n) items have successfully

passed step 1. Now, each of these items is as-
sociated with arrays each representing one of
the following hypotheses:

t=w, and no landing siie is selucied, or

t=w, and the sequence W,...,w,, of pramoted

symbols is licensed by a sequence of landing
sites to the left of w, according to the item’s

FSA (k=2,..m.

Exploring the number of resulting items, we

have to consider O(1) context-free rules in I,
Moreover, the order in the original input
string determines a finite sequence of landing

sites according to the currently considered

FSA (w, wi, www, .. www..w)

Hence, the space is O(1"). With each array we

associate a pair containing (1) the ‘list of
promoted symbols’ LPS and (2) the ‘fixed-

order marker’ [OM which provides the in-

dex in w that t takes. Notice the length of
LPS<n; [FOM|=1.

Now, all substructures of these items
(completions) are evaluated, taking the al--
ready analyzed input symbols into account
(this index with respect to w is provided by

the FOM). Hence, the context-free rules ap-

plied here can onty order O(x-1) times O(n-1)

symbols. In general, assuming FOM=/, there
exist O(n-i+1) times O(n-i+f) potential or-

ders for the remaining elements w,,... wn.
Hence, the overall space complexity is O').

Now consider the general case for an item
(X;tpeYy) in I with LPS=a,..,a, and

i
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FOM=i (p<d; j<iy B, 7, 6 possibly empty se-
quences of non-terminals; s, TW W
with missing elements):

For any item (Y,t,8%) in I, the following
hypotheses are generated: w, ,..w, ., is li-
censed by a sequence of landing sites to the
left of w, according to the local FSA. Fur-
thermore, one of the following situations
holds: t,=w,, or ¢, € LPS. Consequently,
FOM=i+k, LPS=LPS+w,,..w. . If t,, €
LPS, the rightmost w,, in LPS is erased
without loss of generality’.

If we assume that al} items are revisited ac-
cording to their backpointers, an ordinary
Earley parser is capable of performing step 2.
{Initially, LPS=nil and FOM=0; finally, an
item (S,ce) with LPS=nil, FOM=n must ex-
ist.) Hence, the input of size O(n")—the out-
put of step 1—leads to an overall time com-
plexity of O(’) times O(r), i.e. O(r’).
Because this resuit compares favorably with
other grammar formalisms (see below), we
conclude that PG provides an efficient
method for linear order computation. This
advantage derives basically from the de-
ployment of the promotion/linearization
scheme, which allows for non-local ordering
effects of local ordering decisions, in particu-
lar the partial instantiation of linearizers.

3. PG, TAG, and HPSG

For reasons of space we only address the two
broadly applied formalisms of Tree Adjoin-
ing Grammar (TAG, cf. Joshi & Schabes,
1997, and Head-Driven Phrase Structure
Grammar (HPSG, cf. Sag & Wasow, 1999).

For TAGs, various definitions of dominance
and linear order have been proposed in the
literature (cf. Joshi, 1987; Vijay-Shanker,
1992 for the definition of guasi-trees; Ram-
bow, 1994 for V-TAGs). They all have in
common that long-distance movements are
structurally realized by adjoining, thus
yielding the extended domains of locality

*This reflects the linguistic observation that a
promoted phrase chooses Lhe lowest possible
landing site,

characteristic of al] TAGs.

Linear ordering in Local Dominancef{Tree)
Linear Precedence (LDAT)LP) TAGs pro-
ceeds very much like the ID/LP framework
defined for context-free grammars. Since lo-
cal dominance structures are provided where
‘moved’ constituents feature at the structuraf
level (i.e. adjoining stretches the distance
berween nodes of the same elementary tree),
the cost of linear ordering is at least O(n%)
time units—as for ordinary TAGs (cf. Joshi
& Schabes, 1997).

As is well-known, scrambling cannot be de-
scribed by a simple (LDAT)LP) TAG. Quasi-
rrees represent partial descriptions of trees.
This definition allows for underspecified or-
dering of moved elements, Loosely speaking,
in this framework the spine for promotion is
specified declaratively. Similarly, V.TAGs (a
specific kind of Multi-component TAG)
provide a2 method for maninolating different
portions of the same overall derivation tree,
Both formalisms are able to handle scram-
bling phenomena. However, the individual
readings are spelled out as different derived
trees which are computed on the basis of ad-
joining in an ordinary TAG parser; hence,
this costs at least O(n®) time units.

The essential difference between the PG and
TAG formalisms can be summarized as fol-
lows. In both PG and TAG, dominance
structures—consisting of lexical frames and
elementary trees, respectively—describe lin-
guistically motivated domains of locality. In
TAG, the adjoining operation which moves
constituents apart, affects the dominance
structure. In PG, the lineanzation component
leaves the dominance structure intact, The
linearizer FSA associated with lexical frames
can accommodate constituents originating
from other constituents—a behavior that is
less costly, as shown above.

In HPSG (Sag & Wasow, 1999), the PHON
and GAP features, the GAF principle and the
argument realization principle are basically
responsible for word ordering and long-
distance movement. The PHON feature of
phrasal types enumerates the linear order on
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the basis of Hst addition (®, i.e. a non-
commutative sum). Furthermore, mavement
phenomena arc handled by the GAFP feature,
the GAP principle and the argument realiza-
rion principle. The GAP feature contains a
list of elements to be moved. The argunient
realization principle, which says thai a word
structure tree is well-formed only if the va-
lence fists (SPR and COMPS) add up ta the
argument structure (ARG-ST), is extended to
instantiate gaps freely; i.c. some elements of
ARG-ST are neither on the SPR nor on the
COMPS list, but on the GAP list instead. The
GAP principle tests whether the GAP values
of all daughters add up to be the GAP value
of the mother, unless the rule sanctioning the
structure is the Head-Filler Rule. In order to
ultimately get all gaps filled, the initial sym-
bol must have an empty GAP list.

This methed, like PG's linearization scheme,
computes linear order without manipulating
the dominance structure (i.e., the daughters’
feature descriptions). Loasely speaking, the
specification in the PHON feature can be in-
terpreted as a regular expression equivalent
to a FSA (although the PHON feature does
not provide the definition of the Kleene Star;
the infinity of licensed orderings is provided
by the recursive application af schemata, i.e.
A®B, where B has the PHON feature
C@®D—ef. Sag & Wasow, o.c., p. 374). Fur-
thermore, the realization of movement phe-
nomena corresponds directly 1o promotion,
i.c., the gap is percolated along the spine. The
definition of landing sites is defined differ-
ently, however. In PG, landing sites are enu-
merated declaratively whereas HPSG termi-
nates the percolation procedurally in terms of
the GAP principle. As computation of feature
specifications is, in general, NP-complete
(Hegner, 1995), the cost of linear order com-
putation is of no particular interest to HPSG.
However, HPSG aims at describing linguistic
phenomena declararively. Our description,
we claim, is more declarative than the current
HPSG realization, The linearizer FSA of a
Iexical frame can be rewritten as an equiva-
lent regular expression and becomes associ-
ated with the referring phrasal type in HPSG.

Karin Harbusch, Gerard Kempen

4. Conclusions

We have described an approach to linear or-
dering that involves a non-local precedence
mechanism which does not rely on a defini-
tion and scopc of movement as in terms of
the GAP feature. In comparison to TAG’s
structural representations based on adjoining,
PG’s promaotian/linearization yields a more
efficient analysis. Compared to HPSG, it can
give rise to more declarative word ordering.
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Abstract

The relationship between strong and weak generative powers of formal systems is explored, in
particular, from the point of view of squeezing more strong power out of a formal system without
increasing its weak generative power. We examine a whole range of old and new results from
this perspective, However, the main goal of this paper is to fvostioota the strone generative
power of Lambek categorial grammars in the context of crossing dependencies, in view of the
recent work of Tiede (1998),

Introduction

Strong generative power (SGP) relates to the set of structural descriptions (such as derivation
trees, dags, proof trees, etc.) assigned by a formal system to the strings that it specifies. Weak
generative power (WGP) refers to the set of strings characterized by the formal system. SGP
is clearly the primary object of interest from the linguistic point of view. WGP is often used to
locate a formal system within one or another hierarchy of formal grammars !. Clearly a study
of the relationship between WGP and SGP is highly relevant, both formally and linguistically.
Although there has been interest in the study of this relationship, almost from the beginning of
the work in mathematical linguistics, the results are few, as this relationship is quite complex
and not always casy to study mathematically (see Miller (1969) for a recent comprehensive
discussion of SGP).

Our main goals in this paper are (1) to ook at some old and recent results and try to put themn
in a general framework, a framework that can best be described by the slogan—How to squeeze
more strong generative power out of a grammatical system?— and (2) to present a new result
concerning Lambek categorial grammars. Our general discussion of the relationship of SGP
and WGP wili be in the context of context-free grammars, categorial grammars and lexicalized
tree-adjoining grammars.

1. Context-Free Grammar (CFG)

McCawley(1967) was the first person to point out that the use of context-semsitive rules by
linguists was really for checking structural descriptions (thus related to SGP) and not for gen-
erating strings (i.e., WGP), suggesting that this use of context-sensitive rules possibly does not

“This work was partially supported by NSF Grant SBRE920230
1SGP is also relevant in the context of annotated corpora. The annotations reflect aspects of SGP and not of the
rules of a grammar and therefore WGP.
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& §GP than CEG’s. Peters and Ritchie (1969) showed that this was indeed the case.
<1 lfs fE:.éiosely related to the notion of recognizable sets of trees (structural descrip-
tio pIai'ned below. '

Ina CEG; G, the derivation trees of G correspond to the possible structural descriptions assignable
by G. 1t is easily shown that there are tree sets whose yield Janguage is context-free but the tree
cets are not the tree sets of any CFG. That is, we are able to squeeze more strong power out of
CFG’s indirectly. Here is a simple example.

Let T be the set of trees defined by trees such as

Figure [: A Recognizable Set of Trees

T in Figure 1. is not a set of derivation trees for any CFG. Clearly in any CFG G, the rules for
A will get mixed up and there will be no way we can make sure that al} 2’s are on the left and all
&'s are on the right. The string language is, of course, {a™8™ |, n > 1}, which is a context-free
language. What is the relationship between the trees of the CFG corresponding to this language
and the set "7 Thatcher (1967) showed that the relationship is very close. Sets such as T', called
recognizable sets, are the same as the tree sets of CFG's (called local sets) except possibly for
relabeling. It turns out that the tree sets ‘analyzable’ (i.e., checkable) by context-sensitive rules,
as suggested by McCawley are indeed recognizable sets. All these systems have the property
that they allow checking of ‘local’ constraints around a node in a tree. Thatcher’s result shows
that this notion of ‘locality’ can be captured by finite state tree antomata. Later Joshi, Levy, and
Yueh (1975) and Rogers (1997) showed that the notion of ‘local context (local tree domains)’
can be made substantially richer yet maintaining characterizability by finite state tree automata.
All these results can be interpreted as attempts to squeeze more strong power out of a formal
system, in this case, context-free grammars,

2. Lexicalized Tree-Adjoining Grammars (LTAG)

The earliest indication that more strong power can be obtained from LTAG by going to tree-]ocal
multicomponent TAG (still preserving the weak power of LTAG) is in Weir (1987) and Kroch
and Joshi (1989). Shieber and Schabes (1992) introduced the notion of multiple adjoining at
the same node in a derivation tree. This move can also be seen as an attemnpt to get more strong
power out of LTAG without going beyond the weak power of LTAG. In fact, the whole range
of recent works (Candito (1997), Joshi and Vijay-Shanker (1998), Kulick (2000), Kallmeyer
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and Joshi (1999) can be seen as attempts to get more SGP from LTAG without going beyond
the WGP of LTAG. This is achieved by providing flexibility in interpreting the derivation trees
in LTAG. In particular, in Joshi and Vijay-Shanker (1998}, Kulick (2000)%, and Kalimeyer and
Joshi (1999), all of which use tree-local multi-component LTAG, flexibility is introduced in
the derivation in LTAG resulting in increased strong power without exceeding the weak power
of LTAG. This notion of flexibility (flexibility in composition, i.e., in the directionality of the
composition) can be briefly defined as follows, at least for the approaches in Joshi and Vijay-
Shanker (1998) and Kallmeyer and Joshi (1999). Given a pair of trees, say, v{1} and y(2) the
composition (i.e., attachments by substitution and adjoining®) can proceed from v(1) to (2},
i.e., 7(1) composes with (2} if ¥{2) is an elementary tree, otherwise (2) composes with (1)
if v{1} is an elementary tree, assuming, of course, that y(1) and (2} are semantically related,
i.e., composition of arbitrary unrelated trees is not allowed. Such a notion of flexibility can be
introduced in CFG’s as well as in Categorial Grammars. However, as far as 1 know, such a
-move does not open the door for squeezing more SGP out of the formal system. This is due
to the fact that CFG's and Categorial Grammars are essentially string rewriting systems, while
systems such as LTAG are tree rewriting systems and the complex topology of the initial trees,
when combined with the flexibility discussed above, allows the possibility of augmenting the
SGP of the system.

3. Categorial Grammars (CG)

It is well known that the Ajdukiewicz and Bar-Hillel categorial grammars (CG{AB)) are weakly
equivalent to CFG's. The derivation trees of CG{AB) are essentially the same as the derivation
trees of CEG's (i.e., local sets and therefore recognizable sets (see Tiede (1998)). The relation-
ship of recognizable tree sets to the derivation trees of CG{AB) is not discussed by Tiede. The
relationship is the same as between the derivation trees of CFG's and recognizable sets, i.e.,
they are the same except for relabeling®.

However, for Lambek Grammars (LG) the situation can be different. In LG, the assignment of
categories to lexical items is similar to the assignments in CG{AB) but we have the inference
rules associated with the calculus. Although LG's (Lambek, 1958) were long conjectured to
be weakly equivalent to CFG’s, the conjecture was only recently proved to be true by Pentus
(1993). So now the question arises: Do L.G's provide more strong generative power than CFG's,
in other words, is it possible to characterize the proof trees of 1.GG in terms of something like the
recognizable sets or even beyond recognizable sets. This question was raised by Buszkowski
and van Benthem®. However, only recently a serious attempt has been made by Tiede (1998)
to try to answer this question. Tiede (1998) covers a number of aspects and. in particular,
suggests that the proof trees of LG may be beyond recognizable sets, i.e., there is a Lambek
grammar whaose proof tree language is not regular. In fact, he suggests that it will be possible
to characterize crossing dependencies. Our main point in this paper is to show that this claim is
very limited and that the crossing dependencies that can be described are very degenerate (i.c.,
the dependencies are between a jexical item and a lexically empty element).

First, note that if indeed true (i.e., nondegenerate) crossing dependencies can be characterized
by the proof trees of LG then this would be very surprising indeed. From all that we know

2The exact equivalence of the system in Kulick (2000) 10 tree-local TAG's has not been established yet.

*Adjoining at the root and substitution at the foot can he treated as atachments of the same kind.

% Another recent work concerning SGP and WGP of categorial grammars is by Tiger (1998) who has investi-
gated the generative capacity of multimodal categorial grammars,

*Both these results are discussed in Handbook of Logic and Language (eds. Johan van Benthem and Alice ter .
Meulen), MIT Press, Cambridge, 1998, pp. 683-736.



110 Aravind K., Joshi

so far, any formal system that characterizes crossing dependencies (say, between the a’s and
b’s in a"b") is more powerful than CFG’s, for example, TAG’s, Combinatory Categorial gram-
mars (CCG), Linear Indexed Grammars (LIG), etc, because they can all generate the language
{@"s"c"|n > 1}. Figure 2 shows the topologies needed to obtain the nondegenerate crossing
dependencies(’. Now once we have trees with this topology it is easy to see that the same topol-
ogy can be used to generate the language {a”6"c"{n > 1}. The relevant tree will be the same as
the tree on the Ieft in Figure 2 with ¢ replacing t. Given that LG characterize only context-free
languages, this would lead to a paradox.

S
N i\ _
] b(i) b(i)
S S
a(i) a(i) r\t(i)
S S

Tree topologies needed for nondegenerate crossing dependencies

Figure 2: Nondegenerate Crossing Dependencies

‘We will show that ihe rrossine dependencies claimed by Tiede are degeneratc In particular,
they are dependencies between pairs, where the ninsi wlenznt io @i cmpty Iaringd fam and
the other an empty element. We will illustrate this by the example in Flgure 3.

L={a,aa aaa, ...} a:§, SHAJA), S/(S/(A/A))

Proof tree for aa (natural deduction style)

() 2
[A/AT[A] [/E) Proof trees with empty elements (t’s).
a2) A /1] Indices are shown for convenience
SHA/A) AlA [/E] a(l) a(2) (1) t(2)
a(1) S (/1]
S/S/AIA)) SIAIA) |y

5

Figure 3: Degenerate Crossing Dependencies in Lambek Grammar

By suitably arranging the introduction and discharge of assumptions in the hypothetical reason-
ing in the LG we have crossing dependency relations between the ¢'s and the t's, where the
#’s are the empty elements. In Figure 3 the two assumptions [A/A] and [A] (assumptions are
enclosed in {]) are introduced at the top level of the deduction. These two assumptions cor-
respond to the empty elements t1 and (2 respectively. Each one of these assumptions is then

SThe auxiliary tree on the right in Figure 2 is edjoined at the interior nodes of the two trees. We have left out
the details about the constraints on the nodes 1o et precisely the language mentioned above as this is not relevant
to the present discussion. Without the consiraints the language is more complex, however, ihis does not affect the
argument presented here.
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withdrawn using the {/T] rule, the introduction rule (the [/E] rule is used for elimination}. Both
the assumptions are withdrawn in the deduction as is required in the natural deduction praof.
The assumptions that are introduced and then withdrawn have 1o appear always at the periphery
of the proof tree. In our example in Figure 3 they appear at the right periphery. The depen-
dencies between the a’s and t’s {corresponding to the assumptions) can be seen as follows, In
the second [/E] step in the deduction (second from the top) the caiegory A/A is eliminated in
combination with S/(AfA) corresponding to a(2). The category A/A in this step resulted from
the withdrawal of the assumption [A] {corresponding to t(2)) at the top level. Thus a(2) corre-
sponds to t(2). Similarly a(1) corresponds to t(1). It is easy to see that a natural deduction proof
can be constructed for each string in L. Thus we have crossing dependencies between the a’s
and t's.

For ‘true’ crossing dependencies both the elements have to be non-empty. The way this i5 ac-
complished is by creating iwo sets of nested dependencies, say between a’s and t's and between
t's and &’s, where the ¢'s are empty elements. Then the resulting dependencies between the
a's and b's becoeme crossed as shown in Figure 2 above, The dependencies between a’s and
t's are nested and those between t's and b’s are also nested, resulting in crossing dependencies
between a’s and b’s. Note that the empty elements, Us, are not at the periphery. It is not possible
to achieve this in LG because the empty elements have to be at the periphery in the Lambek
deduction. So in a real sense the crossing dependencies which Tiede talks about are degenerate
and LG is incapable of capturing true erossing dependencies.

Since the Tree-Insertion Grammars (TIG) of Schabes and Waters (1993) are weakly equivalent
to CFG's but not strongly, we will explore the implications of TIG for Tiede’s work. In fact,
we will show that the degenerate case studied by Tiede can be characterized in a TIG. In a
TIG, both substitution and adjoining are used. However, adjoining is limited in the following
way. First, in each auxiliary tree the footnode is the lefunost {or rightmost) daughter of the ruut.
Further, adjoining is only allowed on the right (or left} frontier. Schabes and Waters (1993)
have shown that TIG's are weakly equivalent to CFG’s, They do not explore the issue of strong
power. Their motivation was 1o show that TIG's lexicalize CFG’s without going beyond the
weak power of CFG. We show that strong power is increased, although only to the extent of
covering the case of degenerate erossing dependencies considered by Tiede. This suggests the
tantalizing conjecture that TIG’s are adequate to characteiize the procf trees of LG. We have no
complete proof of this conjecture at this time,

The proof of the claim that TIG can characterize the degenerate case of crossing dependencies
follows from the fact that these dependencies can be implemented by using the TIG in Figure
4. In the tree bl the footnode is not the rightmost nonterminal on the frontier, however, the
frontier to the right of this footnode is lexically empty’. Surprisingly, this possibility is allowed
in the definition of TIG as it is crucially needed by Schabes and Waters to prove their main
resuli-T1G’s are equivalent to CFG’s.

Now it is casily seen how the degenerate crossing dependencies of Tiede can be described in
this TIG (see Figure 5; bl is adjoined to al at the indicated node in al).

4. Summary

We have explored a number of old and new results in the study of strong and weak penerative
powers of formal systems from the point of view of squeezing more strong generative power

"What is the equivalent of this result to the case of regular form TAG’s defined by Rogers (1994)7 TIG’s are
defined with respect to the topology of the elementary trees and a restriction on adjoining. However, regular form
TAG's are defined with respect 1o derivations. Hence, itis not obvious how the construction will proceed. However, .
I would conjecture that it should be possible to get a similar result for the regular form TAG's.
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al: S :

1 X{\S‘E_ bl A/\
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2 lS al .St

|
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Figure 4: A TIG for Degenerate Crossing Dependencies

N
ah) /N

A S
ab) |S\t(2)
t|( 1

Indices are shown for convenience
a(l) a(2) t(1) t(2)
Figure 5; A Derivation in the TIG in Figure 4
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out of a formal system without increasing its weak generative power. We have also presented
some new results concerning the SGP of Lambek categorial grammars as they relate to crossing

dependencies.
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Abstract

The aim of the paper is to propose a new description of extraction in plain TAG. Contrary to Kroch
J987's analysis, our description is based on the fact that the power of a relative clause to adjoin on a
noun can be attached to the wh-word rather than ro a verb. This analysis solves some problems of the
previous analysis, notably by giving the right semantic dependency in case of pied-piping.

We are thankful to our two reviewers for many valuable comments.

Introduction

The only description of extractions in TAG we know has been developed by Kroch & Joshi
(1986), Kroch (1987) and implemented in the developed grammars of English (XTAG 1995) and
French (Abeillé 1591, Candito 1999). This implementation solves the unboundedness of
extractions with predicative adjoining, but the pied-piping is solved using a special feature. We
think that this solution of pied-piping is not absolutely convenient, because some edge of the
derivation tree cannot be interpreted as semantic dependency (Candito & Kahane 1998). Our
assumption is based on the fact that a TAG derivation tree can be interpreted as a semantic graph,
that is a predicate-argument structure. Moreover this implementation fails to describe some cases of
extraction, such as some French dont-relatives. We propose a new description of extraction in TAG
which solve most of these problems. Nevertheless, our study must rather be appreciated as an
investigation of the limits of the TAG formalism, because we think that TAG is not the most
appropriate framework for the implementation of our description of extractions. The same analysis
is more suitably implemented in GAG/DTG (Candito & Kahane 1998).

1. Semantic dependencies

The meaning of a sentence comes from the combination of the meaning of the lexical units of the
sentence. A lexical meaning or semanteine can be considered as a sernantic funcior or predicate.
For instance, consider:

(1) Peter often saw black cats.

In (1), the meaning ‘see’ is a binary functor whose argument are ‘Peter’ and ‘cat’, whereas ‘often’
and ‘black’ are unary functors with respectively ‘see’ and ‘cat’ as arguments. This predicate-
argument structure can be represented by a graph (Fig. 1), called a semantie graph (Zolkovski &
Mel'cuk 1967, Mel’guk 1988). An edge of such a graph is called a semantic dependency. The
two extremities of a semantic dependency are called the semantic governor and the semantic
argument. A semantic graph can be converted into a logical formula by reification : for each
semanteme a variable is introduced as first argument of the predicate; this variable is used by other
predicates pointing on it in the semantic graph. The semantic graph of Fig. 1 is thus converted in
the formula: )

‘Peter’ (x) & ‘cat’(y) & ‘black’(p,y) & ‘see’(e,x,y) & ‘often‘(q,e)
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‘see’
I\
_/] ? 2*'\.‘cat'
‘Peter’ . +
‘often’ I
I
'black’ ’

Fig. 1. The semantic graph of (1)-
2. Principles for our TAG

We assume the following linguistic properties for elementary trees. The elementary trees
correspond to exactly one semantic unit (Abeillé 1991), and respect the predicate-argument co-
occurrence principle (PACP), with a semantic interpretation (Candito & Kahape 1998, Candito
1999): semantic predicates anchor trees with positions for the syntactic expression of all and only
their semantic arguments.’ It is important to note that the PACP concerns any position to extend,
whether substitution or foot node.

Therefore, the arces of a TAG derivation tree can be interpreted as semantic
dependencies. In the following, substitution arcs will be represented by down arrows and
adjoining arcs, by up arrows. The label on an arrow indicates the position of the semantic argement
in the predication (first, second...). A last word about complementizers: as noted by Tesniére
(1959), which called them rranslatifs. they are grammatical words that mark a link between two
words. Contrary to Franck 1992, we think that complementizers must be attached to the
SEMANTIC governor, that is the word that contrels the link. For instance, in Peter thinks that
Mary likes beans, that will be a co-anchor of the elementary tree anchored by thinks—the semantic
governor of likes—, while in the beans that Mary likes, that will be a co-anchor of likes—the
semantic governor of beans See our solution of quilque alternation of the complementizer in
French for an iflustration of this principle (Fig.14}.

The plain TAG formalism constrains adjoining in the following manner: the root and foot nodes of
an auxiliary tree B must be of same categories. It follows that, in a predicative adjunction, the
anchor of B and the semantic argument on which B adjoins must be of same categories. In order to
allow predicative adjunction on a semantic argument of a different category this constraint must be
relaxed. Although it is well known that it does not modify the generative power (Vijay-Shanker
1987, 1992), we do not think that it was really used for linguistic descriptions in TAG.? The
solution simply consists in considering categories as top and bottom features. In this case, all nodes
will have a same transparent category X and real syntactic categories will only appear in top and
bottom features. The following notation will be adopted: [AIB] := [X,t:A,b:B]. For the sake of
simplicity, a node with same top and bottom categories A will be noted A: A := [AIA]. Note that a
node that has different top and bottom categories has to receive an adjunction. This little change in
the formalism (which does not change the generative power) allows new linguistic déscriptions.
Before going to the extraction, we will study the case of determiners, predicative adjectives and
fough-movement.

' This counts for expressed semantic arguments only, so not for the agent in agentless passive
constructions for instance. Moreover this principle cannot be respected to handle control cases, for
which there is a cycle in the semantic graph, as in Bill wants o sleep. Nevertheless different formal
devices can be developed to recover both semantic dependencies between want and Bill and between
sleep and Bill. . .
1t can be noted that it was done in other formalisms of the TAG family such as DTG (Rambow er al.
1995). o
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Xt g
b:B

Fig. 2. Adjunction and top and bottom features

Determiner. In TAG, it is usual to consider that the determiner adjoins on the noun, which gives
us the right semantic dependencies. Nevertheless, in usual TAG, this analysi; needs to attribute the
same categories to a phrase with and without a determiner and to distinguish them by a special
feature (generally called [det]). It is now possible to use different categories (Fig. 3).

A adjunction

iH
Xh:B

,—P\\ A
D \N* [X] —— D N
| | .
a
the book the book

Fig. 3. Determiner’s adjunction

Nate that it does not change anything here if we use a NP label rather a DP label. In the following,
determiners are no longer considered, and a N label wili be used for noun phrases (as in Abeilié
1991).

Predicative adjective. Basic adjectives are considered as unary predicates, which adjoin on their
sermnantic argurnent when they are attributive. Conversely, when they are predicative, their semantic
argument substitutes. So in Peter seems happy, Peter, which is a semantic argument of kappy and
not of seems, will substitute in happy and seems will adjoin in happy. The wee chappy will thus
contain a [VPIA] node on which Bseent will adjoin. Note that such a category forces the adjunction
of a verb. The verb be will be treated, in this case, as seem, although it is semantically empty,3

A A happy
Id
N* A N [} \Y AN
| [ l:] D/ l\n
happy happy be/seem o Peter B be/seem
BrnlA anlA B Val

Fig. 4. Derivation tree for Peter is/seems happy

Tough-movement. Tough-movement is described in the same way as predicative adjective and
the same trees are used for the copulative verb be and the raising verb seem (Fig. 5 and 6).* The

* The verbs be and seem differ not only semantically but syntactically: fs Peter happy? { Does Peter
seem happy? Even if they share the tree of Fig. 4, they do not share the same family of trees.

! We have represented the complement of easy as a small clause labeled S. Phrase such as easy for
Mary 10 read are described in the same way, The treatment of unbounded tough-movement (This
boek is easy for me to believe thar John would ever read, adapted from Bresnan 1982: 255) can also
be analyzed; it requires a tree Bfor...to believe thar which will adjoin on a special tree aread (similar to
the tree of Fig. 5, but with a finite 5) and on which the tree Beasy of Fig. 5 will adjoin. To avoid
overgeneration, the tree easy must specify explicitly that its foot node is a S{(for)...10]
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dérivation tree can again be interpreted as a correct semantic graph. Note that easy needs different
i¢'in the two constructions considered, which is avoided in GAG/DTG (Candito & Kahane

trees in
1998).
— N
o book
: ve o read X Y
Ne o[ s,] ‘ A a |5 T S* !
i [ 7\ B easy !
o n2v /V< - e pock f B n2v /VP\ - - ﬁread?
I \Y% B Avi | I Y B Avi !
‘ | B be/seem | B easy
to  read to  read

Fig. 8. The derivation of the book is easy to read  Fig. 6. The deriv. of a book easy to read

3. Extractions

We will consider a case of pied-piping in French:

(2) Marie connait la fille & la mére de qui Pierre parle,
M. knows the girl to the mother of which P. talks.

‘parler’
) Y
‘connaitre’ > N
7 \2\ 57 ‘mére’ ‘Pierre’
e |
W S
Marie’ fille’ |

Fig. 7. The semantic graph of (2)

Three solutions will be considered. In the first one (Fig. 8), the verb parle ‘talk’ and the wh-word
qui ‘which’ co-anchor a tree @ qui-parle, which adjoins on the antecedent fille ‘daughter’. To
obtain (2), fmeére must adjoin on PBad gui-parle. In this case, the derivation tree cannot be
satisfactorily interpreted as a semantic graph, because parle ‘talk’ is not the semantic argument of
mére ‘mother’, Nevertheless, this is a good solution from a weak generative capacity viewpoint.

: */K
o fille
PP I|\I 4°
2 .
P N N V mere P /g B a gui - parlg
| | 2714
o 0
a qui parle de B mere o. Pierre
B pn2nlV B Npn2

Fig. 8. A first (non suitable) derivation for (2)
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The second solution (Fig. 9} is adapted from Kroch 1987 and is adopted by ail the studies we
know in TAG. The tree Ba qui-parle of the first solution is broken in two trees: a tree Pparie, which
«ti]] adjoins on the antecedent, and a tree aqui, which substitutes in it.

/K N [wh:x) N[wh:+]
N N ‘
N PP qui o Ell]c
PP | i
mere I|’ i oN 4B parle
277
P v de o mére?” ~,
l ‘ : o Pierre
a parle o Npn2 .
B n*pn2nlV 0.qu

Fig. 9. A second possible derivation for (2)

In this solution, mére is the semantic argument of parle, but there is also an adjunction arc between
fparle and the antecedent that cannot be interpreted as a semantic dependency. Moreover, a feature
fwh] is necessary to ensure that the noun phrase that substitutes in the extracted position of fparle
contains a wh-word. So a wh-word must be [wh:+] and a tree such as amére must have two
coreferent features [whix]. To avoid that a noun phrase without a wh-word substitute on a [wh:+)
position, @ noun must be {wh:-].

The idea of the third solution (Fig. 10} is to break the tee Ba qui-parle of the first solution in
another way. Following Tesniére 1959, we consider that the wh-word plays two roles: on one
hand, it fills a position in the relative as pronoun and on the other hand it controls the distribution of
the relative. If we follow this idea, it is more natural to attach the power to adjoin on a noun to the
wh-word than to the verb of the relative, The adjoining arc between Pgui and the antecedent
(labeled =) can be interpreted as a4 link of coreference which can be collapsed to keep only the
semantic dependencies.

/N\ i o fille
N+ : E B qui

2

j B mére

Z

$1’ B parle
B n=N B pn2nlV B Npn2 zaPierEl

Fig. 10. A third {more suitable} derjvation for (2)

As we see, Bparle, which have a top node of top category S' and a foot node of bottom category N,
can adjoin on the node of category [S'IN] of Bgui. In addition to the fact that this analysis gives us
the right semantic dependencies, there is another advantage: the same trees Bparle and fmére can be
used for other extractions, such as topicalization and direct or indirect interrogatives:

(3}  a.Alamére de Marie, Pierre parle.
To the mother of Mary, Peter talks.
b. Marie sait & la mére de qui Pierre parle.
M. knows to the mother of which P. talks.
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NI

)

Vo Sy

| [int:4]

savoir

e nlVs2

!

qui

N

Otysait
N :
. o qui
o Marie 5 d

i': B mére
2
b B parle
1
! o Pierre

Fig. 11. Derivation of (3b)

This solution makes it possible to handle constructions that cannot be deseribed in the Kroch 1987
analysis, without using multi-component TAG. That is the case of French dont-relative where a
noun complement of a subject or a direct object is extracted:

(4)  lelivre dont Pierre aime la fin
the book of-which Peter likes the end

‘The book whose end Peter likes”

N

N+ §

¢ [x

dont fin

B pnIN

N

Vo N

aime
fnlVn2

o fivre

f

1
ﬁ’ B dont fin
2

¢ {3 aime

1

()'.!Pierre J

Fig. 12, Derivation of (4) .
English sentences with extraction out of a noun complement can be analyzed in the same way:

5 a. the girl who Peter painted (a copy of) a picture of
b. Peter painted (a copy} of a picture of this girl

N S

N* 18 (N L]

| 7N\

who picture PP

[3- n=N P

B n2Np 0!’

COpy |

of
B Npn2

painted
8nlVn2

o girl

8 who

I || dmo

} B picture
2

f 8 copy

2

¢ [5 painted
I

!

o Peter

Fip. 13. Derivation of (5a)

We will now give an analysis of a well known and puzzling construction in French (Kayne 1975)’,
As it can be seen in (6), the extraction of a subject phrase out of subordinate clause is possible, but
only with a strange alternation of the complementizers:

6 a, le type qui dort

Fig. 14. Derivation of (5b).
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the guy who is-sleeping
b. Je pense gue ce type dort
1 think that this guy is-sleeping
c. le rype que je pense qui dort
the guy that I think [that] is-sleeping
d. * Je tvpe qui je pense que dort

Qur analysis is based on the following assumptions:

i} que and qui are two forms of a same lexeme qu- * qui = qu-,,., and que = gu-~___ .

2) A phrase of category 5' must contain one and only one term in the nominative case: it is either
the subject of the verb or, if the subject is extracted, the complementizer. For this reason, the
two subconstituents of an §' must bear [nom)] features with opposite values.

In other words, our analysis supposes that a subject can be extracted, but not the nominative case
borne by it. In conformity with our assumption that a complementizer i3 attached to the semantic
governor of the Jink that 1t marks, the wh-word qu- introducing the relative clause co-anchors the
wree of a verb whose subject has been extracted {tree fnlqu-V, Fig. 14), which is the semantic
govemor of the antecedent noun. If no bridge verb is inserted, as in sentence (6a), gu- becomes
[nom:+] and is realized by gui, else it becomes [nom:-] and is realized by gue, as in sentence (6¢).
Conversely, the complementizer gu- that introduces the subordinate clause subcategorized by the
bridge verb pense “think’ co-anchors the tree Ppense. If the bridge verb adjoins on a verb with a
subject, as in (6b), gu- becomes [nom:-] and is realized by gue, while it becomes [nom:-] and is
realized by gui if it adjoins on a verb whose subject has been extracted, as in (6c). Our solution
differs from Franck 1992:173, where the complementizers are not attached to the semantic
govemors ard it 15 not possible to use the same elementary trees to derive the sentences (6a-c).

LN A
l} = atype
N* 8
LN S ? ‘
C[nom:i] S t: [namijf_/' ! 3 Bqu- -
! i : [nom:] pense  Cinomiy E
i I ; [} pense qu-
R ‘
i dort o
| Bnlqu-V Bnlvs2

Fig. 14, Derivation of (6a) and (6c)

4, Conclusion

The main attraction of Kroch’s analysis is its ability to derive a variety of constraints on extraction,
Qur analysis retains this particularity and even extends it to pied-piping cases. Extractions are a case
of mismatch between syntactic and semantic dependencies; the syntactic head of a relative
clause—the main verb of the clause—, which syntactically depends on the antecedent, is generaily
not semantically linked to the antecedent (e.g. parle in (2), aime in (4) or pense in (6c)). As
proposed in Kahane & Mel’guk 1999, the constraints on extraction can be expressed on the string
of syntactic dependencies between the syntactic head of the clause following the extracted element
and the gap. One particularity of the TAG description concerns this string: in case of extraction, the
hierarchy induced by the derivation tree on this string is the converse of the hierarchy in the
syntactic dependency tree, which is also the hierarchy generally adopted for a derivation without
extraction (compare Fig 13 and 14). For this reason, all the string of nodes between the syntactic
head and the gap is realized by predicative trees. Moreover, these trees have the following
characteristics: the nodes that have been piped and are in COMP (mére in (2), Fig 10 will receive a
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predicative tree rooted by S without § node, while the node which is linked to COMP (e.g. parle
in (2)/Fig. 10; picture in (5a)/Fig. 13) will receive a predicative tree rooted by §' with a S node,
The nodes that are between the node linked to COMP and the syntactic head of the relative will
receive a predicative tree rooted by S.° And the converse is true. In other words, a lexical unit can
be in one of the three positions considered in the string between the syntactic head and the gap if it
has a tree of one of three types proposed.

Although our analysis handles more extractions than Kroch 1987's analysis, some constructions
still cannot be suitably described. For tnstance, problems arise when one of the dependencies
between the syntactic head and the gap is a substitution arc: it is the case for extractions outside an
interrogative clause {le livre gue je sais a qui denner ‘the book that I know to which to-give’:
alivre <-2- Bque donner -3-> cqui <-2- Psais) or extractions where the wh-word is a modifier in
the relative and might be both adjoined in the relative and on the antecedent (the guy whose car I
borrowed: oguy <-1- Ppwhose —2-> acar <-1- pborrowed).® In both cases, the tree which
substitutes (cgui or cear) is not in an adequate position for the tree that might adjoin on it. All these
problems can be avoided in GAG/DTG where multiple adjoining and substitution of a same
elementary tree are possible (Candito & Kahane, 1998). For instance, the wh-word where will
receive an elementary structure which can adjoin simultaneously on the antecedent bed and on the
verb slept it modifies. Similarly, the wh-word qui in (2) will receive an elementary structure that
can simultaneously adjoin on its antecedent and substitute in the relative clause. But contrary to-
Kroch’s analysis and our analysis, constraints on extraction are not directly assumed by the
categorial features of nodes and special features must be added for not overgenerating.
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Abstract.

The paper presents a lexicalized dependency grammar which solves some failures of Lexicalized TAGs,
such as the combinatorial explosion of the number of elementary trees and the non adeguacy for the
analysis of some constructions.

Introduction

Wide coverage grammars for natural languages have been developed in Lexicalized TAG (cf.
Abeillé 1991, Candito 1999 for French and Paroubek et al. 1992, XTAG 1995 for English). These
implementations have brought to the fore some failures of the formalism for nawral language
description which cannot be solved without adopting a descriptively more powerful formalism.
These failures concern most of lexicalized grammars, including Categorial Gramimars (CG). In this
paper, we will present some of these faitures and propose <olutions in a lexicalized dependency
grammar based on Nasr 1995, 1996.

1. Lexicalized grammars

An LTAG is a particular case of lexicalized grammar (LG). A LG is a formal grammar that has
the form of a Jexicon: each lexical unit is associated to a set of elementary structures. The grammar
has an operation of combination' and each sentence {= a string of word) can be associated to set of
structures obtained by combinations of elementary structures associated to the words of the
sentence.

Formally, a LG is a 3-uple G=< L. 5. 5., @, ¢ > where:

- Listhelexicon;

- Sis the set of structures: it is an infinite set but it must be finitely defined;

- 5;is the subset of § of final structures;

- ¢ is a many-to-many map from £to0 §;

- cis the operation of combination of structures; it is 2 many-to-many map from SxS to 5.
Below c{re,®) will be noted a.p.

The operation ¢ induces an operation ¢* from 5* to § which associates to a sequence of structures

of Sall the structures of S obtained by combination of these structures. For instance, ¢*(o,B,y) 1s all

the structures obtained by the combinations (e.f)y and a.(p.y). The grammar G defines a

correspondence (= many-to-many map) ¢* between £* and Si: a sentence ¥ = x,x,...x, in £* and

a structure § in S are in correspondence if for each word x; there is a structure §; = @(x;) such that

c*(8,,55....8,) = §.

' Most of formalisms consider several operations of combinations (e.g. substitution and adjoining in
TAG), but we can suppose that there is only one, which is the union of all of them.
! We do not exclude that two structures can combine in several ways.
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We will now present an LG adapted from Nasr 1995, 1996, which we call Lexicalized Dependency
Grammar (LDG), The set of structures § of LDG is a set of dependency trees (Tesnitre 1959,
Mel’¢uk 1988); nodes are labeled by a lexical unit, its part of speech and some grammatical features
(not considered here), while branches are labeled by a syntactic relation and a weight {see below).
Moreover each label contains a feature type with value 0 (= white) or 1 (= black) sueh that
0u0=0, Oul=1 and 1ul = failure. 5; is the subset of dependency trees in § whose all
nodes and branches are black, that is have the value type:l. The feature type ensures that each
clement is build one and only one time: black elements can he remeids (G as cinent whicn are
build and white elernents, as requasts.

[1,N,Peter] [1,V likes] [ON] [ON] [1,N,bocok]
® . . @ @ *
[1subj-10] {1,08/410]  [] der-10]7  [Lartr,-5] [0,det]
¢ o
[ON]  [ON] [1,D.the]  {1,A,red) [0,b]
T Peter tlikes Tthe Tred T book

Figure 1. Elementary trees

In the plain case, elements of § combine by unification of one node. In some cases, several nodes
and branches can unify (e.g., the combination of the tree of book with the tree of its determiner the.
Fig.2). The feature type allows a black element to unify only with a white element.

A sentence i corresponds to a tree T of S if:
e the nodes of T are labeled by the words of # and correspond one-to-one to them,

s the product structure Txu, that is the tree T with the linear order on the nodes induced by u, is
a projective ordered tree (no arcs cross each other and no arc covers the root);

¢ the local order consua.*< given by the weights on the branches are respected: the sign of
the weight (- or +) indicates if the aepe.. >+ i< hefore or after the governor and the absolute
value of the weight indicates the relative distance between tne dependent and the governos.

Fig. 2 shows the dependency tree resullting from the combination of the elementary trees of Fig, 1
and the correspondence between this tree and the sentence Peter likes the red book.

[1.V,likes] [1,V.likes]
il ,subj,-l(}]/‘\[ 1,057 ,+10]

[1,subj-10} [1,05j+10]
(I NPeter] O m [1,N,Perer]{{dtI}I[II,N.boak]
4 Ny EI 3 , e,- ’an ‘-5
erON] ' ? v gl

\L [1.D,tRhel [1,A, red]

Peter likes the red book

Figure 2. Combination

2. Avoid the combinatorial explosion of the number of elementary trees

The first failure of LTAGs is certainly the combinatorial explosion of the number of elementary
trees associated to a given lexical unit. Due to the fact that for each non-canonical position of an
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argument (deletion, topicalization, inversion, relativization, cliticization, raising, heavy shift...) a
different tree is necessary and due to the crossing with the different arguments, several hundred of
elementary trees can corfespond to a same lexical unjt. Tools have been proposed to write

rammars in formalisms which avoid redundancies and allow to generate an LTAG (cf. Vijay-
Shanker & Schabes 1992, Candito 1996, 1999). But such formalism-—called a metagrammar in
Candito 1999—cannot be used directly as a grammar and must be compiled into a LTAG before
using. And due to the great number of elementary trees, LTAG parsers are not very efficient and
consume a lot of space memory.” Our proposition consists to propose a lexicalized grammar which
has more or less the property of a metagrammar, but which can be used directly as an LTAG,

We claim that the number of elementary trees associated to a lexical unit depends on two factors:
1) the repartition of the linguistic information;

2) the expressiveness of S and the powerfulness of ¢.
We will now study some examples and propose solutions with our LDG.

Attribute and predicative adjectives. In LTAG, adjectives receive two different elermnentary
structures for their attribute and predicative uses. Compare the red book and the book is red. The
LTAG's elementary tree of the attributive red has a nominal foot node in order to adjoin on a noun
(here book), while the LTAG’s elementary tree of the predicative red has a nominal substitution
node (occupied here by book) and a verbal node where the copulative verb will adjein. But the
particutar hehavior of predicative adjective can be attributed to the copulative verbs rather than to the
adjective and a same elementary tree should be attributed to attributive and predicative adjectives.
But the TAG formalism is not powerful enough for that. Qur LDG can be enriched to solve this
problem. We consider a nzv *ype of hranchee called auacl.danendency, with a fearre
+cuasi. Quasi-dependencies do not intervene in the tree hierarchy nor in the lineanization (they do
not bear a weight), but they can unify with a true dependency (the result is still a quasi-
dependency). The elementary tree twred (Fig.1), which is vsed for attributive constructions (Fig. 2),
can also be used for predicative constructions. In this case, the amr dependency adjoins with a
quasi-dependency of the elementary tree of the copula (Fig. 3). In other words, we have given the
copula the pawer to absorb this dependency and to give another syntactic governor to red than the
noun goveming it in its elementary tree. The problemn has been solved by adopting a different
repartition of linguistic information (properties of predicative constructions are attached to the
adjective to the copula, rather than to the adjective as in LTAG), which was made possible by an
enrichment of the formalism.*

[1,V.s} {O,N} [1,V.,is]
[1,subj,-10ﬁl,p1‘ed,+10} + 1 ar?‘r -5] __} [l,subj,-lﬂ]l[l,pred,+10]
OI:—I_[__:b[O’A] "y ON]- '*[I,A,red]
[0.N] [0,atrr,+quasi] [1LA,red] [0, {1.atir,+quasi}

Figure 3. Derivation of (The book) is red

* Parsing algorithm for LTAG have time complexity in C| Gl %n’ and space complexity in C| G n’,
where | G is the size of G, that is the number of elementary structures.

" The problem can also be solved in CG: the noun book will receive the category N and the adjective
red the category N/N, in order to adjoin on the noun, Then the copula receives the category
NAS/(N/N). Nevertheless, CG presents some failures; in paticular, CG has not a convenient treatment of
adjoining. For instance, if we want to specify that a noun must have a determiner we will give it the
category D\N, but, in this case, red must receive the category (DANY(DAN). And if several categories
are considered for nouns, several categories must be considered for red. Another point: at first view,
CG is not exactly a lexicalized grammar in the sense considered here, because the combination of
categories does not build. But a structure can be derived from the reduction process or categories can
be enriched with lambda terms whose combination gives a semantic structure,
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Non-canonical position. In LTAG, all the arguments are positioned in the elementary tree of
their govemor. But the particular behavior of some elements (wh-words, clitics...) might be
attributed to them rather than to their govemor, And again the TAG formalism is not sufficiently
powerful for that.

Our LDG can be enriched to solve this problem. We consider a new type of feature value, called
priority value: rather to unify with another value. a priority value replaces it. Fig. 4 proposes a
solution for clitics in French. Object clitic e is positioned before the verb and the relative order of
clitics is very constrained (roughly se < le < lui < en < y). Therefore, the clitic e will receive an
elementary tree with a white obj governor dependency bearing a priority weight of —4;
conseguently, the clitic le can only combine with an obj request and its priority weight value will
ensure its correct positioning. In our figures, priority values are underlined.

[1,V.voif] [0V} 1,V voit}
[1 :ubj-lﬂ]n[l obj+10] 4+ [0 E 4] [1,subj qu[l obj.-4]
> (11 ,b 2 ,O‘J,-_ ———9 ¥ J, 3 J-:
[O,N]  [ON] [1.ClIe] [ON] [1.CLle]

Figure 4, Derivation of Fr. [Pierre] le voit ‘Peter sees it’ (first proposal)

Non projective constructions, Cur first proposal for clitics operates only for projective case,
that is when the clitic is on the word that subcategorizes it. We will propose here a solution for
clitic climbing in French:

(1} Pierre l'a vu, lit. Peter LE has seen ‘Peter has seen it’
(2) Pierre en aime la fin, lit. Peter EN likes the end, ‘Peter likes the end of it’

Case (1) is solved in LTAG by adjoining the auxiliary verb a ‘has’ on the past participle v ‘seen’
(Abeillé 1991). It is not satisfactory because the auxiliary is the syntactic head of the clause; for
instance, it receives the negation ne...pas: Pierre ne 'a pas vu, Peter NE LE has not seen. ‘Peter
has not seen it’. This last sentence canuul Lw catisfactorily derived in LTAG. because the clitic ne,
which is borne by the auxiliary, cannot adjoin on it because of the clitic /e, whicn 18 on the tree or
the past participle. The case of {2) is even more probiematic: the only way to solve it is to use set-
lacal multi-component TAG (Bleam 1994).

Our solution is inspired from Hudson 2000 and can be compared to the Slash analysis: the clitic is
lifted from its syntactic governor (the word which subcategorizes it) to its linear governor
(the word on which it positions). As the dependencies are used for the linearization, the clitic must
depends on its linear governor by a true dependency (with a weight), while the dependency with its
syntactic governor (in the elementary tree of its syntactic governor) must become a quasi-
dependency. For these reasons, the elementary structure of a clitic has a dependency labeled aff(ix)
linked to its linear governor, which ensures its good linearization, and a quasi-dependency linked to
its syntactic governor, which must unify with the request of its syntactic govemor (Fig. 5).° The
most difficult problem is to ensure that the clitic climbs on the good node. The lifting is controlled
by a bubble, labeled B, containing both syntactic and linear governors of the clitic. We assume that
a dependency on a node of a B bubble will be contained in the § bubble if and only if it is labeled ip.
Therefore, when the clitic’s elementary tree tle combines with the auxiliary verb’s elementary tree
12, the aux dependency of 1a, which is labeled if, must be contained in the bubble f. Moreover the

* Note the particular treatment of the past participle: it has a subject but this subject is linked by a
guasi-dependency. This quasi-dependency unifies with the quasi-dependency of the auxiliary
elementary tree. The “subject” of the past participle cannot be realized (and linearized) without
being linked to the tree by a true dependency.
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tree tle indicates that the linear govemor of the clitic must be a finite or infinite verb. As’ the.-
syntactic governor is not finite or infinite, the clitic climbing is needed.

[0V finfin] LVfina ~ B1,v fin,a)

[1.aff-4] B [1,:ubj.~10ﬁ1,aux,+10,iﬁ] [1,V.pp,vid) “.{(t)d]?li.m] ‘{Igux,ﬂﬂ,iﬁ]
. C[.[i]—l'_-o[o V] IO,N]. [0.V,pp] [l,subj;,;q] [1,0bf,+10] [l,subj,+q]-j ,—\'EI,V,PP,V.H]
L Moobieg] Osgival [N} (ON] [Laff-41 1.8 ley 1105 +<]

Figure 5. Clitic climbing (derivation of (1))

Even when there is no climbing, the same elementary tree can be used for the clitic: in this case, the
two nodes of the B bubble unify and there is a dependency and a guasi-dependency between the
clitic and its (syntactic and linear) governor (Fig. 6).

{3V, voif] [0,V finfinf] [1,V.voifl\§
ol ~, .
[l,subj,-lo]l[l,abj,+10]+ (1.aff-4] 3 [1,5ubj,-10] ‘El,obwq]
4 o 0 o
(0N [ON} [I,Q,!e]\ [0,V [ON] | [1.ClLle]
(0,08, +d] [1,aff,-4]

Figure 6. Derivation of Fr. [Pierre] Ie voit ‘Peter sees it’ (second proposal)

Let us come back to the problem of the negation rze...pas. which cannot be solved satisfactorily in
TAG. The negation simply adjoins to the finite verb, ne with a weight -5 and pas with a weight+2.

Kahane 2000 proposes a similar solution for extractions.

3. Syntax and semantics

One of the main interest of LTAG is that the derivation tree can be interpreted as a semantic graph
(= predicate-argument stroctures) (Candito & Kahane 1998a). To allow such an interpretation,
some principies are required: the lexical nodes of an elementary tree must correspond to exactly one
semantic unit (Abeiilé 1991} and the non-lexical leafs of an elementary tree comresponds one-to-one
1o the arguments of this semantic unit (predicate-argument co-pccurrence principle). But a strict
application of this principle is too strong: for instance, it forbids that a syntactic element such as a
copulative verb or a complementizer anchors its own tree. In the same way, it forbids that a lexical
unit combines with a syntactic argument which is not a semantic argument such as the subject of a
raising verb (such has Perer with seems in Peler seems to be sleeping). Such principles forbid also
having a separate tree for the copulative verb, which is semantically empty.

Qur solution consists in establishing the semantic connection, as in LTAG, while keeping the
syntactic comnections. In this case, it becomes necessary to indicate explicitly the semantic
connection. For this reason, each node receives a sem feature, whose value is the semanteme
corresponding to the word, and an arg feature, whose value is the list of the semantemes of its
arguments. The elements of this list are equal to the sem values of the argument, which is indicated
in the elementary tree by shared values.

[1,V,want,sem: ‘want’,arg: (x,y)] [1,V,seems,sem: seem’,arg:{x)]
[1,5ub _,',-10]’[ I,inf,+10) il ,subj,-lﬂ]‘[l Jnf,+10]

oN Cf-(‘"b[O,V,to—inf,sam)’] [O,N}d"( ~ D [0,V to-inf,sem:a]

[0,N,sem:x] (0,5ubj,+q) {0,subj,+d]

Figure 7. Control verb and raising verb
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Fig. 7 gives us the elementary trees of the control verb want and r:_)f the raising ver_b seen; they. have
the same syntactic trees (in particular both _have a syntactic subject) but they differ semantically:
only the control verb has its syntactic subject as s_cmantic argument. Moreover, our formalism
allows recuperating directly the semantic dependencies even when there is a cycle (Fig. 8), which
TAG cannot allow vs.

[1.V,want,sem: ‘want’,
arg:('Peter’.'sleep’)] ‘want’
[].subj,-lo]’il inf,+10] ,1’.‘ EN
EI,N,Pefgr,‘---*[lsvaro Sleep! . .“,—I‘—. »
sem; ‘Peter’] & sem: ‘sleep’, Peter’  “sleep
[,subj+q] 279 :(‘Peter’)]

Figure 8. The structure and the corresponding semantic graph of Peter wants to sleep

4, Conclusion

Our conclusion is that the TAG formalism is not powerful enough to reach the objectives of
computational and linguistic adequacies required to it. Nevertheless, it is possible to develop near
formalisms which reach these goals, as well as they keep its advantages, such as lexicalization,
simplicity of the operation of combination or readability of the elementary structures.
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Abstract

Existing analyses of German scrambling phenomena within TAG-related formalisms all use
non-local variants of TAG. However, there are good reasons to prefer local grammars, in par-
ticular with respect to the use of the derivation structure for semantics. Therefore this paper
proposes to use local TDGs, a TAG-variant generating tree descriptions that shows a local
derivation siructure. However the construction of minimal trees for the derived tree descrip-
tions is not subject to any locality constraint. This provides just the amount of non-locality
needed for an adequate analysis of scrambling. To illustrate this a local TDG for some German
scrambling data is presented.

1, Introduction

Scrambling in German poses a problem for most grammar formalisms. Neither Tree Adjoining
Grammar (TAG, Joshi et al., 1975) nor even linear context-free rewriting systems (LCFRS,
Weir, 1988) are powerful enough to deal with scrambling and the free word order in German
(see Becker er al., 1992). (Becker er al., 1991) propose a scrambling analysis with non-local
multicomponent TAG (MCTAG, Weir, 1988), and (Rambow & Lee, 1994; Rambow, 1994)
propose the use of vector TAG (V-TAG). These formalisms are both non-local in the sense that
when adding a new element of the grammar in a derivation step, this element is not attached to
one single previously added element of the grammar.

There are however good reasons to prefer a Jocal grammar. Firstly, locality often restricts the
parsing complexity, and local grammars ofien generate only semilinear languages. (Though
some nop-local formalisms (lexicalized V-TAG for instance) also can be shown to be polynomi-
ally parsable.) Secondly, in a local grammar, the derivation structure might reflect a dependency
structure based on which semantic representations can be built (as for TAGs in Joshi & Vijay-
Shanker, 1999; Kallmeyer & Joshi, 1999). In a non-local grammar, the derivation structure
does not directly determine a suitable dependency structure. In some formalisms, it is possible
to identify parts of elementary structures that are relevant for the dependency structure {e.g. in
D-Tree Grammars, Rambow ez al., 1995, the relevant part is the part of a d-tree that is substi-
tuted in a subsertion operation). But there is not one single structure that records the complete
derivation and that is a suitable dependency structure. '

As an alternative, [ propose to use local Tree Description Grammars (local TDG, Kallmeyer,
1997; Kallmeyer, 1999). Local TDGs generate tree descriptions with a local derivation process.
They have a context-free derivation structure and generate only semilinear languages. The
descriptions generated by local TDGs allow an underspecification of the dominance relation,
and the construction of so-called minimal trees for these descriptions is not subject to locality
constraints, This limited amount of non-lecality allows to deal with scrambling, as illustrated
by a local TDG for some German scrambling and extraposition data.
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2. Scrambling: The data
The paper accounts for data like word order variations of (1), taken from (Rambow, 1994).

(1) Weil niemanddas Fahrrad zu reparieren zu versuchen verspricht
because nobody theye, bikeg.. to repair to try promises
because nobody promises to try 1o repair the bike

Assuming that each NP preccdes iis verb, we get 30 word orders when combining scrambling
with extraposition. According to Rambow, 6 of them are clearly not acceptable. The other 24
also show differences with respect to the judgment, but in principle it should be possible to
generate them all. The word orders without extraposition and their judgments are shown in (2).
Word orders that are ruled out occur with extraposition of reparieren as in (3).
{2) a. ok Weil niemand das Fahrrad zu reparieren zu versuchen verspricht

b. 7 Weil das Fahrrad niemand zu reparieren zu versuchen verspricht

¢. ok Weil das Fahrrad zu reparieren niemand zu versuchen verspricht

d. ? Weil das Fahrrad zu reparieren zu versuchen niemand verspricht

(3} a. * Weil zu versuchen das Fahrrad niemand zu reparieren verspricht
*  Weil das Fahrrad zu versuchen niemand zu reparieren verspricht
*  Weil zu versuchen riemand das Fahrrad zu reparieren verspricht
Weil niemand zu versuchen das Fahrrad verspricht zu repareren
* Wil zu versuchen niemand das Fahrrad verspricht zu reparieren

R i
X

*  Weil zu versuchen das Fahrrad niemand verspricht zu reparieren
T will also consider more than two levels of embedding as in (4).

wei]  das Fahrrad ntemand glaut? zu reparieren zu versuchen versprechen
because the,,. bike,. nobody thinks to repair to try promise
(4) zu miissen
to need
because nobody thinks it necessary to promise to try to repair the bike

3. A local TDG for scrambling

Local TDGs consist of tree descriptions (elementary descriptions) and a start description. The
tree descriptions are negation and disjunction free formulas in a quantifier-free first order logic.
The logic allows to express relations between node names %y, &2 such as immediate dominance
k1 <1 ko, dominance (reflexive transitive closure of <1) k; <1* kg, linear precedence &y < kp and
equality k) == k;. Furthermore, nodes are supposed to be labelled by terminals or by atomic
feature structures. § denotes the labeling function, §(k) = £ signifies that & has a lerminal label
t, and a(d(k)) ~ v signifies that k is labelled by a feature structure containing the attribute value
pair {a, v). Roughly, tree descriptions in a local TDG are fully specified (sub)iree descriptions.
that are connected by dominance relations. In elementary descriptions, some node names are
marked, this is important for the derjvation. In the graphical representations, marked narnes are
equipped with an asterisk.

(5) shows a local TDG for some scrambling data with ¢g = k) Qko Aky ks Aka < ka A ks <
ky A ... Acat(é(k))) = S A ... etc. (dotted edges represent dominance relations), Conjuncts
as kg <1* k4 in g5 not entailed by the rest of the formula are called strong dominance.

1Some of the conditions holding for descriptions in a loca!l TDG are left aside here. For a formaj definition of
local TDGs see {Kallmeyer, 1999, Chapter 4).
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|
I reparieren € € Tu reparieren

The labels V1 and V2 distinguish between VPs not allowing extraposed material to attach (V1)
and VPs that allow this (V2}. 155 is an clementary description used for an extraposed clause. In
the following we will see how the descriptions in (5) combine with each other.

4. lLocal derivation and underspecification

Derivations start with ¢g. In each step, an oid ¢, and an elementary + are combined to obtain
anew dy. ¢ can be viewed as a conjunction of ¢), i and new formulas k ~ &' where k is a
nzme from ¢, and &' a name from . This derivation step must be such that

1. for a node name ky in ¢, there is a new equivalence iff &y is cither marked or minimal
(dominated by no other name, e.g. ky in ¢ in (5)),

2. a marked or minimal &' in v that is not a leaf name (i.e. dominates other names) but does
not dominate any other marked name becomes equivalent to a leaf name in ¢

3. the names k from ¢, used for new equivalences are part of one single elementary or start
description, the derivation description of this step (first locality condition),

4. for each marked name ky, in ¢ with a parent, there is 2 strong dominance k; <" £ in ¢; such
that k; = k, is added and the subdescription between k,, and the next marked or minimal
name dominating & is dominated by & (second locality condition),

5. and the result ¢ is maximally underspecified.

The 3. and 4. condition express the locality of the derivations. They are comparable to the
Tocality constraint on derivations in set-local MCTAG. In fact, for each set-local MCTAG, an
equivalent local TDG can be constructed in a straight-forward way (sce Kallmeyer, 1999).

As a sample derivation step consider adding 1, to ¢s in (5) which leads to ¢s Aty A ks =
le A k&] & k'Qg A k5 =~ kgl in (6).

131
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S
C vll ka & j\‘lg
V1
_,_._-.;——-_____—-_“'__‘—
vl V2
V1 viz
6) TN
© V1 V2 Vi
V2 ! ky o2 kag
| T ——
o versucken ks & kap V1 Vi
N V2
€ T

verspricht :
If 2 marked name has no parent, an underspecification of the dominance can occur, The fifth
condition then ensures that the most general solution is generated. E.g., adding v, 13 and 14 (0
{6) with derivation descriptions gg, 1y and o respectively gives (7). The derivation structure
of (7), shown in (8), is the correct dependency structure,

S
———‘__'___———‘_ﬁ—-_'—‘_ﬁ
c o Y_l= _______ kg 2 kiy Ak e kag A ks 5= kay
Vi Vi Vi Y
TT— T — T
N V1 Vi Vi VI W2 rlq/‘\
das Fahrrad ~— V1ks % kg Koy & kas VI V2 niemand V1
(7 T TN i
N V2 7 % V1
€ Cureparieren L VIZ V1 kg == kg
zuversuchen V1 Vi
| N V2
e »
verspricht ¢ verspricht
weifl  niemand e versuchen
(8)
U reparieren

[
das Falorad

Descriptions generated by a local TDG G denote infinitely many trees. The tree language of G
contains “minimal” trees of these descriptions. A minimal tree +y of a description ¢ satisfies ¢
in such a way that all subtrees of heigth 1 of ~ are described exactly once in ¢. The minimal
trees of (7) vield the strings in (2).

The possibility of underspecification increases the expressive power of local TDGs beyond
LCFRS. However, despite this additional power, it is possible to find a contexi-free derivation
grammar and thereby to show that the languages generated by Jocal TDGs are semilinear.

5. Scrambling and extraposition

In 30, there are two attachment sites (1abel V2) forextraposed clauses, kgg and ko4. This accounts
for the different cases of extraposing zu reparieren (i) only past zu versuchen and (ii) past zu
versuchen and verspricht. For extraposed VPs, elementary descriptions like o5 for zu reparieren
in (5) are needed. Adding 3 to (6) with derivation description ¢y either leads to ¢; or to ¢, in
(9). The subscripts ,, and ; mark the names chosen for new equivalences when adding %, and



Scrambling in German and the non-locality of local TDGs

1%y for niemand and das Fahrrad respectively. With ¢y, niemand is either left of all":véir'b's","g'l;s
between zu reparieren and verspricht, which excludes (3)a., b. and ¢. With ¢y, das Fahrrad is
either between verspricht and zu reparieren or left of all verbs. This excludes (3)d,, e. and £,

) S o S
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V1 V2 VI V2
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Vi V2 V1 Vi V2 V2 V1
®) I a 1 | 1 |
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/\ T I 1
V2 V1 Vi VI i versuchen Vi N; V2
| i | |
wu versuchen Vg e Np V2 Vi V1 U reparieren
'1 ’//"\\
Ny V|2 versprichi € Np V:Z‘
Ik reparieren verspricht

6. More than two levels of embedding

So far, we have considered only examples with up to two levels of embedding. Next, I will
consider the analysis of (4), 2 sentence with four levels of embedding.

S -~ VI~ e
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|“ T \:1 \‘i.’l — e - Ty
glaubt \\ u miissenr - l
S _
———-’—__——"‘_“_
C Vifn
vi, T vi T v
\]1 A2 Vi V1 Vi V2
e N W2 Vi Vi V2
Ty |
V2 N V2 i versuchen V1
(11} i ;
V2 Vi Zu reparicren V1
I MY /\._
glaubt ~ Vi V2

U miissen

versprechen V2
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First, elementary descriptions for glaubt, zu miissen and versprechen are put together as
sketched in (10). Then ¥ and ¢ from (5) for zu versuchen and zu reparieren are added which
leads to (11). Fucther adding v, and vy gives a description that §s such that in the minimal trees,
glaubt is 1eft of zu miissen, Zu reparieren is left of zu versuchen which is left of versprechen,
and versprechen is left of zu miissen, Furthermore, niemand is left of glaubr and das Fahrrad is
left of zu reparieren. One of the minimal trees yields (4).

7. Conclusion

This paper addresses the probjem that on the one hand, long-distance scrambling in German
seems 10 be non-local in a limited way. On the other hand, there are good reasons to prefer a
grammar with a Jocal derivation process that leads to an appropriate dependency structure. T
have proposed local TDGs as an alternative to other formalisms previously used to deal with
scrambling. Local TDGs have the desired locality property but allow underspecification of the
dominance relation. The construction of minimal trees is not subject of any locality constraint,
Therefore, local TDGs show a very limited amount of “non-locality”, which gives sufficient
expressive power to account for scrambling phenomena. This was illustrated by a local TDG
analysis of some German data.
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Abstract

In this paper, we introduce a formalism called contextual tree adjoining grammar (CTAG].
CTAGSs are a generalization of multi bracketed contextual rewriting grammars (MBICR) which
combine tree adjoining grammars (TAGs) and contextual grammars. The generalization is to
add a mechanism similar to obligatory adjoining in TAGs. Here, we present the definition of
the model and some results concerning the generative capaciry and closure properiies of the
classes of langiages generated by CTAGs.

Introduction

Contextual grammars are a formalization of the linguistic idea that more complex, well tormea
strings are obtained by inserting contexts into already well formed strings, They were first
introduced by Marcus in 1969; all models presented here are based on so-called internal con-
textual gramimars which were intraduced by Piun and Nguyen. References and further details
about contextual grammars can be found in the monograph (Piun, 1997); a survey is given in
(Ehrenfeucht ¢t al., 1997).

Tree adjoining grammars {TAGs) and contextual grammars are linguistically well il ond
have been considered as a good model for the description of natural languages (c.f. (Marcus,
1997)). Alithough contextual grammars and tree adjoining grammars seem very difterent at first
sight, a closer loak reveals many similarities between both formalisms. Therefore, it seems
natural to combine those formalisms in order to obtain a generalized class of granunars for the
description of natural languages, which combines the mechanisms of various classes, A first
step were so-called multi-bracketed contextual grammars (MBIC) and muiti-bracketed contex-
tual rewriting grammars (MBICR), c.f. (Kappes, 1999). These grammars operate on a tree
structure induced by the grammar (the first approach aiming in this direction was introduced in
(Martin-Vide & P#un, 1998)).

However, the families of Janguages generated by MBIC and MBICR-grammars are either strictly
included in or incomparable to the family of languages generated by TAGs. This is the case
since, in MBIC and MBICR-grammars, each yield of a derived tree is immediately a word in
the language generated by the grammar. In other words, there is no mechanism to distinguish
between “finished” and “unfinished” trees like obligatory adjoining allows in TAGs. Here, by
adding obligatory adjoining to MBICR-grammars, we obtain a generalized class whicli is also
a proper extension of TAGS.

Definition and Example

Let ©* denote the set of all words over the finite alphabet & and ¥7 = T* — {A}, where A
denotes (he empty word. We denote the length of a string # by |x[. Tn this paper, we use the
term derived tree for a tree where the internal nodes are labelled by symbols from a nonter-
minal alphabet A and the leaves are labelled by symbols from a terininal alphabet . We use
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Figure 1. Derived trees corresponding to the Dyck-covered words (from left to right)
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a linear representation of derived trees called Dyck-covered words. A Dyck-covered word is
a string consisting of terminal symbols and opening and closing brackets indexed with non-
terminal symbols. Formally. for the nonterminal alphabet & we define the bracket alphabet
By = {[+.]4]4 € A} Througheut the paper we always assume £ 1 By = (. The set of
all Dyck-covered words DCL(E) over & with respect to the index alphabet A is inductively
defined by

e Forall w e T and A € A, [yw]y s in DCL(Z).

e letn » Iheapusinciners W4 e Nand ay.ay.... o, are in DCA{TZI U T, then
Lpapas,oa, ] isin DCA(E).

It is not difficult to see that each o € DCL{Z) can be interpreted as unique encoding for a
derived tree. wheve  is the label alphabet for the internal nodes and X is the label alphabert for
the leaf nodes in the following way: A string [.4(1],-1 € DC,(T) 1sidentified with a tree where the
root is labelled by A. and the subtrees of the root are determined by the unique decomposition
of o = ayay... 0, such that o; € DC4(Z) U X, 1 €4 < n. For examples see Figure 1. By
DC3(X} we denote the set of all elements in DC (T) where the root node is labelled by A.

A contextual free adjoining gramunar {CTAG) 15 a tuple G = (S, 5, T.8.7), where T g
a finite set of terminals, A is a finite set of indices, T C A is a set of permitted indices,
1 C DCL (Y)Y A} isa finite set of axioms and PP is a finite set of productions. Each production
is of the form (S, C, K, H}, where § C T7F is the selector language, ', H C A are sets of
nonterminals and € is a finite subset of contexts where each context is of the form (¢, i) such
that 1 € DCA(Z).

The derivation process in a CTAG is illustrated in Figure 2: A context (j1, ) may be adjoined to
an ov = oy [pan) pevy yielding a tree aypgas)prag if and only if there is an (S.C. N, H) € P
such that the yield of ara isin S, {2, #) € C, |pry)p € DCR(Z), B € N and E € H. The
string [1cvy] 4 is called selector. In the above figure, we have « € DCA(T), v € DCR(T) and
the vield of ). eva, tvy g1, 1218 @y, wo, wa, u, v respectively. The set of ali sentential forms of
@, S{{), consists of all trees which can be derived in the above way starling from an axjom
in £}, The set of all trees derived by a CTAG G, T(G), consists of all trees in S{G') where the
internal nodes are only labelled by nonterminals in T. The weak generative capacity L(G} is
the yield of all trees in T(G). Hence, internal nodes labelled by symbols from )\ — T have 1o
be relabelled during the derivation process in order 10 obtain a tree in T{G).
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Figure 2: The derivation process in a CTAG

Up to some technical modifications necessary to keep our formalism consistent 1o the usual
model of contextual grammars, we only added selector languages to the productions of a TAG,
These selector Janguages are used to control the derivation process as they do in contextual
grammars, the adjunction of an auxilliary tree is only possible if the yield of the node where the
adjunction takes place is in the selecior language.

We can classify CTAGs by their selector languages: A CTAG G = (T A T.Q. 1) is called
with F-choice for a family of languages F.if 5 € Fforall (S C N Hy € PP

Consider for example the CTAG with =7 -szlection

G (o boecd e LA B A4} {lso[abelpd]a}. {71 7)) where
(SF Al Apdla)h{ B} {A}) and
(S A e el b {BY AT

It is nor difficult to see that using 7, 7 times yvields a derivation

oy

e

[,-i”[b‘b(']b‘J];\ ﬂ(,- ({_.1” }ih‘- ! {Hl’l([_.lb)i (f'].v'l )'-r']B(rf]A)""] .

In order to abtain a string in 7 (() we have to use production 7, exactly once te remove the pair
of brackets indexed by 3 from the sentential form, After applying 7, once, no fuither derjvation
steps are possible, hence L(G)} = {e"clMed” |n > 1},

Generative Capacity

CTAGs are a generalization of MBICR-grammars. For A = 7T these models are equivalent
{CTAGs could thus also be called multi-bracketed contextual gramumars with obligatory rewrit-
ing (MBICRO}). The obligatory adjcining featurs increases the generative capacity, For in-
stance, the fanguage in the above example cannot be generated by any MBICR-grammar. This
is due to the fact that each language L generated by an MBICR-gramntar fulfills the so-called
internal bounded step property (c.f. (Pdun, 1997)): There is a constant p such that for each
string .+ € L, || > pthereis ay € L such that » = ryuzanmy, y = ajaes and U < |uw| < p,

CTAGs using only the selector language T+, i.e,, in effect ignoring the selector language mech-
anism, and TAGs are, up to some details, descriptions of the same model. 1t is possible to
construct a TAG equivalent to a given CTAG with Lt+-choice and vice versa, The technical
detail is that all elementary trees of a TAG must be elements of DCa (T) if the foot nodes of the
auxilliary trees are not taken into account, Formally, the equivalence holds if the initial trees in a
TAG are elements of DCa (2) and each auxilliary tree 7 of G is of the form c; = 1] 4,) 4,7 such
that ;1,1 € DCA'(T). Notice that the pair 4], represents the foot node of ;. The construction
of an equivalent TAG for a given CTAG with T+ -choice is a straightforward generalization of
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a similar construction for MBICR-grammars which can be found in (Kappes, 1999).

For the other direction. consider 2 TAG G of the above form. Let .V denote the selective {(or X
in case of an obligatory) adjoining constraint of an internal node in an elementary tree. X (or
Ty thus dereferences the subset of auxilliary trees which may be adjoined at this node. We can
construct an equivaient CTAG G = (. A T Q" P') with Z*-choice as follows: The set of
indices A" and the set of permitted indices T’ of (' is given by

A= {4 j4€edand X is a (selective or obligatory) adjoining constraint}
T o= {(4.X}]4€ Aand Y is aselective adjoining constraint}.

For each initial tree o of & we insert a tree oo’ into €Y. where each node labelled by 4 € A
with (selective or obligatory) adjoining constraint Xis replaced by the index {.4.,.&'). We thus
consider the adjoining constraint of a node as part of its index. For each auxilliary tree 7 : n; =
piila )4 we insert a production m = (S*{(ph )} (AL ) € X {(4 2))) into
where ;7 is obtained from yi;14 by the samie procedure as above and Z is the (selective or
obligatory) adjoining consiaint of the foot node of 1, It is possible to prove that both grammars
are equivalent.

[t can be shown that each CTAG wilh finite selection generates a context-free language. This
is the case since the length of each string which may be used as selector in a derivation step
can be bounded by some constant. Due to the bracket structure it is impossibie to shift infor-
mation through the sentential form of a CTAG if the Tength of the selectors is finite, Therefore
it js possible to construct a centext-free grammar generating the same language. Also. for
each context-lree language there is a CTAG with finite selection generating that fanguage. So.
CTAGs with finite selectors generate exactly the context-free languages.

CTAGs with regular selectors can generate languages which cannot be generated by TAGs
aven if we do not take advantage of the obligatory adjoining feature. The language L(G) =
{aht e di e fon > 0 > 1} con be generated by an MBICR-grammar and hence by a CTAG
with regular selector languages (c.f. (Kappes, 1999)) but not by any TAG because of the
pumping-temma for TAGs (cf. (Vijay-Shanker, 1988)).

With context-sensitve selector languages. CTAGs generate exactly the context-sensitive lan-
guages: Let L € ©7F be a context-sensitive language. We construct the CTAG

G = (S {4 BL{ALQ {zs} U {r, |7 € Z}). where
Q = {[ar]alr el frl=1Yu][go]pla e}

r = (S (oo ) |7 € Sh B}, {4}) and

me = (lreTtore L} {(lso. ) B} 44D,

Since the family of context-sensitive language is closed under quotient with singleton sets, all
selector languages are context-sensitive, and it is not difficult to prove L{() = L.

1
[

This result shows that the combined use of selectar languages and obligatory adjoining leads
10 a very powerful formalism. Whereas there are context-sensitive languages (such as L =
{a" el *ed™ |n > 1}) which cannot be generated by any MBICR-grammar regardlessly of
the used selector languages, the above construction shows that for each family of languages I
closed under quotient with singleton sets and containing all finite languages each L € F' can
also be generaled by a CTAG with F-choice.

Closure Properties

The class of Tanguapes generated by CTAGs with F-choice is ciosed under union, concatenation
and Kleene-star for all families of languages F with &1 € /. Let Gy = (T, 0. 1,80, )
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and Gy = (Sy Ao Y2, €2,. %) be two CTAGs with F-choice for a family of languages F
with T~ ¢ F. Without Joss of generality we may assume that 5, 1 Ay = @, Therefore it is
casy 10 see that for G = (S U Za. 2 U Ao, T U e £ UL P U ) we have L(G) =
LGy e L(G;). For concatenation we take a new index 5 ¢ Ay U A\, and construct ¢
(T, 2S00, U U{SET UY, U{Sh{[cadlsta € O = {A}. F € L~ {A}J U {a
0,18 e Y uda € QN e O} P U R Clearly L(G’) = L(G)) - L(Gy). For Kleene-star
we construet G = (X, U{S} T U{S} {lsolsla € Q) = {XJYU{A}. PU{7}). where
= = X7 e a) Hn € 8y — {A 1 {53 {5} It is a techinical exercise to prove L(G"} =

LG

For each CTAG G and regular language 2 we can construct a CTAG &7 such that L(G) =
L(G) i R, Furthermore, G uses the same selector languages as . Hence. this construction
directly proves that the class of fanguages generated by CTAGs with F-cheice is closed under
intersection with regular languages for any family of languages I, For the relevance of clasure
under intersection with regular sets we refer the reader to (Lang, 1994},

il

m

1 the tollowing, we will present a sketch of the proof. Let & = (. AT, €, 7) be an arhitrary
CTAG and R a regular Janguage. Without Joss of generality we assume that GG is in a normal
{orm such that eacly internal node either has exactly one leaf or only internal nodes as immediate
successors: formally for each cyauny € T(G) such that oy € DCL(E) we either have ny =
failg forsome s € Sand A € Moray = [49.. F)y foran 4 € dand . & DCA(\_}.
1< ¢ = n. Since 7 is regular. there exists a deterministic finite automaton M = (1.4, ¢y, F)
with L{Y) = & (c.f. (Hoperoft & Ullman., 1979) for notational details). We construct a
grammar (' where the label of each internal node addition’xlbf an‘ieq iwa pairs of states of 3.
formally the sei of indices of G is givenby @ = {{d. {p.g]. [ s} A € A pg.r.s€ Q).

Intuitively. in the tree interpretation. if an interna! node is labe]lcd by (A. ;. gJ Lr }) then
{12 ¢] is a value propagated from the immediate predecessor of the node stating that this node is
supposed to generate a vield u such that & 1) = ¢. The pair 1. s denotes that the immediate
successors of the node are supposed to generate a yield w such that (r. v} = »,

(" generates as sentential forms exactly the sentential forms of & where a Jabel of an jnternal
node 4 in S5{G) is replaced by all labels (4. [p. ). [ 5] oo r v € (L in S(G') such that for
the resulting strings o € S{"} the following properties hold:

(1) For each partition i = a;aqng such that oy € DCA(E) and oy = [\ . ,,j\ we have
No= (A pg] [po. ) v € DCA(R) and ;= [ivih Yo = (Bv:[fhh:-ﬂde[ S8l
1 < ¢ £ n. In other words. for each internal node with other internal nedes as immediate
successors, the second pair of states of the node is consistent with the first pairs of states
of its immediate descendants (in the sense of the usual triple costruction}. See Figure 3
for an illustration.

For each partition a = ajasay such that iy € DCA(T) and oy = [yoly where X =
(4. fir. g [r,8]) and 0 € E we have d(r,a) = 5. In other words, for ali internal nodes
having a leaf labelled by ¢ as immediate successor we have (. o) = « for the second
pair of states [r. s].

—

2

(3) For cach n = [xo'lx we have X' = (4, [n, f1.[r, 5]) where gy is the initial state of Af
and f is a final state of M, f € F. In other words, the first pair of states of the root node
of each tree consists of AM’s initial state and a final state of A1,

The details of converting the axioms and contexts of G into axioms and contexls of & are
omitted due (o the limited space. The conversion leaves the selector languages untouched, so
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3 B ,

[‘4' [}j '!]- [.M-"- i’l’l]l

e

[BI-{J“SI-Pi}-iI'I-"'l“ (B‘J-[]'L-P:]-{f"_’-’-'uj) e (Bn-I}’n—]-f’nl-["nﬂ"'u])

Figure 3: Exampie for a part of a tree in 5{G’) corresponding ro a part of a tree in 5(G). The
above part of a tree with root labelled by .1 and immediate nonterminal successors B, ... . B,
is converted into all parts of the above form for arbitrary p. ¢ p. .5 € Q, 0 < 7 < n (not
considering further restrictions due to the immediate predecessor or the immediaie descendants
of this part of the ree).

(' uses the same selector languages as G. If we define the set of permitted indices of G' by
O = {A gl pal) 1 d € Topg € QF we obiain L(G') = L(G) N R.

The same construction ¢an also be used to show the closure of TAL under intersection witl
regular sets without involving a corresponding automata mouei liz: EPDAs,

Conclusion and Further Work

T this paper. we iniroduced CTAGs and discussed their generative capacity and some ciosure
preperties. CTAGs seem a significant progress compared to MBICR-grammars. As allowing
both obhigatory adjoining and selector languages leads to a very powerful model, our foture
work will focus on CTAGs with “weak™ selector languages. Open preblems which we would.
like 1o tackle in the future are whether the classes of languages generated by such grammars are
closed under hamomorphism and jnverse homomorphism or not and the relationship to other
formalisms such as range concatenation grarmnars and recursive matrix systems.
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Abstract

i this paper, we iniroduce the notion of Hypertag, which allows o factor the information
contained in several Supertags into a single structure. We also discuss why this approach is
useful within frameworks other than LTAGs, and how it can be used for ammotating and
searching corpora,

Introduction

Traditional part of speech tagging assigns very limited information (i.e. morphological and
local) to lexical items, thus providing only limited help for parsing. To solve this problem,
(Joshi & Srinivas 94, Srinivas 97) extend the notion of POS by introducing Supertags, within
the framework of Lexicalized Tree Adjoining Grammars (LTAGs). Unfortunately, words are
assigned on average a much higher number of Supertags than traditional POS : On average
for English a word is associated with 1.5 POS and with 9 supertags (Josiil 90} Oine common
solution to the problem is to only retain the "best" supertag for each word, or eventually the 3
best supertags for each word, which is what (Snnivas 97) does in a probabilistic manner. But
then, early decision has an adverse effect on the quality of parsing if the wrong supertag(s)
have been kept : one typically obtains between 75% and 92% accuracy when keeping only one
supertag / item (depending on the type of text being supertagged and on the technique used)
(cf. Srinivas 97, Chen & al. 99) which means that it may be the case that every word in 4 will
have a wrong supertag, whereas typical POS taggers usually achieve an accuracy above 95%.

Solutions for packing several supertags into a single structure hava been proposed in the
past, for example by resorting to logical formulae (Kallmeyer 99) or linear types ot trees
{Halber 99). But as argued in (Kinyon {0a), these solutions are unsatisfactory because they
rely only on mathematical properties of trees, and lack a linguistic dimension.

In this paper, we introduce the notion of Hypertag, which allows to factor the information
contained in several Supertags, so that a single structure can be assigned to each word. In
addition of being well-defined computational objects, hypertags should also be "readable” and
also motivated from a linguistic point of view . In a first part, we explain the solution we have
_adopted, building up on the notion of MetaGrammar introduced by (Candito 96} & (Candito,
99). Finally, we discuss how this approach ¢an be used in practice, and why it is interesting for
frameworks other than LTAGs. We assume the reader is familiar with LTAGs and Supertags
and refer respectively to (Joshi 87) & to (Srinivas 97) for an introduction.

1. Exploiting a MetaGrammar

(Candito 96,99) has developed a tool to generate semi-automatically elementary trees She
uses an additional layer of linguistic description, called the metagrammar (MG), which imposes
a general organization for syntactic information in a 3 dimensional hierarchy

o Dimension I: initial subcategonization
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« Dimension 2:  redistnbution of functions and transitivity alternations
e Dimension 3:  surface realization of arguments, clause type and word order

Each terminal class in dimension | describes a possible initial subcategorization (i.e. a tree
family). Each terminal class in dimension 2 describes a list of ordered redistributions of
functions (e.g. it allows to add an argument for causatives). Finally, each terminal class in
dimension 3 represents the surface realization of a (final) function (e.g. cliticized, extracted ...).

Each class in the hierarchy corresponds to the partial description of a tree (ef Rogers &
Vijay-Shanker 94). An elementary tree is generated by inheriting from one terrninal class in
dimension L, from one terminal class in dimension 2 and from n terminal classes in dimension 3
(were n is the number of arguments of the elementary tree). ' The hierarchy is partially
handwritten. Then crossing of linguistic phenomena (e.g. passive + extraction), terminal classes
and from there elementary trees are generated automatically off line?. This allows to obtain a
grammar which can then be used to parse in real time. When the grammar is generated, it is
straight forward to keep track of the terminal classes each elementary tree inhented from :
Figure 1 shows seven elementary trees which can supertag “donne” (gives), as well as the
inheritance patterns” associated to each of these supertags. All the examples below wiil refer to
this figure,

The key idea then is to represent a set of elementary trees by a disjunction for each
dimension of the hierarchy. Therefore, a hypertag consists in three disjunctions (one for
dimension 1, one for dimension 2 and one for dimension 3). The cross-product of the three
- disjunctions can then be done automatically and from there, the set of elementary trees referred
to by the hypertag will be automatically retrieved We will now illustrate this, first by showing
how hypertags are built, and then by explaining how a set of trees (and thus of supertags) is
retrieved from the information rontained in a hypertag.

1.1 Building hypertags : a detailed example

Let us start with a simple exemple were we want "donner” to be assigned the supertags «l
([ donwe une pomme G M) and @2 (J donne & M. une pomme). On figure 1, one notices that
these two trees inherited exactly from the same classes . the relative order of the two
complements is left vunspecified in the hierarchy, thus one same description will yield both
trees. In this case, the hypertag will thus simply be identical to the inheritance pattern of these
two trees :

Dimension 1: nfOvni{an2) 71
Dimension 2 : no redistribution
Dimermsion 3 }subj ;:nominal-canonical

obj : nominal-canonical
a-0bj: nominal-canonical

Let's now add tree a3 (J donne une ppmme) to this hypertag.This tree had its second
object declared empty in dimension 2 (thus it inherits only two terminal classes from dimension
3, since it has only two arguments realized). The hypertag now becomes” :

' “The idea to use the MG to obtain a compact representation of a set of SuperTags was brefly skeiched in
(Candito 99) and (Abeillé & al. 99). by resorting to MetaFeatures. but the approach here is slightly different
since only information about the classes in the hierarchy is used (and not explicil information about the
function of arguments)
* This point has been misunderstood by (Xia & al. 98, p.183) : terminal classes and classes for crossings of
E;henomcna ARE NOT manually created _

We call inheritance panerms the structure used to store all the terminal classes a tree has inherited from.
* What has been added to a supertag is shown in bold characters.
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Dim 1: nOvnl(an2)
Dim 2 : no redistribution OR a0b{ empty
Dim 3 }subj :nominal-canonical

obj : nominal-canonical

a-obj: nominal-canonical

Let's now add the tree B4 for the object relative to this hypertag. This tree has been
generated by inheriting in dimension 3 from the terminal class "nominal inverted" for its subject
and from the class "relativized object” for its obiect. This information is simply added in the
hypertag, which now becomes :

Dim. : nGvni{an2)
Dim. 2 : no redistribution OR 40bj- empty
Dim. 3} subj :nominal-cancnical OR nominakimverted
obj : nominal-canonical OR relativized-object
a-obj: nominal-canonical
Also note that for this last example the structural properties of B4 were quite different than
those of al, a2 and a3 (for instance, it has a root of category N and not S). But this has little
importance since a generalization is made in linguistic terms without explicitly relying on the
shape of trees. .
It is also clear that hypertags a:ie buiii in & monotonic iasiion . each supertag added to a
. hypertag just adds information. Also, the process of building hypertags is rather simple. We
observe that hypertags allow to label each word with a unique structure’. Moreover, hypertags
contain rich syntactic information about lexical items (For our example, the word "donne"},
and also contain functional information (not explicitly available in supertags). They are
linguistically motivated, but also yield a readable output. They can be enriched or modified by
human annotators or easily fed to a parser or shallow parser.

1.2 Retrieving information from hypertags

Retrieving information from hypertags is pretty straightforward. For example, to recover
the set of supertags contained in a hypertag®, one just needs to perform the crossing between
the 3 dimensiviic of the hypertag, as shown on Figure 2, in order to obtain all inheritance
patterns, These inhentance patterns are then matched with the izheritance ~atterns contained in
the grammar {i.e. the right column in Figure 1) to recover all the appropriate supertags.
Inheritance patterns which are generated but don't match any existing trees in the grammar are
simply discarded’.

We observe that the 4 supertags a1, a2 and o3 and B4 which we had explicitly added to
the hypertag in 2.1 are correctly retrieved, But also, the supertags B35, B6 and B7 are retrieved,
which we did not explicitly intend since we never added them te the hypertag. But this is not a
problem, since if a word can anchor the 4 first trees, then it will also necessarily anchor the
three last ones. In fact, the automatic crossing of disjunctions in the hypertag insures
consistency®.

*we presented a simple example for sake of clarity, but traditional POS ambiguity is handled in the same way.
except that disjunctions are then added in dimension 1 as well. )

® This is to show that supertags can be retrieved from a hypertag. But it is not indispensable to do so : using
hypertags directly is more appealing and will be addressed in future work.

" When the full 5000 trees grammar is generated with the MetaGrammar, these same trees are discarded by
general linguistic principles such as "canonical nominal objects prevent subject inversion™ (cf. Abeillé & al.
00}, So Hypertags do not "overgenerate”.

¥ Again, for the same reasons the MetaGratamar insures consistency.
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FIGURE 2 :Refrieving inheritance patterns and Supertags from a Hypertag

Also note that no particular mechanism is needed for dimension 3 to handie arguments
which are not realized : if aObj-empty is inherited from dimension 2, then only subject and
abject will inherit from dimension three (since only arguments that are realized inherit from
that dimension when the grammar is generated).

Information can also be modified at runtime in a hypertag, depending on the context of
lexical items, For example “relativized objeci” can be supressed 1n dimension Z fom the
hypertag shown on Figure 2, in case no Wh element is encountered in a sentence. Then, the
correct set of supertags will still be retrieved from the hypertag by automatic crossing (that is,
trees ct},a2 and a3), since the other inheritance patterns generated won't refer to any tree in
the grammar (here, no existing tree inherits in dimension 3 "subject:inverted-nominal”,
without inheriting also "ebject: relativized-object”)

2. Practical use

An LTAG can be seen as a dictionary, in which each lexical entry is associated to a set of
elementary trees. But with hypertags, each lexical entry is now paired with one unique
structure. Therefore, automatically hypertagging a text is easy (i.e. simple dictionary lookup).
The equivalent of finding the "right" supertag for each lexical item in a text (i.e. reducing
ambiguity) then consists in dynamically removing information from hypertags (i.e. suppressing
efements in disjunctions). We hope this can be achieved by specific rules, which we are
currently working on. It is important to note though that the resulting output can easily be
manually annotated in order to build a gold-standard corpus : manually removing linguistically
relevant pieces from information in 2 disjunction from a single structure is simpler than dealing
with a set of trees. In addition of obvious advantages in terms of display (tree structures,
especially when presented in a non graphical way, are unreadable), the task itself becomes
easier because topological problems are solved automatically: annotators need just answer
questions such as "does this verd have an exiracted object 7", is the subject of this verb
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inmverted ?" to decide which terminal classe(s) must be kept .We believe that these questiong:
are easier to answer than "Which of these trees have a node NI marked wh+ at address 1.1 7%
(for an extracted object).

Also, supertagged text are difficult to use outside of an LTAG framework, contrary tg
hypertagged texts, which contain general linguistic information. An example would ba
searching and extracting syntactic data on a large scale : suppose one wants to extract all the
occurrences where a given verb V has a relativized object. To do so on a hypertagged text
simply involves performing a "grep” on all lines containing a V whose hypertag contains
"dimension 3 : objet:relativized", without knowing anything about the LTAG framework:
Performing the same task with a supertagged text involves knowing how LTAGs encode
relativized objects in elementary trees, scanning potential trees associated with V... Another
example would be using a hypertagged text as an input to a parser based on a framework other
than LTAGs : for instance, hypertags could be used by an LFG parser to constrain the
construction of an F-structure, whereas it's unclear how this could be achieved with supertags.

3. Conclusion

We have introduced the notion of hvpertao vaertaos allow to assign one unique structure
to lexical items. Moreover this structure is readable, linguistically and computationally
motivated, and contains much richer syntactic information than traditional POS, thus a
hypertagger would be a good candidate as the front end of a parser. Tt allows in practice to
build large annotated resources which are useful for extracting svntactic information on a large
scale, without being dependant on a given grammatical formalism. Also, hypertags are being
used to develop a psycholinguistically motivated processing model for LTAGs (Kinyon 00b).

We have shown how hypertags are built, how information can be retrieved from them:
Further work will investigate how hypertags can be combined directly.
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Abstract

We present a class-based approach to building a verb lexicon that makes explicit the close
relation between syntax and Semantics for Levin classes. We have used a Lexicalized Tree
Adjoining Grammar to capture the syntax associated with each verb class and have added
semantic predicates to each tree, which allow for a compositional interprewu..ox.

1. Introduction

We describe a computational verb lexicon called VerbNet which utilizes Levin verb classes
(Levin, 1993) 1o systematically construct lexical entries. We have used Lexicalized Tree Ad-
joining Grammar (LTAG) (Joshi, 1985; Schabes, 1990) to capture the syntax associated with
each verb class, and have added semantic predicates. We also show how regular extensions
of verb meaning can be achieved through the adjunction of particular syntactic phrases, We
base these regular extensions on intersective Levin classes, a fine-grained variation on Levin
classes, as a source of semantic components associated with specific adjuncts (Dang ef al.,
1998). Whereas previous research on tying semantics to Levin classes (Dorr, 1997) has not
explicitly implemented the close relation between syntax and semantics hypothesized by Levin,
our lexical resource combines traditional lexical semantic information, such as thematic roles
and semantic predicates, with syntactic frames and selecticnal restrictions. In order to increase
the utility of VerbNet, we also include links to entries in WordNet, which is one of the most
widely uvsed online Iexical databases in Natural Language Processing applications.

2. Levin Classes and WordNet

Two current approaches to English verb classifications are WordNet and Levin classes. Word-
Net is an on-line lexical database of English that currently contains approximately 120,000 sets
of noun, verb, adjective, and adverb synonyms, each representing a lexicalized concept. A
synset (synonym set} contains, besides all the word forms that can refer to a given concept, a
definitional gloss and — in most cases ~ an example sentence. Words and synsets are interrelated
by means of lexical and semantic-conceptual links, respectively. Antonymy or semantic opposi-
tion links individyal words, while the super-fsubordinate relation links entire synsets. WordNet
was designed principally as a semantic network, and contains little syntactic information. Even
as a semantic resource, however, it is missing some of the information that has traditionally
been required by NLP applications, including explicit predicate-argument structures. WordNet
senses are often too fine-grained as well, lacking an underlying notion of semantic componenis
and a systematic extension of basic senses to produce these fine-grained senses.
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The Levin verb classification, on the other hand, does explicitly state the syntax for each class,
but still falls short of assigning semantic components to each class. The classes are based on the
ability or inability of a verb to occur in pairs of syntactic frames that are in some sense meaning
preserving (diathesis alternations) (Levin, 1993). The sets of syntactic frames associated with
a particular Levin class are supposed to reflect underlying semantic components that constrain
allowable arguments and adjuncts. For example, break verbs and cut verbs are similar in that
they can all participate in the transitive and middle constructions. However, only break verbs
can also occur in the simple intransitive, and cut verbs can occur in the conative, where break
verbs cannot. The explanation given is that cur describes a series of actions directed at achieving
the goal of separating some abject into pieces. It is possible for these actions to be performed
without the end result being achieved, but where the cutting manner can still be recognized (i.e.,
“John cut at the loaf™). For break, the only thing specified is the resulting change of state where
the object becomes separated into pieces. If the result is not achieved, no attempted breaking
action can be recognized.

1. Transitive construction

(a) John broke the window.

(b) John cut the bread.
2. Middle construction

{2) Glass breaks easity.
(b) This loaf cuts easily.

3. Intransitive construction

(a) The window broke.
(b) *The bread cut.

4, Conative ¢construction

(a) *John broke at the window.

(b) John valiantly cut/hacked at the frozen Joaf, but his knife was too dull to make a
dent in it.

The fundamental assumption is that the syntactic frames are a direct reflection of the underlying
semantics. However, Levin classes exhibit inconsistencies that have hampered researchers’
ability to reference them directly in applications. Many verbs are listed in multiple classes,
some of which have conflicting sets of syntactic frames. For instance, carry verbs are described
as not taking the conative (**“The mother carried at the baby”™), and yet many of the verbs in the
carry class (push, pull, tug, shove, kick) are also listed in the push/pull class, which does take the
conative, Dang et al. (1998) showed that multiple listings could in some cases be interpreted as
regular sense extensions, and defined intersective Levin classes, which are a more syntactically
and semantically coherent refinement of basic Levin classes. We implement these verb classes
and their regular sense extensions in the Lexicalized Tree Adjoining Grammar formalism.
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3. Verb lexicon

VerbNet can be viewed in both a static and a dynamic way. The static aspect refers to the verb’
entries and how they are organized, providing the characteristic descriptions of a verb sense or
a verb class. The dynamic aspect of the lexicon constrains the entries to allow a compositional
interpretation in LTAG derivation trees, capturing extended verb meanings by incorporating
adjuncts.

3.1. Static description

Each verb entry refers to a set of classes, corresponding to the different senses of the verb. For
example, the manner of motion sense of “run” is a2 member of the Manner of Motion class,
whereas “run” as in “the street runs through the district” is a member of the Meander class.
For each verb sense there is a verb class as well as specific selectional restrictions {e.g., an in-
strument of “kick’ must be of type foot) and semantic characteristics {(e.g., a particular manner
of directed motion) that may not be captured by the class membership. In order to provide a
mapping to other dictionaries, we also include links to WordNet synsets. Because WordNet hag
more fine-grained sense distinctions than Levin, each verb sense in VerbNet references the set
of WordNet synsets (if any) that captures the meaning appropriate to the class.

Verb classes allow us to capture generalizations about verb behavior. This reduces not only the
effort needed to construct the lexicon, but also the likelihood that errors are introduced when
adding a new verb entry. Each it ¢lass usts die thematic roles that the predicate-argument
structure of its members allows, and provides descriptions of the syntactic frames corresponding
to licensed constructions, with selectional restrictions defined for each argument in each frame.
Each frame also includes semantic predicates describing the participants at various stages of the
event described by the frame.

culmination

preparaiory conseqient
process state

Figure 1: Moens and Steedman’s tripartite structure of events

We decompose each event £ into a tripartite structure in a manner similar to Moens and Steed-
man (1988}, introducing a time function for each predicate to specify whether the predicate 1s
true in the preparatory (during(E)), culmination (end{£)), or consequent (result(E)) stage of
an event. The tripartite event structure (Figure 1) allows us to express the semantics of classes
of verbs like change of state verbs whose adequate description requires reference to a compiex
event structure. In the case of a verb such as “break”, it is important to make a distinction be-
tween the state of the object before the end of the action (during{£)), and the new state that
results afterwards (result(E)).

Verb classes are hicrarchically organized, ensuring that each class is coherent — that is, all its
members have common semantic elements and share a common set of thematic roles and basic
syntactic frames, This requires some manual restructuring of the original Levin classes, which
is facilitated by using intersective Levin classes. In addition, a particular verb may add more
semantic information to the basic semantics of its class.

Figure 2 shows a partial entry for the Hit class. This class allows for three thematic roles:
Agent, Patient and Instrument, with constraints that the Agent is generally animate; the Patient
concrete; and the Instrument concrete and inanimate.! These selectional restrictions refer to

1These constraints are more like preferences that generate a preferred reading of a sentence. They may be
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HIT class
{(MEMBERS }} {(Rat, 1}, (kick, 1), {slap, 1), {tap,1)},.. ]
((THEMATIC ROLES }) Agent(A), Patient(P), Instrument(I)
((SELECT RESTRICTIONS })) Agent[+animate],

Patient[+concrete],
Instrument{+concrete,-animate]
({FRAMES and PREDICATES })

Basic Transitive | AV P manner(during(E),directedmotion,A} A
manner(end(E),forceful, A} A
contact(end(E),A.P)

Transitive with | AVP withI manner{during(E},directedmotion,I} A

Instrument manner(end(E),forceful I} A
contact(end(E),1,P)

Conative AVatP manner(during(E),directedmotion,A)

With/against A V]against/on P | manner(during(E),directedmotion,]) A

alternation manner(end(E),forceful I} A
contact(end(E),LP)

Transitive IVP manner{during(E),directedmotion,I} A
manneliend L, lurcsful T A
contact(end(E),1.P)

Figure 2: Partial entry for the Hit class

a feature hierarchy where animate subsumes animal and human, concrete subsumes both an-
imate and inanimare, 2nd <n forth. This representation does not suffer from some drawbacks
of theta role analysis because our roles are not global primitives, but are only used to describe
relationships within a class.
The strength of our representation comes from the explicit relationship between syntax and
semnantics captured in each entry. Figure 2 shows some of the syntactic frames allowed for the
Hir class and the semantic predicates for each frame. Thematic roles are used as descriptors
which are mapped into arguments of semantic predicates as well as the argument positions in a
TAG elementary tree.
The tripartite event structure also handles the conative construction, in which there is an inten-
tion of a goal during the event which is not achieved at the end of the event. The example shown
in Figure 2 for the conative construction has the predicate

manner(during(E), directedmotion,A)
but because the intended contact by sudden impact is not satisfied, the semantics does not in-
clude the predicates

manner(end(E) forceful, A) A contact(end(E)A,P).

3.2. Compositional Semantics

We use TAG elementary trees to describe syntactic frames and associate semantic predicates
and selectional restrictions with each tree. Elementary trees capture the basic semantics of the
verbs in each class, Each frame in the static aspect of the lexicon maps onto a TAG elemen-
tary tree, in which the thematic roles correspond to substitution sites, Some auxiliary trees are
class-based because they interact with the verbs in the class in peculiar ways and add seman-

relaxed depending on the domain of a particular application.
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S VP
NPRTQD‘L //‘IE\ VPargD* PP
T
T Npar_ql -l- l;. N-Pargl.vlr
hit across
manner{during(E}, directedmation, X 4ree)N meets{Largo, E)A
manner (end(F), forceful, X r)A motion{during(E), Xorg0.arg1) A
CMt‘ICt(end(E) s Xﬂryﬁa Xaryl ) Uia(du'!"iﬂg (E) ’ Xa-rgD.argI: )(aryi )

Figure 3: Initial transitive tree for “hit” and auxiliary tree for “across”

tic content specific to the class. Others, such as temporal adjuncts, bring the same semantic
predicate independent of the verb. We use a flat semantic representation like that of Joshi and
Vijay-Shanker (1999} in which the semantics of a sentence is the conjunction of the semantic
predicates of the trees used to derive the sentence.
We ensure that all the semantic arguments of basic predicates are local to the syntactic initial
tree. For example, the basic transitive frame in Figure 2 shows that the Agent is in direct
motion and contacts the Patient in a forceful manner. If an instrument is speciied, i rojtanio
the Agent in these predicates, Since the instrument can be an argument in the basic predicates
of the Hif class, it must appear in the elementary trees whenever it is specified, evenif itisina
prepositional phrase.
The ability of certain verbs to take on eatended senses based on their adjuncts is captured in
a natural way by the TAG operation of adjunction and our conjunction of semantic predicates.
Figure 3 shows an initial transitive tree anchored by “hit” and the semantic predicates associated
with this syntactic frame. The original Hit verb class does not include movement of the direct
object as part of the meaning of “hit” —only one event of contact by sudden impact is described.
This event is subdivided into three predicates: the first,

manner(during(E),directedmotion, X o)
specifies that during the event E, X, is in directed motion; the second,

manner(end(E) forceful Xorgn)
refers to the forceful contact of X4 at the end of E; and the third,

contaciend(E},Xrg0,Korg1)
establishes that at the end of event E, contact between X0 and X-,1 has been achieved.
By adjoining a path PP such as “across NP”, we get an extended meaning, and a change in
Ievin class membership to the Throw class. Figure 3 shows the auxiliary tree anchored by the
preposition “across” together with its semantic predicates. The class-specific path PP adds the
predicates

meets(Eqr g0, E) N motion(during(E) X p g0 arg1) A via(during(E), X oz g0.org1: Xarg1 )
introducing a motion event that immediately follows (meets) the contact event, which is the
basic sense of the Hit class.
In Figure 4, we show the derived tree for the sentence “John hit the apple across the room” with
all the predicates instantiated. The arguments are recovered from the derivation tree, following
Candito and Kahane (1998). When an initial tree, such as ogpq, is substituted into another
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S
NP VP

T
John
VP PP

N T T

A NP across the room
| e
hit  the apple

manner{during(el), directedmotion, john) A manner(end(el), forceful, john)A
contact(end{el), john, apple) A meets(el, e2) A motion(during(e2}, apple}A
vie(during(e2), apple, room)

Figure 4: Sense extension of “hit” through adjunction of a path PP

tree ay;:, the dependency mirrors the derivation structure, so the variables associated with the
substituting tree can be referenced as arguments in the host tree’s predicates (see Figure 5).
When an auxiliary tree Jy5r055 18 adjoined, the dependency tor the adjur=+on is reversed. so that
variables associated with the host tree can be referenced as arguments in the adjoining tree’s
predicates. With this dependency from Jugress 10 apg; (labeled arg0), it is now possible for
the semantic predicates associated with f, ... to predicate over variables in the dependent tree
iz, including the variable X 0.qrp1 instantiated as apple, resulting in the predicates
motion(during(e2},apple) A via{during(e2),apple,room). -

o:hit ochit

argargdl :

a:John a:apple [h:acrass a:John coapple  Pracross

P argl
CL:I00m oLiroom
Derivation strmcture Dependency structure

Figure 5: Derivation and dependencies

Verbs in the intersective class formed by the Push/Pull verbs and the Carry verbs behave in a
simitar manner, The core meaning of this verb class is exertion of force. Adjunction of a path
PP implying motion modifies membership of these verbs to the Carry class. Push/Pull verbs
can appear in the conative construction, which emphasizes their forceful semantic component
and ability to express an affempted action where any result that might be associated with the
verb is not necessarily achieved; Carry verbs (used with a goal or directional phrase) cannot
take the conative alternation because this would conflict with the causation of motien which is
the intrinsic meaning of the class (Dang er al., 1998).
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Palmer et al. (1999) and Bleam ¢t al. (1998} also defined compositional semantics for, classes
of verbs implemented in FB-LTAG, but they represented general semantic components (e, g .
motion, manner) as features on the nodes of the trees. Our use of separate logical forms gives'a
more detailed semantics for the sentence, so that for an event involving motion, it is poss:ble to
know not only that the event has a motion semantic component, but also which entity is actually
in motion.

4. Conclusion

We have presented a class-based approach to building a verb lexicon that makes explicit the
close association between syntax and semantics, as postulated by Levin. By using verb classes
we capture generalizations about verb behavior and reduce not only the effort needed to con-
struct the lexicon, but also the likelihood that errors are introduced when adding new verbs.
Another important contribution of this work is that by dividing each event into a tripartite struc-
ture, we permit a more precise definition of the associated semantics, which is necessary for
applications such as animation of natural language instructions (Bindiganavale et al., 2000).
The power of the lexicon comes from its dynamic aspect which is based on the LTAG formal-
ism. The operation of adjunction in TAGs provides a principled approach to representing the
type of regular polysemy that has been a major obstacle in building verb lexicons.
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Abstract

This paper presents the LTAG Workbenciy, a set of graphical tools and parsers freely available
for LTAG. The system can be view as a modem alternative to the XTAG system. We present first
the outlines of the workbench including different graphical editors and two chart parsers. The
encoding of resources and results is based on an XML application called TagML. We present
then future works dedicated to speed efficiency: Optii,duon basea v snwring icoridgioo oid
preprocessing of features. The whole system has been developed in Java which allows a strong
portability and interesting reusability properties.

1. Introduction

The success of a linguistic formalism can largely depend on the availability of dedicated tools.
They are needed first for maintaining the consistency of a grammar and for checking its cor-
rectness, but also for proving the adequacy of a formalism for computational applications. Such
tools raise several engineering problems that should not be neglected as pertability, reusability,
user-friendly graphical interface, easy installation procedure and recycling of existing gram-
mars, see for instance (Erbach & Uszkoreit, 1990) for a overview of these problems. Focusing
on these features, we present a set of freely available tools dedicated to the LTAG formalism
{Joshi ef al., 1975) which aims to be an alternative to the XTAG system (XTAG research group,
1998). The LTAG workbench is still an on-going work and we hope that it will appear enough
promiising to give rise to interests and possible contributions from the LTAG community.

We present first the outlines of the current workbench including different graphical editors and
two chart parsers. We introduce then our solution for resource management which is based on
a XML application called TagML. The section 4 is dedicated to future optimizations for speed
efficiency that emphasize precompilation techniques and sharing of computation on the basis of
grammar redundancies.

2. The LTAG Workbench
2.1. Editors

The workbench proposes general editors for the set of elementary trees schema and for the
morphologic and syntactic lexicon. The graphical editors are based on a general tree editor
developed at Thomson-CSF (France). It includes a lexicalizer function, similar to the one of
the XTAG system, that allows to visualize an instancied elementary tree given a schema and
lexical entry. These editors covers the functionality of the XTAG system and include browsers
for lexicons.
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Figure 1: Sereen chot of the T.TAG parsing workbench.

2.2. Parsers

The workbench includes currently two parsers in a parsing test workbench (see screen shot on
figure 1):

s A bottom-up connection driven parser which can deliver extended partial results corn-
pared with other classical bottom-up algorithms and without time penalty (Lopez, 2000).

s An implementation of the top-down Earley-like parser proposed in (Schabes, 1994),

Note that both of them are complete chart parsers, including extraction of results from the shared
parse forest and two-step feature based processing. The bottom-up parser gives complete and
partial parses considering several parsing heuristics with or without unification of the feature
structures used in Feature Based LTAG. It is also possible to test and compare various parsing
heuristics and strategies in term of speed efficiency.

2.3. Results

The system can deliver and edit different kinds of results: complete parses (derivation and
derived trees) or partial parses, with complete unification, with only the first unification steps or
without any unification. These different kind of results aims:

» To test a grammar by identifying the step involved in the failure of a parse during grammar
debugging.
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¢ To study out of grammar phenomena.

The workbench is implemented in Java for portability and rensability reasons. The Java sources,
classes and documentation of the editors and parsing test workbench will be freely available by
the end of May 2000. We present now another facet of the technical choices concerning the
workbench: all the involved data are encoded with the highly portable formalism XML.

3. TagML
3.1, Motivations

A significant number of works are based on the TAG formalism, Still, for the moment, none
has Jed to a common representation format of the grammars which would facilitate the ex-
change of TAG grammars and associated data or the development of normalised parsers and
generic tools. A working group gathering people, mainly from TALaNa (University of Paris 7,
France), ENST (Paris, France), INRIA (Rocquencourt, France), LORTA (Nancy, France) and
DFKI (Saarbriicken, Germany) who are currently working on this formalism, made it necessary
to define a shared and common representation with the aim of exchanging grammars and asso-
ciated data, developing normalized parsers and specifying generic tools. Our proposal, TagML
{Tree Adjoining Grammars Markup Language) is a general recommendation for the encoding
and the exchange of the resources involved in LTAG. Anyone implementing a tool on the basis
of this encoding can guarantee its interoperability with existing ones.

The XTAG system {XTAG research group, 1998), developed in the early nineties, offers the first
workbench dedicated to LTAG grammar design and an Earley-like parser, However, this inte-
grated parser provides only a binary answer (accepted or rejected sentence) hardly compatible
with the test of a large grammar. Partial resnlts and diagnostics about errors are necessary to test
a grammar and to identify the stzp irvnlved in the failure of a parse during grammar debugging,
Thus, designing a new parser is justified but integrating uew components to the XTAG system
is technically very difficult for someone that has not been involved in the initial development
of the system. More generally, this system has not been developed technically to be distributed
since it is based on proper and non specified formats. It requires a narrowly-specialised skill for
its installation, its vsage and its maintenance. TagML can be viewed as a standardization and
an extension of the XTAG formats and more generally as an answer to these technical prob-
lems. We present in the following sections the broad outlines of TagML, for more details see
(Bonhomme & Lopez, 2000).

3.2, Principles

The definition of a generic tool for parsing and managing LTAG grammars supposcs a common
language specification, shared by the concerned community. The first step toward more generic
and flexible tools undergoes the definition of an appropriate encoding for the management of
large-size linguistic resources. This encoding should be able to structure possibly heteroge-
neous data and to give the possibility to represent the inevitable redundancies between lexical
data. Given these expectations, we decided to define TagML as an application of thé XML
recomumendation.

A LTAG grammar is defined by a morphological lexicon, a syntactic lexicon and a set of ele-
mentary tree schemas. The schema are ordered in tree families in order to capture the general
aspects of the lexicalization process. This lexicalization is obtained on the basis of information
given in the syntactic lexicon. For the moment, a complete Document Type Definition (DTD)
has been proposed for the schema.

In an elementary tree schema, we can distinguish:
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e The structural part, i.e. a partial phrase structure or a partial parsing tree.
e The set of feaiure equations constraining top and bottom feature structures.

We keep from (Issac, 1998) most of the elements involved in the encoding of schema structures:
s < { >:elementary tree, document that we specify in this part.

e < n >! general node, the attribute cat gives the category of this node and the attribute
type distinguishes foot node, substitution node and anchor.

e < fg >: feature structure, of type bottom or top

s < f >: typed feature (attribute-value) similarly to the TEIL For typed feature equation
and their re-usability, we introduce the element !inkGrp as specified in the TEI to group
internal or external links (element fink) (Sperberg-McQueen & Burnard, 1994),

3.3. Structural component of schema

Similarly to (Jssac, 1998) proposal, we represent straightforwardly the tree structure of a schema
by an isomorphy with the XML tree structure {sce figure 2),

B
/\
<ty
. o n 14="00" n=*0" ant="P">
NV1 V2 <R au LY et
type="5ubs" opLe ...
| <n 18="n2" ept="V" p="2"»>
<n id:"nﬂ" ]'I="3"
types"anchor' /»

</nr
[]2.1 - d:im

Figure 2: Isomorphy between the elementary tree schema and the XML tree structure

In practice in a broad-covering lexicalized grammar, the redundancy of common substructures
is very important. For instance, the subtree dominated by a V category with a depth of |
(the anchor and the pre-terminal category) is shared by most of the trees describing a verbal
syntactical context (several hundred of trees for the English XTAG grammar, several thousand
for the French L.TAG grammar). This redundancy can be very useful to encode for linguistic
or efficiency issues. In order to represent these redundancies, we propose to use the XML
Link mecanism {DeRose er al., 1999) and to identify systematically every nodes. We use the
principle of virtual resources systematically to obtain only one representation of the different
nodes within the whole grammar.

3.4. Feature equations

The TEI (Sperberg-McQueen & Burmard, 1994) proposes a recommendation for the encoding of
feature structures that we propose to integrate to TagML. This standardization allows to type the
features and to represent explicitly feature percolation. Note that the features used in the LTAG
formalism have atomic values thanks to the extended domain of locality principle. The feature
equations of an elementary tree schema can be view as a global term for a complete elementary
tree, or as several terms distributed in the various nodes of an elementary tree sharing common
varjables. We propose to link directly the shared features in order to avoid the necessity to
manage shared labels during the parsing of the features structures. These links are specified in
linkGrp.
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We have the possibility to give a type to a linkGrp, i.e. for a feature equanon ‘for instarice
subject-verb agreement, then by identifying this linkGrp to share the corresponding feature'
equation to several elementary tree schemas, If we still consider the example of subjcct—vcrb
agreement feature equation, the corresponding linkGrp will be shared by ali elementary tree
schemas that include this kind of agreement. The nodes corresponding to the features linked
by percolation can be identified hy a special attribute which gives the function of each terminal
node. The access to these specific nodes are obtained with the selection language proposed both
for XSL Tranformation Language (Clark, 1999) and for the XML pointers called XML Paths
(Clark & DeRose, 1999).

As we can see in figure 3, the percolated feature is linked to the JinkGrp corresponding to the
feature equation, so it is straightforward to access with this link all the other features which
share the same value, without dealing with any labels and tables of labels.

<n cat="P" 1d="nQd"s
<fs type="top" id="{s0"»
<£ name="num" igs"{D">
«<1ink xlink:types"simple"
xlink:href="docHid{i0}"/>

<jfL>
<f name="det” id="f1"»e<minus/»</£f>
</fa>
<fg type="bottom" id="{s1"»
A
</ fa>
</n>

/* External document */

<linkGrp type="accord">
«<link targeta="
1d{nd) /fa[1] [@type,tapl /1] [Ename, num]
id{n2)/fs[1] [@type,bottom] /£ [1] [Pheame, num]"

1d="10"/>
</linkGrp>
AN ¥

Figure 3: Shared features and factorisation of common feature equation

3.5, Tree family

In order to manage efficiently a set of elementary trees that could be quite large, TagML provides
a mechanism allowing to gather clementarv trees sharing the same sub-categorisation frame. A
tree family is described (indicated by the tag < t family >) by defining a 5e1 01 LiuRS (0 w 3605w
of elementary tree schemas. The figure 4 presents an example of tree family definition (in this
example IT.VTA 0 and I2_VTD_IB refers to two elementary tree schemas for transitive verbs
and I2_adjectif$ and I1_adjectif] to two elementary tree schemas for adjective).

The encoding of the syntactic lexicon which is much more complex will be the subject of further
research. The current system works with a very basic XML encoding of lexicon closed to the
XTAG system flat representation,

3.6. Existing fools

Our implementations are based on the Silfide XML toolkit', The following tools are c{:rrcntly
available:

o A XSL style sheet allowing the automatic generation of Latex documentation from the
TagML data,

e A conversion tool for the XTAG format.

! hittp:/fwww.loria.i/projets/XSilfide/EN/sxpf
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<7xml version="1.0" encoding="Is0-8859-1 "‘>>
<1|DOCTYPE tag SYSTEM “tagml.dtd">
<tag xmlns:xlink="htip:/www.w3.org/XMLXLINk/Q.9">
<desc»0ur tree families</desc>
<tfamily name="transitive verb">
<dese>Tree family for transitive verbs</desc»
<t xliok:type="simple"
xlink:href="I1_VTA_O.xm}"
x1link:show="replace"
xlink:actuate="auio"/>
FA IR V)
<t xlink: type="simpla"
®link:hreaf="12_VTD_1B.xml"
xlink:shows"reglace’
xlink:actuate="auip"/»
</t family>

<tfamily name="adjective">

<desc>Tree family for adjectives</desc>

<t xlink:type="simple”
xlink:hraf="A1_adiectif{ .xmi"
xlink:show="replace”
x1ink:actuates=*autc” />

[AJEPEE ')

<t slink: type="simple"
xlink:href="12_adjeclifé.xml"
xlink:shows"replace”
xlink:actuate="auto"/>

</tfamily>
f* .0 Y
</tag>

Figure 4: Sample of a TagM1 document and two tree families

Every parser which respects the XML encoding of LTAG resources and a specific Java API can
be directly integrated to the LTAG Workbench.

We plan to improve the conversion tool by performing a grammar simplification and com-
paction at various levels. We will se¢ in the next section that our main goal here is to exploit
redundancies of data to to reduce the processing cost.

4. Sharing computation and feature processing optimization

Consequence of the important size of existing large-coverage Lexicalized TAG grammars, the
current parsers suffer from a lack of speed performance. Speed is an important factor for real-
world application but also because the tools are constantly used during grammar development.
We argue the improvement of LTAG parsers and tools depends on how the huge amount of data
consequence of the lexicalization can be put into factor in order to share the computation. The
initial idea is structure sharing by the way of Finite State Techniques for the clementary tree
skeletons {Evans & Weir, 1997). Still we will see that similar sharing for feature equations and
derivation extraction is also possible.

4.1. Structural Sharing

Lexicalization raises the problem of muitiplication of the same substructures which can be se-
rious. In Context Free Grammars the same rule can be used for all possible parsing trees which
contain the corresponding substructure, but in Lexicalized Tree Grammars these substructures
are duplicated. Considering classical linguistics choices for LTAG grammar design, polystruc-
tures (example : to speak fo..., speak about..., to speak to ... about...) are very common, the
corresponding elementary trees must share common substructures and therefore do not cost as
much as an independant elementary tree for each,

(Evans & Weir, 1997) shares different substructures of elementary trees using Finite State Au-
tomata (FSA) and classical minimizing techniques, As presented in (Evans & Weir, 1997),
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the authors use automata corresponding to one particular traversal of the trees. We use simi-
Jar techniques to share here linearized structures between different elementary trees and obtain
automata similar to the ones presented in (Roche, 1996). The main difference with (Evans &
Weir, 1997) is that, since it represents elementary teees for any kind of tree walk, this FSA does
not impose a specific strategy during the parsing.

When FSA are shared in a single one, each state contains identifiers of the elementary trees
which pass through it and each item the list of elementary tree identifiers valid for the item's
positions. To test conditions of a rule we must consider every possible transitions paths ac-
cording to the shared FSA. The resulting item of a rule is valid for a subset of identifiers of
the elementary trees passing through the both position states. The “uncompaction” can be done
when we enumerate the derivations.

4.2, Preprocessing of center features

In Feature-Based LTAG, two sets of features, top and bottom, are associated to each nodes.
This scparation is necessary because of potential adjunctions which can change the value of
a possible feature at a given node. Categories used as node labels are never changed after
an adjunction which only capture recursive structures (i.e. root and foot node of auxiliary
trees must have the same label), We say that the category value at a given node is monotonic
according to the adjunction operation. We propose to define an additional set of features, called
center features, in order to gather features which are also monotonic according to the adjunction
operation. The main interest of this new sed of feaiuics iz crmmutatinnal efficiency by the
improvement of the predictive power of the grammar. The set of possible trees for an attachment
at a given node N is not only trees with a matching category but also trees that present unifiable

center features.

The center features can be computed easily simply by identifying which features are never
changed by any existing auxiliary trees. Unfortunately, considering the whole XTAG grammar
for instance, we can always find an auxiliary tree modifying the value of a given feature, Still,
it is possible to compute significant center features considering only the subset of the grammar
which is valid after the lexicalization process.

Features as aux or det of the French LTAG grammar should still need a separation in top and
bottomn features, but many others, in particular morphological features as num or gender, will
be in general monotonic for adjunction after the lexicalization process. With this simple pre-
processing, we expect a significant speed-up factor during parsing.

4.3. Sharing of feature equations

Similarly to the problem of redundancy of common substructures between different elementary
trees, the same feature equations (i.e. the same kind of percolation of feature values) are dupli-
cated in many trees. For instance the subject-verb agreement could be shared between hundred
of trees (Candito, 1996). Our idea is to associate a unique feature term to the set of derivations
and to improve the sharing of the corresponding DAG. Given a feature equation, this improve-
ment supposes to identify the common nodes which are linked by the feature percolation. This
identification can be done not on the basis of similar Gorn Adress of nodes but by identifying
the functions (subject, objectl, object2, syntactic verbal head, ...) associated to each nodes.
For instance the subject-verb agreement percolates feature values linked to the subject and the
syntactic verbal head (main verb, modal or auxiliary). This feature equation could be evaluated
only one time for all elementary trees (i) containing this feature equation and (i) combined with
the same elementary trees at nodes with the same functions,
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5. Conclusion

We have presented a general framework dedicated to 'TAG grammars with a special regard to
portability and reusability. A lot of efforts are still necessary to achicve efficiency and practical
real-world application but we have proposed some possible optimizations and, more generally,
an ambitious basis which can be freely exploited and enriched.
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Abstract

In this paper we extend the work by Michaelis (1999) which shows how to encode an arbitrary
Minimalist Grammar in the sense of Stabler {1997} into a weakly equivalent multiple context-
Sfree grammar (MCFG). By viewing MCFG rules as terms in a free Lawvere theory we can
translate a given MCFG into a regular tree grammar, The latter is characterizable by both a
rree automaron and a corresponding formula in monadic second-order (M50} logic. The trees
of the resuliing regular tree language are then unpacked into the intended “linguistic” trees
with an MSO rransduction based upon tree-walking automata. This two-step approach gives an
operational as well as a logical description of the rree sets imolved.

1. Introduction

QOver the [ast couple of years, a rich class of mildly context-sensitive grammar formalisms has
been proven to be weakly equivalent. Among others, the following families of {string) lan-
guages are equivalent: STR(HR) [languages generated by string generating hyperedge re-
ptacement grammars], OUT{DTWT) [output languages of deterministic tree-walking tree-to-
string transducers), y DTy (REGT) [yields of images of regular tree languages under deter-
ministic finite-copying top-down tree transductions], AfC'F L [languages generated by multiple
context-free grammars], MCTAL [languages generated by multi-component tree adjoining
grammars], LCEFRL [languages generated by linear context-free rewriting systems], LUSCL
[languages generated by local unordered scattered context grammars] (more on these equiva-
lences can ke found, e.g., in Engelfriet 1997, Rambow & Satta 1999, Weir 1992).

The work by Michaelis (1999) shows how to encode an arbitrary minimalist grammar (MG)
in the sense of Stabler (1997) into a weakly equivalent linear context-free rewriting system
(LCFRS). The core idea is that for the set of trees appenring as intermediate steps in converg-
ing derivations corresponding to a given MG one can define a finite partition. The equivalence
classes of this partition are formed by sets of trees where the features triggering movement
appear in identical structural positions. Each nonterminal in a corresponding LCFRS repre-
sents such an equivalence ¢lass, i.e., an infinite set of trees. We take the resulting LCFRSs as
our starting point and present in this paper a translation from multiple context-free grammars
{(MCFGs)—which are a weakly equivalent extension of LCFRSs—into regular tree gramimars
{RTGs)/monadic second-order (MSQ) logic/tree automata. This is done via lifting by viewing
MCFG rules as terms in a free Lawvere theory. Since this coding makes projection, tupling
and composition explicit, the resulting trees contain these operations as labeled nodes. There-
fore we use an MSO transduction—where the regular tree Janguage constitutes the domain—to
transform the lifted trees into the intended ones. '
We think that our approach has decisive advantages. First, the operations of the relevant sig-
nature appear explicitly in the lifted trees and are not hidden in node labels coding instances
of rule application. Second, our path component is not dependent on the particular regular tree
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family or the domain defined via the MSO formula. The instruction set of the tree-walking
automaton and the corresponding definition of the MSO transduction are universal and only
serve (o reverse the Jifting process. In that sense the instructions are nothing else but a restate-
ment of the unique homomorphism which exists between the free algebra and any other algebra
of the same signature. Thus, the translation from MCFGs to RTGs constitutes a considerable
simplification in comparison with other characterizations since it is not built upon derivation
trees using productions of the original MCFG as node labels, but rather on the operations of
projection, tuple-formation and composition alone.

In the following sections we limit ourselves to the special case of MCFG rules with only one
nonterminal on the right hand side (RHS). This allows a significant simplification in the pre-
sentation since it requires only one level of tupling. The extension to the general case of using
tuples of tuples is considerably more involved and, for lack of space, cannot be described here.

2. Background and Basic Definitions

We first present some basic definitions before we proceed with the actual translation. Let S be a
set of sorts. A many-sorted signature X (aver S is an indexed family (Z. s |w € $*,s € §) of
disjoint sets. A symbol in 2., is called an operator of type (i s), arity w, sort s and rank |w|,
where |w] denotes the length of w. Let X = {;, 25, 13,...} be a countable set of variables,

and for k € IN define Xy as {z1,....xx}. Then, the set of k-ary trees T(Z, ¥} over T is built
up from X using the operators in the usual way: If o € £, ;U X, forsome s € Sande € 5*
with {g] = { then ¢ is a (trivial) k-ary tree of sort s, If, forsome s € 5 and w = #;-- - 5, with

5; € S,o0 € Ky, and iy, ... ¢, are k-ary trees with {; of sort s; then o(fy, ..., 1,) is a k-ary
tree of sort s. Note that T(2, X)) C T(L. X)) for k <1 Let T(EZ, ) = oy T(E. Xy).
The operator symbols induce operations on an algebra with the appropriate structure. A X-
algebra A consists of an S-indexed family of sets 4 = (4%}, and for each operator ¢ € T, ;,
ag o AY A% is a function, where A% = 4% X - o x A and e — e ool s = S, The
set 7(57, X') can be made into a X-algebra T by specifying the operations as follows. For every
ae X, wheres € Sand w = 8, -5, withs; € 5, andevery?y,...,1q € T{Z, X) with t;
of sart s; we identify oz{ty, . ... &) with o(tr,. .., tn)-
Qur main notion is that of an algebraic (Lawvere) theory. Given a set of sorts 5, an algebraic
theory, as an algebra, is an 5*x S*-sorted algebra T, whose carriers (I'(u, v) | u, v € 5*) consist
of the morphisms of the theory and whose operations are of the following types, where n € IN,
u=u;---u, withu; € Sforl <i<nandwv,we 5,

projection: e Tlu, )

composition: Clupe) € Tlu,v) x T{v, w) = T{u,w)

target tupling:  { )i, € T{v,wy) X - X T(v,un) = T(v,u)
The projections and the operations of target tupling are reguired to satisfy the obvious identities
for products. The composition operations must satisfy associativity.
For 5 being & singleton and L a (many-sorted) signature over S*x.6*, the power set p(T (X, X))
of T'(F, X) constitutes the central example of interest for formal language theory. The carriers
{©{T{k,m)) |k, m € IN} of the corresponding 5*x §*-Lawvere algebra are constituted by the
power sets of the sets T'(k, m), where each T'(k,m) is the set of all m-tuples of k-ary trees,
ie. T{k,m) = {{ts,...,tm) it € T(Z, X,)}.! Composition is defined as substitution of the
projection constants and target tupling is just tupling. For reasons of space, we cannot go into
more details here. More on Lawvere theories in this context and their connection to linguistics
can be found in M&nnich (1998).

ISince Sis a singleton, S* can be identified with IN, because up to length each w € S* is uniquely specified,
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A multiple context-free grammar (MCFG) is defined as a five-tuple G = (N,T,F,P,5) with
N, T, F and P being a finite set of ranked nonterminals, terminals, linear basic morphisms
and productions, respectively. S € N is the start symbol. Each p € P has the form A —
F{Age- .y Anoy) for 4,40, ., Aqoy € N and f € F a function from {T*)* to (T*)! with
arity & = _E;":'Dl k; (k; the rank of ;) and [ the rank of A (cf. Seki er al. 1991). Recall that the
basic morphisms are those which use only variables, constants, concatenation, composition and
tupling.

A regular tree grammar (RTG) is a4-tuple G = (£, Fy, S, P}, where £ is a many-sorted signa-
ture of incperatives and Fq a set of operatives of rank 0. & € Fy is the starling symbol and P is
a set of productions. Each p € P has the form ' — ¢, with F' € Fy, and ¢ a term (tree) over
XU Fp. An application of a rule F' — ¢ “rewrites” I as the tree t. Since RTG rules always
just substitute some tree for a leaf-node, it is easy to see that they generate recognizable scts of
trees, i.e., context-free string languages (Mezei & Wright 1967).2

After these algebraic notions, we briefly present those related to monadic second-order {MSO)
logic. MSO logic is the extension of first-order predicate logic with monadic second-order
variables and quantification over them. In particular, we are using MSO logic on trees such that
individual variables z, ¥, ... stand for nodes in trees and monadic second-order ones X, Y, ...

for sets of nodes (for more details see, e.g., Rogers 1998).

Before we turn to purely logical notions, we introduce a concept which combines both automata
theory and logic. We need a particular type of finite-state automaton: tree-walking auromara
with MSO tests (Bloem & Engelfriet 1997). Intuitively, those automata make transitiens from
nodes in a tree to other nodes along its branches.

A tree-walking auwtomaron (with tests) over-some ranked alphabet ¥ is a finite automaton
A = (Q,A,4 I, F) with states @, directives A, transitions § : ) x A4 — @ and the initial
and final states / € &) and F' € () which traverses a tree along connected edges using three
kinds of directives: 1;—"'move up to the mother of the current node (if it has one and itis its ¢-th
daughter)”, l;—“move to the ¢-th daughter of the current node (if it exists)”, and ¢(z)}—"verify
that ¢ holds at the current node™. For any tree ¢ € T(X), such a tree-walking automaton 2( com-
putes a node relation B{A) = {(z,y){(x,a) = (y,g;) for some ¢; € I and some ¢; € F},
where for all states g, ¢ € Q andnodes . yint (x,q,) = (y.q) iff dd € A : (g, d,q) €4
and ¥ is reachable from z in t via d. Note that z is reachable from itself if the directive was a
(successful) test. It is important not to confuse this relation with the walking language recog-
nized by the automaton, i.e., the string of directives needed to move from the initial to the final
node in a walk, Bloem and Engelfriet show that these automata characterize the MSO definable
node relations, i.e., every tree-walking automaton we specify can be inductively transformed
into an equivalent MSO formula and vice versa.

The following paragraphs go directly back to Courcelle (1997). Recall that the representation
of objects within relational structures makes them available for the use of logical description
languages, Let R be a finite set of relation symbols with the corresponding arity for each » € R
given by p(r). A relational structure R = {Dg, {rx)rer) consists of the domain Dx and the
p(r)-ary relations rp C Df,’a(f). There does not seem to be a convenient machine model for tree
transformations. Fortunately, one can use logic directly to define the desired transduction. The
classical technique of interpreting a relational structures within another one forms the basis for
MSO transductions. Intuitively, the output tree is inlerpreted on the input tree. E.g., suppose
that we want to transduce the input tree t; into the output tree #,. The nodes of the output tree ¢;
will be a subset of the nodes from ¢; specified with a unary MSQO relation ranging over the nodes
of . The daughter relation will be specified with a binary MSO relation with free variables =

2 Appropriate definitions for derivations and the tree languages penerated can be found in Kolb ef al. (2000).
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Figure 1: The translated example grammar &'

and y ranging over the nodes from t;. We will use this concept to transform the lifted trees into
the intended ones.

A (non-copying) MSQ transduction of a relational structure R (with set of relation symbols R)
into another one Q (with set of relation symbols @) is defined to be a tuple (i, %, (f,)eecq)-
It consists of the formulas > defining the domain of the transduction in R and +» defining the
resuiting domain of Q and a family of formulas 8, defining the new relations ¢ (using only
definable formulas from the “old” structure R).

In this sense, our description of non-contextfree phenomena with two devices with only regular
power js an instance of the theorem that the image of an MS0O-definable class of structures
under a definable transduction is not MSO definable in general {Courcelle 1997).

3. Translating MCFGs to RTGs

Each rule of a given MCFG is recursively transformed into a RTG rule by coding the impficit
operations of projection, tupling and composition as nonterminals or terminals. This becomes
possible simply by viewing the terms appearing in the rules of the MCFG as elements of a free
IV x IN-sorted Lawvere algebra. The resulting RTG then “operates on™ this Lawvere algebra.
As an example we consider the following MCFG ¢ = (N,T.F.P,S) with N = {8, A},
T = {a1,az,a3}, F = {g,h,{} and P = {§ ~ g(A),4 —= h(4),4 — I(}}, where the
functions g: (T*P = T, h: ()3 — (I*)® and I : (T*)° — (1™)® are given by

g(z, Ty, T3) = L2213 h(Ilamﬁny} = (zya,, -‘Czazafcsﬂa) () = (01,42, a3)

The language generated by @ is {ala}e} [n > 0},

Now, for 1 < ¢ < 3 let »? denote the i-th projection which maps a 3-tuple of strings from T* to
its i-th component, i.e. a 1-tuple, and let o denote the usual binary operation of concatenation
defined for strngs from 7, i.e., » maps a 2-tuple to a 1-tuple. The corresponding (Lawvere)
arity of 5, a;,a2 and a3 is (0,1), of A (0,3}, of » (2,1), and the one of 73, #3 and 3 is {3, 1).
Applying the translation T given below to the MCFG & results in the RTG §' = (X, Fg, S(51), P)
with inoperatives X' = (2, ; |w& (INxIN)*, s € INxIN}, operatives Fy of rank 0, and produc-
tions P which (in tree notation) look as given in Fig. 1. We have oo =1 Jeoh Zaey =
{eenk: e = {mon: 2200 2300} Teen) = (13510 Ty T an

Loseansy = {cosnt Zoneness = {Oeal
Logeney = {C(D-&l}} Zoonenes = {( s}t
Leaeyey = {0(33'1)} ZenaneEnes) = {( Y}
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and Fo = {Sio.1), Ao}’

As one can see in Fig. 1, the basic functions have been tealized as terms with their respecs
tive implicit operations as nonterminal (composition and tupiing) or terminal (projection and
empty tupling) nodes. In the following paragraphs, we sketch the translation T from non-
terminal rules of the example MCFG to RTG rules. T takes each rule X' —+ f(¥), where
XY € Nand f € F, of the MCFG including the corresponding definition of the mapping
f(x1,....7x) with k > 0 and transforms it into a RTG rule as follows. We create a mother
node labeled with the appropriate binary composition ¢, such that the left daughter con-
tains the “lifted” version of f{zy,...,zy) under T and the right daughter the translation of the
nonterminal 3. Both nonterminals X and 17 are used “unchanged”, but annotated with the cor-
responding Lawvere arity resulting in the following schematic presentation of the translation:
Xigo — cgan(T(f (2, 7)), Yiu), where f is a mapping from k-tuples to [-tuples of
terminal strings.

The easiest case of translating a mapping / € F from our exampie via T is the terminal 4-
rule. We simply view the mapping as a Lawvere term. The function [ just retums a tripje of
aj, a2 and as. The comresponding iree has a mother node Jabeled with a ternary tupling symbol
and the three unary arguments of the mapping as daughters.* The S-rule is more complicated
with the function g concatenating three (input) strings. The definition of the function can be
written explicilly as the Lawvere term ¢z, { Yoo (78 2000 (e © dan (a3 73)))). Note
that the implicit binary concatenation ¢ in g now becomes the consiant e(3;y. The variables
are simply replaced by the projections and concatenated. The resulting term is then applied
to the operative A3 such that we get the RHS displayed in the Siqy-rule in Fig. 1. The
recursive case of the 4-rule is the most complicated. The mapping returns a triple, so we
need a tupling “operator” of appropriate arity (3,3} as the mother node with 3 daughters. The
i-th of its daughters (labeled with ¢g321)) s built by composing the concatenation constant
»(2,1) with the “tupling”-result ( )¢s.z) of the comresponding projection constant 7.-1.3(3,1) {which is
substituted for the variable =;) and a particular constant tree, Namely the one which {in terms
of the underlying Lawvere algebra) simply “lifts™ the constant a; to the Lawvere-arity of 72 just
in order to allow for an appropriate tupling. So, the term {zyay, z2ay, z30s) is interpreted as
the Lawvere term { )3 3y(c(e, ( Jiz2)(73, clar. ( )a))))se(.. ) (.. .)) which appears as the
RHS of the corresponding tree grammar rule.

Since RTGs can only generate recognizable (tree) Janguages, we can characterize them with
both MSO logic on trees and tree automata.® The tree automaton g is constructed by trans-
forming the grammar into a normal form such that each RHS is of depth one by introducing
auxifiary operatives. Then we can easily construct appropniate transitions by basically reversing
the arrow: the nonterminals become state names and the mother node will be read as alphabet
symbol. It is know from Thomas (1990) how to transform this tree automaton into an MSQ
formula ¢4, by encoding its behaviour. Details for our special case can be found in Kolb er al.
(2000),

4. Reconstructing the Intended Trees

Rogers (1998) has shown the suitability of an MSO description fanguage for linguistics which is
based upon the primitive relations of immediate (<), proper («*) and reflexive (¢*) dominance

3For simplicity and readability we will sometimes drop the subscript notion {k, m) from the inoperatives and
operatives of rank 0, and sometimes even from the composition symbo) Cigd,m)

“Note that we do not need to use a further composition symbol dominating T(f} in case there is no nonterminal
on the RHS of the rule of the MCFG.

5An introduction to tree automata can be found in Gécseg & Steinby (1984).
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and proper precedence (). We will show how to define these relations with an MSO trans-
duction thereby implementing the unique homomorphism mapping the terms into elements of
the corresponding regular tree langnage.. At the core of the transduction is a tree-walking au-
tomaton defining the binary relation of immediate dominance (<} on the nodes belonging to the
intended structures. It is based on some simple observations.

1. Our trees feature three families of labels: the “linguistic” symbols 1, i.e., the lifted symbols
of the underlying MCFG; the “composition™ symbols C = {¢q,c.u }5 the “tupling” symbols
{ )iwa and the “projection” symbols IT = {=}}.

. All nontermina) nodes in 7" are labeled by some ¢ € C or a “tupling” symbo]. Note that no

terminal node is labeled by some ¢,

3. The terminal nodes in 7¥ are cither labeled by some “linguistic” symbol, a “tupling” symbol
of the form { )0, i.e. the “empty” tuple, or by some “projection” symbol f.

4. Any “linguistic” node dominating anything in the intended tree is on some left branch in 77,
i.e., it is the left daughter of some ¢ € C and the sister of a tupling symbol whose daughters
evaluaie to the intended daughters.

5. For any node v labeled with some “projection” symbol #* & II in 7" there is a unique node
L4 (tabeled with some ¢ € C} which properly dominates v and which immediately dominates
a node Jabeled with a “tupling” symbotl whose i-th daughter will eventually evaluate o the
value of =¥, Moreover, u will be the first node properly dominating » which is on a left
branch and bears a composition symbol. This crucial fact is arrived at by induction on the
construction of ¢’ from G.

[

By 4. it is not hard to find possible dominees in any 7", It is the problem of determining the
actual “filler” of a candidate-dominee which makes up the complexity of the definition of «.
There are three cases to account for:

6. If the node considered carries a “linguistic™ label, it evaluates to itself;

7. if it has a “composition™ label ¢, it evaluates to whatever its lefumost daughter evaluates to;

8. if it carries a “projection” label ¥, it evaluates to whatever the node it “points to™—by (5.)
the i*" daughter of a “tupling” node which is dominated by the first C-node on a left branch
dominating it—evaluates to.

According to the observations made above, the automaton given in Fig. 2 starts on any node
with a “linguistic” label {denoted here by L) which means for the given example e, 24, as, 23.
Then it has to go up the first branch, read a composition symbol and descend to its sister. If it
reads a “linguistic” node, the automaton stops. If it reads a composition symbol, the automaton
goes to the left daughter and tries again. If it reads a tupling symbol, the automaton proceeds
with its daughters. On finding a projection symbol, it searches for the appropriate “filler” by
going upwards until it is on a leftmost branch which is labeled with a composition symbol.
Then it walks to the second sister or further down the Jeftmast branch until it hits a tupling node
to whose appropriate daughter it descends to find the filler.

However, there is another interpretation of such an automaton. Viewed as an ordinary finite-
state automaton over the alphabet 4, . recognizes a regular (string-) language, the walking
language W which can be translated recursively into an MSO formula transy, defining the
relation < (see Bloem & Engelfriet 1997). We Jeave the rather tedious process of converting
the walking language for the automaton given in Fig, 2 1o the reader (a full example of such a
conversion can be found in Kolb ef al. (2000)).

®The reader is encouraged to check them against trees T generated by G' given in Fig, 1.
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Figure 2: The tree-walking automaton for immediate dominance: 2,

To present the actual MSO transduction, we need one further auxiliary definition. It is a well-
known fact (e.g. Bloem & Engelfriet 1997) that the reflexive transitive closure RB* of a binary
relation R on nodes is (weakly) MSO-definable, if R itzz2lf iz, Thir iz dene vid a sweond-urdes
property which holds of the sets of nodes which are closed under i: R—closed(X) <=4
(¥Vr,y)[z € X AR(z,y) 2y € X]

Finaily, the MSO transduction {7, ¢, (6,)seq) with @ = {q,<". <, <, ...} we need to trans-
form the lifted structures into the intended ones is given as follows:

= Pag,
¢ = (Jy)ltransy, (2, 9) V transw, (y, 1)]
O(z, y) = transy,(z,y) '
o (2,y) = (VX o —closed(X) Az € ¥ = y € X]
bt (3, y) ="y Vaty
8« (xz,y) = another tree-walking automaton
Blabess = taken over from R

As desired, the domain of the transduction is characterized by the MSO formula @a,, for the
lifted trees. The domain, i.e., the set of nodes, of the intended tree is characterized by the
formula ¢ which identifies the nodes with a “linguistic” label which stand indeed in the new
dominance relation to some other node. Building on it, we define the other primitives of a
tree description language suited to linguistic needs. For reasons of space, we have to leave the
specification of the precedence relation open. It is more complicated than dominance, but can
be achieved with another tree-walking autornaton.

5. Conclusion

Taking the result of Michaelis’ transiation of MGs as the input we have shown how to define
a RTG by lifting the corresponding MCFG-rules by viewing them as terms of a free Lawvere
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theory. This gives us both a regular (via tree and tree-walking automata) and a logical charac-
terization (via MSO logic and an MSO definable transduction} of the intended syntactic trees.
Equivalently, we provide both an operational and a denotational account of Stabler’s version of
Minimalism without having to go via derivation trees.

It remains to be seen whether one can find a machine mode! for the entire MSO transduction.
A likely candidate are the macro tree transducers (MTT) introduced in Engelfriet & Maneth
(1999). Since they characterize the class of MSO definable tree translations if extended with
repular Jook-ahead and restricted to finjte-copying, we are quite optimistic that we will be able
to use them to efficiently implement the transduction, This would also characterize the class of
languages we can handle. Engelfriet and Maneth show that the result of applying an MTT to a
regular tree family yields the tree languages generated by context-free graph grammars,
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Abstract

Tree adjoining grammars (TAG) represent a derivational formalism to construct rrees from a
given set of initial and auxiliary trees. We present a logical language that simultaneously de-
scribes the generated TAG-tree and the corresponding derivation tree. Based on this language
we formulate constraints indicating whether a tree and a derivation tree mean a valid TAG-
generated tree. A method is presented that extracts the underlying TAG from an (underspeci-
fied) TAG-tree and its derivation. This leads to an alternative approach of representing shared
structures by means of TAGs. The result is a more general representation of movement which
requires no indices since it basically makes use of the properties of the adjunction operation.

1. Introduction

Recently, we find several approaches establishing a logical description of finite trees, e.g., first-
order logic (Backofen et al., 1995), dynamic logic (Kracht, 1995), temporal logic (Palm, 1999),
monadic second-order logic (Rogers, 1998). However, most of them lead to the class of rec-
ognizable sets of trees (Thatcher & Wright, 1968). Provided a finite label domain this applies
to all logical formalisms that are equal or weaker than the (weak) monadic second-order logic
(Rabin, 1969). However, TAGs do not belong to this class, since TAGs are properly stronger
than context-free grammars. But a set of trees is recognizable if and only if it can be recog-
nized by tree automaton, which can be also encoded as a context-free grammar, Nevertheless,
there are logical formalisms to specify structures beyond context-free derivations. For instance,
Rogers proposes in (1999} and previous works a Jogical description of TAGs that is based on
a 3-dimensional view of trees. The important issue of his approach is to combine the derived
TAG-tree and its derivation tree to a single 3-dimensional structure.

Similarly, we propose a formal method to establish tree constraints outside the context-free
paradigm that employs an additional tree structure that is linked with the tree in a particular
manner. For TAGs we consider the corresponding TAG-derivation tree where each node of the
derived TAG-tree is linked with the corresponding derivation node, e.g., if we adjoin the aux-
iliary tree f3 to the auxiliary tree o then we reach a derivation tree with the root m,, that has a
single child mg. Correspondingly, we link each node of the underlying initial tree o with the
i, node in the derivation tree and each node of the adjoined auxiliary tree 8 with the g node.
Instead of labeling the nodes of the derivation tree with the name of the corresponding elemen-
tary tree and the tree address of the corresponding adjunction node, the former is sufficient due
to these links. After adjoining a further 7 tree to the former 3 tree, the derivation tree includes a
second myg node below the first one. In addition, the nodes of the second J tree are linked with
the second mg node of the derivation tree. Obviously, the dominance relation in the derivation
tree expresses nested auxiliary trees in the derived TAG-tree.

In contrast to Rogers’ 3-dimensional trees, we keep the derived TAG-tree as a unit in order to
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Figure 1. TAG generating the copy language and the derivation for abaaba

be able to access the TAG-tree directly without applying a particular projection (or a similar
function) to the overall structure. Therefore we can still use one of the logical formalisms
describing trees mentioned earlier to partially specify a set of TAG-trees. But if we want to
make use of the special, non-context-free properties of TAGs, we must consider the links to refer
to the corresponding nodes of the derivation tree. This linking function enables to specify sets
of nodes in the TAG-tree, which we cannot describe in a formalism only capturing recognizable
set of trees. As an illustrating example we consider a simple TAG generating the copy language
{ww | w € {a,b}*} (see Figure 1}. Obviously, each occurrence of a letter in the first word
shares the same auxiliary tree with the corresponding occurrence in the second word. In Figure 1
we find the corresponding TAG-tree and its derivation tree for the word abaaba.

In the approach presented here we make some important assumptions conceming TAGs, We
employ a special node predicate Adj to indicate the adjunction nodes. Moreover, we take for
granted that the root and the foot fails Adf, and the adjunction nodes do not immediately dom-
inate each other. Therefore every adjoined tree is only bounded by nodes of the tree it was
adjoined to. Instead of simple node labels we use a finite set £ of unary node predicates.
Hence, each node is 1abeled with the (finite) set of predicates that are valid for it. We may only
adjoin an auxiliary tree at a node if this node, the root and the foot of this auxiliary tree share at
least one common predicate. In the resulting tree the labels of the former root and the foot are
the intersection of the labels of the adjunction node with the former labels of the root and foot,
respectively. Finally, we consider the substitetion, i.e., replacing a leaf with an elementary tree
as a particular version of adjunction, where the foot of the adjoined tree remains a leaf,

2. A Logical Specification for TAGs and Their Derivations

Our specification language considers two structures, i.e., the resulting TAG-tree £ and its deriva-
tion tree d, and the (total) function T mapping the nodes of # to the corresponding nodes of 4.
We call the combined structure consisting of these components a ¢/d-tree, where the finite sets
¥ and Lp denote the label domain for the TAG-tree and the derivation tree, respectively. In
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detail, a t/d-structure (T', D, ) includes a E-labeled wree domain T' = (¢, P,) for the TAG—tree;i
a T p-labeled tree domain D = (d, F;) and the linking function 7:¢ — d.

In order to specify a particular set of ¢/d-trees we employ a first-order style formalism which is

similar to the one used in (Backofen et al., 1995).! The resulting first-order language L, (%, £}
includes the binary operators 4, <, €%, <*, 4p, <}, representing the immediate dominance rela-

tion, the sibling precedence relation and their transitive-reflexive closure for the TAG- and the

derivation tree, respectively. The function  maps each TAG-tree node to the corresponding

derivation tree node. In addition, we intraduce anxiliary predicates root and foot to mark the

root and the foot of an elementary tree. Further, the predicate leaf indicates the leaves of an

elementary tree that must keep this property during the whole derivation which is especially

true for the foot of an initial tree.

Based on the first-order language Ly;4(T, Ep) we can specify the formal properties of a weli-

formed t/d-tree. We consider the intended distribution of the linking function T and the predi-

cates root and foo! when adjoining the anxiliary tree g to the tree ce. Hence, the comesponding

derivation tree includes two nodes m, and mg where m, 95 mg. Basically, for every derivation

node m there is a unique root dominating a unique foot, either one referring to m (T'1). In ad-

dition, the root dominates all other nodes referring to m {7'2), and the foot dominates no cther

node referring to m (T'3). Finally, each node wearing the predicate legf must be a Ieaf (T'4).

(T1)¥m3in, n'inatn’ Ar(n)=m A 7(n'}=m A root(n) A foor(n')
(T2} ¥n,n': 7(n)y=1(n") A root(n) = natn’
(T3)Vn,n": 7(n)=1(n"} A foot{n) = - natn'
(T'4) ¥n,n': leaf(n) = = nan’
(T'5) Ynar': (t(n)=r(n'YA—root{(n) A—foor(n'))
V (7(n) ap 7{n'} A roor(n')) v (t(n) ap T(n) A foor(n))

where the quantifier 3; denotes the unique existence. In (T'5) we consider the properties of
pairs of immediately dominating nodes. Initially, an elementary tree is coherent, i.¢., each node
and cach of its existing immediate neighbors are parts of the same elementary tree, But after
adjoining a tree § at an adjunction node of o, this relationship is interrupted for e, namely
between the root and the foot of 3. Consequently, each pair of nedes n and n' with nan’ refer to
the same elementary tree if neither foot(n) nor root(n') obtains. Otherwise, either n' is the root
of 4 or n is the foot §, where v is the parent of § in the derivation tree, since according to the
previous assumptions every adjoined tree is bounded by nodes of the trec we are adjoining to,

The constraints (1'1) to (T'5} sufficiently specify a valid TAG-tree and its derivation tree pro-
vided that either structure is a valid (ordered) finite tree. Hence, it must be possible to separate
an arbitrary t/d-tree satisfying the above constraints into a corresponding set of elementary
trees. We start this backward derivation at an arbitrary leaf m of the derivation tree. Following
(T'1) there is a unique root n, and a unique foot ny in the TAG-tree marking the boundaries
of the corresponding elementary tree. Due to {T'2) n, dominates all nodes n with 7(n) = m,
and due to (T3} n; dominates none of them. Since m is a leaf, {(T'5) asserts that all nodes
dominated by n, and not dominated by n; refer to the same elementary tree m. Therefore we
can undo the adjunction of the m-tree feading to an m-labeled auxiliary tree. We remove m in
the derivation tree, and in the TAG-iree we replace the m-tree with a new adjunction nede n,,
referring to the parent of m and whose label is the union of the labels of n, and ny except root
end foot. 1n the same manner we handle the remaining ¢/d-tree until a single derivation node

!Selecting first-order logic as the specifying formalism for both kind of struciures should be considered as 2
working example rather than restricting our approach to this kind of logic. Nevertheless, one can employ all kmds
of formalisms, e.g., monadic second order logic, that describe recognizable sets of (finite) trees.
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remains which denotes the initial tree of the derivation, Finally we should note that this method
does not ensure for elementary trees to be uniquely associated with their labels, However, an
appropriate modification of the label domain L, could assert this.

Consequently, every t/d-tree satisfying the constraints (I'1) to (T'5)* is generated by a certain
TAG whose necessary elementary trees result from the backward derivation described above.
Since the backward derivation does not consider the inner structure of an elementary tree, i.e.,
the nodes satisfying neither root nor foot, this part of the considered TAG-tree can be under-
specified. In that case the result of the backward derivation is underspecified, too. By a minor
modified backward derivation which manages altemnative results we could handle arbitrary un-
derspecification as well.

Obviously, the TAG resulting from a backward derivation of an (underspecified) t/d-tree also
generates other t/d-trees than the given cne. More generally, one or more given (underspeci-
fied) ¢/d-trees may be considered as a system generating a TAG that recognizes at least these
t/d-trees and its predecessors and successors in the TAG derivation. Thus, as a basic applica-
tion the backward derivation can be employed 1o describe a particular property of TAG-trees by
means of an underspecified ¢/d tree and to construct a corresponding set of elementary trees.
As a linguistic application, we consider an underspecified ¢/d-tree describing a particular gram-
matical phenomenon, and hereafter, we achieve a corresponding TAG. Hence, we are able to
obtain information on modeling syntactic properties by means of TAGs.

3, Representing Structure Sharing

Structure sharing is an important issue in natural language syntax. In general, it is necessary if a
constituent occurs in a position that is different from the one licensing it (or at least a significant
pant of it). For instance, in the questicn “Which girl did we meet yesterday ?”, the object phrase
“which girl” occurs in the sentence initial position rather than in the object position immediately
after the verb, where it receives its case and ¢-role. Typically, we represent structure sharing
as a derivational process called movement, i.e., a moved phrase XP; leaves a trace £; at its
former position; hence we write “[Which girl]; did we meet #; yesterday?”. Similarly, we
handle topicalized objects, €.g., “[This nice girl); we met ¢; yesterday”. However, the indices
we use to indicate structure sharing give rise to a problem conceming the finiteness of the label
domain X. Tn general, an arbitrary number of such indices may occur. This leads to an infinite
number of necessary labels which we cannot handle in our Lyyy-formalism. However, we will
illustrate how to handle structure sharing in TAGs without employing such indices.

Most TAG approaches to wh-movement and topicalization, e.g., XTAG (1999), assume an initial
tree that describes the whole sentence structure including the moved phrase and its trace. Con-
sequently, we require similar trees for all kinds of movement and sentence structures. Moreover
the (structural) distance between the co-indexed nodes is bounded according to the specification
in its initial tree. However, this method fails to represent long distance movement as in

Who; do we think that Bill knows that Rachel saw that John kissed ¢;.

where the distance (within the tree) between the moved node and its trace is arbitrary since such
a structure requires a series of adjunctions between the co-indexed nodes. In order to reach a
more general approach to movement in TAGs, we apply the backward derivation to such crucial
tree structures. In detail, we extend a given tree to a corresponding t/d-structure satisfying (7'1)
to (7'5) by assigning appropriate values for 7, roor and foot. As a basic property of t/d-trees
we proposed that we store shared information in the derivation tree rather than using indices

*0Obviously, (T4) can be ignored since the leaf predicate only prevents adjunctions beyond the tree considered.
Nevertheless, to achieve a more restricted TAG we may assume thai initially all leaves must satisfy leaf.
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Figure 2: t/d-trec and TAG for “this girl we met yesterday”

in the derived TAG tree. Then we can express an arbitrary number of shared properties while
keeping a finite 1abel domain for the TAG tree. We presume therefore that fundamentaily shared
structures belong to the same elementary tree. Accordingly, we assign the moved noun phrase
and its trace to the same elementary tree m; which must also include the S° node as its root.
Note that this does not mean that S’ must share any properties with the NP, actually m; only
serves to store the common features of the NP and its trace. For the foot of m; we select the
trace. Similarly, we obtain that S is the root of m, and the object NP its foot, Finally, the adverb
is assigned to the auxiliary tree my with both VP nodes as its root and foot. The resulting t/d-
tree and the corresponding elementary trees is shown in (Figure 2) where we do not explicitly
write the leaf predicate that is assigned to the trace and the lexical entries.

Generalizing the result obtained above, the starting and the landing position of a movement are
part of the same elementary tree to which we must adjoin the structure occurring between. The
distance between a moved phrase and its trace depends on the number and complexity of the
elementary trees adjoined to the movement tree where additional constraints on the derivation
tree can restrict this distance. However, adjoining the inner structure seems to be inconsistent 1o
most other current TAG approaches to natural languages, Nevertheless, this conflict turns out to
be only superficial if we assume initial trees where the position of the foot and the substitution
nodes are underspecified. For instance, we consider the argument structure of a verb where the
nodes for the arguments are marked for substitution or to be the foot. So we can move at most
argument and the remaining ones must be substituted; for the moved argument we assume a
corresponding substitution node at the landing position, too.

Since movement is not restricted to NPs we assume a more general elementary tree for move-
ment where the category of the moved phrases is underspecified and the moved phrase must be
inserted via substitution, Moreover if we select appropriate predicates for the adjunction node,
we can specify the auxiliary trees that can be adjoined. Through the resulting elementary tree
for movement we can express movement as a particular version of adjunction rather than as a
lexical process. Since the moved phrase and its trace are linked by a corresponding elementary
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tree no further co-indexing is necessary, As a result we obtain TAGs that require only a finite
label domain. Thus, a corresponding the L;/s-formula can specify such TAGs appropriately.

4. Conclusion

We have introduced a logical description of TAGs that simultaneously considers the derived and
derivation tree, both of which are linked together via a special function. By the constraints (7'1)
to (T5) we have obtained a notion of TAG-validity that is applicable to arbitrary tree structures.
In detail, we have established a backward derivation to verify whether an (underspecified) tree
can be generated by a TAG. Using this method we have obtained an alternative approach to rep-
resent structure sharing without employing indices in TAG. This way we can describe structure
sharing within the L4 formalism, too. Formally seen, we focus the properties of the adjunction
operation rather than putting together complex initial trees. As a further application, it should
be possible to extend the backward derivation to a learning algorithm that extracts a TAG from a
given tree corpus, Another obvious extension of our L;4 formalism emerges when we consider
the derivation tree as a derived tree which is linked with a further derivation tree. This leads to
Weir's hierarchy of control languages (1992}.

An alternative approach to express structure sharing in TAGs is provided by several variants of
multi-component TAGs (Weir, 1988; Rambow, 1994} where a set of elementary trees is simulta-
neously adjoined (or substituted). Obviously, such a set identifies its members. However, there
may be an arbitrary number of such sets in a derived tree which means an arbitrary number of
indices and, hence, an infinite label domain. Nevertheless our approach can be extended to such
formalisms as long as the label domains are finite and the derivation trees are recognizable.
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Abstract

We show that the construction of proof nets in the implicative fragment of intuitionistic linear
logic reduces ro the generation of models in the shape of complerely specified and neutral trees
from polarised iree descriptions. This provides its with a new framework for revisiting grammat-
ical formalisms and leads us to introduce Interacrion Grammars which aim to take advanrage
of two main characterisrics of this framework: under-specification and polarities.

Introduction

Apparently, Categorial Grammars {(CG) and Tree Adjoining Grammers {TAG) are two very
different approaches to the syntax of natural languages. CG are characterised as calculi of po-
larised syntactic types based on the idea that grammatical categories are consumable resources:
some constituents behave as resource consumers whereas others behave as resource providers
so that syntactic compasition is viewed as a process in which consumers and providers try to
cancel each other out; most often, CG are expressed in a Jogical framework that takes the Lam-
bek Caiculus as its nucleus, which combines resource sensitivity with order sensitivity. This
intimate combination, which explains the central role of this logic as a framework for CG, is
at the same time a cause of rigidity which limits its expressive power greaty. The search for
an appropriate way of relaxing this framework constitutes an important research area of CG
(Moo96).

TAG do not manipulate syntactic types but syntactic trees with the adjunction operation as their
comerstone. In this way, their expressivity goes beyond that of CG but their rigidity is also their
weak point; like CG, they are Jexicalised and all syntactic configurations in which a word is
used are stored in the lexicon in the form of elementary trees. As soon as a word is used in a
new syntactic configuration, a new elementary tree must be added to the Iexicon directly or via
a lexical rule. In this way, lexicons quickly become colossal and very awkward to manage.
Recent works have contributed to establish links between CG and TAG with the common aim
to embed TAG in a logical setting (AFV97; JK97). Our proposal aims to provide a common
framework for comparing CG and TAG and for overcoming some of their specific limitations in
a new formalism which we call Interaction Grammars (IG). The common framework that we
choose is that of tree descriptions. This notion is not new in the TAG community since it was
introduced by (VS92) for making adjunction monotone and embedding TAG in a unification
framework. The key idea behind this notion is to replace reasoning about syntactic trees as
completely defined objects with reasoning about properties which are used for characterising
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these trees; in this way, syntactic trees are viewed as models of descriptions. This allows one to
use the notion of under-specification in a fruitful manner for structuring TAG lexicons (Can99)
or for dealing with semantic ambiguity (MK; ENRX98) for instance. This also allows a new
and promising constraint-based style of computing within linguistics (?; DT99; Bla99),

We propose to show that CG can be revisited in this framework with new developments which
lead us to IG. The starting point of this proposal is purely theoretic since it concems proof
theory in Inwitionistic Linear Logic (ILL).

1. Intuitionistic proof nets as polarised tree descriptions

Resource sensitivity of linear logic entails a specific form of proof: proof nets (Gir87). In
the general framework of classical linear logic, these proof nets are not directed so that each
extremity of a proof net can be viewed as either an input or an output; in other words, each
formula that is attached 1o an extremity of a proof net can be considered either as an assumption
{(input} or as a conelusion (output} of the proof.

In TLL, this symmetry is broken and things freeze in a configuration where all formulas become
polarised, one as the output (denoted +) and the others as the inputs (denoted ~). F. Lamarche
has devised a correctness criterion for these proof nets which takes their specificity into account
(Lam96). Hence, he has sketched a more abstract representation of proof nets which is inspired
by the games semantics for PCF introduced by (HO93) and which only takes the induced order
between atomic formulas into account.

By using the notion of tree description, we propose to perfect this representation for Implicative
Intuitionistic Linear Logic (ITLL), which is the implicative fragment of ILL, built only from
the Hnear implication (—e); we choose this fragment because of its linguistic interest but our
proposal can be easily extended to the whole multiplicative fragment.

I.1.  Syntactic descriptions of IILL formulas

Let P be a set of propositions. The set of IILL formulas built from P is defined by the grammar
F = P|F — F. By adding a polarity + or — to every lILL formula, we obtain the set
F(P) of polarised IILL formulas. From the syntax of these formulas, we abstract particular
tree descriptions, called JILL syntactic descriptions.

Definition 1.1 An IILL symtactic description D is a set of polarised atomic formulas taken
Jrom F(P) that is equipped with rwo binary relarions: dominance (denoted >"} and immediate
dominance (denored > ).

For every polarised IILL formula F? (p represents the polarity + or — and —p its opposite),
we build its syntactic description, dengted D{F?) from the root, denoted Root{D(F*)}, to the
leaves recursively according to the following definition.

Definition 1.2 D(F?) is an IILL syntactic description such thar:

o if F? is atomie, then D{F?) is reduced to the unique element F?, the two relations >* and
> are empty and Rool(D(FF)) = Fr;

» if FP = (F| — F})?, then D(F¥) i5 the disjoint union of D(F"?) and D(F}) where the
relations >* and > are completed with a relation between Root(D(F7)) and Root(D(F}))
according to the following rule:

~ if p=+, then Root(D(F;')) >* Root(D(Fy}) and Root(D(FP)) = Root{D(F}));
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~ if p=— then Root(D(F;)) > Root(D{F}")) and Root(D{F?)) = Root(D(F{:)j;__

According to the previous definition, an IILL syntactic description has a very panticular shapc:
it appears as a hierarchy of levels which alternate positive and negative formulas and, at the
same time, dominance links and immediate dominance links between them.

1.2.  Provability in ILL as validity of syntactic descriptions
Syntactic descriptions are interpreted on trees according to the following definition:

Definition 1.3 A rree T is a model of a symiactic description D {f there is an interpreration !
Jrom D 1o T such that:

o Foreverynode N of T, I"Y{ N} is composed of exactly two elemenis of D: F* and F.

o Forevery pair (FP', FI*) of D, F* > FJ* (F* > FI*) emrails that I{F") is the parent
{an ancestor) of J(F3*} in T.

If a descriprion D accepts a model, D is said to be valid,

In others terms, a syntactic description is valid if one can merge its nodes by dual pairs while
respecting its dominance constraints, Equivalence between provability of IILL sequents in Jin-
ear ogic and validity of the corresponding syntactic descriptions is established by the following
theorem. '

Theorem 1.1 An IILL sequent F1,...,Fy, = G is provable in linear logic if and onlv if the

syntactic description D((F} — -+ — F,, — G)*) isvalid.

Sketch of proof 1.1 To show that provability entails validin, we proceed by induction on proafs
af IHLL seguents in the linear sequent calculus. We consider the last inference I of any proof
of such a sequeni. By induction hypothesis, we get models of the syntactic descriprions of the
I-premises and it is not very difficult 1o combine these models to butld a model of the syntactic
description of the I-conclusion.

To show that validity entails provabiliry, we proceed by induction on the number of nodes of
syntactic descriptions. We consider any valid description of an IILL formula F. We drop
the roor R* of the description and is dual node R~ which match in a model T; alf partial
descriptions D{F,") which become unconnected in this way are linked 1o the children of R~
that dominare them in the model T. In this way, we obiain a set of valid syntactic descriptions
to which we can apply the induction hypothesis; as a consequence, we obtain a set of provable
sequents from which we deduce ~ F.

Example 1.1 The transitivity of linear implication is expressed by the provability of the IILL
sequenta —o b, b —o ¢ + a —o ¢, which amounts to the provabiliry of the one-sided sequent
F (o -ob) —o{b—oc) - (a-oc). Fromihe left 1o the right, Figure I successively presents
the proof net which establishes this provability, the corresponding syntactic description dand the
model ' which guarantees the validity of this description, In the proof net, positive formulas are
represented by down arrays and negative formulas by up arrays; axioms links are represented
by dotted edges.

Proof search, which, in IILL, takes the form of proof net construction, now reduces to the
generation of models from syntactic descriptions; some details are forgotten while essentials

'The madel is unigue up 1o an isomorphism.
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Figure 1; IlLL proof of - {@a — b)) — (b —¢) — {a — ¢)

are preserved: identification of dual nodes of a syntactic description corresponds to putting an
axjom fink in the corresponding proof net and the correctness criterion of the proof net is con-
stantly guaranteed by the tree-like structure of the description. In order to extend these results
to the whole multiplicative fragment of ILL, we have to relax the tree structure of descriptions
to a DAG structure.

1.3.  Planarity of Lambek proof nets and precedence order in synfactic descriptions

In the implicative fragment of the Lambek Calculus, linear implication is replaced by two impli-
cations, left and right, respectively denoted \ and / , which results from the non-commutativity
of the calculus. Lambek proof nets differ from IILL proof nets by the fact that the premises of
inference links are ordered and axiom links must not cross each other (Roo91).

This enrichment of IILL proof nets by a precedence order can be translated in the cormesponding
syntactic descriptions without difficulties: besides the two relations of dominance and imme-
diate dominance, we add a precedence relation between atomic formulas. A difficulty comes
then when we want to express the axiom links of a proof net with the merging of dual nodes
in the corresponding syntactic description. This operation requires movement of nodes, which
generally entails a violation of the precedence order. As a consequence, the monotonicity of
the process of generating models from syntactic descriptions collapses. If we try to relax the
precedence order, we obtain valid descriptions that correspond to non correct Lambek proof
nets where some axiom links cross each other.

The fundamental reason of this difficulty lies in the intimate inferweaving between the prece-
dence and dominance orders in Lambek proof nets. The construction of a Lambek proof net can
be viewed as the construction of an ordered tree from a syntactic description under the contrel
of both dominance and precedence order. Whereas the initial dominance order is preserved in
the final tree, this is not the case for the precedence order: it is only preserved between the chil-
dren of nepative nodes; for the rest, this order is used for bounding the movement of dual nodes
in terms of good parenthesising, which corresponds to the planarity of Lambek proof nets,

2. Polarised tree descriptions: a framework for developing grammatical
formalisms )

2.1, Outline of Interaction Grammars

Even if Lambek Grammars (LG) do not fit in exactly with the framework of polarised tree de-
scriptions, as we have just pointed out, their application to linguistics shows that this framework
captures the essentials; the peneration of syntactic trees driven by a mechanism of polarities
from descriptions which use three kinds of relations; dominance, immediate dominance and
precedence,
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Concerning TAG, Vijay-Shanker (VS92) proposes their translation in terms of tree descriptions
which can be completed with polarities for exactly recovering the shape defined in the previs
ous section. This common shape highlights the main difference between TAG and LG: hoth
definition and realisation of dominance relations are more constrained in TAG than in LG. Two
nodes which participate in such a relation must have the $ame grammatical category in TAG and
the relation can only be realized by insertion of another syntactic description between the two
nodes, whereas, in LG, the only constraints are polarity and good parenthesising constraints.
By exploiting tree descriptions, some works aim to relax the TAG adjunction operation in order
to capture linguistic phenomena which are beyond TAG (RVSW93; Kal99). Unfortunately, the
counterpart of a more fiexible framework is often over-generation and a loss of computational
efficiency in the absence of control on the process of syntactic comnposition. IG are an atternpt
of exploiting the flexibility of tree descriptions as far as possible while keeping the notion of
polarity as central for controlling syntactic composition.

A particular interaction grammar &, which is associated with a vocabulary V, is defined from
a finite set of tabels C, which can be in a first approach a set of atomic categories. The basic
abjects of G are 1G syntactic descriptions which are a variant of IILL syntactic descriptions.

Definition 2.1 Ar IG syntactic descriprion is a finite set of nodes structured by dominance,
immediate dominance and precedence relations. Inmediate dominance is defined in two ways:
either classically with a binary relation between two nodes or with a parent-clildren relation
which enumerate all children of a node. Every node (s equipped wiith a label from C and a
polarity—1, G or +1.

IG are lexicalised so that ' is completely defined by its Jexicon which associates a set of syn-
tactic descriptions to every word of V.

With respect to the abstract IILL syntactic descriptions, IG descriptions present three differ-
ences: the use of precedence order in addition to dominance orders, the presence of neutral
nodes and the possibility of closing the set of children for 2 node. These differences are re-
flected in the definition of a mode],

Definition 2.2 A model of an IG synractic description I} is an ordered tree T such that there
exists an interpretation I which respects the following conditions:

s every node of the syntaciic Iree interprets a set of node variables labelled with the same
labels; all these variables are neutral, oflierwise, there s exactly one positive and one
negative variables in this set;

o the imerpretation respects dominance and precedence relations of D and the tree struc-
ture of T is totally realised by means of parent-children relations initially present in the
description.

IG differ from LG on two main points: precedence order between syntactic constituents is
dissoctated from dominance order and neutral nodes are uscd for pattern matching between
syntactic structures. In this way, parsing amounts to generating models from syntactic descrip-
tions and a parsing process can be viewed as an electrostatic process in which opposite charges
attract themselves while charges with the same polarity repel each other, whence the name of
Interaction Grammars,

Example 2.1 Parsing the phrase Marie que Jean voit staris with extracting appropriate syn-
tactic descriptions from a lexicon for all its words and gathering them in a unigue syntactic
description as Figure 2 shows it. The root of the description represents the requesi whereas



182 Guy Perrier

each of its four childven corresponds to a word of the phrase. Every syntactic node is labelled
with its grammatical category and its polarity (polarity 0 is omitted). Contrary to IILL de-
scriptions, we choose the opposite convention for polarities, which is better suited 1o linguistic
reality: positive nodes represent actual constituents and negative nodes virtual constituents
which are expected. Precedence order between syntactic nodes is denoted with dotted arrays
and dominance order with dotied edges. Parsing succeeds in finding a model for this symactic

Figure 2: syntactic description of the phrase Marie gite Jean voit

description: this model is the symactic tree given by Figure 3.

@_M—ﬁ: que Jeant voit

Marie

Figure 3: syntactic tree of the phrase AMarie que Jean voit

In this first version, IG go beyond the expressivity of LG (for instance, middle extraction from
relative clauses is representable in such a framework) but they are still too rigid.

2.2, Polarised features and non-determinism in descriptions

The outline of IG that was just presented encounters similar limitations to TAG for expressing
the flexibility of word order in natural languages. For instance, the SVO order is sometimes
relaxed like in the phrase Marie que voit Jean: the object of voit is provided by the relative
pronoun gue the form of which indicates the accusative case. As a consequence, there is no
more ambiguity on the assignment of the subject and the object of voif and word order can be
relaxed. Nevertheless, the phrase Marie que voir il is not acceptable because the position of
the clitic il after the verb voir generates an interrogative type for the clause que voit il. Such
a complex interaction between word order and grammatical features is not captured by the
previous version of IG.

Another difficulty comes from the fact that a word can be vsed in several syntactic contexts
which often differ only partially. For instance, the verb voit can be used without any object like
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in the interrogative sentence Jean voit-il ?,
A answer to these problems consists in a refinement of our formalism on two main peints:

¢ polarities are transferred from syntactic constituents to elementary features that are used
for describing their properties, which gives a finer granularity to this notion;

e syntactic descriptions can be compoesed in two ways: in a product of two descriptions, the
resources of both components are used whereas in a sum, either the resources of the first
component or the resources of the second are used, but not both.

These refinements make the notion of model more complex: the neutrality condition refers now
to features and not to nodes and for every choice point in a description exactly one altemnatjve
is used in 2 model.

Because of Jack of space, we do not present the IG formal system in its complete shape; we
prefer to give an example for illustrating the last refinements of 1G. This formal system uses
the framework of multiplicative and additive linear logic (MALL): “electrostatic” interaction
is expressed by the resource sensitivity of MALL and non-determinism in descriptions by the
additive part of this logic.

Example 2.2 Figure 4 present the possible lexical entries for Jean, voit and il. Every entry
is a combination of partial descriptions organized in a hierarchy according 1o a decision tree.
Every node of this tree is a choice point between rwo partial descriptions. For instance, the
lexical entry of voit includes two choice poines: the lefi corresponds to the presence or not of
an order subject-verb and the right to the presence or nor of an object for the verb. All puasiilc
complete descriptions are built by making a choice ar each choice poing and by superposing all
remaining descriptions. In this way, a single entry expresses four syniactic coniexts for the verb
voit. The entry foril also includes two choice potnis corresponding to the presence or not of an
explicit subject in the sentence and to the order clitic-verb,

Positive, negarive and neutral fearures are respeciively denoted —, +— and =. A polarity which
is not followed by a value means that this value is non determined. To remain readable, the
Sfgure includes only the most significant features of every node. With these entries, we succeed
i parsing il voit Jean, voit-il Jean 7 and Jean voit-il 7 af once.

The price for having a flexible modet is a loss of computational efficiency but the monotonic-
ity of the model generation process allows us to use the powerful tool of constraint solving
for computing models from syntactic descriptions. Such an approach was inspired from the
proposals of (DT99) and it gave rise to the implementation of a prototype in the constraint pro-
gramming language Oz (Smo95). The first experiments show that polarities play a decisive role
for computational efficiency and further validate our direction of research: exploiting in a same
linguistic model the advantages of both under-specification and polarties.
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1. Introduction

When people develop something intended as a large broad-coverage grammar, they usually have
a more specific goal in mind. Sometimes this goal is covering a corpus; sometimes the develop-
ers have theoretical ideas they wish to investigate; most often, work is driven by a combination
of these two main types of goal. What tends to happen after a while is that the community of
people working with the grammar starts thinking of some phenomena as “central”, and makes
serious efforts to deal with them; other phenomena are labelled “marginal”, and ignored. Before
long, the distinction between “central” and “marginal” becomes so ingrained that it is automatic,
and people virtually stop thinking about the “marginal” phenomena. In practice, the only way to
bring the marginal things back into focus is to look at what other people are doing and compare
it with one’s own work.

In this paper, we will take two large grammars, XTAG and CLE, and examine each of them from
the other’s point of view. We will find in both cases not only that important things are missing,
but that the perspective offered by the other grammar suggests simple and practical ways of
filling in the holes. It turns out that there is a pleasing symmetry to the picture. XTAG has a
very good treatment of complement structure, which the CLE to some extent lacks; conversely,
the CLE offers a powerful and general account of adjuncts, which the XTAG grammar does not
fully duplicate. If we examine the way in which each grammar does the thing it is good at, we
find that the reJevant methods are quite easy to port 1o the other framework, and in fact only
involve generalization and systematization of existing mechanisms.

The paper is structured as follows. Section 2 presents a very brief overview of the CLE and
XTAG grammars. In Section 3, we describe the CLE grammar from the XTAG grammar’s
point of view, following which Section 4 describes the XTAG grammar from a CLE perspective.
Section 5 concludes.

2. An Overview of the XTAG and CLE Grammars

The CLE and X TAG grammars for English are extensively described elsewhere (Pulman, 1992;
The XTAG-Group, 1995), and this section will only present the briefest possible summary. Both
grammars make a serious attempt to cover all major syntactic phenomena of the language; the
CLE grammar also associates each syntactic construction with a compositional scope-free se-
mantics expressed in Quasi Logical Form notation (van Eijck & Alshawi, 1992). In partlcular
both grammars provide good coverage of the following:

NP structure: Pre- and post-nominal adjectival modification, postnominal modification by
PPs, relative clauses, -ing and -ed VPs, comparative and superlative adjectives, possessives,
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complex determiners, compound nominals, time, date and code expressions, numbers, “kind
of" NPs, determiner and NBAR ellipsis, sentential NPs, apposition, conjunction of NP.

Clausal structure: A large varety of verb types, including intransitives, transitives, ditransi-
tives, copula, auxiliaries, modals, verbs subcategorizing for PPs, particles, embedded clauses,
raising and small clause constructions, and combinations of the above; VP modification by
PPs, verbal ADVPs, -ing VP, “10” VP declaratives, imperative, WH-questions and Y-N gues-
tions; clefts; passives; sentential ADVPs; topicalization; negation; embedded questions; relative

¢jauses; conjunction,

3. What XTAG Tells Us About the CLE Grammar

Both grammars are explicitly lexicalized in a way that makes it easy to define a wide varety of
types of complement structure. The XTAG grammar defines complement structure through the
very fiexible and general mechanism of initial trees combined with the adjunction operation for
introducing recursion. Very briefly, each initial tree defines one possible complement structure
forits head. Complements can be specified as substitution nodes, with features constraining the
possible constituents that can be substituted in; alternately, they can be specified as adjunction
nodes, which allow auxiiiary trees to be adjoined onto them.

CLE grammar, in contrast, defines complement structure through rule schemas. For example,
the VP rule schema is of the form

VP -3 Vi[subcat=COMPS] | COMPS

the dght hand side of which can be glossed as *V whose <subcat> feature has value COMPS,
followed by a list of constituents which unify with COMPS”, From a TAG perspective, COMPS
is more or less equivalent to a list of substitution nodes; there is nothing comresponding to
adjunction nodes. The CLE grammar can get along without the adjunction operation, which
is absolutely central to XTAG, because it has a powerful mechanism for handling [ong-range
dependencies based on the idea of “gap-threading” (Pereira, 1981; Karttunen, 1986, Pulman,
1992). From the XTAG point of view, it is none the less hard to believe that substitution nodes
on their own will be capable of modeling an equally broad range of complemen; structures.

It does indeed appear to be the case that certain types of complements, particularly those related
to idioms and light verbs, are difficult to capture in the CLE framework whereas there is an
obvious way to treat these in XTAG. The most convincing example we have identified so far
is the class of constructions, very common in English, involving a combination of a verb, a
possessive, and & noun, for instance shake one’s head, close one’s eyes, shrug one's shoulders,
take one’s time, have one's way. In all of these constructions, the NP’s determiner must be
a possessive pronoun agreeing with the verb, and it is in general possible to modify the NP
(shake his prerty head, shrug her powerful shoulders, have his silly way). 1t is obvious that
take one’s time and have one’s way should be treated as light verb constructions and there are
good arguments for modeling the less obvious cases such as shake one’s head, close one's eyes
and shrug one’s shoulders as idioms or light verbs as well, rather than just viewing them as
instances of the general transitive verbs shake, close or shrug. For instance, modeling them
as idioms or Hght verbs would be an advantage in the context of a transfer-based miachine
translation system. Few languages express these concepts in the same way as English! and
a straight forward compositional treatment will lead to serious complications in defining the
associated transfer rules.

for example, close one’s eyes is fermer lex yewx in French {transitive verb + definile NF) and blunda in Swedish
(intransitive verb)
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Coding the constraints needed to capture these constructions as idioms is unproblematic jn
XTAG: for example the initial tree for have one’s way will be roughly of the form

Sel]

[agr ! <3>]

NPl [agr : <> []] YP [agr : <3> [:H
[agr : <2>]

/\

V[agr ;<> []] NPy []

(] (]

| N

have D]J' [ref H [agr . <1>]] Nl %

way

]
]

Figure 1: Initial Tree for have one’s way

In the current XTAG grammar there is no possessive feature per se. In Figure | the determiner
is forced to be a possessive pronoun by constraining node D1’s <ref> feature to have the same
<agr> values as the NPQ and V. Since only pronominal determiners have the <ref> feature,
constraining it ensures that the determiner is both pronominal and agrees with the NPQ subject.
Notice that because the determiner and the noun of the NP complement are leaves of the tree, it
1s trivial to state constraints an either of them.

The XTAG treatment cannot be duplicated directly in the CLE framework, since the constraints
present in the value of the <subcat>- feature are unable to directly reference the DET and N
nodes in the complement NP; they can only access that NP’s maximal projection. This means
that the features on NPs must be such that the relevant information is percolated up through
all NP modification rules. Concretely, the category NP needs a head feature which not only
specifies whether the DET is a possessive, but also provides agreement information for that
possessive; there is however no such feature in the current CILE grammar. We will return to this
point in the final section.

4, What the CLE Tells Us About the XTAG Grammar

We now switch to looking at the XTAG grammar from the CLE’s point of view. Perhaps the
main strength of the CLE grammar is its handling of long-range dependencies, which as al-
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ready noted is implemented using & gap-threading method. XTAG’s main tools for dealing
with long-range dependencies are the ability to state constraints within an elementary tree and
the adjunction operation. This works very weli for some things, in particular most phenomena
involving movement of complements; the basic idea is to encode the movement in a suitable
initial tree, and let adjunction take care of the rest. None the less, for someone used to the CLE’s
design philosophy, it is intitively implausible that all movement phenomena can be captured
in this way, and one expects problems with movement of adjuncts. Once again, we looked
for 2 paradigmatic example of the problem; this time, the most clear-cut case appears (o be
preposition siranding in adjuncts, as illustrated in sentences like which lake did you swim in?
The CLE's treatment js fairly straight forward. The sentence receives the phrase-structure

(1) IS [NP which lake); {S did; you [VP [V t; } [VP swim} [PP in [NP t; }}]]]

in which the emipty V constituent is linked to the inverted main verb did, and the empty NP node
to the fronted WH+ NP which lake. Features are used to define both kinds of movement. The
V is moved through the VP feature <sai> (subject-auxiliary inversion) down to the V gap in
the main VP. The NP is moved further, using a gap-threading mechanism, successively through
the inner S, the VP, and the PP, to end up coindexed with the NP gap. The mechanisms are
described in more detail in (Pulman, 1992).

If we compare the CLE account with that provided by the XTAG grammar, an interesting point
emerges. XTAG’s treatment of inversion uses the notion of "multi-component adjunction”
which is implemented by a feature mechanism. This feature mechanism, described in detail
in (Hockey & Srinivas, 1993), forces two elementary trees to act as a “tree set™ by creating a
feature cjash with the adjunction of the first tree that is resolved by the adjunction of the second.

Sr|displ-const  : [set] : .]]

[ .
[agr : <1>]

inv { +

agr ; <2>
dispi-const [setl : +]

[inv H -]

Yo [agr : <I> [] S
[agr t 2> [}] NA

Figure 2: Inverted Verb Auxillary Tree

In the case of inversion the two trecs are the tree anchored by the inverted verb shown in Figure
2 and the tree anchored by the verb’s trace shown in Figure 3.

The adjunction of either tree individually creates a feature ¢lash between top and hottom feature
values of <displ.const> (“displaced constituent”) ; however when both trees are adjoined the
clash is resolved.
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VPe(]
[agr : <1> []

displ-const  : [setl 1 <2> [}]]

agr : <I> VP* [disp]-const : [geﬂ : J]
displ-const  : [setl T <2 NA[]

(]

A%

Figure 3: Verb Trace Auxillary Tree

Though formally different, one can see that the methods used by the two grammars to treat
subject-verb inversion are essentially the same, and involve passing a feature that licenses the
coindexing of the fronted main V and the V gap. This is the only type of adjunct movement
permitted by the current version of the XTAG grammar. Since Hockey and Srinivas (1993)
actually described how the same treatment could easily be used to account for other types of
movement, we need to consider why this has not in fact been implemented.

The reason why it is not trivial to extend the current treatment to cover other types of movement
is that the infonnation passed by the <displ_const> feature is too coarse-grained; it says that
a constituent has been moved, but fails to specify either the type of constituent or the type
of movement. A minimal extension of the current framework to cover adjunct NP-movement
cases would open the door to promiscuous filler-gap associations and the acceptance of such
ungrammatical strings as Can; they go 1o 1; in which the inverted verb can associates with the
gap in the PP adjunct to ti, It is clearly necessary to constrain the grammar so as to block these
and similar incorrect associations of fillers and gaps.

At this point, itis useful to look at the details of the CLE treatment. The CLE grammar uses fea-
tures to thread gaps, where the representation of the gaps are feature bundles encoding, among
other things, the type of constituent being moved. This immediately suggests one refinement
to the XTAG account: if a new feature is added which encodes the category of the moved con-
stituent (call it <displ_cat>), then the worst types of incorrect filler-gap associations can be
blocked. Unfortunately, this on its own is not enough since we have to take account of the fact
that a constituent can contain more than one gap. The CLE grammar addresses this problem by
letting the gap features be list-valued. B

It is not clear that the CLE approach can be imported directly into XTAG; given the rather
different way in which the two grammars thread features, the CLE’s list-valued gap-threading
mechanism is hard to combine with the TAG adjunction operator, which the CLE grammar
lacks. There is however a straight forward solution. Since there are only a very small number
of different types of movement in English that can involve adjuncts, it is possible to usc a
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separate set of features to mediate each type. Specifically, we need four sets of features, which
respectively cover verb movement, WH-movement and topicalization, tough movement and
right extraposition, (It is possible that passivization forms a fifth class (Pulman, 1987)).

There is nothing linguistically odd about the idea of threading different types of movement sep-
arately. It is obvious that subject-verb inversion, WH-movement and right extraposition have
different constraints and in most cases operate on different types of constituents. In fact the
CLE grammar handles subject-verb inversion and WH-movement through different features
and does not cover nght extraposition. It does however handle WH-movement and tough-
movement through the same set of features, so the intercsting question is whether these two
should be merged. The most complex aspects of the CLE method are motivated by examples
of double extractions invalving both WH-movement and tough movement. The main consid-
eration is to enforce the no-crossing dependencies (NCD} constraint as illustrated by the well
known “sonata sentences” below; we want 10 allow (2) and block (3).

(2) Which violin; are these sonatas; hard to play t; on ;7
(3) *Which sonatas; is this violin; hard to play t; on t;7?

This provides the main justification for using list as opposed to set valued features to implement
gap threading (Pulman 1992, pp 71-73). Although a detailed discussion of the NCD constraint
is beyond the scope of this paper, it is clear that it applies more strongly to extractions from
complements than to extraction from adjuncts”. Since the gap threading mechanism would only
be used by the XTAG grammar for adjuncts, the critical examples are those that involve dou-
ble extraction from adjunct positions. Examples of this kind are first of ail very rare, and it is
not at all clear that the NCD constraint holds for them. For instance example (4) which breaks
the constraint seems if anything more natural than the version with no crossing extractions in (§)

(4} Which articles; are men; most fun to shop for t; with t;7
(5y Which articles; are men; mast fun to shop with t; for t;7

To sum up, it seems fair to say that the idea of using separate features to thread WH-movement
gaps and tough movermnent gaps is at least no worse than the CLE’s list-valued scheme, which
merges them into a single set of features. Our overall conclusion is that the treatment we have
sketched above represents a fully viable approach to adapting the CLE gap threading treatment
to the problem of handling adjunct extractions in XTAG.,

5. Summary and Cenclusions

Looking ar the examples in Sections 3 and 4, we sec a common pattern. In each case, one
grammar can do the job; the other one almost gets there, but falls over at the last moment.
Intuitively, one feels that the problem is in neither case impossible to solve.

Let us first Jook at the example with have one’s way from Section 3. As noted, the CLE could
deal with this kind of construction if NPs just had the right head features. The reason these
features aren’t present is not particularly deep; no one saw a need for them, so they were never
put in. Since they have to be trailed through a Jarge number of rules involving NPs, thé efforn
needed 1o add them is non-trivial, and without a concrete reason to attack the problem things
stayed as they were. It would however be quite easy, in principle, to make a careful study
of the types of features needed to cover the constructions which the XTAG grammar can deal

*We would like to thank Bob Levine for insightful discussion on this and other points relating to the NCD
constraint.
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with, If all of these features were added at once, using sensible macro invocations to do the
threading, the work required would not in fact be very frightening. What is more, properly
designed macros would make it easy to add new head features as and when they were found to
be necessary. The biggest step to take is noting that there is a prablem, and making the decision
10 do something about it.

The difficulties involving movement of adjuncts discussed in Section 4 are less trivial, but
nonetheless quite soluble. Though these problems have been recognized for sorne time and sug-
gestions made about how to provide the necessary additional constraint in the XTAG grammar,
a system for doing this has not been implemented. As far as we can see, the real explanation
is once again a combination of software engineering considerations and research sociology: a
vague feeling that the solution was complex and inelegant, and would involve more effort that
would be justified to cover a set of “marginal” phenomena. In actual fact, a comparison with
the CLE grammar convinces us that the XTAG group was wrong on all counts, The solution
appears fairly principled, and is not very hard to implement; and the phenomena in question,
far from being marginal, are at least as central as many of those already covered.

To sumnmarize, we have compared the CLLE and XTAG grammars, and found some important
and non-trivial problems. The CLE is unable to duplicate some of the complement structure
phenomena handled by XTAG, and this appears to be due to an insufficiently detailed modeling
of head features. Conversely, XTAG is unable to encode some types of constructs involving
adjuncts and movement, and we have suggested that the CLE’s gap-threading treatment could
be adapted to a implement a more general version of multi-component adjunction. However, we
think the real moral of the paper is much more fundamental: if people developing big grammars
want to make serious progress, it would be in everyone’s interest to carry out this kind of detailed
comparison more regularly! We hope that our remarks will encourage other researchers to do
50,
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Abstract

We present an implementation of a chart-based
head-corner parsing algorithm for lexicalized
Tree Adjoining Grammars. We report on some
practical experiments where we parse 2250
sentences from the Wall Street Journal using
this parser. In these experiments the parser
is run without any statistical pruning; it pro-
duces all valid parses for each sentence in
the form of a shared derivation forest. The
parser uses a large Treebank Grammnar with
6789 tree templates with about 120,000 lexi-
calized trees. The results suggest that the ob-
served complexity of parsing for LTAG is dom-
inated by factors other than sentence length.

1. Motivation

The particular experiments that we report on
in this paper were chosen to discover certain
facts about LTAG parsing in a practical setting.
Specifically, we wanted to discover the impor-
tance of the worst-case results for LTAG pars-
ing in practice. Let us take Schabes’ Earley-
style TAG parsing algorithm (Schabes, 1994)
which is the usual candidate for a practical
LTAG parser. The parsing time complexity of
this algorithm for various types of grammars
are as follows (for input of length n):

O(n®) - TAGs for inherently ambiguous lan-
guages

O{n*) - unambiguous TAGs

T would like to thank Aravind Joshi, Carlos Prolo
and Fei Xia for their help and suggestions. This work
was partially supported by NSF Grant SBR 8920230,

QO(n) - bounded state TAGs e.g.
usual grammar G where L(G)
{a" b ec"d" |n > 0} (see (Joshi et al.,
1975))

the

The grammar racwrs arc as suiiow?! Schabes’
Earley-style algorithm takes O (||| JUA|Nn®)
worst case time and O(|AU I|Nn?t) worst case
space, where n is the length of the input, 4 is
the set of auxiliary trees, I is the set of initial
trees and N is maximum number of nodes in
an elementary tree.

Given these worst case estimates we wish to
explore what the observed times might be for a
TAG parser. It is not our goal here to compare
different TAG parsing algorithms, rather it is to
discover what kinds of factors can contribute to
parsing time complexity. Of course, a natural-
languape grammar that is large and complex
enough to be used for parsing real-world text
is typically neither unambiguous nor bounded
in state size. It is important to note that in this
paper we are not concerned with parsing ac-
curacy, rather we want to explote parsing effi-
ciency. This is why we do not pursue any prun-
ing while parsing using statistical methods. In-
stead we produce a shared derivation forest for
each sentence which stores, in compact form,
all derivations for each sentence. This helps
us evaluate our TAG parser for time and space
efficiency, The experiments reported here are
also useful for statistical parsing using TAG
since discovering the source of grammar com-
plexity in parsing can help in finding the right
Jfigures-of-merit for effective pruning in a sta-
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tistical parser.

2. Treebank Grammar

The grammar we used for our experiments
was a Treebank Grammar which was extracted
from Sections 02-21 of the Wall Street Jour-
nal Penn Treebank II corpus (Marcus et af.,
1063). We are grateful to Fei Xia for use
of this grammar which was part of a scparate
study (Xia, 1999). The extraction converted
the derived trecs of the Treebank into deriva-
tion trees which represent the attachments of
lexicalized elementary trees. There are 6789
tree templates in the grammar with 47, 752 tree
nodes. Each word in the corpus selects some
set of tree templates. The total number of lex-
icalized trees is 123, 039. The total number of
word types in the lexicon is 44, 215. The aver-
age number of trees per word is 2.78. How-
ever, the average gives a misleading overall
picture of the syntactic lexical ambiguity in the
grammar.! Figure 1 shows the syntactic lexi-
cal ambiguity of the 150 most {requent words
in the corpus. We shail return to this issve of
lexical ambiguity when we evaluate our TAG
parser. Finally, some lexicalized trees from the
grammar are shown in Figure 2.

3. The Parser
3.1, Parsing Algorithm

The parser used in this paper implements a
chart-based head-corner algorithm. The use of
head-driven prediction to enchance efficiency
was first suggested by (Kay, 1989) for CF
parsing (see (Sikkel, 1997) for a more de-
tailed survey). (Lavelli & Satta, 1991) pro-
vided the first head-driven algorithm for LT-
AGs which was a chart-based algorithm but
it Jacked any top-down prediction. {van No-
ord, 1994) describes a Prolog implementa-
tion of a head-corner parser for LTAGs which
includes top-down prediction. Significantly,

'We define the (syntactic) lexical ambiguity for a
lexicalized TAG as the number of trees selected by a
lexical item. Note that in a fully fexicalized formalism
like LTAG, lexical ambiguity includes (to some extent)
what would be considered to be a purely syntactic am-
biguily in other formalisms.
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Figure 1: Number of trees selected by the 150
most frequent words in the input corpus. (x-
axis: Word Frequency; y-axis: Number of
Trees Selected)

(van Noord, 1994) uses a different closure re-
Tation from (Lavelli & Satta, 1991), The head-
corner traversal for auxiliary trees starts from
the footnode rather than from the anchor.

The parsing algorithm we use is a chart-based
variant nf the (van Noord, 1994) aigorithm.
We use the same heag-Loiuct vivstiiv i pI7
posed there. We do not give a complete de-
scription of our parser here since the basic
idea behind the algorithm can be grasped by
reading (van Noord, 1994). Our parser differs
from the algorithm in (van Noord, 1994) in
some important respects: our implementation
is chart-based and explicitly tracks goal and
item states and does not perform any implicit
backtracking or selective memoization, we do
not need any additional variables to keep track
of which words are already ‘reserved’ by an
auxiliary tree (which (van Noord, 1994) needs
to guarantee termination), and we have an ex-
plicit completion step.

3.2. Parser Implementation

The parser is implemented in aNS1 C and runs
on SunOS 5.x and Linux 2.x. Apart from
the Treebank Grammar used in this paper, the
parser has been tested with the XTAG English
Grammar and also with a Korean grammar,

The implementation optimizes for space at the
expense of speed, e.g. the recognition chart is
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null-adjunction constraint. These trees can be combined using substitution and adjunction to

parse the sentence Ms. Haag plays Elianti.

implemented as a sparse array thus taking con-
siderably less than the worst case n* space and
the lexical database is read dynamically from
a disk-based hash table. For each input sen-
tence, the parser produces as output a shared
derivation forest which is a compact repre-
sentation of all the derivation trees for that
sentence. We use the definition of derivation
forests for TAGs represented as CFGs, taking
O(n?) space as defined in (Vijay-Shanker &
Weir, 1993; Lang, 1994),

4. Input Data

The data used as input to the parser was a set of
2250 sentences from the WSJ Penn Treebank.
The length of each sentence was 21 words or
less. The average sentence length was 12.3 and
the total number of tokens was 27, 715. These
sentences were taken from the same sections as
the input Treebank Grammar. This was done to
avoid any processing difficulties which are in-
curred for handling unknown words properly.

5. Results

In this section we examine the performance of
the parser on the input data (described in §4).2

The data was split into 45 equal sized chunks and
parsed in parallel on a Beowulf cluster of Pentium Pro

Figure 3 shows the time taken in seconds by
the parser plotted against sentence length.? We
ee2 o areat deal of variation in timing for the
same sentence length, especizlly for longer
sentences. This is surprising since all time
complexity analyses reported for parsing al-
gorithms assume that the only relevant factor
is the length of the sentence. In this paper,
we will explore whether sentence length is the
only relevant factor.*

Figure 4 shows the median of time taken for
each sentence length. This figure shows that
for some sentences the time taken by the parser

200Mhz servers with 512MB of memory running Linux
2.2,

*From the total input data of 2250 sentences, 315
sentences did not get a parse. This was because the
parser was run with the start symbol set to the label S,
Of the sentences that did not parse 276 sentences were
rooted at other labels such as FRAG, NP, etc. The
remaining 39 sentences were rejected because a tok-
enization bug did not remove a few punctuation symbols
which do not select any trees in the grammar.

4 A usefu! analogy to consider is the run-time analy-
sis of quicksort. For (his particular sorting algorithm, it
was detemined the distribution of the order of the num-
bers in the input amay to be sorted was an extremely
important factor to guaraniee sorting in time @ (rlogn).
An array of numbers that is already completely sorted
has time complexity ©(n?). :
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deviates by a large magnitude from the median
case for the same sentence length. Next we
considered cach set of sentences of the same
length to be a sample, and computed the stan-
dard deviation for each sample, TFhis number
ignores the outliers and gives us a better esti-
mate of parser performance in the most com-
mon case. Figure 5 shows the plot of the stan-
dard deviation points against parsing time. The
figure also shows that these points can be de-
scribed by a linear function.
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Figure 4: Median running times for the parser.
{(x-axis: Sentence length; y-axis: Median time
in seconds)

Figure 5: Least Squares fit over std. devi-
ation points for each sentence length. Error
was 9.078% and 13.74% for the slope and
intercept respectively. We ignored sentences
shorter than 8 words due to rourd-off errors;
cf. Tigure 3 (x-axis: Std. deviation points; y-
axis: Time in seconds)

Figure 6 shows a plot of the number of deriva-
tions reported by the parser for each sentence
plotted against sentence length. These deriva-
tions were never enumerated by the parser —
the total number of derivations for each sen-
tence was computed directly from the shared
derivation forest reported by the parser. The
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Figure 6: Log of number of derivations pro-
duced by the parser plotted against sentence
length. (x-axis: Sentence length; y-axis:
log(No. of derivations)) ’

size of the grammar has a direct relation to
the Jarge number of derivations reported by
the parser. However, in this figure just as in
the figure for the parsing times while there is
an overall increase in the number of deriva-
tions as the sentence length increases, there is
also a large variation in this number for iden-
tical sentence lengths. We wanted to discover
the relevant variable other than sentence length
which would be the right predictor of parsing
time complexity.® As our analysis of the lex-
icon showed us (see Figure 1), there can be
a large variation in syntactic lexical ambigu-
ity which might be a relevant factor in pars-
ing time complexity. To draw this out, in Fig-
wre 7 we plotted the number of trees selected
by a sentence against the time taken to parse
that sentence. From this graph we sec that
the mamber of trees selected is a better pre-
dictor than sentence length of increase in pars-
ing complexity. Based on the comparison of
the graph in Figure 7 with Figure 3, we assert
that it is the syntactic lexical ambiguity of the
words in the sentence which is the major con-
tributor to parsing time complexity. One might
be templed to suggest that instead of number
of trees selected, the nomber of derivations re-

SNote that this variable cannot be the number of ac-
tive or passive edges proposed by the parser since these
values can only be computed at run-time.

ported by the parser might be 2 bettér. prédic-:
tor of parsing time complexity. We tésted thiis
hypothesis by plotting the number of deriva:
tions reported for each sentence plotted against
the time taken to produce them (shown in Fig-
ure 8). The figure shows that the final number
of derivations reporied is not a valid predictor
of parsing time complexity.

0,

tog (Tima iniven B0 anch)
=

£ 40
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Figure 8: Number of derivations reported for
each sentence plotted against the time taken to
produce them (both axes are in log scale). (x-
axis: log(Number of derivations reported}; y-
axis: log{Time taken) in seconds)

6. Conclusion

In this paper, we described an implementation
of a chart-based head-corner parser for LTAGs.
We ran some empirical tests by running the
parser on 2250 sentences from the Wall Street
Journal, We used a large Treebank Grammar to
parse these sentences. We showed that the ob-
served time complexity of the parser on these
sentences does not increase predictably with
longer sentence lengths, Locking at the deriva-
tions produced by the parser, we see a similar
variation in the number of derivations for the
same sentence length. We presented evidence
that indicates that the number of trees selected
by the words in the sentence (a measure of the
syntactic lexical ambiguity of a sentence) is a
better predictor of complexity in LTAG pars-

ing.

5One of the anonymous reviewers of this paper sug-
gested that this might be a useful indicator,
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Abstract

In natural language generation, the wse of a lexicalized grammar formalism and incremental
syrtactic and semantic processing places strong and specific consiraints on the form and mean-
ing of grammatical entries. These principles restrict which grammatical representations are
possible and suggest examples an analyst can consult to decide among possibilities. We dis-
cuss and justify a number of such constraints, and describe how they inform the design of lexi-
cal entries for motion verbs. Our entries allow a generator to match the lexical choices found
in a rarget corpus of action descriptions by assessing how the ftevrestztion of zvarb by conzevt
contributes towards the hearer’s identification of the intended action.

1. Intreduction

This paper originates in a project of tailoring a natural Janguage generation system called SPUD,
for sentence planning using description (Stone & Doran, 1997), to generate instructions for ac-
tion in a concrete domain. The desired behavior for the system is specified by a corpus of edited,
naturally-occurring action instructions whose form and content the system must mirror. The
input to the system consists of three components: a representation of the context in which in-
struction is to be 1ssued; a set of communicative goals describing the content that the instruc-
tion should make available to the audience; and a database of facts describing the GENERAL-
IZED INDIVIDUALS such as paths, places and eventualities involved in the action (Bach, 1989,
Hobbs, 1985). The task is further complicated because the content and organization of this input
database must suit a variety of other tasks, such as animation (Badler et al., 1998).

Such a generation task demands a detailed model of how the available input determines appropri-
ate linguistic elements to arrange in output. The problen of LEXICAL CHOICE illustrates this.
English offers a wide range of verbs to describe events in which an agent moves somé object
along a path; any motion instruction obliges the generator to choose just one. Uses of verbs
differ syntactically in the kinds of optional elements that accompany them; they differ seman-
tically both in the constraints they place on the motion event itself and in the links they estab-
lish between the event and the speaker and hearer’s mutual knowledge of the environment. As
we shall see, often many verbs, in many syntactic frames, can truly and appropriately describe

" The bulk of 1his work was performed while the authors were located at and supported through IRCS, Penn
(NSF-STC SBR 8920230). Thanks to Aravind Joshi, Alistair Knott and Bonnie Webber.
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each event. Nevertheless, we find a constrained and consistent pattern of lexical choice across
naturally-occurring instructions. In order 1o mirror lexical choice in SPUD, we must provide a
computational account of lexical items through which SPUD can exhibit the same consistency,
SPUD is based on the widely-espoused view that sentence generation is goal-directed activity
(Appelt. 1985: Dale, 1992; Moore, 1994; Moore & Paris, 1993); SPUD’s repertoire of commu-
nicative action is determined by a declarative lexicalized grammar. To plan a sentence, SPUD
searches among the derivations admitted by the grammar for a true sentence whose interpreta-
tion achieves the system’s communicative goals in the current context. Clearly, then. to mirror a
specified corpus of instructions, the grammar provided to SPUD must characterize the words and
constructions used in the corpus accurately and comprehensively, Tt must deseribe forms syn-
tactically. so that they are combined appropriately, but it must also describe them semantically
and pragmatically. in order to suppert a useful assessment of interpretation.

In this paper we articulate a methodology for constructing lexicalized grammatical resources
for generation systems such as SPUD, and show how this methodology allows us to ensure that
SPUD deploys its lexical and syntactic options as observed in a corpus of desired output. Our
methodology invelves guidelines for the construction of syntactic structures, semantic represen-
lations and the interface between them, but the basic principle behind all of ihese guidelines is
this: THE REPRESENTATION OF A GRAMMATICAL ENTRY MUST MAKE IT AS EASY AS POS-
SIBLE FOR THE GENERATOR TO EXPLOIT ITS CONTRISUTION M Cahny I 2UT FURTHER
PLANNING. This principle responds to two concerns. First, our research has revealed many
characteristic uses of language in which a single entry helps achieve multiple communicative
goals (Stone & Webber, 1998). This is ar important way in which a generator needs (o be able
exploit the contribution of an entry it has already used, in line with cur principle. Second. SPUD
is currently constrained {o greedy or incremental search for reasons of efficiency. At each step,
SPUD picks the entry whose interpretation goes furthest tavwards o2hloins 5 L onununicad oo
goals. As the generator uses its grammar to build on these greedy choices, our principle facili-
tates the generator in arriving at a satisfactory overall utterance.

2. Syntax

We collected occurrences of the verbs slide, rotare, push, puil. lift, connect, disconnect, remove,
position and place in the maintenance manual for the fuel system of the American F16 aircraft,
in this manual, each operation is described consistently and precisely. Syntactic analysis of in-
structions in the corpus and the application of standard tests allowed us 1o cluster the uses of
these verbs into five syntactic classes; these ciasses are consistent with each verb’s membership
inadistinct Levin class (Levin, 1993}. Differences among these classes include whether the verb
lexicalizes a path of motton (rerate), an endpoint (pasirion), or a change of state (disconnect);
and whether a spatial complement is optiona] (as with the verbs just given) or obligatory (place).
The data in (1) illustrate these alternatives.

(1) a Rotate valve one-fourth turn clockwise. [Path]
b Rotate halon tube to provide access, {No path]
¢ Position one fire extinguisher near aircraft servicing connection point, {Endpdint]

d  Position drain tube. [No endpoint]

=4

f

Disconnect generator set cable from ground power receptacle. [Change of state]
Disconnect coupling. [No source argument}
g Place grommet on test set vacuum adapter. [Endpoint, required]

We crafted syntactic entries for these verbs as trees in Lexicalized Tree-Adjoining Grammar,
LTAG (Joshi e al., 1975; Schabes, 1990). Our entries respect three requirements that reflect the
analvsis of the cornus and the generator’s need to build on the svntax of entries it selecre.
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1. The grammar must associate cach verb with its observed range of complements and mod-
ifiers, in the observed orders. :

e

All optional elements, regardless of interpretatjon, musl be represented in the syntax as
modifiers, using the LTAG operation of adjunction. This allows the generator to select an
optional element when it is needed to achieve communicative goals not otherwise satis-
fied. Recall that, in ITAG, a substitution site indicates a constituent that musi be sup-
plied syntactically to obtain a grammatical sentence; we call a constituent so provided
a SYNTACTIC ARGUMENT. The alternative way of elaborating a sentence is 10 rewrite
a node so as to include additional material (generally optional) specified by an auxiliary
tree; we call material so provideda SYNTACTIC ADIUNCT. If optional elements are repre-
sented as syntactic adjuncts, it is straightforward to select one whenever its potential ben-
efit is recognized. With other representations—for example, using alternative syntactic
entries some of which include a syntactic argument position (substitution site) for the “op-
tional” constituent—the representation can result in artificial dependencies or even dead-
end paths in the search space in generation. To use this representation successfully, the
generator would have o anticipate how the sentence would be fleshed out later in order to
select the right entry early on.

3. The appropriate order of complements and modifiers for a verb must be represented us-
ing hierarchies of nodes in the verb’s elementary tree. In a fixed word-order language like
English, the nodes we add reflect different semantic classes which tend to be realized in a
particular order: in a free word-order language, we might instead introduce ordering nodes
based on information-structure status. Introducing such nodes decouples the generator’s
search space of derivations from the overt output word-order. It allows the generator to se-
lect complements and modifiers in any search order, while still realizing the complements
and mod:fiers with their correct surface order. Again, alternative designs—representing
word-order in the derivatjon itself or in features that clash when elements appear in the
wrong order—introduce dependencies into the search space for generation that make it
more difficult for the generator to build on its earlier choices successfully.

The latter requirements induce certain differences between our trees and other LTAG grammars
for English, such as the XTAG grammar (Doran ef af., 1994), even in cases when the XTAG trees
do describe our corpus. For example, we associate slide with the tree in (2); the structure reflects
the optionality of the parh constituent and makes explicit the observed characteristic order of
constituents specifying path (PTH). duration (DUR} and purpose (PRP).

5

T

NP  VP(PRP)

[

VP(DUR)
2) !
VP(PTH)

P
vl NPJ

I
Vo

3. Syntax/semantics interface

SPUD adopts an ontologically promiscuous semantics (Hobbs, 1985): each entry used in the
derivation of an utterance contributes a constraint to its overall semantics. The role of the syn-
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tax/semantics interface is to determine when the constraints contribuied by different grammat-
ical entries describe the same generalized individuals. For example, take the phrase slide the
sleeve quickly. The corresponding constraints describe an event e in which agent x slides object
valong path p; describe an individual z that is a sleeve; and describe an event ¢ thatis guick. The
syntax/semantics interface provides the guarantee that ¢ = ¢’ and y = z—i.c., that the sliding is
what is quick and that the sleeve is what is slid. See (Hobbs, 1985: Hobbs er a/., 1993) for more
details on ontologically promiscuous semantics.

Note that this strategy contrasts with other approaches to LTAG semantics, such as (Candito
& Kahane, 1998), which describe meanings primarily in terms of functien-argument retations.
(It is also possible to combine both function-argument and constraint semantics, as in (Joshi &
Vijay-Shanker, 1999; Kallmeyer & Joshi, 1999).) Like Hobbs, we use semantic representations
as a springboard to explore the relationships between sentence meaning, background knowledge
and inference-—relationships which are easiest to state in terms of constraints. In addition, the
use of constraints harmonizes with our perspective that a basic generation task is 10 construct
extended descriptions of individuals (Stone & Webber, 1998; Webber er al., 1399).

In general, to express the semantic links between multiple entries in a derivation. we associate
each node in a syntactic tree with the individuals that the node describes. We refer to the collec-
tion of individuals that label the nodes in an entry as the SEMANTIC ARGUMENTS of the eniry.
When one tree combines with another by substitution or adjunction, a node in one tree is iden-
tified with a node in the other tree; at the same time the corresponding entities must be unified.
Thus for exampie by iabeling the foot VP node for guickly with ¢’ and the corresponding VP node
for slide with e, we can derive the identity e = ¢' for siide quickly.

Our notjon of semantic argumenis is ciearly distinguished from the notion of syniactic arcument
that we used in section 2 to characterize the syntactic structure of entries. Each syntactic argu-
ment position corresponds 1o one semantic argument {or more). since the syntactic argument
position is a node in the tree which is associated with some individuals: semantic arguments.
However, semantic arguments need not be associated with syntactic argument positions. For
example, in a verb entry, we do not have a substitution site that realizes the eventuality that the
verb describes. But we treat this eventuality as a semantic argument to implement a Davidsonian
account of event modifiers, cf. {(Davidson, 1980). Meanwhile, optional constituents that specify
paths or places may be best modeled syntactically as modifiers. using the syntactic operation of
adjunction. Optional constituents nevestheless can be taken 10 specify semantic arguments by
associating their adjunction sites with references to the entities they specify (e.g., the paths or
places). Because we count these implicit and unexpressed entities as semantic arguments, our
notion is broader than that of (Candito & Kahane, 1998) and is more similar to Palmer’s essen-
tial arguments (Palmer, 1990). It is a substantive question for grammar design WHICH entities
SHOULD be acknowledged as semantic arguments for a given entry.

We make use of three tests to determine whether a particular syntactic modifier of a verb phrase
describes the overall eveniuality argument of the verb—this makes it an adjunct for the purposes
of semantics as well—or whether it specifies some other semantic argument of the verb. The
tests are; a DO S0 test and an EXTRACTION test {explained here), and a PRESUPPOSITION test
(explained in the following section). Together, these tests provide strong and specific guidance
for designing the syntax/semantics interface in a generation grammar. {Of course, these tests are
not perfect and may on occasion reveal difficult or ambiguous cases.)

1. The DO SO test succeeds when a modifier of a verb can be varied across ellipsis with do
so naturally. The infinitivals in (3a), which provide different reasens for Kim and Sandy,
pass the test; the locative PPs in (3b) fail the test, as they cannot be taken 10 describe Kim
and Chris’s separate destinations:
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{(3) a Kim left early to avoid the crowd. Sandy did so to find one.
b #Kim ran quickly to the counter. Chris did so to the kiosk.

A successful DO SO test suggests the modifier describes the event or action directly. A
failed one suggests the modifier contributes a description of an entity that is independently
related to the event or action—in other words, that the modifier specifies a semantic argu-
ment {e.g., the destination in {3b)). A theoretical explanation for the test can be given in
terms of a semantic view of ellipsis such as (Hardt, 1999), where do so recovers an action
discourse referent that has been introduced by an earlier predicate on events. When a mod-
ifier makes a predication on an event, there are two actions available for do so: the mod-
ified action and (as (3a) illustrates) the unmodified one. When a modifier instead makes
a predication on a participant in the event, the only action referent for do so is that con-
tributed by the main verb. In such cases, the DO SO test fails because we do not have a
suitable action referent or a way of determining what role the new participant plays.

I~

. The EXTRACTION test applies to classes of syntactic modifiers of VP headed by a closed-
class item. The test succeeds if it is grainmatical to extract from inside the syntactic mod-
ifier (in a whi-question, for example), as in (4a); it fails otherwise, as in (4b}.

{4) a  What did you remove the rabbit from? (A: the hat}
b #What did you remove the rabbit at? (A: the magic show)

Passing the extraction test suggests that an optional constituent specifies a semantic ar-
gument. In LTAG, exiraction describes a relation among trees in a tree family that have
essentially the same meaning and differ only in syntax, On one formalization (Xia ez al.,
1998), these relationships between trees are realized as descriptions of structure to add to
elementary trees, or transformations. An “extraction transformation™ that introduces the
entity / in the syntax/semantics interface and relates / to the available entity e in the seman-
tics cannot be represented this way, However, if some semantic argument ! is referenced
in the original tree, the extraction analogue to this tree can easily realize / differently. If
we describe the source location as the semantic argument / in (4a) for example, the new
realization invelves an initial wh-NP substitution site describing the source /, and the corre-
sponding stranded structure of the PP fromr 1. (Note that failure of the extraction test would
be inconclusive in cases where syntax independently ruled extraction out.)

4. Semantics

Semantic analysis of the instructions in the F16 corpus revealed that differences among verbs
often involve links that the verbs iinpose between the action and what is known in the conext
about the environment in which the action is to be performed. The follewing illustration is repre-
sentative. In the aircraft vent system, pipes are sealed together using a sleeve, which fits snugly
over the ends of adjacent pipes; and a coupling, which snaps shut around the sleeve and holds
it in place. At the start of maintenance, one removes the coupling and slides the sleeve away
from the junction between the pipes. Afterwards, one (re-)positions the sleeve at the jiinction
and (re-}installs the coupling around it. In the F16 corpus, these actions are aJways described
using these verbs.

This use of verbs reflects the general design and function of the equipment as well as the motions
themselves. For example, the motion involved in sliding the sleeve away is just the reverse of
the motion involved in positioning the sleeve back. Since the verb slide indicates smooth motion
ALONG A SURFACE (but not direction), slide seems to describe both actions equally well, The
verb position, meanwhile, is used 1o describe a motion that Jeaves its object in some definite
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location, where the object can perform some intended function. Inthe case of the sleeve, it would
only be IN POSITION when straddling the pipes whose junction it seals.
We capture such distinctions in SPUD using a two-part lexical semantics.

I. The ASSERTION contributes new relationships among generalized individuals 10 the dis-
course. Forexample. the assertion of @ motion verb might specify what manner of motion
or what trajectory of motion is involved in an event.

2. The ANAPHORIC PRESUPPOSITION is interpreted by a process of resolution linking it to
salient facts and individuals from background knowledge and the conversational record.
(Space precludes a description of the resolution process, but see (van der Sandt, 1992) for
a theoretical account and (Stone, 2000) for the implementation.) Motion verbs generally
carry such presuppositions: for instance, they presuppose a current Jocation for the object
{they assert this to be the beginning of the path traveled). But such presuppositions also
distinguish lexical items. For example, slide presupposes a surface the object starts out in
contact with; the object is asserted to remain in contact with this surface during the sliding.
Meanwhile, posirion presupposes some “position” where the object carries out its intended
function; the obiect is asserted to wind up at this position. Presuppositions can also evoke
salient referents from the discourse history; for instance reposition presupposes a sujtable
prior motion event.

This formalism for presupposition is the basis for our third test for semantic arguments, the PRE-
SUPPOSITION TEST. Any individual that is referenced in the presupposition of the verb nwst be
treated as a semantic argument. even if a syntactic constituent that specifies that individual is op-
tional. As suggested by (Saeboe. 1996). to apply the presupposition test in designing a lexical
entry, we can compare the interpretation of a sentence with a modifier, such as from the power
adaptor in {5a), to a corresponding sentence without the modifier, as in (5b):

{(5) a (Find the power cable.) Disconnect it from the power adaptor.
b (The power cable is attached to the power adaptor.) Disconnect it.

If the entity specified by the modifier can be identified implicitly as discourse-bound—so that the
sentence without the modifier can have the same interpretation as the sentence with the modifier,
as in (5)—then the modifier must express a presupposed semantic argument, (Again, this is a
partial diagnostic since semantic arguments need not always be presupposed.)

Let us pause to motivate our methodology of specifying lexical presuppositions as well as lexical
assertions—and our tests for designing the syntax/semantics interface-—in terms of our overrid-
ing goal: o allow the generator to build on its choices as easily as possible. The requirement
to assert only what is true and to presuppose what is shared restricts which verbs are applicable
in any context. At the same time, however, assertion and presupposition provide constraints on
interpretation that can reduce ambiguity or trigger further inferences. They can thereby help the
hearer identify the speaker-intended action. For example, the verb’s presupposition may com-
bine with other constraints contributed by the verb’s complements to idemtify the participants
in a described action (Stone & Webber, 1998). Of course, the generator can build on the pre-
supposition of the verb this way only if it represents the interpretation of the presupposition and
keeps track of the semantic arguments of the verb in order to model further elements as providing
additional constraints on these arguments.

(6) fleshes oul our earlier sample entry, for sfide. The tree gives the syntax for one element in
the tree family associated with slide; the feature structures associated with nodes show the syn-
tax/semantics interface for this tree; the associated formulas describe the semantics of the entry
in terms of presuppositions and assertions about the individuals referenced in the tree.
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(6} a Syntax and syntax/semantics interface:

s
S, VP(PRP). VP(DUR} -a[ event:E J
NPy | VP(PRP) ' ’ tense: (s,R)
VP([l)UR) event:
| VP(PTH), V! — | path:PpaTH
VP(PTH) changed: 0B}
V. NPy ) NP;  — [ind : AGENT]
i NP»  ~ [ind:0Bs]
v

b Presupposition: focated-as-stari(R,0B),PATHE), along-suyface(PATH)
¢ Assertion: caused-motion{R,E, AGENT,OBJ,PATH)

5. Conclusion: grammar and lexical choice

The manual’s consistent altermnation between slide and position casts into relief the problem of
lexical choice with which this paper opened. We close by suggesting how the methodology we

have outlined here—formulating a grammar that matches a corpus and allows the generator to
build on and exploit the entries it selects—Ieads to the construction of generation resources that

can account for such alternation. ‘

First, observe that the syntax and the syniax/semantics interface put slide and posirion on an

equal footing. We can settle on a syntactic tree for cach verb that best fits the context as in {Stone

& Doran, 1997}; we have designed these trees so that either choice can be fleshed vut by further
constituents into a satisfactory utterance.

To choose one verb in construction over the other, we rmust Jook at the INTERPRETATION of the

two entries. A key part of this interpretation is the way the hearer resolves the presupposition.

For example, the hearer resolves position the sleeve by finding in the common ground SOME

sleeve and SOME position where it belongs. Part of SPUD’s task is to ensure that the hearer will

arrive at the SAME resolution that the generator intends; for position the sleeve, that of course

means identifying the INTENDED sleeve and the INTENDED position for it. Depending on the

context, it may be necessary to elaborate the description of an action, by adding additional words

and additional presuppositions with them, to make the hearer’s resolution of the presupposition

unique. (Such an elaboration might yield position the wing-vent sleeve.)

This characterization of the speaker’s communicative goals and the hearer’s interpretation di-

rectly informs our lexical choice. Different presuppositions determine different possible reso-

lutions, depending on the properties of salient objects in the common ground. The fewer res-

olutions that there are afier selecting a verb, the more the verb assists the hearer in identifying

the needed action. This gives a reason to prefer one verb over another. In our example, gen-

eral background indicates that each sleeve only has a single place where it belongs, at the joint;

meanwhile, there may be many “way points™ along the pipe to slide the sleeve to. This makes the

anaphoric interpretation of position less ambiguous than that of slide; to abtain an equally con-

strained interpretation with stide, an additional identifying modifier like into its position would

be needed. This favors position aver slide.

References
APPELT D. (1985). Planning English Sentences. Cambridge,

BACH E. (1989). Informal Lectures or Formal Semaniics. SUNY.



206 Marthew Stone, Tonia Bleam, Christine Doran, Martha Palmer

BADLER N.. BINDIGANAVALE R.. BOURNE J., PALMER M., SH1 ). & SCHULER W.(1998), A param-
sterized action representation for virtwal human agents. In Embodied Conversational Characters.

CanDITO M. & KAHANE S. (1998). Can the TAG derivation tree represent a semantic graph? an answer
in the light of Meaning-Text Theory. In TAG+4.

DaLE R. (1992). Generating Referring Expressions, MIT.

Davipsox D. (1980). The logical form of action sentences. In Essavs onactions and evenis. p. 105~148.
Clarendon.

Dorax C.. EGEDI D., HOCKEY B. A.. SRINIVAS B. & ZAIDEL M. (1994), XTAG System—a wide
coverage grammar for English. In COLING.

HARDT D, {1999). Dynamic Interpretation of Vesb Phrase Ellipsis. Linguistics and Philosophy, 22,
187-221.

HoBBS J.. STICKEL M., APPELT D. & MARTIN P. (1993). Interpretation as abduction. Artificial Intel-
ligence. 63.69-142.

Hosps J. R. (1985). Ontological promiscuity, In ACL, p. 61-69.

JOSHI AL & Y1JAy-SHANKER K. (1999). Compositional semantics with [exicalized tree-adjoining gram-
nar {LTAG). In hrernational Workshop on Computarional Semanrics, p. 131-145.

JosHt A. K., LEvY L. & TakaHasHI M. (1975). Tree adjunci grammars. J. of the Computer and
Systemn Sciences, 10, 136—-163.

KALLMEYER L. & JOSHI A. (1999). Factoring predicate argument and scope semantics: underspecified
semantics with LTAG. In 72/t Amsterdam Collaguium.,

LEvIN B, (1993}, English Verh Clusses and Alternations, University of Chicago.
MOORE 1. (1994}, Participating in Explanatory Dialogues. MIT.

MoOORE J. D. & PaRrIs C. L. (1993). Planning text for adviscry dialogues: capturing intentional and
rhetarical information. Compueiarional Linguistics, 19. 651693,

PALMER M. (1990). Semantic Processing for Finite Domains. Cambridge.

SAEBOE K. 1. {1996). Anaphoric presuppositions and zero anaphora. Linguistics and Philosophiv, 19,
187-209.

SCHABES Y, (1990). Mathematical and Computational Aspects of Lexicalized Grammars. PhD thesis,
University of Pennsylvania.

STONE M. (2000). Towards a computational account of knowledge, action and inference in instructions.
J. of Language and Compuiation.

STONE M. & DoRraN C. (1997}, Sentence planning as description using tree-adjoining grammar. In
ACL, p. 198-205,

STONE M. & WEBBER B. (1998). Textal eccnomy through close coupling of syntax and semantics. In
INLG, p. 178-187.

VAN DER SANDT R. {1992), Presupposition projection as anaphora resolution. J. of Semantics, 9, 333~
3.

WEBBER B., KNOTT A.. STONE M. & JOSBI A. (1999), Discourse relations: A structural and presup-
positional aceount using lexicalised TAG, In ACL, p. 41—48.

X1A F, PALMER M., VIJAY-SHANKER K. & ROSENZWEIG J. (1998). Consistent grammar develop-
rnent using partial tree-descriptions for lexicalized tree-adjoining grammars. In TAG+4.



Workshop TAG+5, Paris, 25-27 May 2000 207

Extending Linear Indexed Grammars

Christian Wartena

Universitét Potsdam
Institut fiir Linguistik/Allgemeine Sprachwissenschaft
Postfach 601553, 14415 Potsdam, Germany
wartena@ling.uni-potsdam.de
WWW home page: http://www.ling.uni-potsdam.de/ wartena

Abstract

This paper presents a possibility to extend the formalism of linear indexed grammars. The
extension is based on the use of tuples of pushdowns instead of one pushdown to store indices
during a derivation. If a restriction on the accessibility of the pushdowns is used, it can be
shown that the resulting formalisins give rise to a hierarchy of languages that is equivalent
with a hierarchy defined by Weir. For this equivalence, that was already known for a slightly
different formalism, this paper gives a new proof. Since all languages of Weir's hierarchy are
known to be mildly context sensitive, the proposed extensions of LIGs become comparable with
extensions of tree adjoining grammars and head grammars.

1. Introduction

It is well known that tree adjoining grammars (TAGs), head grammars (HGs) and linear in-
dexed grammars (LIGs) are weakly equivalent (Vijay-Shanker & Weir, 1994). Each of these
formalisms was developed independently for the description of natural languages. For TAGs
and HGs hierarchies of extensions were defined by increasing the number of auxiliary trees that
are inserted in one step and by increasing the size of the tuples that are handled, resp. (cf. (Weir,
1988)). The extensions of TAGs, multi-component TAGs (MCTAGs) (Joshi, 1987), were ar-
gued to be useful for the description of natural languages by Kroch (1987) and Kroch and Joshi
(1987). For LIGs a linguistically motivated extension is defined by Rambow (1994) that is how-
ever of a rather different nature than the extensions of HGs and TAGs and does not give rise to
a hierarchy of formalisms and language classes. Weir (1988; 1992) defines a hierarchy of linear
controlled grammars that are strongly related to LIGs. It is however not immediately apparent
what use these formalisms could have for linguistics. In (Wartena, 1998) recently extensions
of LIGs, called context—free linear multi-pushdown grammars (CFL-MPD-Gs), were defined
that use tuples of pushdowns to store indices instead of a single pushdown. The use of tuples
was motivated by linguistic needs. These extensions form a hierarchy of formalisms with an
increasing number of pushdowns. If no pushdown is available the grammars are strongly equiv-
alent to context—free grammars. If one pushdown is used we obtain LIGs. The nth element of
the hierarchy can be shown to be a subclass of the nth class of Weir’s hierarchy of controlled
languages.

CFL~-MPD-Gs seem to fill up an apparent gap in the square formed by TAGs, HGs and LIGs
on the first axis and their extensions on the other axis. In order to formally justify this square
we have to show that CFL-MPD~-Gs and MCTAGs! or the extensions of head grammars are
equivalent. (The equivalence between the last two was shown by Weir (1988)). We will go

I'There are two variants of MCTAGs, the first of which allows onty for simultaneous adjunction in one elemen-
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the following way to show this equivalence. First we will prove the equivalence between the
hierarchy of CFL-MPD--Gs and Weir’s hierarchy of linear controlled grammars. Subsequently
the equivalence between the latter hierarchy and MCTAGs has to be shown. In this paper we
will do the first of the two steps.

2. Grammars with storage

LIGs store their indices in pushdowns. For the description of non-local dependencies in natural
languages this organization can be argued to be too restrictive. Thus we might want to define
formalisms similar to LIGs but with a more liberal stack structure. We start defining abstract
storages, that will form the base of the subsequent extensions.

Definition 1 (storage) A storage is a 6-tuple 5 = {C,Co,Cr, P, F,m), where C is a set of
configurations, Cy € € and Cp C C the sets of initial and final configurations, respectively, P
is a set of predicate symbols, F' a set of instruction symbols. m is the meaning function, which
associates every p € P with a mapping m{p) : C — {true,false} and every f € F witha
partial function m(f) : ¢ — C.

Usually we are interested in properties of classes of storages rather than in properties of indi-
vidual ones. Classes of storages are often called storage rypes.

Example I A trivial storage is defined as S.y, = ({c}, {¢},{c}, 9, {id},m), where c is an
arbitrary object and m{id}(c) = ¢. The class of all trivial storages is denoted &,,.

Example 2 A pushdown over some finite alphabet I' can be defined as a storage? S,4(T) =

(I, {e}, {e}, P, F,m) with P = {top(y)|y € T'}, F = {push(v) |y € I'} U {pop} U {id} and
foreverya e 'and g € T,

m(top(7))(aB) = (a = ¥) m(pop}efB) =3
m(push(y)}(8} = ¥4 m{id){3) = 8

The class of all pushdowns is denoted &.4.

On the base of this notion of storages we can define context—free linear~S grammars (CFL-5-
Gs) as a generalization of LIGs.

Definition 2 (CF linear S—grammar) If S = (C, Cy,Cr, P, F,m) is a storage then a context-
Sfree linear S—grammar is a five tuple G = (N, Z, R, A, o), where ¥V, T denote the sets of
nonterminal and terminal symbols, respectively. A, € N is a distinguished symbol, called
the start symbol, co € Cy is the initial configuration, and R is a set of production rules of the
following two forms;

A — ifwthen (B, G
A — ifrthenw

where A, B € N,m € BE(P))and (,,{ € (NUZLI), f € F,w € ©*. BE(P) denotes the set
of boolean expressions over P. ’

tary tree, the second one of which allows for adjunction of a tuple in a tuple of elementary trees as well. The first
variant is equivalent to (simple} TAGs, the second one gives rise to an hierarchy of languages. In this paper we
will only consider these more powerful MCTAGs.

*Throughout the paper the following notational conventions are used. The empty string is denoted by ¢. For
each set V the notation V; is used as an abbreviation for V' U {¢},
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A string o € O* is said to derive a string 7 € O*, written o =p 7, if either (1) or (2).

(1) o=ca(Ac)8 (2) o=a(Ac)f
A—ifathen GBf(a€ B A ifnthenwe R
m(m){c) = true? m(m)(e) = true
m(f) is defined on ¢ T = owf

T = af{(B, )8

where A, B € N, a,f € 0", w € £, c € C, = m(f)(c) and ({, ¢} are obtained from ¢,
and (3, respectively, by replacing every nonterminal D by (D, ¢o). The reflexive and transitive
closure of =, denoted by =, is defined as usual. The Janguage generated by G is defined as
L(G) = {w € £*|(Ain, &) =" w}. If G is a storage typeand S € & then a CFL~5-G is called
a CFL-5-G as well. The class of languages generated by CFL-&-Gs is denoted £crp(a).
The way in which the storage is passed on during a derivation is the same as in L1Gs. It is easy
to check that CFL~6,4—Gs are equivalent to LIGs. Now we can easily define extensions of
L1Gs by choosing other storage types. The generative capacity of variants that are defined in
this way crucially depends on the storage type. In order to investigate the typical complexity
and generative capacity of a storage type we will use storage—automata.

Definition 3 (S—-automaton) If 5 = (C, Cy, CF, P, F,m) is a storage, then an S—automaton
M is a tuple {0, X, 8, qo, co, (@), where () is a finite set of states, ¥ is the input alphabet,
go € () the initial state, eg € Cy the initial configuration, @ C & the set of final states, and &,
the transition relation, a finite subset of  x L, x BE{(P} x Q x F.

The set ID(M) = € x &* x € is called the set of instantaneous descriptions. For each
(g1, zw, 1), (g2, w.c2) € ID(M) with 2 € E, we write (g1, 2w, ¢1) bar (g2, w0, ) if there
exists (g, 2, m, q2, [} € & such that m{=)(¢;) = true, () isdefined on ¢; and m( f){c1) = ca.
The transitive and reflexive closure 34 of s is defined as usual. Sometimes conjunction of
function symbols is used, For two function symbols f, and f, the meaning of the composed
function symbol fi&fy is defined as m{fid&f;) = m(f;) o m(f1). The language accepted
by M is defined L(M) = {w|(q,w,c0} =3y (g,6¢c) forsome c € C and ¢ € Qr} if
@r # Yand L{M) = {wi(go,w,co) Far (qi,w',c1) Far ... (gn. € ) for some ¢, € Cp,
g € Q. € C—Crand g, € Q withl < { < n} otherwise. In the first case we say
that M accepts by final state. In the second case M accepts by final configuration, et &
be some storage type. If M is an S-automaton and § € © we say as well that M is an
G-antomaton. Takee.g. & = G4, then we can say as usual that an automaton M is an Spy—
automaton or a pushdown—automaton without reference to the specific pushdown that is used.,
Finally we set Lo (6) = {L(M) | M is an G-automaton accepting by final configuration} and
Lo(6®) = {L{M) | M is an G-automaton accepting by final state}. For some important stor-
age types (like pushdowns and concatenations of pushdowns) L (&) = Le{G). In these cases
we drop the subscript. In (Wartena, 2000} these storage types are called well-behaved. The
reader is referred there for details. A subclass of the well-behaved storage types is constituted
by the concatenating storages types. In a concatenating storage Co = Cr and the cardinality of
Cg is 1.

3. Concatenation of storages

[t was argued in (Wartena, 1998) that a tuple of pushdowns would be an adequate storage type
to describe non—local dependencies in a number of constructions in various languages. The

Mn fact only m{7} for v € P has been defined so far. It is straightforward to extend the domain of m to BE{P).
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motivation there was that we have to distinguish between different types of non-local depen-
dencies, as proposed in theories like that of relativized minimality (Rizzi, 1990), and that there
has to be one stack for each type.

Definition 4 (product of storages) For arbitrary storages 5* = (C', Cj, Cf, P!, F*, m*) and
= (C% G2,CE, P2, F?, m?) the product of §* and 5% is defined as 5% 0 5% = (C' x C?,C} x
CZ,CL x CE, P, F,m) where P = P* U {test(p) | p € P}, F = F1 U {do([) | f € F'*} and

forevery ¢! € C'and ¢? € C?
m{p) c,

m(f) CI,CZ

() = mi(p)(e)ifpe P!
((¢’,¢") (m'(f)(eh),h)if f € !
mftest(p))({c*, ¢?) m?*(p)(c*) ifp € P?
m{do()((c", *) (¢, m*(f)() i f e F?
The set of semi—final configurations of 5! o 5% is defined as Csp = {C U C}) x C2 For two

storage types G* and G2 the product is defined straightforwardly as G' 0 &% = {50 5% | 51 ¢
G! and 5% € G*}.

n

Tuples or products of pushdowns are from a formal point of view to powerful. Following an idea
of Breveglieri et al. (1996) we can reduce this power by restricting the operations that can be
applied to the components. A similar idea to restrict the power of tuples of stacks was proposed
by Becker (1994). Here we will define concatenation by means of an explicit restriction on a
product of two storages. This general definition was suggested by Lothar Budach (p.c.).

Definition 5 (K-product of storages) For arbitrary storages 5t and 52 such that §* 0 5% =
(C,Co,Cr, P, F,m} and for a mapping K : F* — {true, false} the K—product of 5* and 5% is
defined as 57 ox S* = (0, Co,Cp, P, F,m') with*

1l

m'(g) = mlpllos if ¢ = do(y') and K(y') = true
mi{p) = mlp) otherwise.

For two storage types G* and &* and any predicate &' the K'-product is defined as &' oy &? =
{510 5|k S' € G’ and §* € &7}

Note that m(do(f))((c*, ¢?)) is undefined for f € F2if K{(f) is true and ¢! is not initial or final.
The f{~products for two predicates K are of special interest. The predicate r determines what
operations are considered as reading operations. For any pushdown let 7{pop) = true and let
r(push) = r(id) = false. The r—product of two stores corresponds exactly with the concatena-
tion with regard to reading defined in (Wartena, 1998), The counterpart of the predicate r is w
which is defined by w(push) = true and w(pop) = w(id) = false for any (n—turn) pushdown,
The product o, is the same as concatenation with regard to writing. -

Example 3 5,4 denotes a pushdown storage. Consequently, (Spd 0, Spa) o Spa denotes the
concatenation w.r.t. reading of three pushdowns. Each component behaves like a pushdown. At
each point in the computation ¢lements can be pushed on each of the three pushdowns, popping,
however, is only possible from the first non empty one.

For any (partial) function f : A — B and any U C A the restriction of { 10 U, denoted fly, is defined as
Flu(u) = flu}if v € U and undefined otherwise.
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Using r— and w—-products we can recursively define the following hierarchies of stotage iypes
and corresponding classes of languages. The hierarchy established in (Breveglieri ez al., 1996)
can now be defined as €%; = L(&;) for each i > 0 where &p = Gy, 2nd &; = 6, or Gpa
(¢ is intended as a mnemonic for concatenation, the superscript R indicating that concatenation
w.Lt. reading is meant.) For natural language syntax (Wartena, 1998) argues that concatenation
w.r.t. writing is more appropriate. Thus the hierarchy, that is defined by setting €%; = L(&;)
for each i > 0 where &y = Gy and &; = &;_y 0y, 8,4, is of more interest for us. It can
however be shown that €%; C €%, and that €%; C €*,,;. Thus both hierarchies are very
similar. An interesting fact is that €%, and €%, are the classes of extended left and extended
right linear indexed languages (ELLILs and ERLILs), resp., defined in (Michaelis & Warlena,
1999). ERLILs were proposed as an appropriate restriction of linear indexed languages w.r.t.
the paths along which a stack can be inherited.

4. Linear controlled grammars

The hierarchy of Weir can be expressed most easily in terms of linear control. Linear control of
context—free grammars (CFGs) is defined in (Weir, 1992).

Definition 6 (linear controlled grammar) A linear distinguished grammar (LDG) is a qua-
druple G = (N, L, B, A;n), where NV and 2 are finite sets of non-terminal and terminal symbols,
respectively, 4i, € N is the start symbol and where £ is a finite set of production rules of the
form: A - H X183 with A € N, X € N UL, called the distinguished symbol, 5,,53; €
(N UZX)*, and ! a special symbol notin (N U ). A linear controlled grammar (LCG) is a pair
K = (G, H), where (7 is an LDG and H is a language over R, called the control language,

The set of (nonterminal and terminal) objects in K is defined as O(K) = (NUZ) x B". A
string ¢ € O[K)* is said to derive a string r € O(K)*, written ¢ = 7, if

o ="(4,w)é
r=A-HX5eR
r = 181X, wr) B0

where A € N, X € NUEL, 4,8, € (NUZ}, 7,8 € O(K)",w € R, and 3] and 3}
are obtained from f3; and f, resp. by replacing every symbol ¥ € N U Z by (¥, ¢}. In this
case (X,wr) is called the distinguished child of (A,w). The reflexive and transitive closure
of =, denoted =", is defined as usual. The langnage generated by K is defined as L{A’) =
{ay...a.](5, €) =* (a1,w1) ... (an,ws) anda; € E,w; € H for1 < ¢ < n}. The class of
all LDGs is denoted by ®pp. Furthermore, for any class of grammars & for which control
is defined let &/£ = {(G,H) | @ € ®and H € £} and for any class of grammars ® let
L{®) = {I{G) | G € &}. The obvious relation between linear controlled grammars and
CFL~&—grammars was shown in (Wartena, 1998). '

Proposition 7 L(&.p/Lg(5)) = Lerus) N

In order to refer to objects in a derivation it is sometimes assumed that the objects have addresses
in IN** In the following we will use two different address assignments, leftmost and inside—~out
address assignment. Suppose a string ¢ = aX3 € O(K)* derives a string 7 rewriting the
object X with address € into new objects Yol)...Y;... Y, with ¥; the distinguished child of
A If the address assignment is leftmost then the address of each Yy is €k with 0 < & < n.
In the case of inside—out assignment the address of Yj is £(i— &) for 0 < k < i and £k for

5IN denotes the set of all non—negative integers.
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i < k < n. For each object in o and 3 the address in ¢ and 7 is the same. A sequence of
strings of objects § = og...0on such that o; = oy, is called a derivation If in each step the
nonterminal object with the lexicographic® smallest address is rewritten then the derivation is
called leftmost in case the address assignment is leftmost and inside—out in case the address
_assignment is inside—out.

5. The hierarchy of Weir

The classes of languages constituting Weir's hierarchy can be defined by setting 2, = £,
and 90; = L(®pp/9;..) for each ¢ > 0. The following proposition was already shown in
(Wartena, 1998).

Proposition 8 ¢*; C 93, 0

The languages of Weir’s hierarchy of controlled grammars are accepted by concatenated push-
downs as well. Below we will show that the derivation of an LDG controlled by some G-
automaton can be executed by an (G o, (&,q o, G4))-automaton. The idez is that the automa-
ton follows one spine using its finite control to store the element actually being expanded and
using the first component to compute the control word. Everything that is generated to the right
of the spine is written on the third pushdown, terminal and nonterminal symbols generaied to
the left of the spine are written on the second pushdown. If the foot of the spine is reached the
second pushdown contains the left part of the derived sentential form in reversed order. The
automaton now continues expanding the nonterminals on that pushdown, starting with the non-
terminal directly to the left of the foot of the spine that just is reached. The autormaton can read
that symbol, since the first component is empty, just having accepted a control word. Thus the
aptomaton simulates an inside~out derivation.

Lemma 9 Ler S be a concarenating storage. Then the following holds.
L{BLp/L(G)) C L(G oy {Gpa or Bpa})

Proof. Let @ be a concatenating storage type, let § = (', Co, Cr, P, F\m) € & and let

= (G, L{M)) be an LCG with G = {N,Z, R, Ajy) anLDG and M = (Q, R. 4. ¢p,0) an S—
automaton. Assume w.l.o.g. that each production of 7 is of the form A — B B;!Byor A — ¢
with A, By, Bo, B3 € N and @ € X, Construct 2n (5 o, (Spa(L} o, S,q(L))~automaton
M =(QxN,Z, &, (g, Ain), (co. €, ¢), B} with I' = N U X, by setting

& = {({q1, A}, e, m, (g2, Bs), fldo{push(B;)&do(da(push{ B:))) | (la)
r=A— BiB)B; € Rand (q,r,m, g, f) €4}

U {((q1, A}, &, 7, (g2, €), f&do(do{push(a)}) | {1b)
r=A—ac€ Rand(qy,r,7, gz, F) € §}

U {((qlsA):fa r(qi'vé) f} 1 (fh»ﬂ,ﬂ',fh f) € J} (2)
U {({g ), e test(top(A)), (g, A), do{pop)) | A & N} (3a)
U {((ge ) ¢, test{test(top(A})), (g0, A), do(do(pop)]) | A € N} (3b)
U {((g,€), a, test(test{top(a)}), (g, ¢), do(do(pop)}) | a € E}  (4)

It can be shown by induction on the number of steps in a computation and in a derivation,
respectively, that
{{q1,4),w, (es,{es f})} nl;:t ((g2, B), ¢, (c2, (O’R;ﬁ)))
iff
(A, €) = wa'(B,w)B (inside~out) and (g1,w, 1) |* (g2, €, ¢2)

The lexicographic ordering relation <o on N" is defined by: x <jex xjw and xit <jey ¥jw if § < j for all
v, ¥,w €N" andf,j € IV,
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where ¢, 0’ are obtained from « and [ respectively by replacing every nonterminal A € N by
(A,¢). Incase A = Ay, and o = § = B = ¢ we see that L(M') = L(K). ]

Proposition 10 for eachi > 1: 90; C €%y,

Proof. First we show by induction that 28; C €%, ; for¢ > 1. Fori = 1 the proposition

is trivially true, since 20; = €%, = L, the class of all context—free languages. Suppose
that the assertion is true for some ¢ € IN. Let &; denote the concatenation w.rt. reading of
i~pushdowns, for some 1 € IN. thus L(&;) = €*;. For¢ + 1 we find

D) (I L(®GLp/78;) (by definition)
L(BLp/€%yi,) {by induction)
L(B; 0. (6,40, G,g)) (byLemma9)
€m2,‘+1 = Q:mg(j.*.l)_l (by deﬁnition)

Iy in

For i > 1 the inclusion is proper since it is known that both €%; and 20; contain the language
{a}...a5; | n € IN} but not the langnage {a] ...a3;,; | n € IN}. O

This result combined with Proposition 8 implies that the languages from the multi-pushdown
hierarchy are the same as those in Weir’s hierarchy.

Corollary 11 [ J22,98; = [ Ji2, ¢¥; O

A similar result was found by Cherubini and San Pietro (1999a; 1999b), using different proofs.
Finally, let us return to the context—free linear G—grammars. The extensions of LIGs we are
interested in are CFL-&~Gs with & a concatenation of pushdowns. Calling each storage type
formed by concatenation of pushdowns a multiple pushdown (MPD) we can refer to these gram-
mars as CFL~MPD-grammars. Tt is straightforward to check that the languages generated by
CFL-MPD-Gs are included in the hierarchy of Weir as well. Let &; be the storage that arises
from concatenation w.r.t. reading from :—pushdowns, for some ¢ € IN, Then we find

= L(®.p/eR) (by Proposition 7)
C  L(®Lp/20;) (by Proposition 8)
C Wy (by definition)

LerLis))

The inclusion of the classes Weir’s hierarchy in the classes of languages generated by CFL~
MPD-Gs is even simpler, since it can be shown that £orps) D L(G).

6. Conclusion

[n this paper two hierarchies of storage types were presented that are based on tuples of push-
downs with restrictions on the accessibility of the components, These storage types can be used
to make new and linguistically interesting extensions of LIGs and besides for the construction
of automata, It can be shown that automata based on a concatenation of two pushdowns accept
only a subset of the linear indexed languages (LILs). Automata based on a triple of pushdowns
accept already languages that cannot be generated by any LIG. A storage type corresponding
to LIGs, the nested pushdown, was defined by Weir (1994). Though this storage type is rather
different from ours, in a nested pushdown there are as well various possibilities for writing but
only one for popping symbols. Becker (1994) defined automata, as well accepting LILs, that
use two nested stacks with an explicit restriction on popping symbols from the second one,
similar to the restrictions defined above. Reading from the second nested stack is possible if the
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top of the first one is a bottom of stack symbol of an embedded stack. Thus reading from the-
second component is restricted but not only to situations in which the first component is empty.
Storage types based on tuples with restricted possibilities for writing to our knowledge were not
considered in any form up to now.

The main result of this paper is a new proof for the equivalence of the hierarchies of concate-
nated pushdowns and a hierarchy of controlled languages established by Weir (1988; 1992).
By this equivalence we know that the languages generated by the extensions of LIGs presented
here are mildly context sensitive and therefore are comparable with extensions of TAGs and
head grammars. Whether the languages studied in this paper and the languages generated by
MCTAGS coincide, is a question that remains for future research.
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Abstract

This paper presents a new methodology for
examining cases of non-locality. The algo-
rithm presented here allows us to extract
from ¢ large annotated corpus sentences that
appear to require non-local MCTAG., We
examine one such case, exiraposition from
NP, and argue that the dependency involved
18 not syntactic and therefore does not re-
quire non-local MCTAG.

1. Introduction

Mnch important work has been done to in-
vestigate the adequacy of local TAGs to ac-
count for various linguistic phenomena, see,
e.g., (Heycock, 1987, Becker et al., 1992,
Abeillé, 1994; Bleam, 1994; Kulick, 1998;
Joshi et al., 2000). This paper presents a
new methodology for doing this kind of re-
search. The algorithm presented here allows
us to extract from a large annotated cor-
pus (the Penn Treebank) constructions that
seem to require non-local' derivations. We
propose that, in fact, these non-local depen-
dencies should not be represented syntacti-
cally, and therefore do not constitute a prob-
lem for maintaining tree-local MCTAG.

*We would like to thank Aravind Joshi, Jeff
Lidz, Anoop Sarkar and the XTAG research group
for their help and suggestions. This work was sup-
ported by NSF Grant SBR 8920230,

By non-local, we mean non-tree-local.

2. Extracting MC sets from

the Treebank

Extracting multi-component {MC) tree sets
from Treebanks is one of the tasks per-
formed by a grammar development system
named LexTract, whose structure is shown
in Figure 1, with the components relevant
to the MC extraction task marked in bold.
There are three main steps in the MC ex-
traction procedure: first, a bracketed struc-
ture in a Treebank (ttree} is decomposed
into a set of elementary trees (etrees); see-
ond, a derivation tree is built to show how
the etrees are combined; third, any pair of
etrees that coutain co-indexed components
are placed in a trees set with the efrees that
connect them in the derivation tree, If the
size of the set is more than three, the re-
lation between the co-indexed components
is not tree-local, assuming the correctness
of Treebank annotations. For lack of space,
we will ugse an example to demonstrate these
main steps without going into the details of
the algorithms (see (Xia, 1999) for details).

2.1. The extracted gremmar .

To ensure that the extracted etrees are com-
pact and linguistically sound, we require
that each efree in the grammar fall into one
of three types determined by the relations
between the anchor of the efree and other
nodes in the tree, as shown in Figure 2:
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2.2.

The first step of the MC extraction pro-
cedure is to extract efrees from tirees. A
ttree from Penn English Treebank is shown
in Figure 3, where reference indices (e.g. -1
and -2) wmark co-indexed constituents.

Eztracting etrees from ilrees

(5 (NP-SBJ (NN supply) (NNS troubles})
(VP (VBD were)
(PP-LLOC-PRD (IN on}
(NP (NP (DT the) (NNS minds})
(PP (IN of)
{NP (NP {NNP Treasury) (NNS investors)}
(SBAR (-NONE- *ICH*-2) h)))
{NP-TMP (RB yesterday))
()
(SBAR-2 (WHNP-1 (WP who} )
(5 (NP-SBJ (-NONE- *T*.1})
(VP (VBD worried)
(PP-CLR {IN about)

- (NP {DT the) (NN ficod) })))))

Figure 3: An example from the Treebank

The ttrees in the Treebank are partially
bracketed in a way that does not explic-
itly distingnish arguments from adjuncts.

read i cros TN CIG
GRERATEE e e paner
@ i :
#lrees | [

Fei Xia, Tonia Bleam

Figure 4: The etree set is a decomposition
of the fully bracketed tiree.

In LTAGs, on the other hand, arguments
and adjuncts are distinguished. To over-
come this difference in notation, the algo-
rithm first fully brackets ttrees by adding in-
termediate nodes so that elrees express one
of three relations: a predicate-argument re-
lation, a modification relation, or a coordi-
nation relation.

The next step is to extract the component
etrees from a fully bracketed tiree. Recur-
sive structures hecome mod-etrees or conj-
etrees, and the remaining structures be-
come spine-etrees. For instance, in the fully
bracketed tiree in Figure 4,% along the path
S VP VR VP 2 VE - PP —
IN, three adjuncts (the relative clause, the
NP yesterday and the auxiliary verb were)
are factored out and each forins a mod-eiree
(#13, #11 and #£3 resp.), while the remain-
ing structures become a spine-etree #4. The
whole tiree yields the fifteen etrees shown in
Figure 5.

2Some nodes in the ftree are numbered and split
into the top and bottom pairs. Recall that when a
pair of etrees are combined during parsing, the root
of one etree is merged with a node in the other etree.
Splitting nodes into top and bottom pairs during
the decompasition of the fully bracketed ttree is the
reverse process of merging nodes during parsing.
For the sake of simplicity, we show the top and the
bottom parts of a node only when the two parts will
end up in different etrees.
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Figure 6: The derivation tree

2.3.

Having extracted the etrees from a tfree, the
next step for MC extraction is to build the
derivation tree. Under the assumptions that
no adjunctions are allowed at the foot nodes
and at most one adjunction at any one node,
and given the etrees, the mapping between
the fully bracketed ttree and the derivation
tree is one-to-one. The derivation tree for
the ftree in IMigure 4 is shown in Figure 6.

Building derivation trees

2.4. Building MC tree sets

We construct MC sets using the derivation
trees and the reference indices in the #rees.
Given a pair of constituents that are co-
indexed in a tiree, let e, and ey be the two

etrees that the two constituents belbﬁgl t0,
There exists a unique path that connects
the two efrees in the derivation tree.. The_'
etrees on the path form a tree set.® If the
size of the set is more than three, the rela-
tion between the co-indexed components is
not tree-local, assuming the correctness of
Treebank annotations. In our example, the
relation between WHNP-1 and *T*-1 (hoth
are in tree #13) is tree-local, whereas the
relation between *ICH*-2 (in tree #10) and
SBAR-2 (in tree #13) is not.

3. Experiments

We ran the algorithm on the Penn Tree-
bank II (Marcus et af., 1994). Table 1 gives
the breakdown of MC sets by size. Qut of
3151 MC sets, 999 sets (31.7%) had more
than three efrees and were thus not tree-
local. Table 2 shows the classifications of
these non-local sets.

(1) That is [a skill]; Sony badly needs #

and Warner is loath to lose ;.

It ¢; would be my inclination [to ad-
vise clients not to sell];.

(2)

Federal Express goes further #; in
this respect {than any company];.

{Of &ll the ethnic tensions in
Americal;, which #; is the nost
troublesome right now 7

[JMB officials are expected to be
hired to represent the pension fund
on the Santa Fe Pacific Realty
board, Mr Roulac said t;, to insu-
late the fund from potential liability
problems.};

The Diet doesn’t normally even de-
bate bills because the opposition
parties are so often t; opposed to
whatever LDP does [that it would
be a waste of timel;.

3Notice if a list etrees E; all modify the same
ctree E, E; will form a chain in the derivation tree,
as circled in Figure 6. Those intermediate mod-
etrees are not included in the MC tree set.
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size of MC sets < 3 [tree-local sets) 4 5 | 6| 7|8 subtotal total
# of MC sets (type) 2152(68.3%) 874 | 94 |26 |4 1]999(31.7%) || 3151
# of MC sets (token) 19994(91.3%) 1772 1102 |26 | 4 [ 1| 1905(8.7%) || 21899
Talble 1: Numbers of extended MC sets and their frequencies in PTB
PTB [ LexTract | NP- | extraction i- | comparative | of-PP | paren- | so.. | others'
€rrors errors EXP | from coord. | EXP | construction thetical | that N
71 i} 337 209 178 50 31 30 | 11 19
Table 2: Classification of 999 extended MC sets that look nan-local
In each of these “non-local” cases, the Tree- with whiech it is interpreted. See, e.p.,

bank notation establishes a dependence be-
tween two eclements, as shown in (1) -
{6). We suggest that, in fact, in all of the
cases, the dependence is not syntactic, and
so these examples do not constitute cases
where non-local MCTAG would be required.
Due to space considerations, however, we
cannot address each case independently. In-
stead, we focus on one construction, that
of Extraposition (EXP) from NP, both be-
cauge this was the mmost common type of
“non-local” example found by the algorithin
and because it is potentially the strongest
case against tree-locality. We will show that
even for this difficult case, tree-locality can
be maintained.

4. Extraposition

One example of EXP was discussed in Sec-
tion 2 (cf. Figure 3-6). Further examples
are illustrated in (7) and (8), where the
bracketed prepositional phrase is construed
as an argument (7) or a modifier (8) of the
NP in bold.?

(7) Younkers rang up sales in 1988 [of
$313 million].
(8) The company gave us discounts all

last year [on their premium brands).

Most generative analyses of this phe-
nomenon associate the extraposed phrase
(EXP phrase) with a gap in the NP

1 Adjunct status was determined using two tests:
one-substitution and wh-extraction,

(Guéron, 1980; Baltin, 1981; Pollard & Sag,
1994). These accounts can be referred to as
“syntactic-dependence” analyses, since they
require that the extraposed phrase and its
“antecedent” noun be coindexed or associ-
ated in the syntar. This coindexation is
skown in Figure 7. Other authors, on the
other hand, argue for a semantic depen-
dence, or non-gap analysis (Andrews, 1975;
Culicover & Rochemont, 1990),

5
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!

N £

|

discounts

Figure 7: Gap analysis of Extraposition

NP VP
T
N PF; VPt pP;
| | P NP
sales € |
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Figure 8: Gap analysis of argument EXP

Within TAG, the syntactic-dependence
analysis can be modeled using MC tree sets
(Kroch & Jaoshi, 1987), as in Figures 8 and
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NP* PP, VP* PP,
ap !
. li) NP
on
B (2) f (on}

Figure 9: Gap analysis of adjunct EXP

S * NP VP
T F ' Py
NP YpP ; N Vps NP
T : P
\i’ NP NPT discounts all last year
L
gave b
o(gave) a (diseounts) B (year)

Figure 10; Elementary trees for (8)

9.5 This appreoach works for argument EXP,
but it faces two problems when applied to
adjunct EXP. The first problem is that,
given current assumptions, the derivation of
even the simplest cases requires non-local
MCTAG (Weir, 1988). The trees required
to derive (8) are given in Figures 9 and 10.
In this derivation g{¢) adjoins to the NP of
a(discounts), and f(on) adjoins to the VP
node® in afgive).

A second problem with the gap analysis is
pointed out by (Abeillé, 1994) citing (Gun-
narson, 1982). Extraposed adjunct phrases
(9) allow pronominalization of the head
noun, something that is not allowed if the
adjunct phrase is not extraposed (10). This
is clear evidence that there is no movement
since the putative underlying representation
is impossible.

*Notice that positing a dependence in the syntax
would not necessarily require an explicit gap in the
case of extraposition of an argument PP. When the
extraposed phrase is an adjunct, however, syntae-
tic dependence must be represented by adjoining a
trace onto the head noun phrase {or alternatively
coindexing with features}.

6 Alternatively, the extraposed element could ad-
join to the § node. See (Kroch & Joshi, 1987; Culi-
cover & Rochemont, 1090) for discussion.

(9) John makes lists every day [with
names of people who owe us money],
and I make them every day [with
names of people who we owe money

to]. '

(10)  * I make them with names of people

every day.

(Abeillé, 1994) thus proposes that the rela-
tionship between adjunct extraposition and
the head noun should be a semantic one
rather than a syntactic one. These “base
genecrated” cases are handled using syn-
chronous TAG (S-TAG), where the syntax
and semantics are represented by parallel
TAG derivations. Representing the seman-
tics with a TAG allows Abeilié to preserve
the locality effects that we find in argu-
ment EXP, which do require a syntactic de-
pendence. We refer to this locality prop-
erty as etree boundedness (ETB). As Abeillé
notes, her analysis predicts that EXP is NP-
bounded; that is, the extraposed element
“has to be a compiement of the top N, and
cannot be a dependent of an embedded N*.
While ETB holds of argument EXP, we have
found that adjunct EXP does not obey this
condition, and hence cannot be accounted
for in the 8-TAG analysis. (11) and (12)
are examples from the Treebank of non-NP-
bounded EXP. In (11), the extraposed rela-
tive clause who worried... is not associated
with an argument of the etree to which it
attaches, but rather to a more deeply em-
bedded NP, thus violating ETB.

(11) Supply troubles were on the minds
of Treasury investors yesterday
[who worried about the flood of new
government securities).

(12) Major rivals have been following a
policy of continuous and deep dis-
counting for at least the past 18

months [on their premium brands].

These examples show that the S-TAG anal-
ysis of the semantic dependence is too re-
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strictive for adjunct EXP. Instead, we pro-
pose that the semantic dependency must be
calculated post-derivationally, as, for exam-
ple. in (Joshi & Vijay-Shanker, 1999), where
the semantic representation is read off the
derivation tree. The process of calculat-
ing this dependency must make reference
to structure. but it does not adhere to the
strict locality that the S-TAG analysis re-
quires.

5. Conclusions

We have presented an algorithm to extract
from the Penn Treebank constructions that
seem to require non-local MCTAG. We pro-
pose that all these non-local dependencies
should not be represented syntactically, and
therefore do not require non-local MCTAG.
One such example is NP-EXP, which has
been previously argued to be a locally-
bounded dependency. Our algorithm has
revealed that adjunct EXP does not obey
the locality constraints previously posited
by linguists. If these examples are to be
derived syntactically, they would require an
LTAG more powerful than Tree-local MC-
TAG. We show, however, that the depen-
dency between the head noun and the EXP
phrase is not a syntactic one, but a semantic
one. We conclude that extraposition does
not constitute a case for using non-local
MCTAG; tree-locality can be maintained.
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Abstract

This paper addresses linguistic and implementation problems for a practical LTAG parser
raised by rich morphology in Korean. We propose a way of representing the Korean inflectional
system as feature structures in lexicalized elementary trees, and describe our iinplemented mod-
ifications on the XTAG system for a more efficient grammar development for Korean.

1. Issues

Korean is an agglutinative language with a very productive inflectional system. Inflections
include postpositions on nouns; tense morphemes and endings that indicate sentence types on
verbs and adjectives; among others. Furthermore, these inflections can combine with each other
to form compound inflections.

(1) Noun (2y Verb

a. hakkyo-ka a. ka-ss-ta
school-Nom go-Past-Decl

b. hakkyo-eyse-ka b. ka-si-ess~ta
school-from-Nom go-Honor-Past-Decl

¢. hakiyo-eyse-man c. ka-ki-ka
school-from-only - go-Nominalizer-Nom

d. hakkyo-eyse-man-un d. ka-si-ess-ki-ey-nun
school-from-only-Topic go-Honor-Past-Nominalizer-to-Topic

This implies that a word in Korean can have a very large number of morphological variants. For
example, verbs can be followed by honorific and tense morphemes which can then be followed
by endings indicating clause-type which then can be followed by case postpositions. Similarly,
adverbial postpositions which correspond to English prepositions, can be followed by other case
postpositions such as nominative or accusative case markers and auxiliary postpositions such
as to {‘also”) and man (‘only’), which then can be followed by a topic marker, Accordingly,

"We thank Martha Palmer, Aravind Joshi, Anoop Sarkar and the XTAG Group at Penn for their support and
discussion. We also acknowledge the two anonymous reviewers, This project has been pantially funded by the
Army Research Lab via a subcontract from CoGenTex, Inc, and NSF Grant SBR 8920230, The third authar’s
contribution to this work was made while she was a visiting researcher a1 IRCS,



222 J. Yoon, C. Han, N. Kim and M. Kim

the number of possible morphological variants of a word can in principle be in the tens of
thousands. ' ' '
This property of Korean raises two issues within the context of developing and }mplementmg
a Feature Based Lexicalized Tree Adjoining Grammar (FB-LTAG) for Korean using the XTAG
system (The XTAG-Group, 1998): (1) adequate linguistic description (?f Ithe inflections and
(2) efficient lexicon development. From a linguistic point of view, describing a grammar of a
language is to construct rules that generate sentences inthe ]anguagf: ata forrpal level. Fron? an
implementational point of view, the grammar should be described in a consxstfant anq cfﬁmf:nt
way. The XTAG system helps us to pursue both these goals, but the complicated inflection
system mentioned above leads to difficulties in building a grammar for Korean.

Tn this paper, we provide our solution to the linguistic and implementational jssues raised by
these morphological properties of Korean. We first provide a way of handiing the Korean inflec-
tional system using feature structures in lexicalized elementary trees in section 2. We impose
a hierarchy on various types of inflections in order to handle all possible ways of combining
inflections, and we represent this by assigning different feature attributes to different types of
inflections.

In section 3, we then point out that the current XTAG system as it is forces us to construct
a lexicon (i.e., syntactic database) that lists all possible morphological variants of words. A
lexicon must contain all possible eajeols, where an eajeol is a term in Korean for denoting a
spacing unit which consists of a content word and associated functional words. However, this
is highly impractical and inefficient given the rich inflectional system in Korean. We would end
up with a very large (even unbounded) lexicon. Therefore, we found it necessary to develop
an alternative method for constructing the lexicon in order to continue to use the XTAG parser
for developing a Korean grammar . One possible solution to the problem is to incorporate mor-
phological rules in the grammar that regulate the generation of eojeols with several morphemes
combined. However, doing so will mix up morphological generative rules with syntactic rules,
complicating the TAG grammar tremendously. Instead, we have chosen to pursue an approach
in which morphological regularities are handled by a separate morphological component using
a morphological analyzer (Yoon et al., 1999). The output of this analysis then interacts with
our Korean TAG grammar which handles syntactic regularities. As a way of implementing this
approach, we modified the XTAG system by dividing up the syntactic database into elementary
syntactic database (ESDB) and local syntactic database (LSDB). ESDB is a general lexicon
that contains stems with the elementary trees associated with them. LSDB is a partial lexicon
dynamically generated for each input sentence using information from ESDB and the output
of a morphological analyzer. That is, it contains only entries for eojeols occurring in the input
sentence. The morphological analyzer produces the morphological analysis of each ecjeol in
the input sentence identifying its stem and inflections. Then, the stem of each eojeol is asso-
ciated with elementary trees or tree families by looking up the ESDB and stored in the I.SDB,
The inflections of each eajeol arc converted into features and are also stored in the LL.SDR. This
modification to the XTAG systemn allows us to build a lexicon efficiently and develop a grammar
for Korean that is compatible with the XTAG system.

2. Handling inflectional morphology

In our current Korean grammar, the inflectional morphology on an egjeol that are relevant for
syntactic analysis is represented as features on the tree node. For instance, a noun with a
nominative case marker is associated with the feature <case:nom> and when this lexical item
is anchored by an NP tree, the feature <case:nom> is passed up to the NP node.

In Korean, combining inflections is a highly productive process with some restrictions. For
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example, nominative, accusative and genitive CASE postpositions occur in & complementaty
distribution, but ADVERBIAL postpositions (which correspond to English prepositions) éﬁcl{r-a_s=
-gy (*at"), evkey (‘from’}, -kkaci (‘t0"), etc. can be followed by nominative case or genitive case.
Case and adverbial postpositions are assumed to be assigned by the predicate of the sentence.
Moreover, AUXILIARY postpositions which have semantic content such as -man (‘only”) and -fo
(‘even’) can combine with an adverbial postposition and the topic marker -(n)un can combine
with an adverbial postposition and/or an auxiliary postposition but not the case postposition,
Moreover, predicates’ in Korean are inflected with several morphemes. They carry CLAUSE-
TYPE marphemes that indicate whether the clause is a main, coordinate, subardinate, relative
clause, or nominalized clause, If a clause is a main clause, the verb carries a MODE morpheme
that indicates whether the clause is a declarative, imperative, interrogative, exclamation, or
propositive, etc. Clause-type morphemes and mode morphemes occur at the end of the verb. In
addition, verbs also carry TENSE inflections right before the clause-type and mode morphemes.
Further, al! these inflections can be expressed in many different ways.

In order to handle all possible ways of combining inflections, we imposed a hierarchy among
various types of inflections and represented this by assigning different types of inflections to
different feature attributes. Table 1 summarizes the list of inflectional feature attributes and the
comresponding feature values currently being used by our grammar. The label ‘pp’ on <adv-
pp> and <aux-pp> stand for postpositions. Note that verbal features include <ending>> which
allows us to store the string values of mode and clause-type morphemes in the tree node for later
semantic interpretation. Examples of an NP tree that anchors a noun (hakkyo ‘school’) with
compound inflections, and an S tree that anchors a verb (ka ‘go’) with some verbal inflections
are given in Figure 1.

[ On nouns f
(case) | a case feature assigned by predicate nom, acc, gen, ady
<adv-pp>> a feature assigned by predicate only if | string values such as ey, gyse,
<case:adv>, which comesponds to En- | lo, wa, ya, kkaci, pwute, pota,
glish prepositions such as to, from, in lako, losse, ...

<topic> presence/absence of topic marker +, -

<aux-pp> adds specific meaning e.g., only, also string values e.g., fo, man

On predicates

<clause-type> | a feature that indicates the type of the | main, coord, subord, adnom,
clause that cantains the predicate nominal, aux-connect

<mode:> a feature on a predicate only if <clause- | decl, imp, int, excl, propos
type:main>

<tense> encodes temporal interpretation pres, past, future

<ending> a feature marked for different ways of in- | string values e.g., fa, nunka,
stantiating mode and the clansal type ela, ki, nun, tako, ...

" Table 1: Features for Inflectional Morphology

3. Local Syntactic Database

Qur Korean XTAG system uses the LTAG parser developed by Anoop Sarkar (Sarkar, 2000).
Written in C, it can process Korean characters represented as 2-byte codes. This parser was
meant to use the XTAG English grammar (The XTAG-Group, 1998), and so it uses the lexical

'In Korean, both verbs and adjectives play the role of a predicate in a sentence.
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501
adv-pp : <1> ending : <I>[]
NE case : <2> clause-type 1 <2>[]
anx-pp : <3> mode: <3. [}
tapic : <4> tense t<d> [ 1

3 /\ -
PO VP ending : <k>
N 4 clause-type : <2>

mode : <3>
tense ; <4>

N [ adv-pp:i<i>eyse ending ! <6> nunka
case:<Z> adv clause-type : <T> main
aux-pp : <3>man mode ; <&> int

topic : <> + tense ; <0> past

[1 i

V| ending: <6>
clayse-type : <7>
mode : <g>
tense : <9>

[1

haklyoeysemanun
‘school-from-only-Topic’

kasiessnunka

‘go-Honor-Past-Int’
Figure !: Instantiating Inflections as Features

databases that are part of the English grammar. In the English grammar, all the morpholog-
ical variants of each word are listed in the morphological database (Morph DB), where they
are mapped to a stem and lexical feature structures. The stem is then used to select a set of
elementary trees in the syntactic database. The older Common Lisp XTAG parser keeps these
databases separate, but the C parser combines them into a single database. The C parser uses
this database (Syn DB) in order to select appropriate trees for the words in the input sentence.

Since a word in English has a small number of inflections, it is possible to describe as sep-
arate entries all the inflected forms in the Syn DB. However, this way of describing lexicons
for Korean is impractical and inefficient, due to its rich morphology. To resolve this problem,
we separate the Syn DB into Elementary Syn DB (ESDB) and Local Syn DB (LSDB). Only
stems of egjeols are listed in the ESDB. This means that we can construct a lexicon for the
stem words without considering all the morphological variants, making the life of grammar
developers much casier. LSDB only contains egjeols of an input sentence as entrics with asso-
ciated elementary trees and lexical feature structures. LSDB is generated dynamically through
the use of Lexicon Extractor. Given an input sentence, the lexicon extractor takes the result of
morphological analysis produced by a morphological analyzer (and the POS tagger) developed
at Yonsei University (Yoon et al., 1999), and generates an LSDB by making reference to the
ESDB and converting inflections on each epjeol to feature structures,

The step of generating an LSDR is as follows:

Firstly, the input sentence goes through the morphojogical analyzer and the POS tagger. If the
morphological analyzer or the POS tagger makes errors, the user can manuaily input the tagged
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sotaycangi sotaycang/N+i/Pn
mwucenkilul mwcenki/N+{ul/Pa
swulihayessta swultha/V+yess/PE+ta/Eit/SC

"Tabie 2: Results of the morphological analyzer and the POS tagger for example (3)

form. We consider the example sentence in (3) to show the execution of the system.

(3} Sotaycang-i mwicenki-lul swuliha-yess-ta.
platoon-leader-Nom radio-Acc repair-Past-Decl

“The platoon leader repaired the radio.’

The morphological and tagging results of (3) are as shown in Table 2. Here, N, V, PE, Ej,
Pn, Pa, and SC are tags for noun, verb, pre-ending {i.c., tense), indicative ending, nominative
postposition, accusative postposition and period punctuation respectively.?

Secondly, the lexicon extractor extracts syatactic information from ESDB for the content words
and function words which appear in the given sentence, ie. ‘sotaycang/N’, *i/Pn’, ‘mwu-
cenki/N’, ‘lul/Pa’, ‘swuliha/V’, *yess/PE’, ‘ta/Ei’ and ‘./SC’. From the results of morphological
analysis, the lexicon extractor selects elementary trees or tree families for the content words
(i.e., ‘sotaycang/N’, ‘mwucenki/N’, ‘swuliha/V") by looking up the ESDRB. The function words
{i.e.,, ‘i/Pn’, 'lul/Pa’, ‘vess/PE’ and ‘ta/Ei’) are converted to feature stmictures, which will ap-
pear in tree nodes. With this data collected, the LSDB is generated listing all the egjeols in
the inpul sentence with associated elementary trecs, tree families and features. Crucially, the
LSDB contains only the eojeols of the input sentence as entries. Table 3 shows the LSDB gen-
erated from the morphological analysis results and the ESDB. In Table 3, @nom is a template
for < case>»=nom, @acc for <case>=acc, @past for <tense>=past, @cls-main for <clause-
type>=main and @end-ta for <ending>=ta.

((INDEX)}sotaycangi ({(ENTRY)}sotavcangi {(POS})N ({TREES))aNP NP NP-V
ANP-S ((FEATURES}) @nom

{({INDEX)} mwucenkilul {{ENTRY))mwucenkitul {{POS))N ({TREES)}aNP ANP NP-
V ANP-S {{FEATURES)) @acc

{{INDEX))swulihayessta {{ENTRY}) swulihayessta {{POS))V

{{FAMILY))TnxOnx1V ((FEATURES)} @past @cls-main @end-ta

Table 3: LSDB generated from the example

The parser uses this LSDB and generates the derived tree shown in Figure 2.

alphanxDnx1V{{Su-Ri-Ha-eoss-Ta}]

alphaNP[{So-Tae-Cang-i}]<NPO> alphaNP{{Muv-Ceon-Ki-Reul J J<NP1>

Figure 2: Derivation tree for the example sentence (3)

2
Although our system reads and generates Hangul (Korean characters), we use romanized examples in this
paper for convenience,
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Input Sentence

i

Input Sentence rMnrphological Analyzer Morph DB
% Elementary Syn DB
POS Tagger Lex Prob DF

.............. - .

Tree Selection

Tree Selection

Parser H é
: i DB

Derivetion Struciure o
Derivalion Strugwm:

Trees DB

English XTAG system Korean XTAG System

Figure 3; Korean XTAG System and English XTAG System

The overall flow of our Korean XTAG system is represented in Figure 3 in comparison to the
English XTAG system. In the Korean XTAG system, we added the lexicon extractor, morpho-
logical analyzer and POS (agger which run independently of the XTAG parser. Our Korean
grammar currently has 15 tree families and 289 elementary trees that handle various syntac-
tic phenomena: e.g., adverb modification, sentences with empty arguments, relative clauses,
complex noun phrases, auxiliary verbs, gerunds, adjunct clauses.

4. Conclusion

In this paper, we addressed linguistic and implementation problems raised by rich morphology
in Korean. We first motivated a feature hierarchy on various types of inflections in order to
handle ali possible ways of combing them. We then deseribed the modifications we have imple-
mented on the English XTAG system, enriching it with a morphological analyzer (which also
does POS tagging) and lexicon extractor. These modifications enable us to get rid of a syntac-
tic database from the system that would require listing of all possible morphological variants
of words. Instead, we divide up the syntactic database into ESDB and 1.SDB, where ESDB
contains stems with associated elementary trees and tree families, and LSDB only contains
eojeols of a given input sentence with associated elementary trees and feature structures to rep-
resent inflections. Furthermore, by incorporating a morphological analyzer to the system, we
arc able to separate out merphological gencrative rules from syntactic rules in the description of
LTAG grammar for Korean. Our approach can be applied to FB-LTAG development for other
languages with rich morphology.
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Abstract

Polarity Items are linguistic expressions known for being a “lexically controlled’ phenomenon.
In this paper we show how their behavior can be implemented in a deductive system. Further-
more, we point out some possible directions to recast the deductive solution into a Tree Ad-
joining Grammar system. In particular, we suggest to compare the proof system developed for
Multimodal Calegorial Grammar (Moot & Puite, 1999) with the Partial Proof Trees proposed
in (Joshi & Kulick, 1997).

Introduction

In this paper we discuss how polarity effects can be derived from controlled lexical
items. Polarity Items (PIs} are linguistic expressions which depend on the polarity of
their context for grammaticality (Ladusaw, 1979). Moreover, both in the syntactic and
semarntic traditions their distribution is considered to be ‘lexically controlled’. Com-
bining these two claims we can look at FIs as lexical items carrying some sensitivity
features from which their restricted distribution derives. Reading out this observation,
we can deduce that the needed ingredients to formalize PIs’ behavior are: (i) lexically
anchored structures, and (ii) operations to compose them. These two points are what is
required by the definition of ‘lexicalized grammar’. Several are the formalisms which
satisfy these properties, among them we distinguish two main groups: Phrase Struc-
ture Grammars (e.g. Tree Adjoining Grammars —~TAG), and Deductive Gramnars (e.g.
Multi Modal Categorial Grammar -MMCG]}. In (Bernardi, 1999) Pls have been studied
from a proof theoretical perspective using MMCG as framework.

An interesting question to ask is how the derivations of polarity effects can be recast
into Phrase Structure Grammars. Working out a comparison in this sense, will clar-
ify the linguistic meaning of the logical principles at work in the deductive approach,
and will open new possibilities of interaction between the two groups. From the one
hand, Phrased Structure Grammars are known for being linguistically sensitive for-
malisms which, however, lack some of the inferential power inherent in the deductive
approaches. On the other hand, the latter, are logically well defined, but the formal
behavior of its operators might result less intuitive from a linguistic perspective. We
believe that a communication between the two [amilies would be productive for both
approaches.

In this paper we suggest some possible lines of research which could be worked out
to recast the deductive implementation of PIs into TAG. In order to reduce the gap
between the two systems we consider the works carried out in {Joshi & Kulick, 1997)
and (Joshi et al., 1999), which build a bridge between TAG and MMCG. In the former
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paper, categorial grammar proofs are used as building blocks resulting in a ‘middle
ground’ system known as PPTS. In the latter, the comparison is extended to the struc-
tural modalities which characterize MMCG.

1. Polarity Items

For reasons of space we limit our analysis to Negative Polarity Items (NPIs), i.e. ex-
pressions as yet, at all, anything, licensed by downward-entailing operators, e.g. nobody,
rarely, (Ladusaw, 1979). In the examples below NPIs are emphasized and licensers are
marked by bold characters.

Linguistic data

(ia.) Somebody left. (iiia.) Kim rarely says anything at all.
(ib.) Nobody left. (iiib.) *Kim says anything at all.

(iia) Nobody left yet. (iva.) Nobody rarely says anything.
(iib.} *Somebody left yet. {ivb.) Nobody says anything.

These data show that: although NPIs require a negative licenser the converse is not
the case (i ii); the negative context created by a licenser can license more than one NPI
within its scope (iii}; and NPIs can occur in sentences with more then one licenser (iv).
Furthermore, NPIs can occur in more complex structures as well, as shown below:

{va.) Nobody thinks Peter did anything wrong.
(vb.) *Somebody thinks Peter did anything wrong.

{(va.) A doctor who knew anything about acupuncture was not available.
(vb.} *Some doctor who knew anything about acupuncture was not found.

These example show that NPIs can occur in an embedded sentence while licensed by
an expression in the main sentence (v); and that they are felicitous when part of a
relative construction which allows to escape the syntactic scope of the licenser, but still
force them to be interpreted in its semantic scope {vi). See (de Swart, 1998}, where the
last example has been proposed and discussed.

2. Polarity Items in MMCG

Two well known facts regarding MMCG and PIs are that: MMCG belongs to the family
of resource sensitive logic, where the resources are meant as linguistic signs; and Pls are
linguistic expressions sensitive to the polarity of their context. We suggest to consider
the polarity as a particular feature required by the NPI and produced by the licenser.
This idea has been independently implemented in two different resource logics, namely
MMCG (Bernardi, 1999), and Multiplicative Linear Logic (Fry, 1999). In the latter the
‘polarity feature’ is represented as a proposition £ assigned to the linguistic categories,
of the NPIs and licensers, by means of the tensor operator @. The proper function of
this operator is to concatenate logical types, or in other words the linguistic resources
the logic is reasoning about. When employing it to concatenate the polarity feature to
a linguistic category the former is treated as a ‘phantom resource’. The language of
MMCG is expressive enough to avoid this improper use of the concatenation operator,
and of the resource management. A detailed comparison of the two proposals is given
in (Bernardi, 2000). In the following we briefly introduce MMCG system and then we
show its application to NPL

Classical Categorial Grammar (CG), has its logical counterparts in the Lambek Calcu-
lus (Lambek, 1958). The formal language of this calculus is built on the binary opera-
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tors, \, / and e, viz. the directed implication operators and the product one, and a finite
set A of atomic formula, e.g. A= {np, s,n}. MMCG is obtained extending this language
with unary operators 0% and ©. We refrain from presenting the logical rules of the
whole systein which can be found in (Moortgat, 1997) and we comment the logical be-
havior of the unary operator on which the PIs account is based. Let I' - A stand for the
assignment of the category 4 to the linguistic structure I,

Logical Rules
ArROA T[A)FB TFA
rars P8 o O
I (IVF A
Tra e Tro 0

Notation: [«E] and [+]] stand for the elimination and introduction of the operator . For
our goal the attention shou!d be focused on the introduction rules, which imply that
if a structure T is proved to be of category 4, then it is of category C*C A as well, viz.
A =004

THA
Ty OA [OIl]
T goa 00

We will profit of this logical property of the system to deal with NPIs. Recolling the
information deduced from the linguistic data given above, we know that while a NP’I
requires a negative licenser, the converse is not true. In our framework this means that
the type assigned to the licenser has to derive the type of a lexical item of the same
linguistic category but lacking the polarity effect, e.g. if the standard type for general
quantifier (GQ) is s/(np\s), then a licenser GQ, as nobody, is typed s/0+O(np\s), this
type satisfies the requirement above, namely s/0*C(np\s) = s/(np\s). The ‘polar-
ity feature’ is properly represented as a ‘property’ of the linguistic category by means
of <. The logical type assigned to NFIs will require to be in a context where this
property is provided. Moreover, it will have to account for cases as (iiia), where more
then one NFI is licensed by the same licenser. Let us consider the adverb yet as an
example. The standard adverbial type is (np\s)\(np\s), we enrich it with the the polar-
ity feature obtaining Q<O (np\s)\O*O(np\s), where the modalities on the goal formula
will require the context to be of the right polarity, and the ones on the argument will
account for multiple NPIs occurrences.

Example 2.1 Nobody left yet.

left - iv [
(left) Ozlv oy ' |
left - O*Civ yet - O Oip\OtOiv
nobody k /0401y left o yet + OtOdy /E]
nobody o (left o yet) I s

[\E!
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3. A possible interaction

In (Joshi & Kulick, 1997) it is acknowledged that the bridge connecting TAG with de-
ductive approaches fails to incorporate the elimination rule for the tensor operator.
This might be a problem when trying to recast the way PIs are treated in (Fry, 1999).
We have shown that MMCG has the right expressiveness for dealing with this linguis-
tic phenomenon and that the solution is strongly based on the logical properties of the
unary modalities. In (Joshi ef al., 1999) a translation of the behavior of MMCG modal-
ities into Partial Proof Trees (PPTs) is given and it is claimed that by using PPTs the
linguistic phenomena motivating the introduction of these modalities can be handled
eliminating them. It could be interesting to see whether this claim hold with respect to
the linguistic application here described. A possible way to tackle this question could
be to look at the proof nets developed for MMCG and presented in (Moot & Puite,
1999}, where they are proved tc be sound and complete. In this graph-based proof
system, the lexical items are anchored to trees, which are the result of the urfolding of
the original types. This remind quite straightforward the idea on which PPTS is based.

Below we give the tree assigned to nobody as an example.
8

nobody

np
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Résumé

Nous présentons un outil permettant de calculer un arbre de dépendance sémantique a partir
d’un arbre de dérivation TAG.

Cette opération est rendue possible grice d un algorithme de filtrage des arbres de dérivation
et & une étude des propriétés sémantiques liées aux opérations de substitution et adjonction sur
une grammaire lexicalisée.

Introduction

Les principes de cooccurrence prédicat-argument (PCPA) et de minimalité sémantique associés
an principe de lexicalisation nous permettent d’interpréter 1'arbre de dérivation en représenta-
tion sémantique de la phrase comme le font (Rambow & Joshi, 1992}, (Vijay-Shanker et al.,
1993), (Candite & Kahane, 1998} et (Candito, 1999).

PCPA indique que tout arbre élémentaire ancré par un prédicat comporte au moins un neeud pour
chacun des arguments ((Kroch & Joshi, 1985), (Abeillé, 1991)). Le principe de lexicalisation
pose que tout arbre élémentaire comporte au moins un neeud feuille lexical et le principe de
minimalité sémantique que tout arbre élémentaire corresponde 4 une unité sémantique non vide
{Abeillé, 1991), (Candito, 1999).

Ainsi I'arbre de dérivation est une représentation possible de dépendances sémantiques dans la
mesure oll fes adjonctions et substitutions constituent des opérations entre gouverneurs séman-
tiques et dépendants sémantiques.

Mais, méme en prenant la définition de (Schabes & Shieber, 1994) des arbres de dérivations,
celte représentation syntaxique ne permet pas toujours de calculer les dépendances immédiate-
ment.

Les cas suivants semblent poser particuligrement probléme :

— Dadjonction d’arbres élémentaires non modificateurs comme les auxiliaires verbaux.
(fig.1)

— L'inversion de I’ordre de dépendance entre gouvemneur sémantique et dépendant séman-
tique lors d’adjonction. C’est par exemple le cas pour une infinitive ou une complétive
dominant la principale dans I'arbre de dérivation (fig.2).

Et dans le cas de I’analyse selon (Vijay-Shanker, 1987)

— Les ambiguités artificielles dues aux ordres multiples d’adjonctions dans la dérivation.
(fig.3).

Nous avons donc développé, dans le cadre du projet FTAG (Abeillé et al., 1999), un outil qui
permet de calculer un arbre de dépendance sémantique de la suite analysée en tirant-parti, d’une
part des informations lexicales de la grammaire lexicalisée et, d’autre part d’un ensembie de
régles générales.
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a pa{tir & mangé a yoir a 1hat « Cfiat e ghat
' o’T a Jean T -
Bvientde alean Fa Bre Bpersonne [ veut 2 joli 8 getit B joli 4 pet

: f joli
a Jean 3 petit

FIG. | — Arbre de dérivation de F1G. 2 —  Arbre de dériva- FIG, 3 — Arbre de dérivari;g;

“Jean vient de partir”, “Jean a tion selon {Vijay-Shanker, 1987) selon (Vijay-Shanker, 1987) puis

mangé” de “Jean ne veut voir personne”  (Schabes & Shieber, 1994) de “jol;

petit chat”

1. Principe général
Le logiciel filtre les arbres de dérivation en fonction d’un schéma général (par exemple celui de
I’adjonction d’un auxiliaire verbal ou d’une infinitive), puis applique de fagon incrémentale un
ensemble de régles permettant de dresser une représentation sémantique correspondante.,
Les fonctions effectives données par la grammaire LTAG sont directement atiribuées aux argu-
ments sémantiques.
Nous avons décrit trois régles générales qui s’appliquent pour un ensemble de familles donné :
~ Régle faisant remonter la principale d'une complétive ou d'une infinitive.
— Reagles aplatissant les modifieurs.
— Régle ¢liminant 1”adjonction d’un auxiliaire de temps.

Nous expliciterons infra les deux premiéres.

2. Regles de calcul d’un arbre de dépendance sémantique a partir d’un
arbre de dérivation TAG

2.1. Régle faisant remonter la principale d’une complétive ou d’une infinitive

A I’exception des complétives sujet, les phrases enchissées sont décrites comme des adjonctions

sur un neeud phrastique pour les complétives et infinitives et sur un nceud nominal pour les

relatives. :

Dans le premier cas, il en résulte naturellement que V'arbre élémentaire correspondant & la

phrase matrice est dominé par I"arbre élémentaire correspondant & la phrase enchissée dans

I"arbre de dérivation comme montré fig.4

& partir o traité -
-y //JIQ\
3 souhaite £ plus t6t o dossier Benpriorité A réclame

it

« Jean

FIG. 4 — Arbres de dérivation de “Jean souhaite partir plus tét” es “Jean réclame que son dossier soit
tralté en priorité”
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Dans une représentation sémantique, nous voudrions voir cet ordre - §’il correspond & un ordre
de dépendance sémantique - respecté pour les refatives mais pas pour les complétives et infini-
tives.

Nous présentons fig.5 Ia régle générale qui permet de traduire I’adjonction sur un nceud phrase
d’un arbre élémentaire correspondant 4 une complétive ou infinitive, Cette régle ne s’appliquera
pas aux relatives car ]'arbre de dérivation ne sera pas filtré.

Graphie = Graphiel
Etiq. = Arbrel
Adr. = Gornl
Fonct, Ef, = Fel
Fened Can, =Fel

Graphie = Graphle2
Etig. = "n0Vs1"

= : Fonel, Eff, = Fe2
Fonct, Can, = Fe2

// Graphle = Graphiel

Etlg. = Arbrel
b4 al Az A3 Ad Fancl. Eft. < Fel

Fonel, Can, =Fe¢l

Graphie = Graphic2
Etiq. = "n0Vst™
Adr.= Gorn2
Fonct, EfT, = Fed
Fonet, Can, = Fe2

Al A2 A3 Ad B1 Bi B3 B4
FI1G. 5 — Régle faisant remonter la principale d'une complétive ou d'une infinitive. Les termes
A Aa, . Ag et By, Ba, ... By correspondent & des variables libres pouvant étre instancides par un
neeud,

Le résultat de I'application de la régle est simplement une réorganisation des nceuds comme le
montre la fig.5.

2.2. Regles aplatissant les modifieurs

L’analyse de (Schabes & Shieber, 1994) permet de construire plus immédiatement une représen-
tation sémantique pour les modifieurs multiples. En effet, plusicurs adjonctions peuvent avoir
lieu sur le mé&me nceud en les ordonnant, ce qui produit un arbre de dérivation “plat” comme
montré fig.6.

eLuc Aplus tdt Fjeudi
|
Ale
FiG. 6 — Arbre de dérivation selon (Schabes & Shieber, 1994} de “Luc part plus 16t le jendl.”

Dans le cas d’une analyse selon (Vijay-Shanker, 1987), il est possible “d’aplatir” les modifieurs
de telle manigre qu’il puissent &tre dépendants sémantiques au méme niveau.

Larbre de dérivation correspondant & une adjonction mulitiple contient nécessairement une ad-
jonction sur la racine d’un arbre auxiliaire. Cette condition étant par ailleurs suffisante, elle
permet de décrire la structure filtrante.
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Nous présentons fig.7 la régle générale qui permet d’aplatir les modifieurs. Cette régle sera
appliquée autant de fois que des modifieurs artificiellement enchéssés apparaitront.

G"P'“"::"?""‘ Graphle = Grapsie]
Filg. = A7 Eg. = Arbes]
Adr. = Garnt = Fonct. EN. « Fe}
Fanct, B = Fel Fonct. Can = Fel
Foncl Cone = Fel
:';Tphl:ll::;wmd Grephie = Graghiel Graphte = anh\
i = BAE Edly, = 3AUX Etlq, » Etlqurtted
Adr. = dorst o b Font B 4 RTOIE <l cz a ]
Fonet. EN. = Fed Fongt. Can. = Fc2 Fonet. Dan. ¢ “MODIF
FoneL Con.= Fel
4
Graphin = Graphle} \
Btlg. = Filquettad M Bl nz 3] Ba Al Az A2 A

Adr.= NH.

FiG. 7— Régle aplatissant les modifieurs

Conclusion

Cet algorithme a été implémenté et fournit pour chaque analyse effectuée un arbre de dépen-
dance sémantique. C’est donc une interface utile pour lier un niveau syntaxique 4 un niveau
conceptuel.

Ce travail a été fait dans la perspective de ['analyse en TAG. Nous pouvons le relier aux travaux
de (Danlos, 1998) ot I'arbre de dérivation est calculé & partir d’un tel niveau conceptuel.
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ABSTRACT

In this paper we argue in favour of an integration between statistically and syntactically based parsing, where syntax
is intended in lerms of shallow parsing with elementary rees. None of the statistically based analyses produce an accurdcy
Jevel camparable 1o the onc oblained by means of linguistic rules [1]. Of course (heir data are strictly referred to English,
L“-ilh the exception of [2, 3, 4], As to Italian, purely siatistically based approaches are inefficient basically due 10 great
sparsity of 1ag distribution - 50% or less of unambiguous tags when punctuation is subtracied from the toial count as
reported by [5). We shall discuss our general statistical and syniactic framework and then we shall repott on an experiment
with four different setups: the first two approaches are bottom-up driven, i.e. from local 1ag combinations:

A. Sualistics only 1ag disambiguation; B. Stastistics plus syntactic biases; C. Syntactic-driven disambiguation with no
suatistics; I. Synlactic-driven disambiguation with conditional probabilities computed on symtactic constituents.

The second two approaches are top-down driven, i.e. driven from syntactic structural cues in terms of elementary trees:

In & preliminary experiment we made with automatic tagger, we obtained 99% accuracy in the training set and 98% in the
test set using combined approaches: data derived from statistical tagging is well below 95% even when referred to the

fraining set, and the same applies lo syntactic tagging.

1. INTRODUCTION

We assume, together with [I] that POS agging is
essentially a svntactically-based phenomenon and that by
cleverly coupling stachastic and linguistic processing one
should ke able to remedy some if not all of the drawbacks
usually sssociated with the iwo approaches, when used in
isolation. However, as will be shown in detail in the
following section, rather than using FSA we use Elementary
Trees organized in an RTN both for training and for parsing.
As 10 the statistical part, we don't use HMMs but only
conditional probabilities on the basis of trigram information
gs discussed below.
Syntactic driven disambiguation is accomplished by using
an RTN made up of 1700 arcs and 22 nets, which we usc in
a non-recursive way, as explained below. Data for the
construction of the RTN were derived from the manual
armotation of 60,000 token corpus suiie which is then used
as test sel. Frequency of occurrence associated 1o each
rewrite rule is used as organizing criteria in the ordering of
the arcs contained in cach node of each net. However, in the
cxpériment, we le: conditional probabiiities at the level of
major constituent, or net, do the choice for the best path.

Rather than fattening the Phrase Structure Grammar
as [8] suggest in their shift-reduce algorithm, we only check
for reachability in nonterminal symbols. So, even though the
formal structure of RTN is recursive, the disambiguating
algorithm does not use recursive calls and all computation is
flattened down to onc level, that of tags comresponding 10
preterminals in the RTN. The synlactic-slatistical
disambiguator (henee SSD) can be defined as a slightly
augmented finite state (ransducer which warks at a single
level of computation and has access to higher level

information when needed. For the details of the
implementations the reader should look at (10],

2 STATISTICAL VS§8. SYNTACTIC

DISAMBIGUATION

The SSD 1s the final module of our syntactic tagger
of talian. Input ta the 85D is the complete and redundant
output of the morphalogical analyser and lemmatizer,
IMMCRTALE [10]. IMMORTALE finds all possible and
legal tags for the word/token under analysis on the basis of
morpholopical generatien from a root dictionary of Halian
made up of 80,000 entries and a dictionary of invariant
words - lunction words, polywords, names and surnames,
abbreviations ete. - of over 12,000 entries.

As commented by [6], the application of stochastic
techniques in automatic pari-of-speech ‘lagging is
particularly appealing given the ease with which the
necessary slatistics can be automatically acquired and the
fact that very litlle handcralted knowledge need to be built
into the system(ibid., 152), However bath probabilistic
models and Brill’s algorithm need e large tagged corpus
where to derive most Hikely tagging information. It is a well
known fact that in lack of sufTicient training data, sparsity in
the probabilistic matrix will cause many bigrams or trigrams
ta be insufficiently characlerized and prone to generale
wrong hypotheses. This in turn will introduce errors in the
tagging predictian procedure. Italian is a language which has
not yel made available 10 the scientific community such
large corpus. In lack of such an important basic resource,
there are two possibilities:

3. manually building it by yourse]f;
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4. using some automatic learning procedure which in our
case correspends to the use of a syntactic tagger.

We have been working on such a corpus of [talian with the
aim of achieving the above-mentioned final goal, without
having to manually build it, The algorithm that we will
present [n this paper is partly besed on stochastic techniques:
this is however coupled with linguistic processing by means
of a Context Free grammar of ltalien formalized as an RTN,
which filters it. Statistics is usefully integrated inic the
syntactic disarnbigustor in order io reduce recursivity and
ollow for better predictions.

After a first fully automatic phase, we started building
BIASES which are used to correst mosl commaon erTors.
This second phase has taken us 3 man/months work to
complete. The final result is a 95% accuracy analysis on the
whole corpus. The final output has then been used 1o collect
trigrams for the statistical tagger. Stalistics and syntactic
disambiguation have then been fully integrated in order to
reduce recursivity and allow for better predictions and
higher efficiency. Fully stochastic taggers, in case no large
tagped corpore are available, may make use of HMMs.
However, HMMs show some of the disadvantages present in
more common Markov models: they lack perspicuity
basically because they impose that the data related 10 tags
are all treated on a par. Even though they allow for biases to
be implemented — very similar to patches in Brill’s tagger -
they are mherenily incapable of capturing higher level
dependencies present in natural longuage, and are always
prone al generating wrong interpretafions, 1.¢. accuracy
never goes higher than 96-97%. Of course it is & good
slatistical resull, bul o poor linguislic result, seen the
premises, i.e. the need Lo use lagging information for further
syntactic processing.

2.1 Tagset and Statistical Processing

Qur tagset is made up of 91 tags thus subdivided: 10
for punctuation; 4 for abbreviations, titles, dates, numbers;
19 for verbs including three syntactic types of
subcategorization - transitive, intransilives, copulatives —
and tensed cliticized verbs; 47 for function closed class
words subdivided inte 18 for pronouns, clitics, determiners
and quantifiers - [8 for adverbs comjunctions and
prepositions - 11 for suxiliaries and modals; 11 for
adjectives and nouns, including special labels for colour
nouns, lime nouns, faclive nouns, proper nouns, person
names - this list includes special labels for guessed proper
nouns, foreign words and misspelled words. Twenty
calegories from the general fagset never occur single, so
they had to be converted inte distributionally equivalent
ones, in the statistical table.

We refer to the tagset of LOB corpus which uses 157
tegs for English: however, they include in their set special
tags for plural forms, genitive forms both for nouns and
verbs, and with tags for comparative and superlative forms
of adject[ves In case we eliminate these duplicate forms the
total number of tags is 107.

The dissmbiguator is made up of two separate modules: the
Probsbilistic Transition Table for loca} tag dlsamblguatmn
the syntactic transition network where the leaming phase is

sifuated. We use a Viterbi-like algorithm to find and selecy
the best candidates in any given context, given the trigramy
matrix information. However, since we only computed
trigram for a comparable smail quantity of training data - wa
would need 700K trigrams for our 90 tags, but we only use:
JO0K! - we often find no data available. In a similar way 1o
the reductionist statistical approach proposed by [2,7] we
induce the best tag from the set of avaiiable tags in the
context of an unambiguous tag by recursively calling al|
contextually allowable combinations, from where we selegt
the ones corresponding to the current ambiguity class: we:
then compute trigram conditional probabilities, according tg
the formula suggested in [2]. We remove low-probability
candidate tags by ignoring the tail of the Viterbi output ligf,
on the basis of a fixed threshold. In case no data gre:
available, rather than computing zero probability we let the
current procedure fail - the algonlhm ts implemented in’
Prolog - and use information coming from Elementary Trecs
(ETs) or Networks which can be superimposed on each tag§
in a given context: the most adequate ETs will be chosen ip
the top-dewn synlactlcal]y dniven dlsamb:guatmg procedure;
The final aim of the disambiguation is to produce
information reusable by the following shaflow parser, which:
will then be in charge of combining ETs previously assignéd,
by the S5D.

3. SYNTACTIC CONSTITUENCY.

ANNOTATION

The first problem to be solved when starting work on &
corpus in order to produce a syntactic structure annotalion,
is the choice of representation, or the syntactic annotation
scheme. As with tegging, the scheme must be consisteny, it
could be used as gold standard for parser testing or as’a
basis for the induction of stochastic grammars and lexical:
representations. The main sources of information in the field
of syntactic annotation scheme are related to the Penp,
Treebank (hence PT) [11], which is remarkable as'in
extension of the coverage and docuimentation of linguistic:
phenomena The PT uses e generativisy constituency which
is related to chomskian syntax of the '60s/70s which we di
not share: as a result, much of the bracketing is ron
comparable. In addition, syntaclic constituency has been:
enriched with functional labels and other non standard
additional labels which increased the overall number of
constiluents bt reduced its perspicuity. As a result, PT uses
22 symbols for main constituent and 32 more for functional:
annotation, We alse use 22 symbels for syntactic
constituency but they are different from the PT's ones.

The inventory we use follows the basic intuitions of the
XBAR syntax, while having as its main goal that to serve as:
en interface as simple as possible to the following levels of,
representations: the functional, LFG-style, and the semantic
ones. In parttcular, whereas PT uses Chomsky-adjunectiod
and VP, we opied for a separated IBAR constituent with all-
tensed verbal constituents end its adjoined minor
constituents, like negation, clitics and certain adverbials, We.
then qualify all verbal complements according to their
lexical subcategorization frame. Seen that they only have



one layer of syntactic representation, whereas we allow for
iwo, they include all semantic information at comstituent
level. In particular, they introduce all possible empty
categories in the syntactic constituents with ceindexation. In
case of discontinuous or non canonical order of constituents,
they use special constituent names, like SINV {Inverted
Sentence), to allow for the subject NP 1o be automatically
recovered. We iniroduce no empty cntegory at syntactic
{evel, while leaving their computation for the functional and
semantic level. . As an example we report the bracketing for
" John's decision 1o leave":

(NP (NP John 's)
decision
(S (NP-SBi ¥)
(VP to
(VP leave))))

compared to the Italicn, "la decisione di Gino di partire”
SN-[la-ar1, decisione-n,

SPD-[di-pd, SN-[Gino-nh] ]

SV2-[di-pl, partire-viin] ]
where we can sec that the level of embedding in PT is 4
brackets, whereas it is 2 brackets in our representation. We
report here below the list of constituents in our
representation for Italian corpora.

TABLE 1, List of Syntactic Constituents and their

239

¥s CP for Subordinate sentence

FINT  CP for +wh interrogative sentence

FP CP for punctuation marked parenthetical or
appositional sentence

F2 CP for relative clanse

CP Generically for dislocated or fronted, sentential adjuncts

CQORD Coordination with coordinating conjunction as head

COMPT Transitive/Passive/Ergative/Reflexive Complement

COMPIN Intransitive/Unnaccosative Complement

COMPC Copulative/Predicative Complement

meaning

F sentence, starting with subject SN or SV2; or in
case subject is missing starting with IBAR

SN noun phrase, including its complements and/or
adjuncts

54 ndjectival phrase, including its complements and/or
adjuncts

5P prepositional phrase

SPD prepositional phrase DI/ "ol

SPDA _prepositional phrase DA /"'by from"

SAVY adverbial phrase, including its complements
and/ar adjuncts

IBAR vevbal nucleus with finite tense and all adjoined
elements like clitics, ndverbs and nepation

SV2 F fov infinitival clause

SV3 F for participial clause

SVS F for gerundive clause

FAC CP for scatential complement

FC CP for Coordinnte sentences {also ellipsed and

gapped)

4, AUTOMATIC SYNTACTIC TAGGING
Being language-dependent the tagger needs to be based
on an accurate analysis of corpora with an as broad as
possible coverage of genre, style and other social and
communicative variables, To answer these needs we built
our syntactic shaliow parser on the basis of manually
annotated texts for 60,000 words chosen from different
corpora and satisfying the above-mentioned criteria. The
annotation was caitied out twelve years ago to be used for a
text-to-speeeh system for Italian (DecTalk Italian version)
with unlimited vocabulary.
We report here below the list of the 10 main constituents or
net labels used by (he annotatoers, which are a superset of our
current gyntactic tagset which is subsumed by it. As can be
easily seen, lexical subcategorization information for verbs
was not included: also, no information was available as to
DI/DA (of/by-from) PPs, nor a subdivision of sentences in
simplex and complex with subordination. Sequences of
preterminal symbols, category labels or simply POS tags
may reasonably belong to three levels of constituency: in the
most desirable case, they may be part of the same
conslituent, e.g. NP(art, quant, noun); else, they may belong
to a parent node, whose head is followed by the
Complement node, any head dependent constituent in a
daughter node, e.g. NP(art, noun {(AP(adj)); finally, it may
belong to two sibling nodes from a common higher parent
node, as for instance in the case of CP{AdvP(adv, NP),
IP(NP, VF)).
However, our tagset of clementary trees is different from
the one used within the LTAG approach [12], where they
are called Supertags: in our framework, elementary trees
only belong to the syntactic censtituency domain. On the
contrary, in the LTAG framework they are conslituted by
both syntactic and functional constituent labels,

Table 2. Net Accessibility Preterminals and their Frequency

NET TAG FREQ [NET TAG FREQ |NET TAG FREQ |NET TAG FREQ
F PK 235 JSN | Q 189 SP |P 6160 SV |VG 147
F CONG | 218 |SN PRON | 338 sV (v 656 SV | VPP |84
F COSU 294 JSN ART [3792 [sv [auUsa Tou4 SV | VSUP |s18
SA A 353 fSN DIM {117 |SV |AUSE [363 SV2 |P 173
SA Q 23 |SN [N 1662 |SV |CLIT |38a Sv2 |PT 539
SAVV |AVY _[1479 sP PART |5234 |SV |NEG |318 sV2 | vI 217
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Disambiguation proceeds as follows. Fully ambiguous
cases such as the following: Tagl=[ag, n}, Tag2=[ag, n],
cannot be solved by relying on frequency of occurrence
given the fact that 75% of all NP rules take the pair
Noun/Adjective, and only 25% take Adjective/Noun.

We use biases which take into account a list of exceptions -
ambiguous cases which prefer Prenominal position and
only then to use local cues provided by the RTN.

At first we Ury to traverse the network by continuing in the
network sccessible from the left highest score tag, as
explained below. Net traversal is worked out trying to
proceed from the arc sssociated with that tag onto 2
following one as encoded in the RTN and extracted from
the current tag-list. The are in question is called from the
pair (Net, Tag). The output is the associated arc, which is
represcnted as follows,

- arc{Net,Category,InputNode,OutputNode).

In case the curren! tag(list) is accepted by the RTN no
further computation is needed: the associated network will
be used for further processing.

2. In case of failure, we execute in turn the following
precedures:

n. The two tags belong to iwe scparate networks which
are in an inclusion relation;

b. The two tags belong to non inclusive networks.

Case g, is further expanded as follows:

Tag 1 belongs to a network which includes the network
to which Tag 2 belongs. Newwork for Tag 2 is then simply
asserted as the first network that Tag 2 may be a proper
starting category for.

This information is recovered from a Network
Accessibility Table Lookup (NATL) as indicated in Teble
2, where all category symbols are cross-tabulated against
the network they may provide access for. NATLs are
compiled at runtime and are encoded as sets of stariing
symbels for each network with a given probability.

Match for 1ags is a simple membership check,
Tagl/Tag2 = Networkl/Tagl =

Network2/Tag2
Tag 1 and Tag 2 belong to two separale networks which
are both included in another network. Whereas in i. above it
was between terminal and nonterminal, this lime, the
inclusive relationship is between nonterminals,. Network:
for Tagl and network for Tag2 are both included in the set:
of Networks accessible from a higher Network, NATLs.
used in this case are for nonterminals,
Tagl/Tag2=>
[Networkl/Tagl, Network2/Tag2} o
HigherNetwork
Tagl and Tag2 cannot be regarded a legal continuation ag
can be computed from the available grammar encoded in the
RTN. The parsing process is reverted from Top-down to
Bottom-up. The first network associated to Tag2 as
recovered from NATLs.

5. THE EXPERIMENT

Ag said above, we took two subparts in order tg
check the effect of training separately, The benchmark test
corpus was constituted by a segment from the School.
Administration corpus which amounts to approximnte]:y:ﬂ
10,000 tokens and is not included in the training set,

We constrained the choice of the statistical tagger by.
the matrix of actually occurring combinations as determined’
by the syntactic disambiguator. Thus the training set should"
have granted similar results, but as Table 4. clearly show,
this is not the case. Some improvements are obtained by the:
addition of Biases, which in one case that advantage of lacal
syntactic accessibility information.
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Abstract

We show that clitics are nor as problematic for Syn-
chronous TAG as has been supposed, and give two
solutions; and, in doing so, demonstrate that ‘un-
bounded relations’, such as it is argued clitics in-
duce between dependency trees, ave only an arfe-
Jact of particular analyses.

1. Introduction

In this paper we investigate Synchronous TAG
ag defined in Shieber (1994) (hereafter just S-
TAG). This formalism has attractive character-
istics such as the weak language preservation
property (WLPP), whereby the power of the
component TAGs is not altered by their syn-
chronisation. A canonical example of the (po-
tential) Yimitations of S-TAG is translation be-
tween languages with pronominal clitics and
those without: because of unbounded clitic de-
pendencies, the argument goes, radically dif-
ferent derivation structures are produced for
each language, in violation of the isomorphism
required by S-TAG. We illustrate the problem
using inalienable possession constructions in
Spanish, and then present one possible solu-
tion using a metagraminar, as in Dras (1999a).

However, this is not the only possible solution;
and in examining a variant analysis, this paper
demonstrates that the problematic “‘unbounded
relations’ between trees that Shieber mentions
arc not an innate characteristic of construc-
tions, but rather are artefacts of the analysis.
Farther, it suggests that the two solutions for
the behaviour of clitics presented here reflect a
common concept of ‘grouping’ in grammars.

alsoighe) af2)[treats]

af2)[{ui] a2 - 1)[dents] a2 Diieeth)

a(1)[Afs]

Figure 1: Shieber partial derivation tree pair

2. An Initial Analysis

Shieber (1994) sketches an analysis of clitics
(based on a suggestion by Abeillé) giving it as
a potential problem for S-TAG, which requires
an isomorphism between derivation trees. In
this section we discuss Shieber’s analysis and
show that his class of examples does not, in
fact, require non-isomorphic derivation trees.
However, such non-isomorphic constructions
do exist in other languages and are thus prob-
lematic, We go on to argue that the un-
boundedness in these structures can be handled
through the relaxation of the isomorphism re-
quirement via a metagrammar (Dras, 1999a).

2.1. Shieber’s Analysis

Shieber's example is in (1), with the clitic lui
indicating possession of the body part by the
patient. A partial derivation tree pair for (1) is
given in Figure 1, reproduced from Figure 10
of Shieber (1994).

(1) a. Ledocteur lui soigne les dents.

b. The doctor treats his teeth.
The trees are clearly not isomorphic. If they
represent a fixed relation—ie. each node is
always immediately dominated by its parent,
with no possibility of intervening nodes—this
could be handled by Shieber’s suggestion of
‘bounded subderivation’, where the fixed re-
lations are treated as single nodes. However,
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alsoigne]

\/\nwﬂ” 3 / /\
‘ |

\f i’l alhis)

—

allui) e

ailtreats]

afieerh)

Figure 2: Unbounded relation, variant 1

alsoigne] altrears]

" - X

\ kg X
\nllum*a[relerhl
a[fli is]

Figure 3: Unbounded relation, variant 2

Shieber also suggests that the “relation be-
tween the clitic and the NP which it is se-
mantically related to seems to be potentially
unbounded”. In terms of tree relations, this
suggests that there is unbounded material in-
tervening in the trees between where c[lui]
and ehis] attach, hence no possible isomor-
phism. Given the tree configuration of Fig-
ure 1, there are two possible cases where the
relation between the trees is unbounded. The
first is in Figure 2: the X and X' connected
by vertical dots indicate the unbounded mate-
rial. The derivation represented by Figure 2
is exemplified in (2). In this example, there
is an unbounded number of verbs which can
be adjoined into ofsoignel; aflui] is adjoined
into the lowermost of these nodes (X”). How-
ever, expressions such as (2) are unattested in
French, since the clitic must occur immedi-
ately before soigner (and auxiliaries).

(2) a. * Le docteur lui veut pouvoir ...
soigner les dents.

b. The doctor wants to be able ... to
treat his teeth.

The second possible case is illustrated by Fig-
ure 3. This derivation is exemplified by (3),
which has an unbounded number of NPs be-
tween clitic and body part.

Mark Dras, Tonia Bleam

(3) a. * Le docteur lui regarde une copie

d’une photo ... des dents.

b. The doctor is looking at a copy of a
photo ... of his teeth.

These examples are also ungrammatical in
French. Thus, neither possibility for establish-
ing an unbounded relation applies, and hence,
contra Shieber’s footnote (and accepted folk-
fore) they do not appear to be problematic
for isomorphic S-TAG, although they.do raise
other problems (Abeillé, 1994).

2.2. A Spanish Example

Spanish, however, does allow clitic climbing
over a potentially unbounded number of ‘trig-
ger’ verbs (Aissen & Perlmutter 1976). The
example in (4} parallels the French example in
(2), with clitic le, but is acceptable. '

(4) El médico le queria poder ... examinar

los dientes.

In analysing clitic behaviour in (4), either
syntax-dependent or syntax-independent anal-
yses are possible. In a syntax-dependent analy-
sis, there would be a coindexing (in the derived
tree) between the clitic and its corresponding
NPE. In a syntax-independent analysis, the re-
lationship would be handled by some other
mechanism which remains to be specified. Our
reconstruction of Shieber’s analysis is syntax-
independent, with a[luf] a single tree.

2.3. A Metagrammar

We propose to handle the unboundedness

shown in (4), with its derivation tree pair in

Figure 4, nsing a metagrammar (Dras, 1999a).

A metagrammar specifies a relation between

derivation trees by means of a TAG grammar

of derivation structures. A minimal metagram-
mar for (4) is shown in Figure 3.

The pair 2 does the essential grouping of the
clitic and slot for a recursively-addable verb
{the X to X' material), mapping to the English
substructure. The unbounded intervening ma-
terial is given by tree pair B, and clearly there
is an isomorphism at the level of the deriva-
tion of the derivation (the ‘meta-derivation’).
This metagrammar is in Rogers’ (1994) reg-
ular form (it is not possible to adjoin into the
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afexaminar)
aicraqinan
- ) P
---- ' -

a{médico] Sfrecursive-verb]  afdientes]

(![’E]} aflos]

v

HAlrecursive-verb}

Alle]

Figure 4: Derivation tree pair

a{examines]
a[dolc-:or] Birecursive-verb] altecth]
athe] . ] a[his]
Alrecursive-verb)
cenx0Vnx1

anxd¥nxl

A:
alNXdxN]  AVvxlrecursive-verh]  aNXdiN aNXdxNL  AVvafrecursive-verb]  aNXdxN
I } !
ADXD [pers flle] aDXD [ﬂf;]
aNXdxN aNXdsN - « fiVvr Vv
' o ) | )
< c:DlXD aDXD AVvK[recursive-verl], BVvx[recursive-verb),
Figure 5: A metagrammar for Figure 4
: s P FP NP
spine of an auxiliary tree in this metagrammar) Py Py
and so the results from Dras (159%a} apply: the cl CIL F. Detl N
WLPP holds, and the object-level formalisms h',i dents

still have TAG weak generative capacity.

Note that this analysis is compatible with the
spirit of Abeillé (1994). There, the behaviour
of the clitic is constrained by an S-TAG which
pairs a syntactic and a semantic grammar. The
S-TAG there is the earlier, non-isomorphic S-
TAG of Shieber & Schabes (1990), so the pre-
cise analysis is not of use for investigating iso-
mortphic S-TAG, and moreover its mathemati-
cal properties are not well understood. What
we have done here, however, is compatible
with Abeillé’s syntax-scmantics idea, There
is a parallel between the English side of our
grammar and the semantic side of Abeillé’s
grammar, with the metagrammar pairing the
nodes in such a way that the clitic must be in-
terpreted as an inalienable possessor.

3. An Alternative Analysis

Taking an individual Romance syntactic gram-
mar by itself (that is, not constraining it
through pairing with another grammar), the
analysis above is insufficiently restrictive. For
example, if there is a standard bridge verb tree
adjoined, as in (5), there is nothing in this anal-
ysis preventing the clitic from climbing over

Figure 6: New clitic analysis

- -

a[médico] Dlreeursive-verb) a[dientes)

alel] . ] :t[l-os] aﬁe]
frecursive-verb]

Figure 7: Reanalysed Spanish derivation tree
the bridge verb (piensa, thinks).

{5) * Juan le piensa que el médico examind los
dientes.

To account for Spanish clitic climbing, Bleam
(1994) adopts a syntax-dependent analysis in
which the coindexing between the clitic and
the NP is represented by an MCTAG sequence.
For us, the important aspect of this analysis is
that the clitic is prevented from moving past
particular constitvents, such as negation and
complementizers, and examples like (5) are
not generated.

We analyze (4) using the tree sequence shown
in Figure 6. The Spanish derivation tree is as
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in Figure 7, with the English tree as before.!+?

In the Spanish tree, Jos and le are inserted into
the tree sequence for dientes. A bounded rela-
tion between the English and Spanish trees is
now induced, treating los and le as a bounded
subderivation.?

4. Discussion

In the analysis presented in Section 3, the rela-
tion between the clitic and its associated NP
is local, so we do not need to represent un-
bounded relations in a metagrammar. In addi-
tion, it not only rules out ungrammatical struc-
tures that our first approach does not, but also
captures the intuition that the clitic is as much
a part of the dientes structure as his is of reeth.

Both analyses discussed here draw attentien
to the fact that the ‘unbounded’ nature of
constructions is not fixed. What constitutes
an unbounded relation at the derivation level
for a given object-level grammar becomes a
bounded relation for a slightly different object-
level grammar, To explain this, a notion of
‘grouping’ is useful here. Grouping is related
to the concept of domain of locality: MCTAG
group entities by associating trees together in
multi-component tree sequences; a metagram-
mar groups elements by associating nodes in
the derivation tree. So the role of grouping
elements so that a refation between derivation
trees is established can be traded off between

"Note that there are some changes in the Spanish
dergivation tree. There is a new location for the le node,
and afdientes] is a two-element sequence. In addition,
the examinar tree is modified slightly as well, now in-
cluding a functional projection (FP) node, This is nec-
essary for two reasons: to prevent multiple adjunctions
at the VP node {clitic and recursive verb); and to account
for the effects discussed in Bleam (1994).

Note that a synchronous relation between a TAG
and an MCTAG is formally well-defined (Dras, 1999b),
working in essentially the same manner as S-TAG, but
pairing trees with sequences rather than with trees.

Qther altermative TAG-based analyses are possible
here also (e.g. Abeillé, 1994; Kulick, 1998; Candito,
1999}, However, we have chosen the analysis given
here because, as we are examining the relation between
English and Romance derivation trees, we would like
to have ‘minimal tree pairs’, to concentrate on the one
phenomenon of unboundedness; the other analyses give
substantially different derivations.
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the object-level grammar and a metagrammar.
As an obvious rute of thumb, grouping should
occur in the object-level grammar when jus-
tified by linguistic reasons, such as a prefer-
ence for a syntax-dependent analysis of clitics;
a metagrammar can group items that are re-
lated in some other way, such as if a syntax-
independent (semantic) analysis of clitics were
preferred, or in cases such as the structurally-
rearranging paraphrases of Dras (1999a).

In sum, we have shown that problemnatic cases
in §-TAG models of Romance-English trans-
lation can be resolved by using either a meta-
grammar or an MCTAG analysis of the clitic-
body part relationship; and in doing so, we
have demonstrated that unbounded relations
between derjvation trees in S-TAG are only an
artefact of the analysis.
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Abstract

It am uniforn generation system all knowdedge bases are specified in the same formalism and run the same process-
iing compoanient, The advantage of this behavior is that any order of applying the knowledge bases, i.e. a negofintion
on revisions between the individual components, can easily be imposed on the system. Furthermore, the imple-
mentation of the overnll system is simpler because only one nlgarithm must be developed and tested. In the project
INTEGENINE we specify all knowledge sources in the formalism of Schenn—TAGs with Unification (SL-TAGs).
A general paradigm of our work Is to reuse existing knowledge bases, i.e. to transform various formats into a
SU-TAG. For the syntactic and lexical knowledge the existing XTAG system has already automatically been
transformed. In this pnper we address the general question how to transform plan-based knowledge—sources
which are frequently used i the whai-to-say parf of a generation system. As an instance of the genernl trans-
formation medel presented here, we show how te transform the knowledge sources of the plan-based systemn VOTE.

The transforation component we describe in the following appertain to a untiforn: generation
system based on Schema~TAGs. Let us first briefly address this system in order to motivate the
serviceableness of the transformation component in the general systen.

The idea of uniform or so called integrafed gemeration was basically described in the system
KAMP (Appelt, 1985). In this systein a hierarchical action planner explores expressions based
on the formalism of intensional modal logic. KAMP was not intended to be a psycholinguistic
model of human behavior, although is reflects some aspects of human language production
such as incrementality. This behavior directly results from the integrated model. Any knowl-
edge base is supposed to become active at any time, i.e. as early as possible.

From this observation the question arises whether the uniform model can serve as a basis to
remedy the generation gap (Meteer, 1990), i.e. the situation in which a sequential process (first
what-to-say, then how-to—say} leads to dead end situations which cannot be solved by local
modifications in the component in which the problem occurs. Cur assumption is to extend
the — in a sense demon-like — activation of knowledge bases towards a parametrised model
which allows for recovery strategies to escape from local dead ends by imposing revisions of
parameter—defined components. This means that parameters trigger the activation of specific
knowledge bases and hence initiate overall revisions. Our claim is that this approach is able to
build up any kind of communication mode! in a generation system.

As underlying formalism of our integrated generation model we have chosen Schema-TAGs
with Unification (SU-TAGs)! because TAGs provide the necessary complexity to express any
kind of concept in the what-to-say and how—to—say component (¢f., e.g., (Stone & Daran, 1997),
(Webber & Joshi, 1998), (Becker et al, 1998), (Nicolov, 1998)). Schema-TAGs are especially

*In a schematic elementary tree, a regular expression (RX), is annotated at each inner node of an elementary tree,
This means, that the elementary schemata enumerate a passibly infinite set of elementary trees. RXs are inductively
defined. Let a,d and f1,..., B (n > 2) be Gorn addresses uniquely referring to daughters or arbitrarily complex
RXs, then a.8 (concatenation of branches), {81 + ...+ 8, ) (enumeration of alternatives), &* (Kleene Star) and o™ (a”
without the em?l-y repetition) are RXs. Finally, “~" allows to cut off a subtree at the end of a path. As an abbreviation
we write o'”™ which enumerates ¥ -, o™ " (n,m > 0). Notice, . binds stronger than "+”. Notice also, that
here the feature specifications are attached to the regular expression because the branches are licensed by RXs (cf.
(Harbusech & Woch, 2000)).
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Figure 1: Transformation of sequences, alternatives, and repetitions into SU-TAGs

advantageous because they compress grammars in a manner that allows for the underspecified
generation of substructures (<f. (Harbusch, 2000), (Harbusch & Woch, 2000)).

In order to provide a flexible generation system, the example domain is not of particular inter-
est but only a necessary prerequisite of a demonstration system. On that account, we decide
to reuse existing knowledge sources to circumvent the time-consuming task of developing a
knowledge base from scratch. Thus, transformation algorithms for the individual Lknowled ge
bases of a generation system must be provided. Any TAG can automatically be transformed
into a SU-TAG (Harbusch et al., 1998). This is already done for the syntactic knowledge base
XTAG (Doran ef al., 1994). The knowledge sources of SPUD (Stone & Doran, 1997), those of
anchored L-TAGs (cf. (Webber & Joshi, 1998}), as well as the TAG transformed from an HPSG
(Becker et al., 1998) will be rewritten as SU-TAG next. Doing so, the generation system is ex-
tended towards a generntion workbench which provides libraries with knowledge sources from
which the user can select a personal generation system with self-defined parameters.

In this paper, we describe the transformation of plan-based knowledge bases into a SU-TAG. Here
we only concentrate on the particular class of plans which is widely applied in what—to-say
components of generation systems (e.g. VOTE (Slade, 1994)), i.e. the classical plan-based plans
(cf. (Yang, 1997)). As an illustration a concrete plan of the system VOTE is transformed and the
decision making on the basis of VOTE's further knowledge bases is presented. Finally, the in- -
teraction of plans with the system’s knowledge about the domain — also specified as SU-TAG
~ is outlined in order to demonstrate basically, how the uniform generation works. '

A plan® consists of n steps, any of them in turn may be an action or a plan again. Each step
consists of pre— and postconditions, as well as controlling elements of a programming language
(e.g. IF-THEN-ELSE, WHILE). A plan can be applied iff the overall goal, i.e. the input speci-
fication, matches the preconditions of the first step. A plan step can be applied iff the current
situation, ie. the postconditions of the previous step, or the input specifications respectively,
match the preconditions of the currently considered plan step. If a plan step is atomic, i.e. an
action, it is performed by replacing the preconditions with the postconditions, resulting in the
new current situation. An overall plan can successfully be applied in the current situation iff the
final postconditions can be computed according to the overall goal and the initial situation.
Given that, the general idea of the transformation into a SU-TAG is as follows:

1. Each planstep in a sequence becomes an individual node of an elementary scheme under
a common root node. )

2. The chronological sequence of plan steps is rewritten via concatenation in the RX.

. Pre- and postconditions at each node are wrapped up in feature specifications.

4. The conditions of concepts of the programming language are realized by un.l.ﬁcat'xon too,
whilst the branches and repetitions itself are transformed into RXs.

(]

In the transformation of Fig. 1-1, the first three steps are illustrated. Each plan step Py, ..., Py
is transformed into a daughter node. The regular expression at the root node enumerates the
concatenation of all daughters from left to right and all pre- and postconditions are rewritten
as feature specifications. Step 4 is illustrated by two example statements in Fig. 1-2 and 1-
3. Basically, the conditions in the statements are checked by a feature “cond”. For instance,

*For an illustration of a plan, see the strategy for decision making in VOTE (abstracting from technical notations,
cf. (Slade, 1994), p. 140) on the left side of Fig. 2.
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Figure 2: Transformation of the VOTE-Plan
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Figure 3: Part of VOTE's knowledge for MEMBER:gingrich and BILL:limit—clean-water

in the IF-THEN-ELSFE statement a positive value for “cond” activates the THEN part and a
negative value the FLSE part. The behavior of the steps 1, 2 and 4 is exemplified in Fig, 2.
This plan describes the dedision making process in the system VOTE. The actual knowledge
in the pre- and postconditions is suppressed here for reasons of simplicity. As outlined in
step 4, TF-THEN-ELSE statements are rewritten as sums, (i.e. representing the choice of one
of the branches according to the instantiation of the condition} and the WHILE construction is
rewritten as Kleene Star which stops according to the instantiation of the respective condition
represented as feature specification. At the root node the concatenation represents the sequence
of the two IF-THEN-ELSE statements in line (2) and (8) {step 1 and 3 result in |2|.|1] according
to the order of branches). Here, the Kleene Star in the RX rewrites line (1).

Now we explain how pre— and postconditions are specified and tested in order to apply plans
in this particular example. For this reason we must describe VOTE’s further knowledge bases
in more detail: VOTE consists of ISSUES (e.g. gun control), STANCES (PRO, CON, normal case},
GROUPS (e.g. ACLU}, RELATIONSHIPS, MEMBERS, BILLS and STRATEGIES. Fig. 3 shows
the structure of what VOTE knows about a concrete BILL:limit—lean—water and the attitude
of a concrete MEMBER:gingrich towards this bill. Let us presuppose here that the structures
described in Fig. 3 can be produced by SU-TAG structures of the form outlined in Fig. 4. This
is directly obvious because all mother-daughter relations in the instantiation are represented
as elementary schemata, Furthermore, any scheme licenses the specification of any number of
such relations by Kleene Star, In any plan of VOTE the pre-and postconditions are yetspecified
by unification about STANCEs of bills and members. For instance in Plangpyjar, PRE = {Unify
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Figure 4: SU-TAG representation of the knowledge base classes BILL and MEMBER

all SIDE features of all STANCEs}, ie. test whether they have the same value and POST =
{Unify the feature DECISION at the root node with the SIDE feature of the uppermost STANCE
of BILL}, i.e. vote in a popular manner. Hence, in the uniform framework the application of
a plan imposes further constraints on the knowledge about bills and members. The reasoning
about plans and domain knowledge is performed integratedly in a unform manner.

In general, pre- and postconditions can also be specified in first order predicate logic. Let us
consider the STRIPS example in (Yang, 1997) p. 17. For instance, the plan return-brush with
PRE = {have-brush(?b)} and POST = {~ have-brush(?b)} is rewritten by the feature specifica-
tions PRE = {({b have-brush) +)} and POST = {((b have-brush} -)}. For reasons of space we
cannol go into more details here (cf. (Otto et al., 1998)).

The implementation of the above described transformation component has just begun using
general parser generator concepts in the same way as for the TAG-to-STAG transformation.
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Abstract

During the last decade we developed and continuously improved CDL-TAGS, an extension of
TAGs for incremental syntactic generation. This paper presents the current state of development
and gives details of the definition of context dependent linearization rules.

1. Introduction

This paper presents Tree Adjoining Grammars with Context-Dependent Disjunctive Lineariza-
tion Rules (CDL-TAG) that have been developed for incremental syntactic generation in the
system WIP (WAFT93). CDL-TAGs were successfuily used in the projects PERFECTION
(Fin96), EFFENDI (PH 96), PRACMA (JKN*94), and VERBMOBIL (Wah93).

A fully incremental system is characterized by realizing interleaved input coensumption, pro-
cessing and output production, so that first output elements may even be produced before the
input is complete. So, decisions based on the data at hand impose assumptions about the out-
standing input, thereby reducing the set of input increments that can be consistently integrated
into processing. For syntactic generation, two different processing levels can be distinguished.
First, for each new element the hierarchical structure of the sentence under construction has to
be expanded. Second, elements have to be positioned in the final utterance thereby constraining
any further positioning. According to that, it is essential to choose a syntactic representation
formalism that facilitates the dynamic construction of the hierarchical structure and the step-
wise linearization and utterance production for its substructures. The grammar formalism must
be flexible enough to preserve word order variations as long as possible during generation.
Thereby, it should be easy to handle the prefix of the sentence already uttered as constraining
the set of applicable linearization rules. Additionally, the grammar formalism should support
linearization rules that describe situational factors (e.g., time or space restrictions).

The separation of a grammar into Hierarchical and Positional constraints (in the following
called H/P paradigm) fulfills these requirements. Such a grammar (e.g., LD/LP-TAGs (Jos87))
consists of two distinct sets of rules, one merely describing mother—daughter relations only
hierarchically, while the other describes positional constraints by referring to elements of the
hierarchical structures. :

This paper presents CDL-TAGs, that almost perfectly reflect the required different levels of pro-
cessing for incremental syntactic generation and thereby strongly facilitate the implementation
of the incrementality effects on syntactic generation (FS92).

2. Definition of CDL-TAGs

TAG with Context—Dependent Disjunctive Linearization Rules (CDL-TAG) is an extension of
Tree Adjoining Grammar (JLT75) that helps to design an extremely compact grammar by avoid-
ing redundant descriptions without extending the power of the formalism.
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2.1. The Standard TAG Formalism

Standard TAG combines elementary (initial and aunxiliary) trees by adjoining, an operation
which makes the grammar mildly context—sensitive and adequate for the representation of natu-
ra} language. The TAG formalism has been extended by a second combination operation called
substitution which has only context—free power (SAJE8). In order to allow compact repre-
sentations of complex syntactic dependencies, TAG has been extended furthermore by feature
structures (TAGs with unificarion, (Xi192), (Kil94), or Feature Structure Based TAG, (V]88)).
The H/P-paradigm was applied to TAG by (Jos87). He defined Local Dominance/Linear
Precedence-TAG (LD/LP-TAG) by “taking the elementary trees as domination structures over
which linear precedences can be defined” The descriptive power of LP-rules in LDVLP-TAGs
is not sufficient to describe all linearization altematives of one hierarchical structure Jocatly,
i.e., without duplicating the hierarchical structure (e.g., for German verbal phrases subject—
verb—object, object—verb—subject, ...). Furthermore, there is no means to associate different
LP-rules with contextual (semantic and pragmatic) constraints. To get more flexible lineariza-
tion, we developed a new extension of TAG on the basis of LD/LP-TAGs.

2.2. CDL-TAG

CDL-TAG is defined according to the H/P paradigm, i.e,, domination structures are used as
elementary structures instead of trees. The possible orderings of sister nodes are restricted
by linearization rules which are associated with the mother node. They have the form: “(<"
{“("context lin-rule* “y'Y* *¥". The rules are initiated by the key “<”. Each altemnative starts
with the name of a contexr in which the rule is valid. The value of context is matched with a
feature [in-consext of the feature structure associated with the respective node.

The left part of Figure 1 illustrates a VP—-node whose subtree represents a German verbal phrase.

[lin-conexe: verb-second]

(o (werb-finst ...} (< (ray..)
VP tresb-second ) NP (shen,..)}
vesh-final ... 7}
¥ Sulfl accobjl Specifierd W Modificed

Figure 1: Examples for German Linearization Rules

Its linearization rules include statements about verb—first, verb-second and verb—final word
order while “verb-second' is the actual “lin-context' inside its feature structure. Other contexts
(like “any' or “short’ at the NP-node in the right part of the figure) distinguish word order ruies
that differ with respect to their suitability for specific situational — non-syntactic — factors
which is useful for a generation system with globally set “parameters'. E.g., the value “short' !
is used for word orders that permit to save space and time in the final utterance.

Each lin — rule is encoded as a list that contains linearization elements lin — el. The order of
the list elements defines the order of the elements of the TAG tree they refer to. A symbol sym
is a lin — el and refers to a daughter of the node the linearization rule is associated with,

In order to describe constraints on sister nodes which include complements as well as optional
elements, we extended the formalism by a combination operation that allows to add sister nodes
without introducing additional depth into the tree. The operation of furcation has been ‘defined
by (DK88) as the unification of two root nodes of structures to one root node with two sub-
structures. We adapted it to CDL~TAGs by defining an new kind of elementary tree, namely a
Jurcation auxiliary tree whose foot node is leftmost or rightmost daughter of the root node, as a
structure Jeaving away the foot node?.

1The key “short' is meant in the sense of saving space and time in the final utterance when using this alternative,
This may be meaningful under time pressure or when the space for the written text is restricted.
This is comparable to the modifier auxiliary tree in contrast to the predicative auxiliary tree introduced by
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Some symbols sym in lin — rule denote adjuncts. They have to be detailed enough to express
all aspects that influence word positions. For English, e.g., different adverb classes have to.
be defined according to their different linearization constraints. Symbols referring to adjuncfsf
always appear inside disjunctions with “regularike' expressions. They permit to describe ex<
actly one occurrence of one elernent of a list by ({syma...symy,)*), One or zero occurtences by
({sym,...sym.)°), at least one occurrence of elements by ((symy...sym,)*) or an arbitrary
{or zero) number of elements by ((symy...syma)*).
The following expression is a possible linearization rule of the ¥P—node of Figure [:
{verb-second ~
(subj v ... (advp)* ...accehj...) {(advp}® v subj...(advp)" ...accobj...)
'
1t shows two alternatives to fill the first position of a verba) phrase in the linearization context
verb-second, namely a complement ("subj' refers to the subject), or exactly one optional ele-
ment ("advp' refers to an optional adverbial phrase). After the first element, the finite part of the
inflected verb (referred to by *v' in the linearization rule) has to follow. The second expression
prescribes that the subject directly follows the verb in case of a topicalized adverbial phrase.
Furthermore, the selection of adequate linearization rules may be restricted by features of the
subtree to be linearized. CDL-TAGs use child-info that is inherited from the daughters of
the node the linearization rule is associated with, The resulting structure for LP-rules is “(<"
{“("context child-info lin-rule* “)"}* “)". The entry child—info realizes a specific test (identified
by the key “test') for feature—value—combinations which have to held for some of the daughters
of the actual node. The LP—rule
{short (test (mod (cat) name))
(...mod...{adjp}* ...n...)
)
might be associated with the NP-node on the right in Figure 1. It describes a possible lincariza-
tien of a Specifie—Noun-Modifier construction in German: Instead of “Die Werke Goethes™
{the works of Goethe} it is also possible to say “Goethes Werke” (Goethe's works), The pre-
supposition for choosing this “brief' lincarization alterative is that the modifier is realized as
a proper name which is tested by referring to the third daughter of NP (the Modifier] node,
referred to in the test above by “mod') and then checking the equality of feature—value of “cat'
and the atomic value "name’,
The generative power of CDL-TAGs is equivalent to standard TAG (with constraints) because
the only addition to standard TAG is the combination operation “furcation™ which has only
context—free power. So, CDL-TAGs are not sufficient to describe all linearization phenom-
ena that include adjuncts. E.g., there is no casy way to describe scrambling without mixing
hierarchical and positicnal information. Nevertheless, we nse it as a promising starting point,
concentrating on its usefuiness for (incremental) syntactic gencration.

3. Conclusions and Future Work

In this paper we presented CIDL-TAGs, a highly compact grammar formalism, that is especially
well-suited for the representation of gramrnar sources for (incremental) natural language gen-
eration. Furthermore, the Jexicalization allows the grammar to consider a subset of word class
specific elementary trees {tree families) for each lexical entry.

The TAG-GEN generator (Kil94) makes use of the CDL-rules by preferring linearization alter-
natives that reflect the order of input elements so that the cutput can start as early as possible,

(5592). In this sense, furcation auxiliary lrees are the CDL-TAG variant of sister edjuncticn in, e.g., DTG
(RY'W9S5) and furcation in, e.g., TFG (Cav98).
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e.g., by fronting elements which are given early in the input. It also sorts linearization alterna-
tives according to some generation parameters such as time pressure and style,

Although the formalism has been successfully used in several different application systems,
there is no grammar developing tool yet. So, the most important task for future work is the
development and implementation of a CDL~TAG parser, £.g., as an extension of the work de-
scribed in (Pol94).
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Abstract

In a restricted domain and task, we propose that the elementary tree backbones represent stat-
fcally the predicative level and the possible distribution of arguments while the syntactic cate-
gories and constraints would be only processed dynamically by the way of feaiures. The resuli-
ing grammar can be viewed as an intermediate level between the surface syntax of a sentence
and its conceptual representation. In addition to possible speed efficiency and robustness rele-
vance, an interesting property Is that such a grammar could be tested in a straightforward way
to Infegrate comtraints provided by additional trees and to inject progressively semantic and
pragmatic constraints during the analysis,

1. Introduction

Considering applications such as spoken annotation of elements into a specific virtual environ-
ment, the most important task is first to identify referred objects or terms among several speech
hypotheses. Given these expectations, how can be used the assets of a LTAG grammar with
robustness? To address this question, we propose a Feature-Based LTAG grammar focusing on
the semantic and predicative level while the pure syntactic processing is achieved by the two-
step unification mechanism. Before introducing this predicative LTAG grammar, we define the
applicative framework.

2. From Terms extraction to speken annotations

The research project under consideration is based on a virtual platform (which represents an
architecture of aeronautical components and a terminological model obtained from technical
documents (example : cautions to set on the manipulation of components).

Let us clarify that first the virtual platform (i.e. a 3D scene) is used as an interface between the
desing and assembly tasks. The aim of this interface is to let people easily move in a complex
architecture, to display or mask related annotations, and to gather vocal synthetic annotations
that overlap one or several elements of a scene {example : recommendations for people of a
related trade),

Secondly, the terminology of the technical documents is ideally subjected to editorial constraints
and is getting close to a controlled language. A terms extraction and clusterization based on
statistical criteria supply classes of elements, Then, an expert is efficient to grab the terms in
a knowledge base containing ontological and conceptual relationships. Tools of the market are
helpful for these tasks (Fig. 1, Fig. 3). The aim of this step is twofold:

- Build a model used to check the cohesion from various technical documents or versions.

- Identify the stable terms and build up various terminological resources (authoring mem-
ory, multilingual thesaurus needed for automatic language processing). For example, the
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knowledge base designed by the experts is used to categorize various technical documents
within an Information Retrieval System. For the spoken annotation purpose, we derived
constraints from the knowledge base in order to restrict the combination between techni-
cal properties (ex: float valve, needle valve), functionalities (ex: drain valve, directional
valve) and the system in which a unit is used (ex: water valve, bleed valve). By this way,
terms like water drain valve, electrical drain valve are well recognized, but some other
complex ierms are rejected.

Figure 1: Cluster of words computed for technical documentation extracts. Note that the word
valve covers at least three notions expressed in French by the terms valve, soupape and vanne

<C,2616>» MAKE SURE YOU WILL NOT CAUSE UNWANTED CHANGES TO OTHER SYSTEMS
BEFCRE YOU PUSH THE ENG 1 (2, 3 OR 4). WHEN YOU PUSH THE ENG 1 (2, 3 OR 4)
FIRE PUSHBUTTCN SWITCH THESE VALVES CLCSE: THE LP FUEL VALVE. THE HYDRAULIC
FIRE VALVE. THE BLEED AJR VALVES. THE ANTI-ICE VALVES. THE ALR CONDITICNING
PACK VALVES.

Figure 2: Example of caution integrated in a structured technical documentation.

Taking advantage of lexical resources obtained from technical procedures called "warnings and
cautions” (see Fig. 3), the MRTERESA project (Multilocutor speech Recognition, TERms Ex-
traction and Spoken Annotation) consists in the customization of a speech recognizer for vocal
annotations, a robust term analysis of speech recognition hypotheses and vocal annotations in-
dexing with regard to components exjsting in a virtua) scene. If necessary, the indexing has to
be confirmed by the users. The robust terms analysis relies upon:

- A mapping between lexicalized elementary trees and technical terms. Some category
labels in these trees are semantic types that belong to an ontology.

- A representation of the terms variability in the spoken annotations thanks to the TAG sub-
stitution and adjonction operations. This variability results from spatial relations between
the displayed objects and the spontaneity of the verbalizations.

- Semantic labels compatibility constraints for modification and dependency relations

- If necessary, syntactic constraints are applied to filter out speech recognition hypotheses,

3. Syntactic vs. semantic Dependencies

The semantic head is the lexical unit that represents the semantic type of the interpretation of a
given phrase structure. We consider that the syntactic head is the lexical unit that constraints the
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low *pression ivalve

Flow "piesson Tuel Hvalves |
el Hyaive

Figure 3: Example of knowledge base from few valves achieved with a tool of the market

morphosyntactic and mode features of the phrase structure it belongs to. The L.TAG formalism is
well suited to localize semantic dependencies, but is limited to represent syntactic dependencies
for very frequent phenomena as object extraction with auxiliary.

When we use the term Jocalizing semantic dependencies for a I'TAG grammar, we suppose
that the elementary trees have been designed properly to capture this kind of dependencies,
i.e. that the elementary trees respect the Predicate-Argument (PA) and Semantic Consistency
(SC) principles introduced in (Abeiilé, 1991). These principles stipulate that a lexicalized ele-
mentary tree corresponds to an unique semantic unit (sernanteme) and that we have a terminal
node (substitution or foot node) per argument expected by the corresponding semanteme. In
our approach we systemize the localization of semantic dependencics: we drop out from the
clementary tree backbones all the aspects which traditionally refer to syntactic categories and
replace them dynamically with semantic types.

4. A new definition for the elementary trees

The first point is to capture in an elementary tree a particular word distribution and the corre-
sponding predictive structure under the form of semantic dependencies. Closely to the solution
proposed in {Abeillé, 1992) for the representation of this level, we use the following predicative
categories as node labels of elementary trees:

— Formula (F) or proposition representing the association of a relation and its arguments.

~ Term (T) which corresponds to the non-relational semantic heads.

— Relation (R).

— Property (P).

~ Null (N): used for semantically empty nodes (in general preterminal nodes of co-anchors,
semantically empty prepositions or auxiliaries).

Top and bottom features are added on this backbone in order to check syntactical constraints
at the end of the parsing. The figure 4 gives examples of Feature-Based predicative LTAG
elementary trees. During the lexicalization process, semantic types are added to the LTAG
tree backbone according to the semanteme that the elementary tree represents and an ontol-
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Predicative LTAG schema

R wuret T seet
T R® ux=- N T* fom- T T"' det=+ IP T
<> i <> <>

Ll

Lexicalization and mapping with domain dependant a knowledge database

/!-'{\‘m=+ /Q“ﬂ /F\ /T\ mecanism dir-mec
N R Dem, T det= R Opzm'ng+ clasing T P mecanism* P mecam’.rﬁ. :
l aux=- l dol=+ I | | .
|
don't this shut-off shut-off contrel directional  valve

Figure 4: Examples of predicative LTAG elementary trees and their lexicalization

ogy obtained as explained in section 2. This ontology controls the adjunction and substitution
operations between the semantic categories.

On the contrary to classical LTAG, the semantic basis for post-parsing processing is here the
derived tree and not the derivation tree. For complex cases, semantic features may control the
derivation with specific mecanisms as suggested in (Roussel, 1999),

5. Related works and conclusion

Previous works have shown that focusing parsing first on semantics can lead to superior speed
efficiency than syntax-first approach, particularly on restricted domain as shown in (Lytinen,
1991), but also for large coverage grammar (Dowding et al., 1994). The trees cumrently de-
velopped for our application and their lexicalization are closed from the semantic grammars
paradigm (Seneft, 1992) and works on terminological variability (Jacquemin, 1999). We expect
that such a LTAG grammar will allow, in our application, a stronger and an easier integration
of different level of constraints. In terms of reusability, the same linguistic representation (the
predicative LTAG grammar) could be mapped into concepts of various restricted domains with
a domain-dependent semantic module.
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Abstract

I this paper we introduce an example-based parser for Chinese. One strong point of the parsers
is i1s high reliability. We propose a formal definition for reliability and derive from it K as a
metric for the evaluation of parsers. In a row of experiments we trv to Identifv some factors
witich support the reliability of the parser. It is suggested that these factors are independent of
the parsing approach and can be realized in TAGs.

1. Introduction

Example-based parsers adhere to the lazy learning algorithni while converting tree-bank entries
into a parser. So-called freebank grammars, (Bod, 1992; Chamiak, 1996) are eager learners,
i.e. they abstract knowledge structures or statistical information from the treebank and reason
on the basis of these abstractions. Explanation-based parsing is a different eager learning ap-
proach aiming at the extraction of specialized grammars out of a general-purpose grammars on
the bases of parsing examples (Rayner & Christer, 1994 Srivinas & Joshi, 1995).

Lazy learners keep all training data (e.g. all trees in the treebank) available in their original
form. They may operate on similar abstractions as eager learners do, e.g. parse from partial
trees with category labels, but dispose in addition of the original encoding which can be re-
ferred to if generalizations beceme ambiguous (Daelemans et af., 199%). The learning set is
not filtered or modified and contains among regular phenomena redundancies, syntactic and
semantic exceptions, phraseologies including lexical functions (Mel’¢uk, 1974), pronouns with
their antecedents, markers of text-coherence (e.z. fire, cigarette, match), and pieces of commeon
sense knowledge (he sees the sparrow with the spyglass), all pieces of information which are
necessary, or at least helpful for high-quality parsing {Doi & Maraki. 1992; Bod, 1999).

All words and categories are of equal importance to the parser unless special weights are as-
signed to them. It might be argued that this equal distribution of weights is not sense-less
and that, for example, the linguistic notion of head as pivot should and can be dispensed with.
Giving preference to specific matches (e.g. verbs) might produce a bias which endangers the
reliability, i.e. a good match is not chosen, just because another match contains more verbs.
Linguistic support may come from observations in verb-last languages where speakers are con-
tradicted/approved before the final main verb has been pronounced. The list of actants,.circum-
stances, lexical functions as magnifiers etc are often sufficient in order to identify the verb or its
syntactic or semantic type.

2, An Example-Based Parser

An example-based parser is currently developed at the Academia Sinica of Taiwan (Streiter,
1999; Streiter & Hsueh, 2000), based on a Chinese treebank of about 30.000 trees (Chen er al.,
1999). The annotation scheme comprises 200 lexical labels, 45 phrasal categories and 46 se-
mantic roles. The parser retrieves trees from a treebank via a fuzzy match of the sentence to be
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parsed and the terminals of the all trees in the treebank. The 20 best maiching trees are further
processed and aligned with the sentence in case the tree is smaller than the sentence. The best
aligned tree is selected. Mainly through re-parsing awkward subtrees, badly matched trees are
corrected and unmatched words are inserted. The parser is fast and by means of the fuzzy match
extremely robust. The complexity of other parsing approaches is avoided, as parsing consists
mainly of retrieving large chunks from a databank. The coverage, as evaluated in (Streiter &
Chen, 2000) is not yet fully satisfying. Unchallenged, however, is the reliability of this parser.

3. What Reliability is about

Reliability is an important evaluation criterion for NLP which until now has failed to obtain
a formal definition as weil the attention it merits. The standard evaluation tests a parser on
unlearned corpora, determining its coverage in terms of recall and precision. The pendant of
the coverage is the reliabiliry, which we define as a system property, i.e. as performance on
trained corpora. Reliability is thus close the notion of runability. However, the impact of
reliability is more fare-reaching: A system which has a high reliability can always enlarge its
coverage by learning new items. A system with low reliability cannot improve its coverage by
learning new items: the system is quickly over-trained.

We define coverage (C) and reliability () as meta-scores which | Figure 1: The hypoth-
elaborate the values of recall and precision. As R is neither com- | esis of converging C
patible with low precision (false alarm) nor with low recail (asilent | and R for hypothetical
system), we define R and C as f-score with learned respectively | data. & is the estimated
unlearned test corpora. With this definitions we formulate the Ay- | maximal coverage.
pothesis of converging C and R: 1) R is always higher than C. L, "'"'--..”

2) R decreases with more training data (due to ambiguities which | g & """ treese
arise). 3) € approaches R with more training data (more items are |. (‘;'

known or similar to known items). 4) Before C and R converge C

g . training data
may decreases under the influence of decreasing 2.

While most experimental data available support an asymptotic rise of C, little is known about

. Given the above (hypothetic) distribution, the maximal coverage a system can achieve as

well as its current position are important data. We propose to estimated the maximal coverage
(RI-E)TE

K asC 4+ AR e With X > C further investment in more teaching is profitable, otherwise

system properties have to be changed in order to enforce 7 and with it future grow.

4. Factors determining Reliability

Figure 2: Reference Data. Cand R for 500to l.emw s ¢ Re 49%mm s o o -$

25.000 training sentences, evaiuating the recog- §,me « -« ST L 5

nition of semantic relations (agent, theme, goal, ;] £ . it

experiencer, time etc) between head and de- 7« : € s

pendents (2a) and the bracketing (2b) for the (2a) semantic roles_ (2b) bracketing -
T 4 § 1272517 § § 12725

example-based parser on a test-corpus of 727

sentences.

Experiment 1 n order to establish the effect of the string and lexeme encoding in addition to
the category encoding we removed the string and lexeme encoding as done in all eager learners.
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Figure 3;Parsing with categories only. F.(3) shows a loss is R, € and K compared to
Lem e oRe '97:'.' £ ’g? F.(2). We assume that the drop in C has been
6% A0 pm ¢+ *Y L oroduced by the drop in R, as unknown items
% P are treated only in reference to leamed items. It
*4*(3a) semantic roles | (3b) bracketing is the ambiguity in the learned items (the inverse

T 4§ 12795 T 4 8§ 12 35 |of R)which causes the drop of C.

Experiment 2 In order to establish the effect of the context sensitivity we not only re-parsed
awkward subtrees (see our description of the parser above}, but re-parsed (artificially) all sub-
trees, thus breaking the links between sisters. '

We aobserve a small loss of R compared to F.(2},  Figure 4: Context-free parsing in (4a-b),

If we test a context-free version with category Tdem without string-enceding in (4c-d).

encoding only (4c-d) and thus simulate standard Ly ® ¢ R®  efem o "o e '%g
parsing approaches, we observe an additional | IC . PR R
drop of & compared to F.(3). Thus context sen- 4 , , ot 4

sitivity is important for 72 but to a smaller ex- - 'E4a) semantic roles | {(4b) bracketing
tend than the encoding of lexemes and strings. - -

Without string encoding the context-free gram- 1 - oRe & -y 'gg
may loses heavily in its . The drop of K shows .G+ - 6 -t
that the loss cannot be compensated forby more =3} o ¢ * ¢ *  °

training data. ' '(4c) semantic roles | (4d) bracketing

I 4 § 1272517 47§ 1225

Experiment 3 To test the equal distribution of weights, we assigned 0.5 points for a matching
verb, in addition to the | point for every match, assuming that in most cases the verb functions
as head and a marching head is more important than a matching non-head.
E(5) shows a small loss of € for semantic roles  Figure 5:Additional scores to verb
compared to F{2). With category encoding matches in (5a-b). Idem without string-
only, we observe a drop of C for the bracket- _encoding in (5¢-d).
ing compared to (3). The drop in the bracket- Low s “oRe WWlem s s s '#?
ing supports our claim that the bias is towards | o SEERL DR
matching deeper branching structures by pref-.4 | . c* AT
erence. This bias is unlikely to be produced by - 'tSa) semantic roles | (5b) brackc[ing
the specific additional score 0.5 we assigned. - -

score +0 | +0.25 +0.5 +1 Ly s oo 07..: e §§
K [ .8660 | .8585 | .8548 | .8393 K N
Figure 3b 5d L. ot 4l

'ESC) semantic roles | (5d) bracketing

2725 T 4% 12725

Figure 6: K for bracketing with additiona! -
scores to verbs when parsing without string-
encoding {25.000 training sentences).

5. Summary

We have introduced, although shortly, an example-based parser. A formal grammar which bears
most resemblance (o this approach is TAG. Both approaches are based on collections of trees,
atomic trees for TAGs and all trees and subtrees for example-based grammars. Parsing starts
similarly by extracting trees via the indices formed by words. A distinguishing property of
example-based grammars is that a tree preserves all terminal nodes per tree. The influence
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of this strategy could not be tested, as this would require to leave the paradigm suggested.
However, we could evaluale the effect of not necessarily distinguishing features, (i.e. the string-
lemma encoding, the high degree of context-sensitivity and the non-preference of heads.)

The experiments have been preceded by a discussion of the notions of R and €, for which a
formal definition has been proposed. X has been proposed as evaluation measure which is less. .
dependent on the size of the training corpus than & and C are.

In the experiments we could show that the string-lemma encoding is of utmost importance for
R and C, even though a very rich set of categories is employed. When the string encoding is
renounced to, the grammar becomes more dependent on other features, such as a high degree *
of context-sensitivity and the correct assignment of weights.
The dominant role the head plays in formal grammars has been questioned as it has no priority -
in parsing relevant dimensions such as world knowledge, text coherence and idiomaticity.
Throughout 14 meaningful comparisons of test settings we observe [2 cases in which R and C
decrease both. In two instance C improved with R remaining equal or decreasing, thus support-
ing our claim of a causal relation between declining R and declining C.

6. Conclusion

Example-based grammars base their R mainly on the string-encoding. We hypothesize that
TAGs with multiple terminals and a string-lemma encoding, if still be called TAG, could handle
NLP task more reliable. In order to achieve this, automatic learning experiments should apply,
unlike past experiments (Srivinas & Joshi, 1995; Xia, 1999), lazy leaming approaches.
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Abstract

We develop novel models for Machine Transiation (MT} based on Data-Oriented
Parsing {DOP: Bod, 1885, 1998) allied to the syntactic representations of Lexical Func-
tional Grammar (LFG: Kaplan & Bresnan, 1982).

Introduction

It is accepted that the main paradigmatic approaches to MT—transfer, interlingua,
and statistical—do not at present produce the quality of translation reqnired. There have,
however, heen a number of attempts at combining elements of these different approaches
in an attempt to increase overall translation performance {cf. Carbonnel et al, 1992;
Grishman & Kosaka, 1992). Onr efforts to bring abont a better solution to the problems
of MT can be viewed in this new hybrid spirit.

DOF has produced interesting results for a range of NLP problems. DOP language
models consider past experiences of language to be significant in both perception and
prodnction. DOP prefers performance models over competence grammars: models based
on large collections of previously occnrring fragments of language are preferred to abstract
grammar rules. New language fragments are handled with respect to existing fragments
from the corpus, which are combined using statistical techniques to determine the most
probable analvsis for the new fragment.

DOP Translation Models

DOP has been used already as a basis for MT-Data-Oriented Translation (DOT:
Poutsma, 1998). DOP models typically use surface PS-trees as the chosen representation
for strings. The DOT translation model relates tree-fragments between two {or more} lan-
guages with an accompanying probability, linking source-target translations at all possible
nodes in accordance with the principle of Compositionality of Meaning. Once the most
likely parse of the source language sentence has been produced, the tree structure of the
target is assembled, from which the string is (trivially) derived. Nevertheless, there are
usually many different derivations for the source sentence, so many different translations
may be available. As is the case when DOP is used monolingually, Poutsma shows that
the most probable translation can be computed using Monte-Carlo disambiguation.

DOT is an interesting model, but it is not guaranteed to produce the correct trans-
lation when this is non-compositional and considerably less probable than the default,
compositional alternative. An example is commit suicide = se suicider, where John
commits suicide is wrongly translated by DOT as *John commet le suicide. DOT's ad-
herence to left-most substitution in the target given a priori left-most substitution in



262

fla source is too strictly linked to the linear order of words. As soon as this deviates
i any significant degree between languages, DOT has a significant bias in favour of the
incorrect translation {assuming the corpus to be representative). Another example is the
like +— plaire case, where the arguments need to be ‘switched’ between English and
French. Even if the correct, non-compositional translation is achievable, DOT derives
other wrong alternatives with higher probabilities. In such cases, the correct translation .
will be dismissed. unless all possible translations are inspected manually.

This is not at all surprising: being based on STSG, DOT is necessarily limited to
those contextual dependencies actually oceurring in the corpus, a reflection of surface
phenomena only. It is well known that models based solely on CFGs are insufficiently
powerful to deal with all natural language problems. In this regard, DOP models have
been augmented (van den Berg et al, 1994; Tugwell 1993) to deal with richer representa-
tions, but such models have remained context-free.

LFG, however, is known to be beyond context-free. It can capture and provide
representations of linguistic phenomena other than those occurring at surface structure,
Given this, the funetional structures of LFG have been harnessed to the techniques of DOP
to create a new model, LFG-DOP (Bod & Kaplan, 1998). LFG-DOP permits {(via the
Discard operator) the relaxation of certain constraints on LFG representations, thereby
ereating generalised fragments against which new input can be compared, and the best
analysis constructed.

LFG-DOP Translation Models

We propose that LFG-DOP has the potential to be used as the basis for an innovative
MT model, LEG-DOT. We have designed two LFG-DOT models:

1. a simple, linear mode! which builds a target f-structure from a source c-structure
and f-structure, the mapping between them ¢, and the 7-equations. This model
leaves the task of generating the target string from the target f-structure to the
standard LFG generation algorithms (e.g. Wedekind, 1988);

2. a more complex model, containing explicit links between both surface constituents
and f-structure units in both languages, unlike the previous model which relates the
languages just at the level of f-structure (via 7).

Probability models have been constructed for both transiation models, and small exper-
iments have been performed for particular cases of ‘hard’ translation problerns. Being
able to link exactly those source-target elements which are translations of each other us-
ing LFG’s T-equations, LFG-DOT overcomes some of the problems specific to the DOT
system. For example, the LEG-MT solution to the like +— plaire case is (1):

(1) like:
(77 PRED FN)} = plaire
7(+ SUBJ) = (r1 OBL)
7{+ OBJ) = (1 SUBJ)

That is, the subject of like is translated as the oblique argument of plaire, while the object
of like is translated as the subject of plaire. The solution to the commit suicide +— se
suicider problem is (2): '
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(2) commnii:
{(r1 PRED FN} = se suicider
7(+ SUBJ} = (v SUBJ)
(+ OBJ PRED) =, suicide

Where the PRED value of the OBJ of commit is constrained (=.) to suicide, then the
colloeational units ‘commit + suicide’ are translated as a whole to se suicider. DOP’s
statistical model gives a ‘level of correctness’ figure to alternative translations. This is
useful in cases like these where the default translation in LFG-MT (and in many other
systems) cannot be suppressed when the specific translation is required. We have con-
ducted small experiments which show that for a treebank constructed from 10 sentences,
despite 7 instances of commit «— commetire compared to just one commits suicide +—
se suicide example, the correct translation Maerie commits suicide «— Marie se suicide
is preferred by both LFG-DOT models over the wrong, compositional alternative by a
factor of between 3 and 6 times, depending on which LFG-DOP definition of competition
set is selected.

Furthermore, LFG-DOT promises to improve upon the correspondence-based LFG-
MT model (Kaplan et al, 1989), particularly where robustness is concerned, as LFG-
DOP’s Discard function enables both nnseen and ill-formed input to he dealt with. For
example, Bod & Kaplan (1998) show that given a treebank for the sentences People walked
and John fell, probabilitv models can be constructed where for the ‘unseen’ sentences
John walked and People fell, the nnmarked interpretation is less likely that the two specific
interpretations, and of these the intnitively correct ones are selected for each corresponding
verb.

Problems and Future Work

The major problem with any models based on LEG-DOP is the explosion of frag-
ments caused by Discard. Allowing Discard to operate in the unconstrained manner of
Bod & Kaplan’s (1998) model results in an exponential number of fragments in which the
non- Discard fragments are overwhelmed, resulting in the probabilities of derivations via
Hoot and Frontier being vastly outnumbered by the ‘ungrammatical’ alternatives, While
there is a large increase in the number of fragments produced via Discerd in LEG-DOT
models, compared to the monolingnal LFG-DOP corpora from which they are derived,
the explosion of fragments is nowhere near as severe. Natwithstanding this, we propase
to restrict the scope of the Discard operator by creating two different bags of fragments:
the well-formed ones (derived via Root and Frontier) and the Discard ones. Using Good-
Turing (¢f. Bod, 2000), we can allocate a fixed, small probability mass to the fragments
generated by Discard to ensure that the derivations using the ‘good’ non-Discard frag-
ments will still be favoured.

Using different LFG-DOP probability models (in terms of which LFG grammatical-
ity checks are enforced, and at which points in the translation process) results in different
probabilities with respect to the corpus, bnt does not result in different rankings of alter-
native candidate translations. A potential prablem, however, is that LFG-DOT models,
like' DOT models, show a tendency to exclude many potentially useful fragments owing
10 the strictness of Poutsma’s (1998) definition of linked fragments. This may resnlt in
translations which are theoretically describable not being achievable in practice. Only
‘experimentation on a mnch wider scale will confirm this.

Given the small corpora from which onr findings were derived, any resnlts must be
treated with some equivocatiou. Given the (relative) scarcity of some of the linguistic
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examples cited previously, and the subject of the tests thereon, we regret that it is nigh
on impossible to derive ‘representative’ corpora for the examples in hand. The absence
of large-scale LFG-DOP corpora cnrrently prohibits these models from being tested more
widely. Nevertheless, recent work on automatic construction of the LFG-DOP corpora,
{Van Genabith et al.. 1999: Sadler et al.. 2000) needed for further experimentation using
these techniqnes seemis promising in this regard.
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Abstract

Grammars are core elements of many NLP
applications. Grammars can be developed in
two ways: built by hand or estracted from
corpora. In this paper, we compare ¢ hand-
crafted grammar with o Treebank grammar.
We contend that recognizing substructures
of the grammars’ basic units s necessary
not only because it allows grammars to be
compared at a higher level, but also because
it provides the building blocks for consisient
and efficient integration of the grammars.

1. Introduction

A Lexicalized Tree Adjoining Grammar
(LTAG) is a core element of many NLP ap-
plications. It often has hundreds of elemen-
tary trees {etrees), which can either be built
by hand (hand-crafted grammars), or ex-
tracted from annotated corpora (Treebank
grammars). Hand-crafted grammars have
rich representations (such as feature struc-
tures}, and tend to be more precise, but they
take a long time to build and their coverage
on naturally-occurring data is hard to de-
termine. In additiou, they lack statistical
information which is crucial for statistical
parsers. Treebank grammars, on the other
hand, require little hnman effort (Xia, 1999;
Chen & Vijay-Shanker, 2000} to build, once
the Treebank has been created. They have
rich statistical information and will cover at
least the corpora from which the grammars
are extracted. However, Treebank gram-
mars are noise-prone because of annotation
€ITors in the corpora and they also lack fea-

tures and semantic information which are
rarely represented in the corpora. It would
be ideal if we could combine the strengths
of bath types of grammar. As a first step
towards addressing this issue, in this paper
we compare a hand-crafted grammar with
a Treebank grammar and propose a way of
integrating them to produce new grammars.

2. Two grammars

The two LTAGs that we compare are the
XTAG English grammar (XTAG-Group,
1993) and a grammar extracted from Penn
English Treebank. The XTAG grammar
has 1004 tree templates.! The Treebank
grammar that we use in this paper is ex-
tracted from the Penn English Treebank II
(Marcus et al., 1994} using the extraction
algorithm described in (Xia, 1999). The ex-
tracted grammar has 3072 templates.

For lack of space, we will not describe the
extraction algorithm, other than pointing
out that by design all the efrees extracted
from the Treebank fall into one of three
types according to the relations between the
anchor of the eiree and other nodes in the
tree, as shown in Figure 1. Figure 2 shows a
bracketed sentence from the Penn Treebank.
From that sentence, five eirees are extracted
by the algorithm, as shown in Figure 3.

11 we remove the anchor(s) from etrees, we get
tree templates. Each template indicates where the
anchor(s) of that efree will be instantiated,
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Figure 1: Forms of extracted etrees

{SRAR (WHNP-{ (WP who) }
(S (NP-SBJ (-NONE- *T*-1})
(VP (VBD worried)

(PP-CLR (IN about}
(NP (DT the)
(NN flacd) 300

Figure 2: An example from the Treebank

3. Comparing two grammars

To compare the grammars, we need to find
out how many trees in one grammar match
trees in the other grammar. We define two
types of matching : t-match and c-match.
From now on, we use XTAG and Ext-G to
stand for the XTAG grammar and the ex-
tracted grammar respectively.

3.1,

We call two trees t-match (t for tree) if they
are identical barring the type of informa-
tion present only in one grammar, such as
feature structures and subscripts? in XTAG
and frequency information in Ext-G. In Fig-
ure 4, XTAG tree 4(a) and 4(b) t-match
Ext-G tree 4(c}.

XTAG also differs from Ext-G in that
XTAG includes multi-anchor trees to han-
dle idioms (Figure 5(a}), light verbs (Fig-
ure 5(b}) and so on. In each of these cases,

t-match

2The subscripts on the nodes mark the same
semantic arguments in related subcategorization
frames.

1l = [L]] iy an
4 - -
..... - =
WP, 5
N Y | N\
L] 'r w M JL
| - ov oW 1 i
wh 1 ) B ™
i el

Figure 3: The extracted Ftrees
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) 3 g
NP, | \IP NP, | \EP = NP \ip
v v v
l i [
sleep break sleep/break

{c} intransitive verbs
in Ext-G

() pure intransitive verhs  {b) ergative verbs
in XTAG - in XTAG

Figure 4: An example of t-match

the multi-anchors form the predicate. These
trees are the same as the spine-etree in
TFigure 1(a) except that some nodes of the
XTAG trees (e.g. NP in Figure 5(a) and its
counterpart Z, in Figure 1} are expanded.
By having multi-anchors, each tree can be
associated with semantic representations di-
rectly (as shown in in Figure 5), which is an
advantage of LTAG formalism. Ext-G does
not have multi-anchor trees because seman-
tics is not tnarked in the Treebank and con-
sequentially the extraction algorithm can
not distinguish idiomatic meanings from lit-
eral meanings, Two trees are called t-match
without ezpansions if they f-match after the
expanded part is removed from the XTAG
trees. Figure 5 is such an example.

s § 8

e T T
NP, L vp NP, VP NPy VP
v NP, v NP, =D ¥ NPy
PN I i |
kick '? T ke N kick/ake
|
the  bucket walk
(u) idioms (b light verbs (e) transitive verbs
in XTAG in XTAG in Ext-G
semn: die{NF,) sem: walk{NFy) sem: kick(NFp, NP, )

Figure 5: f-match w/o ezpansion

3.2. c¢-maich

t-match requires two trees to have exactly
the same structure, therefore, it does not
tolerate minor differences between the trees.
For instance, in XTAG, relative pronouns
such as which and the complementizer thai
occupy distinet positions in the eiree for
relative clauses, whereas the Penn Tree-
bank treats both as pronouns and therefore
they occupy the same position in Ext-G,
as shown in Figure 6, Because the circled
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subtrees will occur in every tree for relative
clauses and wh-movement, all these trees
will not t-match their counterparts in the
other grammar. Nevertheless, the two trees
share the same subcategorization frame (NP
VV NP), the same subcategorization chain?
S — U'P — 17 and the same modification
pair (NP, S). To capture this kind of simi-
larity, we decompose a mod-etree into a tu-
ple of (subeat frame, subcat chain, modifica-
tion pair}. Similarly, a spine-etree is decom-
posed into a (subcat frame, subcat chain)
pair, and a conj-etree into (subcat frame,
subcat chain, coordination sequence). Two
efrees are said to c-match (¢ for component)
if they are decomposed into the same tuples.
According to this definition, the twa trees in
Figure 6 c-maich.

NP

— T
NP™ Segm NP* § exiron
e e
ncw/\
NPew VP
1}“’:,, /VP\ *T* V@ NP
T ova NPI‘
(a) in XTAG (b) in Ext-G

Figure 6: Relative clause trees

J.8.

So far, we have defined several types of
matching, Table 1 lists the numbers of tree
templates® in one grammar that match some
- tree templates in the other grammar.® The
last row lists the frequencies of the matched
Ext-G templates. For instance, the fourth
column says 496 templates in XTAG match

Comparison results

3A subcategorization chain is a subsequence of
the spine in a spine-etree where each node on the
chain is a parent of some argument(s) in the sub-
categorization frame. The nodes on & subcatego-
rization chain roughly correspond to various lexical
projections in GB-theory.

“We compare tree templates, not trees, in the
two grammars because we are focusing on general
ayntactic structure.

SIf a template in one grammar matches several
templates in the other grammar and the match
types are different, we label it with the strongest

. match type.

189 templates in Ext-G, and these 189 tem-
plates account for 57.1% of the template to-
kens in the Penn Treebank. If we decompose
templates into components as mentioned in
Section 3.2, the components that are shared
by both grammars will cover 82.9% of all the
component occurrences, as shown in Table
2. Templates in Ext-G are missing fram the
XTAG grammar for one or more of the fal-
lowing reasons:

T1: incorrect templates in Ext-G These
templates result from Treebank annota-
tion errors. Our extraction algorithm has
a filter that detects implausible templates
in Ext-G by decomposing a template
into parts and checking each part against
several small hand-crafted tables. The
filter marks 2299 templates in Ext-G as
implausible and they account for 5.2% of
the teinplate tokens in the Treebank,

T2: conj-etrees in XTAG Most conj-etrees
in XTAG are generated on-the-fly while
parsing (Sarkar & Joshi, 1996), and are
not part of the 1004 templates. Thereflore,
many of the conj-etrees in Ext-G, which
account for 2.8% of the template tokens in
the Treebank, do not match any templates
in XTAG.

T3; different analyses XTAG and Ext-G

often choose different analyses for the

same phenoinenon. For example, the two
grammars treat reduced relative clauses
differently. ©

T4: missing constructions in XTAG
Some constructions such as the unlike co-
ordination phrase (UCF) in the Treebank

are not covered in XTAG.”

SAlso, in XTAG, adjectives and nouns directly
modify nouns, whereas in Ext-G, they modify noun
phrases. These two pairs — (N, NP) and {A, NP)
- account for 26.6% of the modification pairs in
the Treebank, explaining XTAG’s lack of coverage
{(53.1%) of the modification pair oceurrences in the
Treebank.

"The difference between matched templates
{58.0%) and matched cornponents {82.9%) imply
that some combinations of components are miss-
ing from XTAG, The problem is very common for
hand-crafted grammars because the the redundancy
among trees in the grammar makes it verv hard

267
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t-maich | t-match w/o | c-match | subtotal conj-etree | no-mateh || total
expansion templates
XTAG i3 107 316 496(49.4%) || 39 469 1004
Ext-G 59 § 1235 189(6.15%) || 411 2472 3072
frequency || 53.9% | 0.5% 2% [571% Il 2.8% [ 401% 100% |
Table 1: Numbers of templates that match and their frequencies
subcat | subcat | modification | coordination | total
chains | frames | pairs pairs
in XTAG 44 115 72 25 256
in Ext-G 471 507 309 53 1340
matched types ! 35 45 31 10 121
matched tokens | 977,218 | 954,776 | 357,563 22,937 2,312,454
frequency 93.7% | 91.6% ! 53.1% 7. 7% 82.0%
Table 2: Numbers of components in the two grammars
3.4. Integrating the two grammars References

Simply taking the union of the two tem-
plate sets will only vield a more noisy and
inconsistent grammar. Qur method has sev-
eral steps: First, starting from Table 2, nse
the plausibility filter ta automatically rule
out all of the implausible components in
XTAG and Ext-G, then integrate the re-
maining plausible components into a new
set, one for each type of component (such as
subeat frames, subcat chains, ete.}. Next,
generate a new grammar from the compo-
nent sets using various grammar develop-
nient tools such as Metarules(Becker, 1994)
or LexOrg(Xia et al., 1998). The new gram-
mar wiil be of high quality and have good
coverage of the Treebank.

4. Conclusion

In this paper, we compare the XTAG gram-
mar with the Penn Treebank grammar and
propose a way of integrating them in or-
der to derive a new grammar which has the
strength of both. We believe that recogniz-
ing components of elementary trees in the
two grammars is necessary because it not
only allows the grammars to be compared
at a more fine-grained level, but also pro-
vides the building blocks for integrating the
grammars in a consistent and efficient way.

to maintain the grammar by hand. Various tools
to semi-automatically generate templates (Becker,
1954; Candito, 1996; Xia et al., 1998) could ailevi-
ate the problem.
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