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Abstract

In this paper we view mixed-initiative corpus
annotation from the perspective of knowl-
edge engineering, and discuss some of the
opportunities, challenges and dangers that are
presented by using mixed-initiative annotation
tools. We begin this discussion by describing
an existing mixed-initiative annotation tool
for open-ended phrase-level annotation, the
Alembic Workbench.  We discuss how this
tool currently operates, the nature of its skill
acquisition component, and our plans to extend
it in a number of ways, including incorporating
an active learning capability. Having set the
stage with a concrete example, we identify a
number of opportunities and challenges that
are presented by the mixed-initiative approach
to corpus annotation, including the benefits
that might accrue when supporting “layered”
annotation environments, the adoption of
intensional /procedural annotation paradigms,
the inclusion of lexical resource construction
interleaved with corpus annotation, and other
topics.

1 Introduction

One way of viewing corpus annotation is as a
form of “knowledge engineering,” where the an-
notator intends to enable a machine to repro-
duce the behavior being performed. A motiva-
tion for adopting such a view is that there is
a practical interest in having machines be able
to automatically perform some types of annota-
tion. For example, “named entity” tagging, the
ability to identify proper names that refer to en-
tities of a particular restricted set of semantic
classes (e.g., person, location, organization) was

initially developed merely as a means to mea-
sure the contribution of this stage of linguis-
tic analysis to a set of more complex domain-
specific information extraction tasks. In recent
years this capability has been shown to be valu-
able as a constituent to quite different informa-
tion processing tasks, including topic detection
and tracking, information retrieval, and others.

Another motivation for automating the an-
notation process is simply to increase the pro-
ductivity of the corpus annotation process it-
self. Even if the ultimate goal of a particular
annotation process is to build a static reposi-
tory of annotated data to support fundamental
linguistic research and analysis, there is a great
benefit in producing as much of a given type of
annotation as possible within restricted sched-
ules and budgets. In general, the greater the
size of the corpus, the more informed and statis-
tically well-founded are the conclusions that can
be drawn. From the point of view of knowledge
engineering, most forms of corpus annotation
involve a model of “learning by example,” where
some number of positive examples are meant to
drive the skill acquisition component. In prac-
tice this skill acquisition is often carried out by a
mix of human engineering (e.g., programming),
machine-aided analysis, and machine learning
techniques when possible. In this paper we want
to expand on this skill acquisition model in a
number of ways:

e Argue how these techniques can and should
be applied across the full range of linguistic
annotation tasks.

e Expand the notion of “mixed initiative”
(or “incremental bootstrapping”) annota-
tion to incorporate not just learning by ex-
ample, but other methods that increase the



expressive power of the “annotator” to in-
fluence skill acquisition.

Encourage the use of “earlier” language
processing stages in the annotation of later
stages.

Focussed corpus selection and annotation
through “active learning” (or “sample se-
lection”).

Common annotation frameworks and tools
can help to increase these bootstrapping

capabilities.

2 Mixed initiative corpus
development

The notion of wusing partially machine-

annotated data to “bootstrap” the human
annotation process dates back at least to
Brill’s Ph.D. thesis (Brill, 1993), and probably
earlier. The bootrapping procedure operates
on the observation that there are many data
points in some annotation tasks that are
quite easily performed computationally. Even
relatively poor performing procedures can
prove effective for increasing productivity if
there is a sufficiently large amount of data that
is annotated correctly and if the labor required
to fix the remaining bootstrapping errors
is relatively small compared to the baseline
manual tagging effort. In such a situation the
bootstrapping procedure will have increased the
effective productivity of the human annotator
by the degree of the bootstrapping procedure’s
accuracy. For large corpus collections, this can
represent a sizable savings in human labor.
The bootstrapping procedure can take many
forms, and it can be arrived at in many ways, ei-
ther through annotator-derived heuristics, sys-
tematic analysis of the corpus annotated so
far, or through more automatic means utiliz-
ing machine/statistical learning techniques. We
use the term mized initiative annotation to re-
fer to an environment in which (a) the boot-
strapping procedure is derived automatically
and (b) it can be invoked at arbitrary points
during the course of annotation. (The alter-
native term “incremental bootstrapping” has
also been suggested.) Subsequent invocations of
the bootstrapping procedure can perform bet-
ter than earlier invocations as a function of new
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Mixed Initiative Annotation Methodology
Used in the Alembic Workbench
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Figure 1: The mixed-initiative spiral model of
corpus annotation.

evidence—usually in the form of a larger anno-
tated corpus, since more examples are available
to drive the bootstrapping procedure. Since
first proposed, a number of tools have been built
that provide mixed-initiative environments for a
variety of annotation tasks.(Brants et al., 1997;
Bennett et al., 1997)

3 Mixed-initiative annotation in
Alembic Workbench

We have developed a mixed-initiative annota-
tion tool for building phrase-level annotated
corpora; we will describe it briefly here in
order to place in context our more recent
work as well as to ground our subsequent
discussion of general issues regarding the
opportunities, challenges and dangers pre-
sented by mixed-initiative approaches to
enhancing annotation productivity. This tool,
the Alembic Workbench (Day et al., 1997) (or
simply Workbench in this article), induces a
finite state transducer in the form of a sequence
of transformation rules, which can then be used
to bootstrap (annotate) similar textual data.
The transformation-based learner (TBL) and
the transformational rule sequence interpreter
are both provided by the Alembic multi-lingual
natural language processing system (Aberdeen
et al., 1995; Vilain and Day, 1996). A graphical
depiction of the mixed-initiative methodology
adopted by the Workbench is shown in Figure 1.

The class of annotations susceptible to
mixed-initiative annotation in the Workbench



might be best described as “phrasal”’—any
contiguous character sequence or multi-word
sequence may be annotated by the user and
associated with some “tag.” The Workbench
has been extended for a number of special
purpose and general purpose annotation tasks,
such as MUCG6-style co-reference tagging, and
general “relational” annotations. Neither of
these tagging enhancements have yet been
closely integrated with our machine-learning
techniques—even though we are presently
working on machine-learning approaches to
both of these problems outside the specific
scope of mixed-initiative annotation. These
tags may be defined using the SGML/XML
mechanisms for specifying generic identifiers
of annotation elements and their associated
attribute/value pairs. While this notational
scheme allows for the expression of complex
relationships among particular tags, the
machine learning component currently used
to support mixed-initiative annotation in
the Workbench ignores these subtleties and
reduces all SGML/XML elements with distinct
structures into what are essentially unique,
un-interpreted symbols.

The transformation-based rule sequence
learning technique used in Alembic has proved
very effective for deriving accurate annotation
performance on the basis of exceedingly
impoverished amounts of training data. We
have observed F-measures in the range of
55-75 within 15-20 minutes of beginning a
new annotation task in both English and
Spanish texts, and lower but still helpful
values in the same amount of annotation of
Chinese and Japanese texts. (See section
3.1 for more background on the phrase-rule
learning behavior of Alembic.) This is
important in producing enhanced productivity
through bootstrapping an automatic tagging
procedure. The earlier the machine can provide
pre-annotated data at a reasonable level of
performance, the faster the combined activities
of human and machine can build up a large
corpus. In addition, the precision and recall
of the automatically derived rule sequences
increase as the size of the available training
corpus increases. The shape of this learning
curve is invariably asymptotic. The asymptote
peaks at different levels (on blind test data) for

73

different tasks and/or for different parameters
of the learning environment, for reasons
that are important, but not always easy to
determine. The two main reasons appear to
be the size and typicality of the corpus, and
the representational power of the rule patterns
available to the rule learner.

In building our current transformation-based
learning (TBL) system we have made a num-
ber of design decisions that have had an impact
on training speed. These decision have to do
with the need to actually apply newly induced
rules to the training data and subsequently re-
compute the corpus-wide statistics that drive
the next rule induction cycle. While the sys-
tem is able to achieve very fast learning times
(5-30 minutes) on small to moderate amounts of
training data (5,000 to 75,000 exemplars), much
longer training times result when the training
corpus reaches hundreds of thousands or even
millions of exemplars.

Of course, there is no need to iterate the
learning algorithm over all the training data af-
ter each document. Indeed, it seems reasonable
and practical to invoke the learning algorithm
less and less frequently as the size of the corpus
increases and the performance of the automat-
ically derived rule sequences differ less and less
from each other with each incremental addition
of a human-annotated file. In order to avoid
having to restart the learning algorithm from an
initial null state after each mixed-initiative in-
vocation of the learning algorithm, it is straight-
forward within a TBL model to begin learning
on top of of an existing level of competence (a
previously derived rule sequence). In this case
the training corpus might consist of only those
few files that have been annotated since the last
learning procedure was called, and the newly de-
rived rules are concatenated onto the end of the
existing rule sequence. However, eventually it is
desirable to start fresh, since it becomes more
and more likely that new opportunities for gen-
eralization can be found in a larger training set,
leading to increases in the ability of the new rule
sequence to apply successfully to unseen data.

Nonetheless, we are also interested ad-
dressing the problem of learning performance
directly. One approach we intend to pursue
is the incorporation of MITRE’s HMM-based
“Phrag” (Palmer et al., 1999) phrase-parsing



learner within the Workbench’s mixed-initiative
repertoire, which we imagine could be increas-
ingly relied upon as the size of the training set
reaches very large proportions.

Currently the default “granularity” of mixed-
initiative annotation within the Workbench is
that of a document or file. As long as a single file
is fully annotated, it can be used as the basis of
phrase-rule learning, either alone or in combina-
tion with a corpus consisting of other annotated
documents/files. Of course, documents can be
arbitrarily reduced to smaller chunks if there is
a strong need for this. Ideally one would like the
granularity used in mixed-initiative annotation
(1) to be identified and adopted directly by the
system itself, rather than relying on the annota-
tor to make such decisions; and (2) to be a func-
tion of the annotation task being performed.
For example, phrase tagging (and many other
annotation tasks such as sentence parsing) could
be segmented at the sentence level. Updating
the existing pre-annotation procedure could be
invoked based on the amount of performance
improvement achieved in the previous two invo-
cations, as well as other heuristics that design-
ers might identify. Other annotation tasks, such
as co-reference annotation, discourse structure
and entity and relation extraction, etc., might
require segmentation at the document level.

3.1 Why Alembic phrase rule learning
appears to work

In the past few years we have often been sur-
prised at the ability of Alembic’s phrase-rule
learning apparatus to create quite reasonable
tagging performance with only meager amounts
of data annotated to the user’s specifications.
We have often had cause to wonder: Was our
learning algorithm and associated Alembic in-
frastructure really so good? How did it squeeze
out such good performance (e.g., around 70-
75 F-measure) on such a paltry example base
as 1,500 words of annotated Spanish newswire
text? We would like to perform a detailed anal-
ysis, but our informal conclusions are already
leading us to establish new priorities in our at-
tempts to build rapidly portable natural lan-
guage processing capabilities. We devote a sub-
section to each of these conclusions below.
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3.1.1 The “right” level of analysis

Like many other systems designed in the
course of the last five years, Alembic has
been built using a number of important
natural language processing components,
each of which had become newly available
in the previous years. These components
include tokenization (word segmentation),
sentence tagging, and morphological analysis
(part-of-speech tagging). Empirically it has
become clear that many useful types of
general-purpose and specialized phrase tagging
tasks (from named entity tagging to sentence
chunking) can find all of the information
they need from this mix of information made
available by pre-processing. In other words,
this is due to a successful application of the
“divide and conquer” principle adopted by
the computational linguistics community as a
whole over the past ten years.

3.1.2 Locality of influence

In a similar vein, these same tagging tasks (per-
haps best exemplified by “named entity tag-
ging”) have adopted a decision environment in
which a fairly strict locality of influence is re-
spected, and this locality has been sufficient for
addressing the phrasal phenomena of interest.
Not only has this seemed to be true for the rule
schemata used in rule-based tagging systems,
but also for the modeling techniques adopted
in Hidden-Markov Model approaches to phrase
tagging as well.

3.1.3 The “right” lexical resources and
built-in predicates

We believe that the most specific reason that
the Alembic phrase rule learner has managed
to perform so well with very limited amounts
of training data has been the considerable lex-
ical resources that we have made available to
the learner. It so happens that when Alembic
has exhibited these surprisingly good learning
behaviors it is often the case that the result-
ing rules include a liberal mixture of references
to one or another of the special-purpose word
lists that we have developed in the course of
manually building various natural language pro-
cessing capabilities. (Other frequently occur-
ring rule patterns exhibited in successful rule



sequences are those making use of the part-of-
speech of lexical items. In CJK languages par-
ticular character prefixes and suffixes are also
highly represented.)

These word lists are derived in a wide va-
riety of ways: names extracted from the US
Census; hand-coded lists expanded from core
words easily predicted to be contextually im-
portant markers; expansions of words using the-
sauri, dictionaries or similar resources; words
found from an analysis of the internal and exter-
nal contexts of annotated phrases in manually
tagged training data (supervised context analy-
sis); and sometimes words found in these same
contexts but from large collections of automat-
ically tagged data (unsupervised context analy-
sis). Regardless of the particulars of how they
are derived, these resources allow for a boost
in the generality of rules learned from a small
corpus. While the learner might happen to pick
references to these word lists for purely local
(and perhaps almost arbitrary) reasons in the
context of some very small annotated corpus,
this serendipity will lead to many more correct
applications when different word choices are en-
countered in previously unseen data.

Our current presumption is that replicating
efficient mixed-initiative successes for other
tasks and in other arenas of language processing
will rely heavily on providing similar advantages
as those identified above. For example, in order
to support the rapid mixed-initiative annotation
of certain types of relation/event data (e.g., the
“template relation” and “scenario template”
tasks of the various MUC evaluations (Def,
1995; Grishman and Sundheim, 1996)), one
must make available to the learning component
the same notion of “locality” as is warranted
for such distinct phenomena. This kind of
locality might be exemplified by an interme-
diate “SVO” (Subject/Verb/Object/modifier)
representation of a given sentence, which could
be derived in a variety of ways, either wvia
treebank-style parses, or from dependency-
like syntactic models such as “grammatical
relations.”).  We are particularly interested
in merging the mixed-initiative development
of lexical resources with the mixed-initiative
development of annotated corpora. (Previous
work of others in this area includes (Riloff and
Jones, 1999; Blum and Mitchell, 1998).) We
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anticipate that a host of unsupervised learning
techniques will be especially useful in helping
to quickly bootstrap the acquisition of useful
word lists.

4 Active learning

One way of increasing the effective productiv-
ity of the human annotator while holding the
capabilities of the skill acquisition component
constant is by increasing the utility of the anno-
tated data being supplied to the skill acquisition
component. In the event that bootstrapping
is being performed manually through heuris-
tic insights, the annotator may try to tune the
corpus sampling mechanism to favor sentences,
paragraphs or documents that would seem to
provide the greatest opportunity for instructing
and testing the emerging automated annotation
component. It is also possible to perform this
sample selection of raw data through automatic
means. This interplay between learner and ex-
ample selection is sometimes referred to as “ac-
tive learning” (or sample selection).(Lewis and
Catlett, 1994)

Engelson and Dagan (Engelson and Dagan,
1996) demonstrated an automatic method for
selecting part-of-speech training sentences us-
ing a votes from a set of automated annotation
“experts.” This and other work prompted us
to look at how such techniques could be incor-
porated into the Workbench’s mixed-initiative
model. Alembic’s phrase-rule learner contains
a number of parameters that are well suited to
construct such a family of experts.

The basic insight of active learning is that not
all training data are equally informative, and
that the “confidence” of the induced decision
system in classifying (tagging) some particular
exemplar is inversely proportional to the likely
utility of that exemplar, were it to be correctly
classified. If a particular annotation decision is
made very confidently, it is likely due to the
fact that many exemplars have informed the
decision rule, and so increased the associated
level of confidence. But how is “confidence” ex-
pressed in transformational rule sequences? In
most cases, there is no analog to confidence in
transformation rule sequences. However, if one
can build a mixture of experts, then one ana-
log to confidence in such systems is the num-
ber of experts that voted for the same tagging



1. Induce N different decision criteria by using
varying parameter values.

. Apply N decision criteria to unseen data.

. Select for manual annotation those sen-
tences for which there are sufficiently di-
vergent classifications.

. Annotate manually (with or without pre-
tagging).

Figure 2: Active learning algorithm used in
Alembic Workbench experiments

decision—independent of the nature of the de-
cision mechanisms used in the constituent de-
cision systems. The basic active learning algo-
rithm used in our recent experiments with the
Workbench is presented in Figure 2.

The Alembic transformation-based rule learn-
ing algorithm selects a rule at each epoch of
the learning algorithm. We have experimented
with a number of evaluation criteria for this step
of the process: “yield minus sacrifice” (count
the number of new, correct annotations created
by applying a rule, then subtracting from this
value the number of incorrect annotations cre-
ated by applying this same rule); “log likeli-
hood;” and “F-measure” (harmonic mean of the
recall and precision measures for this rule), pa-
rameterized by beta, which indicates the relative
weight given to the recall measure compared to
the precision measure. We eventually adopted
the F-measure approach, not only because it
tended to give us the best empirical results on
the problems we are addressing at that time,
but also because it provided us the opportunity
to transparently weight the performance more
towards recall or more towards precision, which
can be an important practical difference in var-
ious real world application contexts.

Varying the decision criterion by varying the
beta value of the objective function allows us to
easily define sets of experts from which “confi-
dence” measures can be induced through their
level of agreement. Indeed, the F-measure met-
ric alone offers the opportunity for deriving a
family of decision experts simply by modify-
ing the single beta parameter. We would also
like to use the Phrag HMM-based tagger on
the same data to create an expert with a quite
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different bias. We are in the early stages of
experimenting with this form of active learn-
ing, selecting sentences and/or documents on
the basis of the degree to which multiple sep-
arately derived rule sequence “experts” agree
on annotation assignments. These early results
are encouraging. From an initial training set of
442 sentences (containing 705 target phrases), a
subsequent unannotated corpus of 1,462 words
was used as the universe of possible sentences
for subsequent manual annotation. Approxi-
mately 10% were down-selected based on two
different criteria: random selection or using low
confidence measures as derived from voting as
described above. Following the manual annota-
tion of these two incremental additions to the
training set, we observed that the performance
of separately trained automatic taggers differed
on test data by about 5% .!

5 Discussion

Corpus annotation has implications not just
for providing productivity enhancements for
linguists (computational and otherwise), but
also as a model for how useful information
extraction systems (an important class of
intelligent agents) can be derived through a
largely example-based knowledge engineer-
ing/acquisition process. With both of these
contexts in mind, it is useful to reflect on
some of the outstanding opportunities in
mixed-initiative annotation, as well as the
difficulties and dangers that accompany them.

5.1 Layered annotations for
multi-staged mixed-initiative

corpus development

Some annotation tasks depend so strongly on
“earlier” annotations that it will become impor-
tant to build annotation environments in which
these earlier annotation “layers” are made ap-
parent to the annotator. For example, when
annotating grammatical relations (Ferro et al.,
1999; Ferro, 1998), the job of the annotator is
to establish various pre-specified types of rela-
tionships among sentence “chunks,” where these
chunks consist of simple phrases such as “noun

group,” “verb group,” “preposition group,” and

We are in the midst of our explorations of this task;
we hope to be able to report the results of more robust
experiments soon.



the like. Thus, instead of being presented with
a text in a standard Workbench textual display
(and being able to draw relationships between
arbitrary pairs of words), it is important that
these sub-groupings are already visually appar-
ent and made to control the interface so that
asserting only group-level relationships is possi-
ble.?

Other opportunities for such interdependence
of annotation tasks can be seen when annotat-
ing discourse-level relations and events (e.g.,
MUC-style “template relations” and “scenario
templates”).  While particular relationships
may be asserted in a variety of ways, the ability
to view and operate directly on, for example,
an “SVO” (subject-verb-object-modifier) rep-
resentation of a set of sentences might enhance
not only the productivity of the annotator, but
also build in important links across processing
levels that are important to one’s method of
attacking a given computational linguistics
problem. This ability to build upon the layers
of annotation derived previously will become an
increasingly important technique for building
mixed-initiative annotation tools. It could
prove especially fruitful in the support for a
richer language by which the human annotator
can directly influence the mixed-initiative
process, as discussed in the next section.

5.2 From extensional to intensional
annotation methods

We remarked earlier about how the bootstrap-
ping of annotation can incorporate not just au-
tomatically derived annotation heuristics but
also those derived from the human annotator,
implemented usually as computer programs or
simply regular expression macros. This has
been a method frequently relied on within the
computational linguistics community, since the
skills for deriving the heuristics and implement-
ing them as procedures are readily available.
One of the open problems of mixed-initiative an-
notation environments is to provide some kind
of support for more direct human intervention
in the bootstrapping process other than simply
adding yet another example. Of course, there a

2Such an annotation tool has been developed specifi-
cally for the grammatical relations annotation task being
performed internally at MITRE.
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wide variety of pattern languages and annota-
tion representations from which those inclined
to write pre-annotation heuristics can choose.
But are there ways in which the results of such
heuristic annotation methods can be viewed and
combined with example based annotations with-
out creating confusion?

For example, if someone composes a rule and
it applies to one hundred instances within a
corpus, the annotator might like to view the
resulting sentences directly—perhaps within a
keyword-in-context type viewer—that is also in-
tegrated directly with the extensional annota-
tion environment. This way exceptions to this
rule can be noticed and modified easily and di-
rectly by the annotator. If this were truly a
mixed-initiative environment, then such a sys-
tem might on the next cycle derive a rule which
starts with the human-authored heuristic, but
derives rules (or some other representation) for
capturing the exceptions identified extension-
ally by the annotator.

Interestingly, there has recently been a very
careful empirical study (Brill and Ngai, 1999;
Ngai and Yarowsky, 2000) exploring the ad-
vantages and disadvantages of extensional and
intensional mixed-initiative methods for anno-
tating a corpus. This study was carried out
by Grace Ngai and David Yarowsky at Johns
Hopkins University, and compared the abilities
of relatively sophisticated pattern rule authors
against machine learning methods for deriving
tagging rules in a mixed-initiative annotation
environment. The results indicate that rule-
writing, while intuitively powerful, may prove
difficult for supporting a mixed-initiative ap-
proach to corpus annotation. This is a provoca-
tive study, seeming at variance with our intu-
itions as computational linguists. The annota-
tion community should explore these issues and
discuss them fully.

5.3 The real world of task definition
and collaborative development

In our own case studies and in our research fo-
cussed on mixed-initiative annotation we have
often concentrated on well-defined annotation
tasks and how they can most quickly be auto-
mated. In the real world, however, we know
quite well from first-hand experience that the
annotation process is a very long and tortuous



road, where many of the initial steps are con-
cerned less with getting large amounts of an-
notated data quickly, but rather with exploring
the very definition of the task at hand. As many
of the contributors to formal language process-
ing evaluations will tell you, much of the diffi-
culty in starting up a new tagging task is due to
the social and linguistic barriers to easy catego-
rization. So how do the techniques we have de-
scribed support and/or improve such task defi-
nition endeavors?

At the heart of any collaborative annota-
tion effort is the detailed analysis and associ-
ated discussion of different interpretations of
the linguistic phenomena, which is most often
captured and brought to light through inter-
annotator annotation analysis. At first this
analysis is largely qualitative, and depends on
detecting the anomalies in order to promote
their discussion. Recently there has been a
study of this collaborative behavior, and an as-
sociated automated method was developed that
was modeled on it (Wiebe et al., 1999). Subse-
quently the emphasis moves towards quantita-
tive inter-annotator analysis and the categoriza-
tion of those differences. In both of these phases
techniques that can boost the number and kinds
of linguistic artifacts that have been annotated
by one person or another can only help in the
process of annotation understanding and inter-
annotator reconciliation. Of course, it cannot
sidestep the necessity of discussion and reflec-
tion that is necessary to come to terms with the
motivations and other issues relevant to a new
annotation task.

Nonetheless, there are clearly opportunities
and challenges for mixed-initiative techniques
that respect the collaborative nature of the
annotation process. Omne area of interest is
in building new automatic annotators by com-
bining the existing annotation capabilities de-
rived from separate human annotators interact-
ing with mixed-initiative systems. For example,
one could imagine new collaborative tasks could
be defined through the application and analy-
sis of distinct skills (tagging procedures, rule
sequences, etc.) derived independently. This
same ability may be appropriate for trying to
identify and adapt to the inevitable “concept
shift” that occurs with computational artifacts
put to use on a daily basis.

78

5.4 The Tension between Naturally
Occurring Phenomena and
Focussed Inquiry

There is a potential danger that attends any
technique that introduces labor saving meth-
ods, and mixed-initiative annotation is no ex-
ception. One of the most important problems
is predicted to lie in the area of recall. As the
automated pre-annotation process increases its
capabilities, there will be a psychological ten-
dency of human annotators to trust its guesses.
And while precision errors will be fairly easy to
spot (since the machine will display some text
and assign a fallacious tag to it), recall errors—
errors of omission—cannot be highlighted in
principle, and so requires the human annotator
to be forever vigilant and to notice “the tag that
wasn’t.” This problem is perhaps accentuated
even more with the adoption of active learning
techniques. It is not known to what extent the
introduction of active learning might introduce
a vicious cycle of ignorance, whereby recall er-
rors are never corrected due to tacit agreement
(aligned errors) from all of the constituent de-
cision components.

6 Conclusions

There are still opportunities for building, re-
fining and applying mixed-initiative corpus an-
notation tools and environments. In this pa-
per we have identified some of these opportuni-
ties, the challenges they pose and their poten-
tial for unintentional side effects. We grounded
this discussion with a description of the Alem-
bic Workbench tool, describing its current capa-
bilities and the direction of our research to ex-
pand them. Successful mechanisms for quickly
deriving machine-aided corpus annotation sys-
tems will have an important impact on the cor-
pus linguistics research community. It will also
lead eventually to portable, trainable language
processing systems for use by non-specialists to
perform customized information discovery and
extraction from the glut of information available
today.
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