Cross-Platform, Cross-Grammar Comparison — Can it be Done?

Ulrich Callmeier and Stephan Oepen
Saarland University
Computational Linguistics
{uc|oe}@coli.uni-sb.de

(see ‘http://www.coli.uni-sb.de/itsdb/’)

Abstract

This software demonstration reviews re-
cent improvements in comparing large-scale
unification-based parsing systems, both across
different platforms and multiple grammars.
Over the past few years significant progress
was accomplished in efficient processing with
wide-coverage HPSG grammars. A large num-
ber of engineering improvements in current
systems were achieved through collaboration of
multiple research centers and mutual exchange
of experience, encoding techniques, algorithms,
and pieces of software.

We argue for an approach to grammar and
system engineering that makes systematic ex-
perimentation and the precise empirical study
of system properties a focal point in develop-
ment. Adapting the profiling metaphor familiar
from software engineering to constraint-based
grammars and parsers enables developers to
maintain an accurate record of system evolu-
tion, identify grammar and system deficiencies
quickly, and compare to earlier versions, among
analytically varied configurations, or between
different systems. We demonstrate a suite of in-
tegrated software packages facilitating this ap-
proach, which are publicly available both separ-
ately and together.

The [incr tsdb()] profiling environment
(Oepen & Carroll, 2000) integrates empirical
assessment and systematic progress evaluation
into the development cycle for grammars and
processing systems; it enables developers to ob-
tain an accurate snapshot of current system be-
haviour (a profile) with minimal effort. Profiles
can then be analysed and visualized at vari-
able granularity, reflecting various aspects of
system competence and performance, and com-
pared to earlier results. Since the [incr tsdb()]
package has been integrated with some eight
processing platforms by now, it has greatly fa-

53

cilitated cross-fertilization between various re-
search groups and implementations.

PET is a platform for experimentation with
processing techniques and the implementa-
tion of efficient processors for unification-based
grammars (Callmeier, 2000). It synthesizes
a range of techniques for efficient processing
from earlier systems into a modular C++ im-
plementation, supplying building blocks (such
as various unifiers) from which a large number
of experimental setups can be configured. A
parser built from PET components can be used
as a time- and memory-efficient run-time sys-
tem for grammars developed in the LKB sys-
tem distributed by CSLI Stanford (Copestake
& Flickinger, 2000). In daily grammar develop-
ment it allows frequent, rapid regression tests.

We emphasize in this demonstration the cru-
cial importance of experimental system compar-
ison, eclectic engineering, and incremental opti-
mization. Only through the careful analysis of a
large number of interacting system parameters
can one establish reliable points of comparison
across different parsers and multiple grammars
simultaneously.

References

Callmeier, U. (2000). PET — A platform for ex-
perimentation with efficient HPSG processing
techniques. Natural Language Engineering, 6
(1) (Special Issue on Efficient Processing with
HPSG), 99-108.

Copestake, A., & Flickinger, D. (2000). An open-
source grammar development environment and
broad-coverage English grammar using HPSG.
In Proceedings of the Second Linguistic Re-
sources and FEwvaluation Conference (pp. 591—
600). Athens, Greece.

Oepen, S., & Carroll, J. (2000). Performance profil-
ing for parser engineering. Natural Language En-

gineering, 6 (1) (Special Issue on Efficient Pro-
cessing with HPSG), 81 -97.



