EFFICIENCY IN LARGE-SCALE
PARSING SYSTEMS

PROCEEDINGS

a workshop held at Coling 2000
the 18th International Conference on Computational Linguistics

Luxembourg, 5 August 2000

Organisation

Organisers

John Carroll
Robert C. Moore
Stephan Oepen

Programme Committee

John Carroll, University of Sussex, UK

Gregor Erbach, Telecommunications Research Centre Vienna, Austria
Bernd Kiefer, DFKI Saarbruecken, Germany

Rob Malouf, Rijkuniversitet Groningen, The Netherlands

Robert C. Moore, Microsoft Research, USA

Gertjan van Noord, Rijkuniversitet Groningen, The Netherlands
Stephan Oepen, Saarland University, Germany

Gerald Penn, Bell Labs Research, USA

Hadar Shemtov, Xerox Palo Alto Research Centre, USA

Kentaro Torisawa, Tokyo University, Japan

To obtain additional copies of these proceedings contact:

Dr. John Carroll

Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH, UK

john.carroll@cogs.susx.ac.uk

iii

iv

Contents

Invited Talk

Why not Cubic?
i Ronald M. Kaplan

L John Carroll, Stephan Oepeniiiiiiiii i e et et et et '
"“‘“"“‘“"“"“‘“"“‘“"“‘“"“‘“"“‘“‘““““““““““‘1

‘Precompilation of HPSG in ALE into o CFG for Fast Parsing '
' John C. Brown, Suresh Manandhar 13

e e o e e e o o b o i b o o b i o o o o b o i b b o i i i i i
1

‘Time as a Measure of Parsing Efficiency
1 RODETE G MOOTE ettt ettt e e e e e e e et e e e 23 .,

ZTEZEZTIITETIEIEEIEIETEEEEEIEIEEEEEEEEEEEEEIEEEEEEEEEEEEEEAEETEEEEEAEETEEETEEATETEREETETERETETERERRERTRY

Measuring Efficiency in High-accuracy, Broad-coverage Statistical Parsing 1
' Brian Roark, Eugene Charniak 29 .,

Some Ezperiments on Indicators of Parsing Complezity for Lezicalized Grammars '
' Anoop Sarkar, Fei Xia, Aravind JOShiiiiuiiiiit i 37,

i e e e e e e e e e T e e o e e e e T e e e e e e e e T e e e T e

1Large Scale Parsing of Czech !
v Pavel Smrz, Ale HOTAK ... o o 43

\Cross-Platform, Cross-Grammar Comparison — Can it be Done?
i Ulrich Callmeier, Stephan OQepen i e 53
Tools for Large-Scale Parser Development

v Hisami Suzuki, Jessie Pinkham e 54

vi

Invited Talk

Why not Cubic?

Ronald M. Kaplan
Xerox PARC
3333 Coyote Hill Road, Palo Alto
CA 94304, USA

kaplan@parc.xerox.com

It is well-established that the parsing problem for higher-level constraint-based formalisms such
as LFG, PATR, and HPSG is in the NP-hard complexity class. Thus there are worst-case sen-
tences and grammars for which there are no known polynomial algorithms. Unhappily, the most
straightforward parsers for these formalisms tend to be exponential not only in the worst cases but
also for the common cases of sentences and grammars that intuitively seem to be less complex.
Research aimed at improving performance has typically accepted the inherently exponential nature
of the problem and has then focused on implementation techniques that can lower the space/time
computational resource curves but without actually changing their shape.

In this talk T will discuss an alternative stragegy that we have been exploring in our work on
LFG parsing. Instead of taking the exponential as a given for arbitrary grammars and asking how
we can make it more palatable, we studied a restricted class of LFG grammars whose languages are
obviously context-free. We then asked a different question: why doesn’t a conventional LFG parser
recognize these languages in cubic time, their theoretically obtainable bound? We developed a few
key ideas that taken together provide for cubic performance for the special case of a completely
context-free-equivalent LFG grammar, and provide nearly cubic performance for the less restricted
set of LFG grammars that are linguistically relevant.

Papers

Efficient Large-Scale Parsing — a Survey

John Carroll
Cognitive and Computing Sciences
University of Sussex
Brighton BN1 9QH, UK
johnca@cogs.susx.ac.uk

Abstract

We survey work on the empirical assessment
and comparison of the efficiency of large-scale
parsing systems. We focus on (1) grammars and
data used to assess parser efficiency; (2) meth-
ods and tools for empirical assessment of parser
efficiency; and (3) comparisons of the efficiency
of different large-scale parsing systems.

1 Background

Interest in large-scale, grammar-based parsing
has recently seen a large increase, in response
to the complexities of language-based applica-
tion tasks such as speech-to-speech translation,
and enabled by the availability of more pow-
erful computational resources, and by efforts in
large-scale and collaborative grammar engineer-
ing and also in the induction of statistical gram-
mars/parsers from treebanks.

There are two main paradigms in the eval-
uation and comparison of the performance of
parsing algorithms and implemented systems:
(i) the formal, complexity-theoretic analysis
of how an algorithm behaves, typically fo-
cussing on worst-case time and space complex-
ity bounds; and (ii) the empirical study of how
properties of the parser and input (possibly in-
cluding the grammar used) affect actual, ob-
served run-time efficiency.

It has been shown (Maxwell and Kaplan,
1993; Carroll, 1994; van Noord, 1997) that
the theoretical study of algorithms alone does
not (yet) suffice to provide an accurate predic-
tion about how a specific algorithm will per-
form in practice, when used in conjunction
with a specific grammar (or type of grammar),
and when applied to a particular domain and
task. Therefore, empirical assessment of prac-
tical parser performance has become an estab-
lished technique and continues to be the pri-

Stephan Oepen
Computational Linguistics
Saarland University
66041 Saarbriicken, Germany
oe@coli.uni-sb.de

mary means of comparison among algorithms.
At the same time, system competence (i.e. cov-
erage and overgeneration with respect to a par-
ticular grammar and test set) cannot be de-
coupled from the evaluation of parser perfor-
mance, because two algorithms can only be
compared meaningfully when they really solve
the same problem. This typically means that
they either directly use the same grammar, or at
least achieve demonstrably similar competence
on the same test set.

In the next section, we briefly describe large-
scale grammars and test suites that have been
used in evaluations of parser efficiency. Sec-
tion 3 discusses methods and computational
tools that have been used in such evaluations,
and Section 4 surveys research comparing the
efficiency of different parsers or parsing strate-
gies with large-scale grammars.

2 Grammars and Data

A number of large-scale, general-purpose gram-
mars have been used in evaluations of parser ef-
ficiency. We describe their main characteristics
briefly below.!

e The Alvey NL Tools (ANLT) contains a large,
wide-coverage sentence grammar of English
(Grover, Carroll, & Briscoe, 1993), written
in a unification-based metagrammatical for-
malism resembling GPSG. The grammar ex-
pands out to an object grammar of 780 DCG-

"While it is the case that most current large-scale
grammar-based parsing systems construct constituent
structure representations that are capable of supporting
semantic interpretation, the English Constraint Gram-
mar (Karlsson, Voutilainen, Heikkila, & Anttila, 1995)
and the Link Grammar (Sleator & Temperley, 1993) sys-
tems are exceptions. Thus, since the motivations behind
these grammars are different we do not consider them
here.

like rules, each category containing on aver-
age around 30 nodes. Associated with the
grammar is a test suite, originally written
by the grammarian to monitor coverage dur-
ing grammar development, containing around
1,400 (mostly grammatical) items.

The SRI Core Language Engine (CLE) gram-
mar (Alshawi, 1992) is also GPSG-inspired,
but with different treatments of a number of
central syntactic phenomena, such as subcate-
gorisation and unbounded dependencies. The
grammar contains of the order of 150 rules
which map fairly directly into a DCG.

The LinGO English grammar (Flickinger &
Sag, 1998) is a broad-coverage HPSG de-
veloped at CSLI Stanford. The grammar
contains roughly 8,000 types and 64 lex-
ical and grammar rules, with an average
feature structure size of around 300 nodes.
Three main test sets have been used for
parser evaluation with this grammar, the
largest—containing 2,100 items—having been
extracted from VerbMobil corpora of tran-
scribed speech and balanced with respect to
sentence length. (Comparable grammars of
German and Japanese, again originally devel-
oped in VerbMobil, are shortly to be avail-
able).

In the Xerox-led ParGram collaboration
(Butt, King, Nino, & Segond, 1999), wide-
coverage grammars of English, French, Ger-
man and a number of other languages are be-
ing developed in parallel in the LFG frame-
work, all of the grammars based on a
common set of linguistic principles, with
a commonly-agreed-upon set of grammati-
cal features. Each grammar consists of an
atomic-categoried phrase-structure backbone
augmented with feature annotations.

The trees in the Penn Treebank induce a large
context-free grammar containing 15,000 rules.
A recent comparison of context-free parsing
strategies (Moore, 2000) has used this gram-
mar, a second one derived from an ATIS tree-
bank (with 4,600 productions), and a third
(24,500 productions) produced by comput-
ing an atomic-categoried backbone from a
unification-based phase structure grammar.
Test sentences for these grammars were de-
rived either from the associated corpora, or

artificially, by using the grammar to stochas-
tically generate random strings.

e The XTAG system grammar (XTAG, 1995) is
a large-scale lexicalised tree adjoining gram-
mar of English, developed by several re-
searchers over the past ten years or so. The
grammar contains of the order of 500 elemen-
tary tree schemata, organised into families;
each lexeme is associated with a number of
these families. Nodes in the tree schemata are
augmented with feature structures so that in-
formation can be passed non-locally between
elementary trees.

Test suites supplied with grammars have typ-
ically been written by the grammar develop-
ers themselves for the purpose of monitoring
over- and under-generation as the grammar is
changed. However, the test suites have also
been found to be of some value for evaluating
parser efficiency. A major drawback in this con-
text, though, is that each test suite item usually
only contains very limited ambiguity (easing the
task of checking the resulting parses), and is rel-
atively short (so that only one or two construc-
tions are tested at a time). This is also the case
for independently-developed test suites, such as
the TSNLP suites for English, French and Ger-
man (Oepen, Netter, & Klein, 1997). There-
fore, in some parser evaluation work, new suites
of longer sentences have had to be constructed
manually or extracted specially from corpora.

Another important issue is the degree to
which the grammars are available to the gen-
eral NL processing research community. Those
developed within companies are in general more
difficult to obtain, although use for parser evalu-
ation may be easier to negotiate than use within
an actual application system, for instance.

3 Methods and Tools

Previous work on the assessment and compari-
son of large-scale parsers has mostly been con-
cerned with evaluation of parser (or grammati-
cal) coverage, and with correctness of the anal-
yses produced. So, for example, coverage has
been expressed in terms of lists of grammatical
phenomena for which an analysis is provided;
over- and under-generation as the percentage
of grammatical or ungrammatical items from a
given reference set that are or are not assigned

some sort of analysis; and degree of ambigu-
ity of a grammar in terms of the ‘parse base’,
the expected number of parses for a given input
length (Carroll, Briscoe, & Sanfilippo, 1998).
Work on quantifying parse correctness has used
various measures of structural consistency with
respect to constituent structure annotations of
a corpus (e.g. exact match, crossing brackets,
tree similarity, and others—see Black et al.,
1991, Black, Garside, & Leech, 1993, Grisham,
Macleod, & Sterling, 1992, and Briscoe & Car-
roll, 1993); recently, more general schemes have
been advocated that deploy functor —argument
(dependency) relations as an abstraction over
different phrase structure analyses that a parser
may assign (Lin, 1995; Lehmann et al., 1996;
Carroll et al., 1998). The Penn Treebank and
the SUSANNE corpus are well-established re-
sources for the evaluation of parser accuracy.

In a sharp contrast, there is little exist-
ing methodology, let alone established refer-
ence data or software tools, for the evaluation
and contrastive comparison of parser efficiency.
Although most grammar development environ-
ments and large-scale parsing systems supply fa-
cilities to batch-process a test corpus and record
the results produced by the system, these are
typically restricted to processing a flat, unstruc-
tured input file (listing test sentences, one per
line) and outputting a small number of process-
ing results to a log file.? Additionally, no met-
rics exist that allow the comparison of parser
efficiency across different grammars and sets
of reference data. We therefore note a strik-
ing methodological and technological deficit in
the area of precise and systematic assessment of
grammar and parser behaviour.

Recently though, a new methodology, termed
competence & performance profiling (Oepen &
Flickinger, 1998; Oepen & Carroll, 2000), has
been proposed that aims to fill this gap. Pro-
files are rich, precise, and structured snapshots

2Some (Meta-)Systems like PLEUK (Calder, 1993) and
HDrug (van Noord & Bouma, 1997) that facilitate the
exploration of multiple descriptive formalisms and pro-
cessing strategies come with slightly more sophisticated
benchmarking facilities and visualisation tools. However,
they still largely operate on monolithic, unannotated in-
put data sets, restrict accounting of system results to
a small number of parameters (e.g. number of analyses,
overall processing time, memory consumption, possibly
the total number of chart edges), and only offer a limited,
predefined choice of analysis techniques.

of parser competence (coverage and correctness)
and performance (efficiency), where the pro-
duction, maintenance, and inspection of pro-
files is supported by a specialised software pack-
age called [incr tsdb()].> Profiles are stored in
a relational database that serves as the basis
for flexible report generation, visualisation, data
analysis via basic descriptive statistics, and of
course comparison to other profiles. The [incr
tsdb()] package has so far been interfaced with
some eight unification-based grammar develop-
ment and/or parsing systems, and has served
as the ‘clearing house’ in a multi-site collabora-
tive effort on parser benchmarking (Flickinger,
Oepen, Tsujii, & Uszkoreit, 2000), resulting in
useful feedback to all participating groups.

4 Efficiency Comparisons

Many parsing algorithms suitable for NL gram-
mars have been proposed over the years, their
proponents often arguing that the number of
computational steps are minimised with respect
to alternative, competing algorithms. However,
such arguments can only be made in the case
of very closely related algorithms; qualitatively
different computations can only reliably be com-
pared empirically. So, for example, generalised
LR parsing was put forward as an improvement
over Earley-style parsing (Tomita, 1987), with a
justification made by running implementations
of the two types of parser on a medium-sized CF
grammar with attribute-value augmentations.
However, comparisons of this type have to be
done with care. The coding of different strate-
gies must use exactly equivalent techniques, and
to be able to make any general claims, the gram-
mar(s) used must be large enough to fully stress
the algorithms. In particular, with grammars
admitting less ambiguity, parse time is likely
to increase more slowly with increasing input
length, and also with smaller grammars rule ap-
plication can be constrained tightly with rela-
tively simple predictive techniques. In fact, a
more recent evaluation (Moore, 2000) using a
number of large-scale CF grammars has shown
conclusively that generalised LR parsing is less
efficient than certain left-corner parsing strate-

3See ‘http://www.coli.uni-sb.de/itsdb/’ for the
(draft) [incr tsdb()] user manual, pronunciation guide-
lines, and instructions on obtaining and installing the
package.

gies.

Moore and Dowding (1991) document a pro-
cess of refining a unification-based (purely
bottom-up) CKY parser (forming part of a
speech understanding system) by incorporating
top-down information to prevent it hypothesis-
ing constituents bottom-up that could not form
part of a complete analysis, given the portions of
rules already partially instantiated. An impor-
tant step was reducing the spurious prediction
of gaps by means of grammar transformations.
The refinement process was guided throughout
by empirical measurements of parser through-
put on a test corpus.

Improvements in efficiency can be gained
by specialising a general-purpose grammar to
a particular corpus. Samuelsson and Rayner
(1991) describe a machine learning technique
that is applied to the CLE grammar to pro-
duce a version of the grammar that parses ATIS
corpus sentences much faster than the original
grammar. In general there are more rules in the
specialised grammar than in the original, but
they are more specific and can thus be applied
more efficiently.

Maxwell and Kaplan (1993) investigate the
interaction between parsing with the CF back-
bone component of a grammar and the resolu-
tion of functional constraints, using a precursor
of the English ParGram grammar. A number of
parsing strategies are evaluated, in combination
with two different unifiers, on a small set of test
sentences. There is a wide gap between the best
and worst performing technique; the differences
can be justified intuitively, but not with any for-
mal analyses of computational complexity.

Carroll (1994) discusses the throughput of
three quite distinct unification-based parsing
algorithms running with the ANLT grammar.
The main findings were that exponential pars-
ing algorithm complexities with respect to
grammar size have little impact on the perfor-
mance of the parsers, since they all achieved rel-
atively good throughput, and parse table sizes
were also quite manageable. Increases in parse
times with longer inputs were also fairly con-
trolled, being roughly only quadratic. In an-
other experiment, running the ANLT grammar
with the CLE parser resulted in very poor per-
formance, suggesting that the parallel develop-
ment of the software and grammars had inad-

10

vertently caused them to become ‘tuned’ to one
another.

van Noord (1997) presents an efficient imple-
mentation of head-corner parsing, as used in
a prototype spoken language dialogue system.
Memoisation and goal-weakening techniques are
used to reduce parser space requirements; the
head-corner parser also runs faster than imple-
mentations of left-corner, bottom-up and LR
parsers in evaluations using a DCG of Dutch
with speech recogniser word-graph input. A
further set of evaluations use the ANLT gram-
mar, allowing a tentative cross-system compar-
ison with the ANLT parser to be made.

In work concerned with parsing with large-
scale CF grammars, Moore (2000) investigates
empirically the interactions between various
types of grammar factoring and versions of
the left-corner parsing algorithm that differ in
the details of precisely how and in what order
top-down filtering information is applied. Us-
ing three very different grammars, one of the
parser /factoring combinations was found to be
consistently and significantly better than the al-
ternatives, despite being only minimally differ-
ent from the other variants. This strategy was
also shown to outperform several other major
approaches to CF parsing.

Sarkar (2000) evaluates the efficiency of a
chart-based head-corner parsing algorithm on
a corpus of 2,250 Wall Street Journal sen-
tences, using a large-scale grammar (contain-
ing 6,800 elementary tree schemata) extracted
automatically from the Penn Treebank. For
each sentence, parse times were found to corre-
late roughly exponentially with the number of
lexicalised elementary trees selected; there was
little correlation between sentence length and
parse time.

Oepen and Carroll (2000) describe and argue
for a strategy of performance profiling in the en-
gineering of parsing systems for wide-coverage
linguistic grammars. The aim is to characterise
system performance at a very detailed tech-
nical level, but at the same time to abstract
away from idiosyncracies of particular process-
ing systems. Based on insights gained from de-
tailed performance profiles of various parsing
strategies with the LinGO English grammar, a
novel ‘hyper-active’ parsing strategy is synthe-
sised and evaluated.

A number of other empirically-driven re-
search efforts into efficient parsing are described
in the same journal special issue (Flickinger
et al., 2000). These include grammar-writing
techniques for improved parser efficiency, new
efficient algorithms for feature structure oper-
ations, fast pre-unification filtering, and tech-
niques for the extraction of CF grammars and
abstract machine compilation for HPSGs.

5 Conclusions

Recent interest in large-scale, grammar-based
parsing (in response to the demands of complex
language-based application tasks) has led to re-
newed efforts to develop wide-coverage, general-
purpose grammars, and associated research ef-
forts into efficient parsing with these grammars.
Some initial progress has been made towards
precise empirical assessment of parser efficiency.
However, more work is needed on methods,
standard reference grammars and test data to
facilitate improved comparability.

Acknowledgements

The first author is supported by a UK
EPSRC Advanced Fellowship, and the second
by the Deutsche Forschungsgemeinschaft Col-
laborative Research Division Resource-Adaptive
Cognitive Processes (SFB 378) project B4
(PERFORM).

References

Alshawi, H. (Ed.). (1992). The Core Language
Engine. Cambridge, MA: MIT Press.

Black, E., Abney, S., Flickenger, D. P., Gdaniec,
C., Grishman, R., Harrison, P., Hindle, D.,
Ingria, R., Jelinek, F., Klavans, J., Liberman,
M., Marcus, M., Roukos, S., Santorini, B.,
& Strzalkowski, T. (1991). A procedure for
quantitatively comparing the syntactic cover-
age of English grammars. In Proceedings of
the 4th DARPA speech and natural language
workshop. Pacific Grove, CA: Morgan Kauf-

mann.

Black, E., Garside, R., & Leech, G. (Eds.).
(1993). Statistically-driven computer gram-
mars of FEnglish. The IBM - Lancaster
approach. Amsterdam, The Netherlands:
Rodopi.

Briscoe, E., & Carroll, J. (1993). Generalised
probabilistic LR parsing of natural language

11

(corpora) with unification-based grammars.
Computational Linguistics, 19 (1), 25— 60.

Butt, M., King, T. H., Nino, M.-E., & Segond,
F. (1999). A grammar writer’s cookbook.
Stanford, CA: CSLI Publications.

Calder, J. (1993). Graphical interaction with
constraint-based grammars. In Proceedings of
the 3rd Pacific Rim Conference on Computa-

tional Linguistics (pp. 160—-169). Vancouver,
BC.

Carroll, J. (1994). Relating complexity to
practical performance in parsing with wide-
coverage unification grammars. In Proceed-
ings of the 32nd Meeting of the Associa-
tion for Computational Linguistics (pp. 287 —
294). Las Cruces, NM.

Carroll, J., Briscoe, E., & Sanfilippo, A. (1998).
Parser evaluation: a survey and a new pro-
posal. In Proceedings of the 1st International
Conference on Language Resources and Eval-
uation (pp. 447—-454). Granada, Spain.

Flickinger, D., Oepen, S., Tsujii, J., & Uszko-
reit, H. (Eds.). (2000). Journal of Natural
Language Engineering. Special Issue on Ef-
ficient processing with HPSG: Methods, sys-
tems, evaluation. Cambridge, UK: Cam-
bridge University Press. (in press)

Flickinger, D. P., & Sag, I. A. (1998). Linguistic
Grammars Online. A multi-purpose broad-
coverage computational grammar of English.
In CSLI Bulletin 1999 (pp. 64—68). Stanford,
CA: CSLI Publications.

Grisham, R., Macleod, C., & Sterling, J. (1992).
Evaluating parsing strategies using standard-
ized parse files. In Proceedings of the 3rd
ACL Conference on Applied Natural Lan-
guage Processing (pp. 156-161). Trento,
Ttaly.

Grover, C., Carroll, J., & Briscoe, E. (1993).
The Alvey Natural Language Tools grammar
(4th release) (Technical Report No. 284).
University of Cambridge: Computer Labora-
tory.

Karlsson, F., Voutilainen, A., Heikkild, J., &
Anttila, A. (1995). Constraint grammar: a
language-independent system for parsing un-
restricted text. Berlin, Germany: Mouton de
Gruyter.

Lehmann, S., Oepen, S., Regnier-Prost, S., Net-
ter, K., Lux, V., Klein, J., Falkedal, K.,
Fouvry, F., Estival, D., Dauphin, E., Com-
pagnion, H., Baur, J., Balkan, L., & Arnold,
D. (1996). TSNLP — Test Suites for Nat-
ural Language Processing. In Proceedings of
the 16th International Conference on Compu-
tational Linguistics (pp. 711-716). Kopen-
hagen, Denmark.

Lin, D. (1995). A dependency-based method
for evaluating broad-coverage parsers. In Pro-
ceedings of the 14th International Joint Con-
ference on Artificial Intelligence (pp. 1420-
1425). Montreal, Canada.

Maxwell ITI, J. T., & Kaplan, R. M. (1993). The
interface between phrasal and functional con-

straints. Computational Linguistics, 19 (4),
571-590.

Moore, R. (2000). Improved left-corner chart
parsing for large context-free grammars. In
Proceedings of the 6th International Work-
shop on Parsing Technologies (pp. 171-182).
Trento, Italy.

Moore, R., & Dowding, J. (1991). Efficient
bottom-up parsing. In DARPA Speech and
Natural Language Workshop (pp. 200-203).
Asilomar, CA.

van Noord, G. (1997). An efficient implementa-
tion of the head-corner parser. Computational
Linguistics, 23 (3), 425—456.

van Noord, G., & Bouma, G. (1997). Hdrug.
A flexible and extendible development envi-
ronment for natural language processing. In
Proceedings of the Workshop on Computa-
tional Environments for Grammar Develop-
ment and Linguistic Engineering (pp. 91—
98). Madrid, Spain.

Oepen, S., & Carroll, J. (2000). Performance
profiling for parser engineering. Natural Lan-
guage Engineering, 6 (1) (Special Issue on Ef-
ficient Processing with HPSG), 81-97.

Oepen, S., & Flickinger, D. P. (1998). To-
wards systematic grammar profiling. Test
suite technology ten years after. Journal of
Computer Speech and Language, 12 (4) (Spe-
cial Issue on Evaluation), 411 —436.

Oepen, S., Netter, K., & Klein, J. (1997).
TSNLP — Test Suites for Natural Language
Processing. In J. Nerbonne (Ed.), Linguistic

12

Databases (pp. 13-36). Stanford, CA: CSLI
Publications.

Samuelsson, C., & Rayner, M. (1991). Quanti-
tative evaluation of explanation-based learn-
ing as an optimization tool for a large-scale
natural language system. In Proceedings of
the 12th International Joint Conference on
Artificial Intelligence (pp. 609—615). Sydney,
Australia.

Sarkar, A. (2000). Practical experiments in
parsing using tree adjoining grammars. In
oth international workshop on tree adjoining
grammars and related formalisms (pp. 193—
198). Paris France.

Sleator, D., & Temperley, D. (1993). Parsing
English with a link grammar. In Proceedings
of the 3rd International Workshop on Pars-
ing Technologies (pp. 277-292). Tilburg, The
Netherlands.

Tomita, M. (1987). An efficient augmented-
context-free parsing algorithm. Computa-
tional Linguistics, 13 (1), 31-46.

XTAG Group (1995). A lezicalized tree ad-
joining grammar for english (Tech. Rep. No.
IRCS Report 95-03). The Institute for Re-
search in Cognitive Science, University of
Pennsylvania.

Precompilation of HPSG in ALE into a CFG For Fast Parsing

JohnC. Brown
INVU ServicesLtd.,
Blisworth Hill Farm,
Stoke Road,
Blisworth, UK, NN7 3DB
johrbrown@research.softnet.co.uk

Abstract

Context free grammars parse faster than TFS
grammars, but have disadvantages. On ou test
TFSgrammar, precompilationinto CFG results
in a speedup d 16 times for parsing without
taking into acount additional mecdanisms for
incressing parsing efficiency. A formal
overview is given of precmpilation and
parsing. Modifications to ALE rules permit a
closure over the rules from the lexicon, and
analysis leading to a fast treatment of semantic
structure. The closure dgorithm, and retrieval
of full semantic structure are described.

I ntroduction

Heal Driven Phrase Structure Grammar
(HPSG), Pollard and Sag (199) is expressd
in Typed Feature Structures (TFSs). Context
Free Grammar (CFG) without features
suppats much faster parsing, bu a TFS
grammar has many advantages. Fast parsing
can be obtained by precompiling a CFG
approximation, with TFSs converted into CF
nea-equivalents. CFG parsing eliminates
impaosshble trees, and TFS unification over the
remainder eliminates more, and instantiates
path values. Our method treats dashes
separately in a precompil ed table, and careful
dlocation o caegories to TFSs makes TFS
unification umecessry: instead skeleton
semantic structures are formed in parsing, and
full structures retrieved afterwards.

A prototype precompiler and fast parserl
were built in Prolog, and tested with an HPSG
grammar of English by Matheson (1996),

1 Downloadable code on
http://www.cs.york.acuk/~johnbor
http://www.soft.net.uk/reseach/hsppar.htm .

Suresh Manandhar

Department of Computer Science

University of York,
York, UK, YO1 5DD
Suresh@cs.york.acuk

written in the ALE formalism, by Carpenter
and Penn (1996). This has the 6 schemas and 5
principles of HPSG, with 184 lexemes.

A complex sentence,” kim can believe sandy
can expect sandy to persuade Km to promise
sandy to try to expect sandy to persuade kimto
promise kim to give sandy a hagpy happy
bodk”, parsed in 33s. with retrieval, 5.6 times
faster than with TFSs, Brown and Manandhar
(2000). An 11 word sentence was 18 times
faster at 87ms., or 16times counting retrieval.

1 Relationship to Work Elsewhere

In precompilation, Torisawa €. al. (2000)
repeatedly applied rules leading to maximal
projedions from lexica heads, allocating
caegories to mothers and norrthead daughters.
Our approach allocates categories in a closure
over the rules starting with the lexicon, as in
Kiefer and Krieger (2000. We differ from
baoth these in that the CFG grammar equates to
the TFS grammar, acceting exactly the same
strings: a CFG parse tree trandates into a TFS
tree with noloss of nodes.

We precompiled 550 CF categories and
18,000rules in 1 hair on a 280MHz. Pentium
II. This compares to 5,5@ categories and
2,200,000rules from 11,000 lexemes in 45
hous by Kiefer and Krieger on a 300MHz.
Sun Ultrasparc 2, where sets of TFSs in the
closure ae replaced by common most-general
unifiers. The cmmon uwifier technique was
used to add a CFG back-bone to a unification
grammar by Carroll (199). An np has the
same number, person and gender features
irrespedive of an optional specifier and
multiple ajectives. A lexicad vp, partialy
saturated vp and sentence @ntain decreasing
subcategorisation data. Therefore numbers of
phrasal and lexical categories are mmparable,

even with exact CF representation. Since this
eliminates Kiefer and Krieger's annotation
with values of reevant paths, large rule
numbers are moretolerable.

Our parsing speed-ups are mwmparable with
Kentaro Torisawa's geed-ups of between 47
and 4 in C++ with arrays to store rules and
edges, ona 300MHz. Sun Ultrasparc. We used
Prolog withou constant-time acces arrays,
with clauses hash-indexed on just the first
argument. Global data structures for edgesin a
chart necessitate dynamic dauses with heavy
asrtion costs: when referenced, all arguments
are treated before matching any against
precompiled tables. Treestructured tables are
inefficient, using either one clause per arc with
heavy invocation costs, or arguments of nested
structures, copied on clause invocaion. From
full instrumentation reveaing bottleneds, we
predict a further speed-up d 10 times, using
ideal global data structuresin imperative ade.

2 Formal View of Precompilation and
Parsing

Our CF and TFS grammars are eguivalent
for two reasons. First, in CF category
alocation, TFSs in the list reached by
NONLOCAL: INHERITED: SLASH are
alocated separate categories and are otherwise
ignored. The filler-head schema unifies a list
member with a TFS from the first daughter, so
a precompiled table can predict the outcome
during CF parsing. This avoids over-generation
of categories formed by alternative slash TFSs
in multiple phrasal TFSs arising in long-range
dependencies. Seaond, athough semantic sub-
structure (also containing word morphdogy) is
omitted in category allocation, its index
structure may be cnsidered depending on the
HEAD value. This makes CFG caegories
maximally selective. The now unnecessary
TFS unification over the CFG parse tree is
replaced by semantic TFS retrieval from
skeleton structures in constituents.

The method treats grammar rules where
mother and daughters each comprise a TFS,
expressed as conjoined constraints :

TFS - TFS... TFS, (@)
wherea TFSisgiven by:

1<

(TFS) -
(FS) -
{

value) -

(FS)| (type) & (FS) | (type)
(path):(value) | (FS) & (FS)
(TFS)| (variable) & (TFS)

(path) - (feature)| (feature):(path) (2)
The value following a feature in a TFS of a
particular type is a sub-type of that given by an
appropriateness function Approp:TxF - T
where F and T denate finite sets of feature
symbols and types. T is organised into a
subsumption hierarchy with asinglerocot bot.

The grammar may either be lexicaist, or
have alarge number of specialised rules. Each
TFSis well-formed, containing no feature not
appropriate to its type: it is not totally well-
formed with al appropriate features present.
TFS unification involves type-coercion which
also ocaurs in constraint applicaionto a TFS
for example of feature:valuein a rule. Where
aTFS of type t; does not contain feature, it is
coerced into the most genera sub-type t, of t;
for which Approp(t,, feature) is defined.

An integer T,, correspording to a CFG
caegory, is alocated in our precompil ation to
ead unique lexicd TFS, ignoring nested
TFSs encoding slashes and semantics, so that
T, = retrieve ™ (omit(slash: v,

re—introduce(indexv2, (3)

omit(semantics: v3,TFS))))
where dash, semantics and index are paths and
V1, v2 and v3 are values. Implementation is
by matching against a discrimination tree
which is traversed in correspondance with
TFS, from which types are ignored in a
subtree reached by path where
omit(path:v, TFS) applies and considered

where re-introduce(path:v, TFS) applies.

Where correspording types from TFS and the
tree ae urnequal, a new branch is grown,
terminating with a new T,: this mechanism
ensures eadh terminal is marked. Because -
indexing by syntadic paths in a rule (Section
5) unifies index thisisre-introduced in an np
and in a category that unifies with an np to
form an np. The function in (3) is an example

of a restrictor, Shieber (1985), although here
we shal show that it does not lead to any
approximationin parsing.

Precompil ation enerates multiple
instantiations of each rule (1), paired with
equivalent CFG rules, stored in atuple:

(T - ... T,) . rule- name) (4)
Each represents the pair-wise unification of
some TFS, ... TFS, with a sequence of TFSs
where eadh is either lexical, like TFS, or

derives from some rule instantiation, like
TFS,. For eadch sequence T,...T, of

caegories derivable from such instantiations,
using the discrimination tree, only the first
corresponding instantiation encountered is
treated, sSince dl generate the same T, .

By these means the closure bemmes a
bounced operation. This approach is valid
since dashes are treaed separately during
parsing, and as in GPSG, Gazdar et. a. (1985),
no plrase aceptable on syntactic grounds is
then rgjected on semantic grounds.

The CFG rules (4) are treated by a parser
with a chart containing constituents :

(start, end, T, sem ,slashes) and

(start, end, T,, semy, Slashes,) (5)
The latter requires a CFG rule Ty - T,...T,
and conseautive @nstituents:

(starty, end,, T,,sem;, slashes,)
--+(start,, end,, T,, sem,, slashes,)
whereforj >1, start; =end,_,

Slashes are treaed by precompiling a table
with entries (T,, T) where T, represents T, or
To, and T is the category assigned to a Slash
taken from a lexicd TFS and where
retrieve(T,) unifies with retrievdT)
prefixed by SYNSEM : LOC . Where in (4)
rule—name= filler —head, (5) isformed only
if (T, T)*(T,=T,, T=T, Oslashes)) (6)
This mimics the operation of the filler —head
schema. Inthiscase, in (5),
slashes, = slashes, O slashes, - {T,, }

whereas with other schemas{T,}=0 : this
mimics the operation of the non-local-feature

L¢

principle. The CFG grammar generated by this
method acaepts the same strings as the HPSG
grammar and daes not just approximateit.

The semantic comporent sem, represents a

TFS, identical to sem, in that sub-constituent

known as the semantic head, according to the
semartics principle of HPSG, except that some
paths are @-indexed with pathsin the semantic
comporents of the other sub-constituents:

semy, = f(sem,..., sem,) (7)
To reduce copying overheals and eliminate
TFSunification, sem, isencoded in a skeleton
form, which is a Prolog structure:

s _n(sem_type,,[Py..... Pu)) (8)
The type sem_type, is not equa to T,, andis
the category of the lexical source of sem,
which is a transitive semantic head of the
corresponding TFS,. For example, the
sentence TFS contains a semantic componrent
that derives from the head verb. In parsing,
P, 1<k <m is boundto the unique identifier
of the sub-constituent containing a path that
must be @-indexed with a path insem, . In the

prototype parser this path is the kth. one during
atraversal of sem, in the lexical source, that is

foundto be co-indexed with a syntactic path,
that is in turn found to be prefixed by a path
co-indexed between the rrespording
daughters of the origina rule (1) forming
TFS, (see Section 5).

At retrieval time,

sem= sen{sem_type,[p,, ... P.]) (©
where this indicates the semantic sub-structure
in retrieve(sem type), with the addition
that each path for co-indexing associated with
1<k <m is co-indexed with the appropriate
path in the TFS given
bysem(sem_type,, [p,,....p]), (20
from the p, th. sub-constituent. A retrieval
graphis compiled at category alocation time
to support retrieve. Currently the semantic

details of the slash are not recovered: sentences
with dashes are acepted identically to ALE.

3 Modification of ALE rules

Figure 1 is the head-subject-complement
schema in the ALE formalism. Figure 2 shows
sedions of the single Prolog clause mntaining
57 goals in 61 lines including the head,
produced when ALE compiles the schema
This is invoked by the ALE chart parser after
choasing the first of a speculative elge
sequence. Its TFSis the structure Svs, which
resembles (2): the functor represents the type,
and each argument is a value from a
(feature: value) pair. The feature is retrieved
by successive instantiations of an ALE clause
compil ed from the grammar definition:
approps(+type, (-approp_feature:

-approp_type)) (10)

(phrase,Mother,synsem:loc: (cat)
:(spr:[],subj:[],comps:[])) M
=_-==>
ca> word,HeadDtr,synsem:loc: (cat):
(head:inv:plus,
spr:Sg,
subj: [Suoj Synsen],
comps. CompSynsems)), D1
goal> (list_sign to_synsem(CompDtrs,
CompSynsems)), P1
ca> (SulDtr), D2
goal> (sign_to_synsem(SulDtr,

Subj Synsem)), P2
cas> (CompDtrs,ne list), D3
goal> head feature principle(Mother,

HeadDtr), P3
semantics_principle(Mother,HeadDtr), P4
marking_principle(Mother,HeadDtr), P5
nanlocal_feature principle(Mother,

HeadDtr,[SubjDtr|CompDtrg])). P6

Figure1: TheHead_subject_complement
Schemafrom HPSG

Goalstreda a TFSin a structure Tag-SVs, to
allow type-coercion during unification into a
sub-type, posshly suppating additional (never
fewer) features. Tag, originally unbound,is
then boundto a new copy: argument values are
appropriate types (10) for new features, and
unchanged for existing ones. Goa 21
references the second edge in the sequence
corresponding to D2 of the original schema.

rule(Tag, S/s, Igs, Sart, End,Edge no) :-- 1
add_to_type word(Tag-SVs, Igs, Igs_out0), 2
udA-bat, Tag-SVs, Igs ou0, Igs outl), 3
featval_synsem(Tag-SVs, FS2,lgs ouitl,

lgs_ou?2), 4

featval_inv(FS5,FS6,lgs out5, Igs_out6), 8
add_to_type plus(FS6,lgs out6, Igs_out7), 9
featval_subj(FS4,FS7,1gs_out7, Igs_out8),10
featval_hd(FS7,Tag2-Svs2, Igs_out8,
lgs out9), 11
udB-bat, Tag2-Svs2, Igs_out9,
lgs_outl0), 12
featval tI(FS7FS8Igs outl0, Igs outll), 13
add _to _type e list(FS8§ Igs oull,
lgs_outl2), 14
featval_comps(FS4 Tag3-SVs3, Igs outl2,
lgs outl3), 15
udC-bot, Tag3-Svs3, Igs_out13,
Igs_outl14), 16

udD-bot, E-bat, Igs_out15,1gs_outl6), 18
udC-bot, F-bot, 1gs_out16,Igs outl7), 19
solve(list_sign to_synsem(E-boat,F-bot),[],
Igs outl?7,lgs outl8), 20
edge(Edge_noB,End EndB,TagB,SVsB,
IgsB,DaughtsB,RuleB), 21

deref(l, bot, Tag4, S/sList), 31
SvsList=..[Type] MemList], 32
match_list_rest(Type,MemList,EndB,
EndEdges,Edge ncs,[],Igs_out27,
lgs_out28), 33

solve(head feature principle(K-bat,L-bot),46
[semantics_principle(M-bot,N-bot), 47
mar king_principle(O-bot,P-bot), 48
nanlocal_feature principle(Q-bat,R-bot,
Sbot)], Igs_out40,1gs_out41), 49
add_to_type phrase(Z-bot, Igs_out41,
lgs out42), 50

add edge deref(Sart EndEdges.Z,bat,
Igs_ou52[Edge noEdge ndB|Edge nog,
head subject_complement). 61

Figure 2: The Head-subject-complement
Schema after Compilation by ALE

Goa 33 correspording to D3 references the
remaining edges. their number equas the

number in the comps list of the sub-constituent
unifying with the head daughter D1. Goal 61
creates the ege of the new phrase and
corresponds to the mother M. Goa 20, and
lines 46 to 49 forming one goal, are
invocations of ALE procedures, corresponding
to P1, and P3to P6. Apart from thefirst, these
lines invoke HPSG principles.

ALE suppats inequalities which HPSG
does not use, here in lists with names of the
form Igs *: the output from one goal is input
to the next, and edges contribute new lists for
concatenation. The following three goals
enforce @nstraints in the schema:

udTagl-Svsl, Tag2-Svs2, Igs in, Igs_out),

featval_FEAT(FS. in, FS,Igs_in, Igs_out),

add to_type TYPE(FS.in, Igs_in, Igs_out)
The first invokes a genera purpose procedure
for full-scde unification of the TFSsin its first
two arguments. Often this just generates a @-
indexing variable for reference elsewhere: Ain
goal 3 correspords to HeadDtr in D1. Ais an
unboundTag and bat is the most genera type
in the hierarchy: ud makes A reference Tag-
Svs. If SVs beaomes aibjed to type coercion,
A references the new structure through Tag.

The secondreturnsin FSthe value of FEAT
from FS_in, type-coercing this when FEAT is
not appropriate. The ald to TYPE goa
obtains the cmmon sub-type of TY PE and the
type of FS in, which is coerced to adopt this
sub-type: the procedure is precompiled from
the type hierarchy. Goals 4 to 9 we
featval FEAT and add to type TYPE to
enforce a(path: value) constraint in the first
line of D1. Goals 10 to 16 treda three other
constraints in D1: two of the values are @-
indexing variables. For conciseness, the figure
omits sich goals after the first edge reference.
Goals 31 and 32 extrad the list of synsem
structures CompDtrs, returned by the ALE
procedure list_sign_to_synsem: the list derives
from the value of the list CompSynsems.

Goal 50 coercestheinitia type of Z-bot, the
new constituent, to phrase as required in M.
Then urshown gaals constrain paths in this
TFS acording to the (path: value) constraints
in M. Goal 61 invokes a procedure that asserts
a new edge ntaining this coerced TFS
referenced by Z, between positions Sart, and
EndEdges from the last edge of goal 33. The

new edge mntains a list of edge identifiers in
the sequence, and the schema name, from the
last two arguments.

The schema of Figure 2 is extended by our
preacmpiler, to generate the tuples in a closure
and details of co-indexing in order to guide
semantics treatment. The modified goals are
shown in Figure 3: clause modification is
eaier than modifying the complex compil er
code in ALE, and the compil ed schema dready
invokes ALE procedures appropriately.

During the dosure, procedures invoked by
goals 21 and 33must constrain rule gopli cation
so each sequence of edges is treated just once
by eadt rule. Prolog becktradking cannot be
atered to achieve this, and the alge and
match list rest goals are modified. A list of
identifiers of edges aready invoked is passed
between instances of these goals.

Detection of co-indexing requires aacessto
the TFSin eadh sub-constituent after constraint
application, and to the new TFS inside
add_edge deref before alge assertion, when
co-indexing information is lost in copying.
Since eab schema is applied without
badktracking to a single sequence of edges
ead containing Tag-Bot, the list of sub-
constituent TFSs can be returned through the
head of therule: the new TFS Z-bot appears as
two arguments of the last goal.

rulejcb(Tag,SVs,lgs,Sart,End Edge no,
- [Tag-SVs, TagB-SVsB,MenLigt],
- Z-bat, + Edge _countA,
- head_subject_complement, + Edges in,
-Edges_outC):- 1
edgejcb(Edge_noB,SartB,EndB,TagB,SvsB,
IgsB,DaughtsB,RuleB,Edge _countA,
Edge_countB, Edges in, Edges outB), 21
match_list_restjcb(Type,MemList,EndB,
EndEdges,Edge nas,[],1gs_out27,
lgs_out28Edge countB, Edge countC,
Edges_outB, Edges ouC), 33
replace add edge deref(Sart, EndEdges,
Z, bot, Igs_out52,
[Edge no,Edge nadB | Edge nog|,
head_subject_complement) 61

Figure 3: TheHead_subject_complement
Schema after Further Compilation

The extra agument 7 o rulgicb is alist of
sub-constituent TFSs after constraint
application. Z-bot is the new TFS
Edge_countA is an initia count of 1 of the
edges encountered so far. Remaining
arguments are the rule name, and lists of edge
identifiers before and after rule goplication.

Goa 21 invokes a new clause that invokes
edge, and adds 1 to Edge countA to form
Edge_countB. The edge number, Edge nadB, is
added to the head of Edges in, to form
Edges out. Goa 33 invokes a reaursive clause
which simil arly treas elements of MemList.

Goa 61 invokes a new procedure without
additional arguments, to assgn T, to the new

TFS, Z-bot, using the discrimination tree and
to assert a tuple (4). If T, is new, a fully

dereferenced Z-bot is added to the retrieval
graph, and a new edge asserted with the
retrieved TFS Another aswerted clause
asociates T, with the edge number: similar

clauses were asserted in lexicd edge credion.
They are referenced in tuple formation, from
edge numbersin argument 6.

For debugging, an asserted clause ontains
the string deriving a tuple, structured into sub-
phrases using bradets. Only the first sub-
phrase deriving ead category is used, to
restrict numbers. Even so, this permitted the
detection of over-generation arising from
ungrammaticd strings. This arose from the
verbs is, can, be, sean, and the infinitival to
not specifying their subject beyond co-
indexing it with the subject of ther
complement, which is variousdy ancther
(sometimes infinitival) verb o a predicate.
This allowed generation of infinite sequences
like “Xisis..” where X is any phrase. It was
cured by hand-spedfying ead subject as np.
Complements were similarly treated for
believe and expect. An automatic approach
would propagate possible subjeds, including
alternatives to np in a larger grammar, from
the complement into the outer verb.

To alow for large numbers of phrasa
edges, edges optionally have unbound SVs
arguments which are boundusing the retrieval
graph when referenced With over-generation
cured, only 18,000 tuples were generated, and
the facility was unused.

L¢

4 TheClosure Algorithm

Using the TFS of eadch lexeme, an edge is
asserted with an identifier between Bottom and
Last free edge number-1: Sart and End are
unbound so every sequence of edges is
considered by rulgjch. Then the agorithm of
Figure 4 is exeauted. On ead recursive
invocdion, numbered in argument threeg
repeat_apply makes a pass over these edges
and rew edges generated in previous
invocations. The first unused identifier after a
passis asserted in last_free edge number, and
when this is unchanged after a pass in which
no edges were asserted, termination occurs.

The first edge in a sequence is slected by
apply_schemas to_a first_ edges N is the
identifier which is incremented on each
reaurson between Bottom and End. If
SVsin an edge is unbound,it is re-formed from
the retrieval graph by add _SV's to_edge.

Selection of the remaining edges in a
sequence occurs nondeterministically within
the compiled grammar rules. These ae
invoked by try all_rules which references
rulenames, previously asserted to identify all
rules in a list. It invokes try _all_rules/4 to
reaurse through the list, eat time invoking
try al edges insde a negation, since a
failure-driven loop treds multiple ealge
sequences by invoking the nondeterministic
rulgjich. The TFS of the first edge gpeas in
the first two arguments: its identifier N appears
aoreandasthefirstin alist of edge identifiers
for the sequence, completed inside rulgjcb.

To minimise compilation time, eah
sequence must be treated once by each rule.
Sequences unpredictably contain 2 or 3 edges,
and a first edge E1 can combine with edges
created by sequences of edges treated after E1.
No edge can ever be discarded as a andidate
for any daughter in any rule. Sequences are too
numerous to record by asserting clauses to be
referenced before rule gplication.

The chosen solution is straightforward and
fairly efficient. On ead pass of repeat_apply, a
range of aceptable edge identifiers is
established. Four global variables holding
identifiers, Bottom, Top, End and
Last free edge number are asserted in clauses
battom, top, end and last_free edge_number

respedively. The first three are ajusted in
repeat_apply, whilst the last is incremented in
replace_add edge deref on edge assertion.

On any pass edges with N>End are
aserted, and apply_schemas to a first_edge
treats first edges between Bottom and End. At
the end d a pass Top is set equa to End and
End is then set to Last free edge number-1:
before the first pass Topis set to Bottom— 1

repeat_apply(Bottom,Last free edge number,
Pass no):-

end(End),
apply_schemas to_a first_edge(Bottom,End),
last_free edge number(Last_free edge no2),
End2isLast_free edge number2 — 1,
retractall(end()),as<ert(end(End?2),
Pass no ouisPass ho+ 1,
(', ((not(Last_free edge number = =

Last_free edge number?2))

->
(repeat_apply(Bottom,Last_free edge no2,
Pass no_ait),!)
;true
).
apply_schemas to_a first_edge(N,L):-
edge(N,Sart,End,Tag, S/s, Igs, Dtrs,
Rule_name),!,
(var(Svs) -> add_SVs to_edge(N,Tag,S/s)
; true),
try_all_rules(Tag,S/s,N),!,
New NisN+ 1,
(not(New_N> L) ->
(apply_schemas to_a first_edge(New_N,L))
; true).
try_all_rules(Tag,SVs,N):-
rulenames(Rulenames),
try_all_rules(Tag, S/s,N,Rulenames).
try_all_rules(Tag,SVs,N,

[Rulename|Rulenames]):-
na(try_all_edges(Tag, SVs,N,Rulename)),
try_all_rules(Tag, S/s,N,Rulenames),!.

try_all_edges(Tag, S/s,N,Rulename):-
rulgicb(Tag, Svs, [], _,_, N, Daughters,
Mother,1 Rulename,[N],D2),
fail.

Figure 4: Algorithm for Tuple Generation

L¢

Consequently, edges between Top+1 and End
were aways creaed during the last pass:
initially thisisthe set of lexical edges.

In edgejcb and match_list_restjch, an edge
identified by d2 or d3 depending on paitionin
a sequence, has its SVs unified with the rule
daughter if a following test succeeds. Test 1
succeeds if d1 was created onthe previous pass
(or as a lexica edge, for pass 1), and d2 (and
d3for a 3-daughter sequence), were aeated on
any pass (including lexemes) up to and
including the last. The d1 restriction prevents
treatment on multiple passes. If Test 1 fails,
Test 2 succedls if d2 is newly created onthe
previous pass, and d1, (and d3), were created
on any pass (including lexemes) up to and
including the last. If this fails, Test 3 is passed
if d1and d2 were aeated onany passupto bu
nat including the last pass, and if the same rule
successfully treated them ealier as the start of
a 3-edge sequence

By delaying combination d a new edge into
a sequence, urtil the pass after its creaion, we
avoid arepeat passto catch the ase where the
other edges do nd yet exist at creation time.
Overal this necessitates < 1 extra, low cost
pass HPSG diminates squences mainly by
constraints between daughters, avoided on this
extra passby trivial arithmetic comparisons in

O((End - Top) x (End - Bottom)) whilst the

unavoidable O(End -Top) costs of first-

daughter unificaion are small

Test 3 treats a new d3, with old d1 and d2,
one of which must have been new on an earlier
pass when it was treated under Test 1 or 2.
Sinced3is apotential complement of either d1
or d2, some sequence[dl1, d2,d3] was treated
ealier, even if d3' failed unfication; at that
time treated_edges before(Rulename, [d1,d2])
was asserted. Unification of d2in [d1, d2,d3]
takes place (on repeded passes) only if this
aserted edge is found. Succesgul unifications
will be repeated, but the closure on our test
grammar has only 7 passes, and in
badtracking only one [d1, d2] unification
takes placefor all [d1, d2,d3].

SYNSEM

Daughter 2

SYNSEM LOCAL

CONTENT
Daughter 1
(Semantic head)

CONTENT Rule

SYNSEM LOCAL

Mother

5 Treatment of Semantic Structures

In a congtituent, the @-indexing of pathsin a
copy of the semantic sub-structure of a
semantic head was explained in (7) to (10).
Figue 5 illustrates this for the head-
complement schema.. In the verb (the semantic
head), the semantic and syntactic paths Pm
and Ps co-index at the variable Ind2, where :
Pm=SYNSEM: LOCAL: CONTENT:
NUCLEUS: LIKEE and
Ps= SYNSEM: LOCAL: CATEGORY::
COMPS HD: LOCAL: CONTENT: INDEX
The rule co-indexes a pair of syntactic pathsin
head and nonhead daughters:
Ph= SYNSEM: LOCAL: CATEGORY:
COMPS HD and
Pnh= SYNSEM
Since the mncatenation (Ph : Psuffix) = Ps
where Psuffix = LOCAL: CONTENT: INDEX,
then the TFSreached by Pmin the head unifies
with that reached by (Pnh: Psuffix) in the other
sub-congtituent. The index structure reached by
INDEX has a dua role in an np: as well as
appearing in the semantic structure of the

index

Sub-constituent 2
(an np, e.g. 'bus’))

CONTENT

LIKEE

index
Semantic Head Sub-constituent
(like")
Figure5: Application of Head-Complement Schema to an Edge Sequence

phrase, it also tests syntactic agreement of its
number, person and gender fedures via @-
indexing in the rule. It was therefore
considered in category allocation.

Analysis involves applying each grammar
rule to a sequence of Tagbot structures. In
these, the Tag of each co-indexed node is
boundto a 3-digit integer xyy, where yy and x
are ordinas identifying the a-indexed nockin
the rule, and the first daughter with a path to
that node. The head daughter is distinguished
since its path SYNSEM: LOCAL: CONTENT
co-indexes with that path in the mother. This
leadsto <Ph, Pnh> pairs, each identified by an
integer Path_nq, for ead rule. For each pair in
eaqi rue a clause is assrted:
rule_paths(Rulename, Path_no, _, Daught_no)
where Daught_no locates Pnh.

Each lexeme that a tuple (4) shows to be
unifiable with the head daughter of some rule,
istreated to detect 3-tuples of the form:
< Indn, Path_no, Siffix_no > according to the
mechanism ill ustrated in the example @ove:
Sufix_no identifies a single Psuffix path. A
skeleton semantic structure (8) is derived,

where each p, argument corresponds to a 3-

tuple, ordered as Indn nodes are encountered in
a TFS traversal. Path_ro fields appear in the
same order in an asserted clause
r_n(cat, Paths) where cat is T, alocated to the

lexeme. During constituent construction in
CFG parsing, Daught_no of the sub
constituent is known, and Rulename is deduced
from the tuple (4), so r_n and rule_paths
identify the p, argument in (8) to bind to the

edge identifier of the sub-constituent.

Retrieval graph arcs leading to nades like
Ind2are marked by asserted clauses:

arc to retrieval_tag2(+Current_arc_no,

+Category, _, -Path_ro, -Suffix_no).

For each posdble <Path_no, $iffix_no> pair
generating (Pnh Psuffix), this path is
speadlatively followed in the retrieval graph
for each lexeme to identify anode and assert:

find_type node_compil ed(+Path_no,

+Category, + Quffix_no,
-Type_node no, -Arc_no_in).

When retrieving the TFS, of a CFG
constituent from the retrieval graph, ace the
semantic path semantics from (3) is
encountered, the sem_type, of (8) is treated,
starting at the node reachable by semantics.
Where an arc number matches that in an
arc_to_retrieval_tag2 clause, Path_no and
Sufix_no are used to address
find type nade compiled. Category here
derives from sem_type,, from (10), being the

caegory of the semantic skeleton in a sub-
constituent identified by the appropriate p, in
(8): the ordering ensures that successive acs
matching arc _to retrieval _tag2 clauses
correspond corredly with conseautive p,

arguments. The arc in the TFS beng
constructed is redirected to a opy of the
indicated node, and traversal of the retrieval
graph continues from that node. Arc_no_in is
used reaursively with arc_to_retrieval _tag2 to
detect if the target type-node should itself be
replaced by a noce derived from a further sub-
constituent.

This technique also properly treats the
head-subject-complement, subject-head and
adjunct-headrules. In thislast case the RESTR
set of identifiers for the nounand adjectives is

21

properly constructed. This st is nat accessible
from the semantic TFS of the sentence since
the grammar (probably incorrectly) co-indexes
the Indn of the verb with the node reached by
INDEX in the np, rather than with that from
which the INDEX and RESTR arcs emerge.
The specifier-head rule uses a diff erent form of
co-indexing which we have nat yet treated:
appropriate semantic structures are still
returned for the sample grammar, where no
specifier has a more specific index structure
than any heal np. The unter-example"a
sheqy” which derives its number from the
specifier is nat in the lexicon. Similarly, the
approximation that an arc in the head is
redirected to a node in another sub-constituent
avoids unification o index structures to
properly treat “... heep eat(s)” : such low-cost
unification can easily be added to retrieval.

Our precompiled CFG is an exact
equivalent of the TFS grammar rather than an
approximation, since our restrictor does not
eliminate paths affecting agreement except for
dlash: dashes are treated separately in ou
parsing algorithm, as in CFG. Since the
schemas treated enforce agreament through a
syntadic path in the head, the semantics in the
head can be omitted by the restrictor. This aso
eliminates the major source of TFS expansion
in a closure. The test grammar does nat make
the daughter TFSs of a phrase acessible
except through its mantics, so these ae dso
eliminated from consideration.

The path to the index structure in an np is
co-indexed by the mecdhanism in Figure 5, and
by other schemas, some of which co-index it
with index in another sign combining with np
to produwce np. Thereforeit isre-introduced for
caegory alocation after semantics is excluded
(3). The RESTR comporent is gill excluded: a
linguistic reason is that its value depends on
word morphdogy, whilst syntactic agreement
depends on more general features.

However, no automatic mechanism could
restrict the index tregment as we do. Verbs
like believe, seem, persuade, expect and
promise take avp or an s as complement.
They could potentially spedfy agreement with
the semantic part of avp of varying saturation.
In pradice only the syntactic HEAD of the

complement is constrained, so these verbs
differ from verbs that take np as a subjed. A
linguistic reason is that the semantic structure
of a verb depends on its word morphdogy as
in Figure 5, whilst in an np this dependency
appliesonly to RESTR and ot to INDEX.

An automatic mechanism to generate our
restrictor would necesdtate a closure from a
sample of the lexicon, since only when
syntadic agreement occurs can the need for
semantic agreement be assessed. The linguist
can predict such agreement by inspection, so a
better approach might be to automaticdly
generate diagrams like Figure 5 to guide in the
choice of restrictor. An over-drastic restrictor
bewmes apparent only when a retrieved TFS
from CF parsing does not match the origina
from TFS parsing. Automatic mechanisms for
comparison might be worth investigating.

Automatic mecdhanisms to derive our
treatment of slashes may be possble, since
they are associated with lists that grow during
parsing, na shrink as do subcat, subj or comps
lists. Our test grammar does not maintain
guantifier lists, but their behaviour is in many
ways smilar to that of slashes.

We do not currently retrieve the semantic
structure of dashes. If ead dash is paired with
the edge number of its lexica origin, and
details of dlashes satisfying the filler-head
schema during parsing are indexed by edge
number, then the semantics can be retrieved
from the TFS corresponding to T, in (6), when

the dash is encountered during retrieval.

6 Conclusion

It has proved practica to precompile in an
accetable time arealistic HPSG grammar into
exactly equivalent (neglecting semantics) CFG
caegories andrules, of reasonable number and
compad size, together with a table to control
dash agreement. It was aso possible to
generate data structures for building skeleton
semantic structure and retrieving its full
structure dter parsing, olviating the need for
TFSunification. A Prolog prototype parses 18
times faster, and is estimated to be 180 times
faster in an optimum imperative code solution.
This predicted speed-up would exceed that
obtained with a CFG approximation, where

22

TFSunification must follow CFG parsing. The
kind of co-indexing used in the spedfier-head
schema is not treated in semantic retrieval, but
the method seems extensible to embrace this.

Acknowledgements

This reseach was funded by a legacy from
Miss Nora Brown, and Workshop attendance
funded by INVU. Our thanks to the
anornymous referees and to Mr. Stephan Oepen
for their suggestions, and to Bernd Kiefer and
Kentaro Torisawa for copies of their papers.

References

Brown, J.C. and Manandhar, S. (2000 Compilation
versus Abstract Machines for Fast Parsing o
Typed Feature Sructure Grammars, Future
Generation Computer Systems 16, pp. 771-791

Carpenter, B. and Penn, G. (1996) Compili ng Typed
Attribute-value Logic Grammars, in “Recent
Advances in Parsing Technology”, H.Bunt, M.
Tomita, ed., Kluwer Academic Press Dordredht,
pp. 145-168

Carroll, JA. (1993) Practical Unification-based
Parsing d Natural Language, Technicd Report
No. 314, University of Cambridge Computer
Laboratory.

Gazar, G., Klein, E., Pullum, G., Sag, |. (1985
Generalized Phrase Sructure Gramnar,
Bladkwell, Oxford.

Kiefer, B. and Krieger, H.-U. (2000 A Contex-
Free Approximation o Head-driven Phrase
Structure Grammar, in Procealings of the 6th.
Int. Workshop an Parsing Technologies (IWPT),
Trento, Italy, pp. 135-146.

Matheson, C. (1996 Devdoping HPSG Grammars
in ALE, Course Notes, Human Communications
Reseach Centre, University of Edinburgh.
http://www.Itg.hcrc.ed.acuk/projeds/ledtoos/al
e-hpsg/index.html.

Pollard, C. and Sag, |.A. (1994 Head-Driven
Phrase Sructure Grammar, University of
Chicago Press Chicago.

Shieber, S.C. (1985 Using Restriction to Extend
Parsing Algorithms for Complex Feature Based
Formalisms, in Procealings of the 23rd. Annual
Meding of the Association for Computational
Linguistics, pp. 145152

Torisawa, K., Nishida, K., Miyao,Y ., and Tsujii, J.-
[. (2000) An HPSG Parser with CFG Filtering,
Natural Language Engineaing 6 (2), pp. 1-18.

Time as a Measure of Parsing Efficiency

Robert C. Moore

Microsoft Research

One Microsoft Way
Redmond, Washington 98052, USA

bobmoore@macrosoft.com

Abstract

Charniak and his colleagues have proposed
implementation-independent metrics as a way
of comparing the efficiency of parsing algo-
rithms implemented on different platforms, in
different languages, and with different degrees
of “incidental optimization”. We argue that
there are easily immaginable circumstances in
which their proposed metrics would mask signif-
icant differences in efficiency; we point out that
their data do not, in fact, support the usability
of such metrics for comparing the efficiency of
different algorithms; and we analyze data for a
similar metric to try to quantify the degree of
variation one might expect between such met-
rics and actual parse time. Finally, we propose
a methodology for making cross-platform com-
parisons through the use of reference parser im-
plementations.

1 Introduction

The title “Time as a Measure of Parsing Ef-
ficiency” may seem highly tautologous, since
in computer science “efficiency”, unless other-
wise qualified, is usually taken to mean speed
of execution. However, Charniak and his col-
leagues (Caraballo and Charniak, 1998; Char-
niak, Goldwater, and Johnson, 1998; Blaheta
and Charniak, 1999) have argued for another
metric—edges popped off the agenda of a chart
parser—as being platform independent. Now
Roark and Charniak (2000) propose a related
measure, “events considered”, that is applica-
ble to a wider range of approaches.

The present paper attempts to make the case
for going back to time as the primary mea-
sure of parsing efficiency. First, we explore
some general issues concerning the type of met-
rics proposed by Charniak and his colleagues.
Then we demonstrate using empirical data that

23

implementation-independent measures similar
to that proposed by Charniak can vary in how
well they correlate to execution time by as much
or more than the improvements reported by
Charniak et al. in some of their experiments.
Finally, we propose a methodology for compar-
ing parse times on different platforms, through
the use of reference parser implementations.

2 Implementation-Independent
Parser Metrics

As mentioned above, Charniak and his col-
leagues (Caraballo and Charniak, 1998; Char-
niak, Goldwater, and Johnson, 1998; Blaheta
and Charniak, 1999; Roark and Charniak, 2000)
have argued for implementation-independent
measures of parsing efficiency, including edges
popped off the agenda of a chart parser and,
currently, “events considered”, which is defined
by Roark and Charniak (2000) as “the number
of ‘events’, however they are defined for a par-
ticular parser, for which a probability must be
calculated, in order to find the parse.” It is ar-
gued in these papers that such metrics enable
parsing efficiency to be compared at the algo-
rithmic level without being concerned with the
degree of low-level optimization that has been
performed.

Roark and Charniak have applied the events-
considered metric both to a best-first parser
and to a word-synchronous beam-search-based
parser. These parsers differ in many respects,
but have a number of attributes in common that
bear on the current discussion:

e They both are probabilistic, and seek to
find the parse with the highest probability
according to some model.

e They are both heuristically pruned. That
is, they do not explore all analyses that

have non-zero probability, nor are they
even guaranteed to explore all analyses that
might turn out to have the highest proba-
bility.

They both prune partial analyses on the
basis of a figure of merit that can be viewed
as based on an heuristic estimate of the
expected probability that the full model
would assign to extensions of a given par-
tial analysis.

Within this framework, let us consider some
of the ways that the number of events consid-
ered could fail to correlate with parse time in an
essential way; that is, not based on what Roark
and Charniak refer to as “incidental optimiza-
tions”. First, the full probability models might
take vastly different amounts of time to com-
pute. For example, maximum-entropy, or expo-
nential, models (Berger, Della Pietra, and Dell
Pietra, 1996) are believed by some to hold the
promise of significantly higher accuracy in a va-
riety of tasks than the more conventional, sim-
pler models that Charniak and colleagues have
used. Unfortunately, maximum entropy models
are much more expensive to compute than these
simpler models, if they are normalized to pro-
duce true probability distributions.! Thus if we
compared a parser that used a normalized ex-
ponential model to compute the probability of
exactly the same events that one of Roark’s and
Charniak’s parsers considers, we would expect
to find it much slower than theirs. This might
be a trade-off worth making, if it delivered bet-
ter parsing accuracy, but it would be ludicrous
to claim it was equally efficient, simply because
it considered no more events than Roark’s and
Charniak’s parsers.

Another way that the events-considered met-
ric might fail to correlate with parse time con-
cerns the figure of merit used to prune he search.
The efficacy of pruning is perhaps the most im-
portant determinant of parsing efficiency in the
types of parsers considered by Roark and Char-
niak. The better the figure of merit is as a
predictor of the probability assigned by the full
model to the best extension of a partial analy-
sis, the smaller the number of partial analyses
that need to be extended to find the best full

!Note that Charniak (2000) has also explored unnor-
malized exponential models, which are fast to compute.

24

analysis. It is easy to imagine, however, that
some “better” figure of merit might take more
time to compute than it repays in reducing the
search space. Suppose a there is a sophisticated
figure of merit that allows reducing the number
of events considered by half over a cruder figure
of merit, but it takes so long to compute that it
increases the amount of time per event consid-
ered by a factor of ten. The events-considered
metric will rate the sophisticated figure of merit
as twice as good, even though in reality a parser
that used it would be five times slower. This is a
classic problem in heuristic search and has been
discussed extensively in the literature on com-
puter chess and automatic theorem proving.

3 Empirical Evaluation

The arguments in the preceding section are in
a sense speculative, since they discuss possibil-
ities that might occur, but we have not demon-
strated that they do occur in practice. For that,
empirical evidence is required. At first blush,
Roark and Charniak might seem to have pro-
duced empirical evidence to the contrary, since
they present graphs of impressively linear rela-
tionships between events considered and time.
These linear relationships, however, are demon-
strated only with respect to one parser at a
time, where the only thing that is varied is the
degree of pruning. Thus, although Roark and
Charniak argue for events-considered metric as
a way of comparing very different parsing algo-
rithms, they demonstrate only that it correlates
well with efficiency for essentially identical algo-
rithms, where only a single parameter is varied.

We have recently carried out a series of exper-
iments (Moore, 2000) comparing the efficiency
of several variants of left-corner parsing with a
number of other well-known context-free pars-
ing algorithms. In contrast to the studies of
Charniak et al., these experiments looked at
non-stochastic algorithms, and the comparisons
are made on the basis of exhaustive, rather
than heuristically-pruned, parsing. Thus we
cannot directly apply either Roark and Char-
niak’s events-considered metric, or the earlier
edges-popped-of-the-agenda metric, to our re-
sults. However, the total number of edges in the
chart, which we do have data on, is a very simi-
lar sort of implementation-independent metric,
and is often used informally to judge parser ef-

ficiency. (Arguably, this would be the same as
the edges-popped-of-the-agenda metric, when
parser is allowed to run to exhaustion.)

To evaluate the suitability of using total
number of edges in the chart as an effi-
ciency metric, we will present a selection of
results from our CFG parsing experiments,
including edge statistics not previously pub-
lished. Results for five parsing algorithms
on three different grammars are included.
The parsing algorithms consist of two vari-
ants of left-corner parsing (LC;+BUPM and
LC2+BUPM), an Earley/Graham-Harrison-
Ruzzo parser (E/GHR), a Cocke-Kasami-
Younger parser (CKY), and a generalized LR
parser without look-ahead (GRL(0)). (The
identifiers for these parsers are the ones used in
our earlier report.) It should be mentioned that
all these parsers represent the best of several
implementations of the general approach, and
all parsers are implemented using similar tech-
niques and data structures wherever possible.
Furthermore, all algorithms are implemented in
the same language (Perl5) on the same platform
(Windows 2000, 550 MHz Pentium III). Thus
we believe that the performance differences are
genuinely representative of inherent differences
in the algorithms, and not just irrelevant imple-
mentation details.

The grammars used are independently moti-
vated by analyses of natural-language corpora
or actual applications of natural language pro-
cessing. The CT grammar was compiled into
a CFG from a task-specific unification gram-
mar written for CommandTalk (Moore et al.,
1997), a spoken-language interface to a military
simulation system. The ATIS grammar was ex-
tracted from an internally generated treebank
of the DARPA ATIS3 training sentences. The
PT grammar is Charniak’s PCFG grammar ex-
tracted from the Penn Treebank, with the prob-
abilities omitted. The most significant variation
among the grammars is the degree of ambiguity
of the test sets associated with each grammar.
The CT test set has 5.4 parses/sentence with
the CT grammar, the ATIS test set has 940
parses/sentence with the ATIS grammar, and
the PT test set has 7.2 x 10?7 parses/sentence
with the PT grammar.

Table 1 shows the results of applying these
five parsers to the three grammars and their as-

25

sociated test sets. The first column gives the
average number of chart edges per sentence,
including both complete and incomplete edges
(where incomplete edges are generated). For the
GLR(0) parser, this is equivalent to the num-
ber of edges in the graph-structured stack used
by most implementations of GLR. parsing. The
second column gives the average number of sec-
onds per sentence to parse exhaustively. This
includes only time to populate the chart, and
does not include time to extract parses. The fi-
nal column compares the second column to the
first, to derive an average number of millisec-
onds per chart edge. The more constant this
number is across the different parsers and gram-
mars, the better total edges in the chart will be
as a measure of parser efficiency.

If we look at the last column in detail, we see
that total number of chart edges generated does
have some crude validity as a measure of parsing
efficiency; since the majority of the test cases
fall around 0.1 milliseconds per edge. However,
the variation is fairly large. The two left-corner
parsers make a particularly interesting compar-
ison, because they differ only in a single de-
tail, and produce exactly the same edges. In
these parsers incomplete edges are subjected to
two tests before being added to the chart. The
mother of an incomplete edge has to be a possi-
ble left corner of the next daughter required by
some previous incomplete edge at the appropri-
ate position in the input; furthermore, the next
daughter of the incomplete edge being tested
has to have the next token in the input as a
possible left corner. These tests are indepen-
dent, so they can be performed in either or-
der. In LC;+BUPM the check on the mother is
performed first, and in LCo+BUPM the check
on the next daughter is performed first. These
results show that performing the check on the
mother first is 14% to 68% slower than perform-
ing the check on the next daughter first. This is
a substantial difference that cannot be detected
looking only at the edges added to the chart.

There are several places in the data where
the numbers of chart edges strongly, but incor-
rectly, predict which of two parsers should be
faster on a given grammar. For example, the
LC1+BUPM parser generates only about half
as many edges as the E/GHR parser with the
ATIS grammar, but is nevertheless 35% slower.

Grammar Parser Edges/sent | Sec/sent | msec/edge
CcT LC;+BUPM 165.3 0.0219 0.132
LCo+BUPM 165.3 0.0191 0.116
E/GHR 283.0 0.0448 0.158
CKY 1598.2 0.1540 0.096
GLR(0) 159.0 | 0.0214 0.135
ATIS LC;+BUPM 673.4 0.119 0.177
LC2+BUPM 673.4 0.071 0.105
E/GHR 1276.6 0.088 0.069
CKY 537.3 0.078 0.145
GLR(0) 1282.5 | 0.143 0.112
PT LC;+BUPM 6675.4 1.14 0.171
LC2+BUPM 6675.4 0.90 0.135
E/GHR 11143.9 0.92 0.083
CKY 5785.6 1.70 0.294
GLR(0) 51285.9 28.86 0.563

Table 1: Chart edge and time statistics for CFG parsing algorithms

It is also notable that the CKY and GLR(0)
parsers are not even self-consistent in terms of
time per edge across grammars. They take sub-
stantially more time per edge on the PT gram-
mar than on the other two.

One way to quantify the uncertainty about
the relationship between edges produced and
parse time is to use statistical analysis to es-
timate how many fewer edges one parser has to
produce to be reasonably certain that it is ac-
tually faster than another. We have performed
a crude version of such an analysis on the data
in Table 1, under the assumption that they rep-
resent a random sample of parsers and gram-
mars, suggesting the following: To be 99% cer-
tain that one parser is faster than another, it
must produce about 80% fewer edges; to be 95%
certain, it must produce about 70% fewer edges;
and to be 90% certain, it must produce about
60% fewer edges. This analysis undoubtedly
suffers from the paucity of the data, and per-
forming a wider range of experiments might well
give us tighter bounds, but it at least represents
a first cut at quantifying the variation in time-
per-edge across different parsing algorithms and
grammars. (See the Appendix for information
on how the analysis was performed.)

If we look at Charniak’s latest paper re-
porting improved parser efficiency (Blaheta and
Charniak, 1999), we find a reported reduction
in edges popped off the agenda of about 60%.

26

We do not doubt that this result is in fact a sub-
stantial improvement over the previous method
it was compared to, but in the context of the
variation in time per edge among the parsers
presented here, we would be hard pressed to
claim this result represents a statistically sig-
nificant improvement in parsing speed, without
seeing parsing times not provided by Blaheta
and Charniak.

4 Towards a Cross-Platform
Methodology

The substantial variation in time per edge
among the parsers and grammars discussed
here strongly suggests that, in making efficiency
comparisons, actual parse times should be mea-
sured whenever that would be meaningful. For
a particular research team reporting incremen-
tal progress of a continuing research program,
this hardly seems too much to ask.

For cross-research-group comparisons the
matter is more problematical. How is one to
compare a parser written in Lisp running on an
400 MHz UltraSPARC processor to one written
in C++ running on a 750 MHz Pentium III?
The answer proposed here is to create a set of
reference parser implementations, in a variety
of languages, coupled with reference grammars
and test sets. Obviously, for different classes
of grammar—unification grammars, CFGs, and
PCFGs—meaningful comparisons remain diffi-

cult; but for a given class, this approach should
make cross platform comparisons straightfor-
ward. For example, for CFGs, a particular
variant of CKY could be chosen, and imple-
mented as efficiently as possible in C, Lisp, Pro-
log, Perl(!), and any other language considered
relevant. The source code for implementations
would need to be provided, so that the claim
to be the best possible implementation of the
algorithm in the language could be examined,
and improvements made, without changing the
basic algorithm. Then, whenever anyone claims
to have an improved algorithm for CFG parsing,
written in any of the supported languages and
any platform that supports the language, they
could meaningfully measure how much faster
their algorithm is than CKY on the standard
grammars and test sets, by timing their parser
against the reference CKY parser for their plat-
form. Similarly, reference parser implementa-
tions could be created for PCFGs and unifica-
tion grammars to facilitate cross-research-group
studies of parser efficiency for those formalisms.

5 Conclusions

Charniak and his colleagues have proposed
implementation-independent metrics as a way
of comparing the efficiency of parsing algo-
rithms implemented on different platforms, in
different languages, and with different degrees
of “incidental optimization”. We have tried to
argue that there are easily immaginable circum-
stances in which their proposed metrics would
mask significant differences in efficiency; we
have pointed out that Roark and Charniak’s
data do not, in fact, support the usability of
their metric for comparing the efficiency of dif-
ferent algorithms; and we have analyzed data
for a similar metric (chart size) to try to quan-
tify the degree of variation one might expect
between such metrics and actual parse time.
Finally, we have proposed a methodology for
making cross-platform comparisons through the
use of reference parser implementations. This
methodology does not, unfortunately, address
Roark and Charniak’s desire for a metric that
is insensitive different degrees of incidental op-
timization. Indeed, in our own work compar-
ing different parsing algorithms we have tried
to be scrupulous in comparing implementations
that are as similar as possible in that regard.

27

In effect, Charniak et al. seem to be seek met-
rics which obviate the need for controled exper-
iments, but in the end, there is no substitute for
them.

References

Berger, A., S. Della Pietra, and V. Della Pietra
(1996) “A Maximum Entropy Approach to
Natural Language Processing,” Computa-
tional Linguistics, Vol. 22, No. 1, pp. 39-71.

Blaheta, D., and E. Charniak (1999) “Auto-
matic Compensation for Parser Figure-of-
Merit Flaws,” in Proceedings of the 37th An-
nual Meeting of the Association for Compu-
tational Linguistics, College Park, Maryland,
pp- 513-518.

Caraballo, S., and E. Charniak (1998) “New
Figures of Merit for Best-First Probabilistic
Chart Parsing,” Computational Linguistics,
Vol. 24, No. 2, pp. 275-298.

Charniak, E., S. Goldwater, and M. Johnson
(1998) “Edge-Based Best-First Chart Pars-
ing,” in Proceedings of the Sixth Workshop
on Very Large Corpora, Montreal, Canada,
pp- 127-123.

Charniak, E. (2000) “A Maximum-Entropy-
Inspired Parser,” in Proceedings of the 1st
Meeting of the North American Chapter of
the Association for Computational Linguis-
tics, Seattle, Washington, pp. 132-139.

Moore, R., et al. (1997) “CommandTalk:
A Spoken-Language Interface for Battlefield
Simulations,” in Proceedings of the Fifth Con-
ference on Applied Natural Language Process-
ing, Association for Computational Linguis-
tics, Washington, DC, pp. 1-7.

Moore, R. (2000) “Improved Left-Corner
Chart Parsing for Large Context-Free Gram-
mars,” in Proceedings of the Sixzth Interna-

tional Workshop on Parsing Technologies,
ACL/SIGPARSE, Trento, Italy, pp. 171-182.

Roark, B., and E. Charniak (2000) “Measuring
Efficiency in High-Accuracy, Broad-Coverage
Statistical Parsing,” in Proceedings of the
COLING 2000 Workshop on Efficiency in
Large-Scale Parsing Systems, Luxembourg.

Confidence
Level Method 1 | Method 2
0.99 0.19 0.17
0.95 0.30 0.29
0.90 0.39 0.38

Table 2: Edge ratios for different significance levels

Appendix

The statistical analysis mentioned in Section 3
was performed by comparing the millisec-
onds/edge values for all pairs of parsing algo-
rithms, for each grammar and test set. Specifi-
cally, we computed the ¢ statistic for logarithms
of ratios of milliseconds/edge values for sets of
pairs of parsers applied to the same grammar
and test set. We used logarithms of ratios rather
than the ratios themselves, on the grounds that,
a priori we would expect values of n and 1/..n to
be about equally likely for this ratio.

We computed the ¢ statistic in two different
ways. Method 1 was simply to compute the
t statistic for the set of logarithms of ratios
of the milliseconds/edge values for all pairs of
parsing algorithms, for each grammar and test
set. This is not statistically valid, however, be-
cause the values we are computing the ¢ statistic
for are not independent, due to re-use of mil-
liseconds/edge values in different pairwise com-
parisons. Essentially, we have manufactured 30
data points out of an original set of only 15 data
points.

In Method 2, we maintained independence by
randomly selecting pairs of parsers so that each
parser was only counted once, applied to each
grammar and test set. Since this only looks at
a subset of the possible pairwise comparisons,
we repeated this 1000 times, so that each pos-
sible pair would be selected approximately the
same number of times, and averaged the re-
sults. We then used these ¢ statistics to compute
the ratios of edges required to be certain that
the parser producing fewer edges would actually
take less time than the other, at the 0.99, 0.95,
and 0.90 confidence levels, using a single-tailed
test (See Table 2). The two methods did not dif-
fer greatly in their results, except that Method 2
produced slightly greater uncertainty. This may
have been simply due to the smaller number of
data points used in each iteration in Method 2.

28

Measuring efficiency in high-accuracy,
broad-coverage statistical parsing*

Brian Roark

Eugene Charniak

Brown Laboratory for Linguistic Information Processing (BLLIP), and

Cognitive and Linguistic Sciences
Box 1978
Brown University
Providence, RI 02912
brian-roark@brown.edu

Abstract

Very little attention has been paid to the
comparison of efficiency between high accu-
racy statistical parsers. This paper proposes
one machine-independent metric that is general
enough to allow comparisons across very differ-
ent parsing architectures. This metric, which
we call “events considered”, measures the num-
ber of “events”, however they are defined for a
particular parser, for which a probability must
be calculated, in order to find the parse. It is
applicable to single-pass or multi-stage parsers.
We discuss the advantages of the metric, and
demonstrate its usefulness by using it to com-
pare two parsers which differ in several funda-
mental ways.

1 Introduction

The past five years have seen enormous im-
provements in broad-coverage parsing accuracy,
through the use of statistical techniques. The
parsers that perform at the highest level of ac-
curacy (Charniak (1997; 2000); Collins (1997;
2000); Ratnaparkhi, 1997) use probabilistic
models with a very large number of parame-
ters, which can be costly to use in evaluating
structures. Parsers that have been built for
this level of accuracy have generally been com-
pared only with respect to accuracy, not effi-
ciency. This is understandable: their great sell-
ing point is the high level of accuracy they are
able to achieve. In addition, these parsers are
difficult to compare with respect to efficiency:
the models are quite diverse, with very differ-
ent kinds of parameters and different estimation

* Thanks to everyone in the Brown Laboratory for Lin-
guistic Information Processing (BLLIP) for valuable dis-
cussion on these issues. This research was supported in
part by NSF IGERT Grant #DGE-9870676, and NSF
LIS Grant #SBR-9720368.

29

Computer Science
Box 1910
Brown University
Providence, RI 02912
ec@cs.brown.edu

and smoothing techniques. Furthermore, the
search and pruning strategies have been quite
varied, from beam-search to best-first, and with
different numbers of distinct stages of process-
ing.

At a very general level, however, these ap-
proaches share some key characteristics, and it
is at this general level that we would like to ad-
dress the issue of efficiency. In each of these
approaches, scores or weights are calculated for
events, e.g. edges or other structures, or per-
haps constituent/head or even head/head rela-
tions. The scores for these events are compared
and “bad” events, i.e. events with relatively low
scores, are either discarded (as in beam search)
or sink to the bottom of the heap (as in best-
first). In fact, this general characterization is
basically what goes on at each of the stages
in multi-stage parsers, although the events that
are being weighted, and the models by which
they are scored, may change!. In each parser’s
final stage, the parse which emerges with the
best score is returned for evaluation.

We would like to propose an efficiency met-
ric which we call events considered. An event
is considered when a score is calculated for it.
Search and pruning techniques can be judged to
improve the efficiency of a parser if they reduce
the number of events that must be considered en
route to parses with the same level of accuracy.
Because an event must have a score for a statis-
tical parser to decide whether it should be re-
tained or discarded, there is no way to improve
this number without having improved either the
efficiency of the search (through, say, dynamic
programming) or the efficacy of the pruning.
We will argue that this is not the case with

!Even within the same stage, events can be heteroge-
neous. See the discussion of the EC parser below.

competitor measures, such as time or total heap
operations, which can be improved through op-
timization techniques that do not change the
search space. This is not to say that these tech-
niques do not have a great deal of value; sim-
ply that, for comparisons between approaches
to statistical parsing, the implementations of
which may or may not have carried out the
same optimizations, they are less informative
than the metric we have proposed.

Some recent papers on efficiency in statisti-
cal parsing have looked at the number of pops
from a heap as the relevant measure of effi-
ciency (Caraballo and Charniak, 1998; Char-
niak, Goldwater, and Johnson, 1998; Blaheta
and Charniak, 1999), and have demonstrated
techniques for improving the scoring function so
that this number is dramatically reduced. This
is also a score that cannot be “artificially” re-
duced through optimization. It may very well
be, however, that some significant part of a
parser’s function is not an operation on a heap.
For example, a parser could run a part-of-speech
(POS) tagger over the string as a first stage.
What is relevant for this first stage are the num-
ber of (POS,word) pairs that must be considered
by the tagger. Each of these pairs would have a
score calculated for them, and would hence be
an event considered. The events in the second
stage may be, for example, edges in the chart. A
parser’s efficiency score would be the total num-
ber of these considered events across all stages.

The principle merits of this metric are that
it is general enough to cover different search
and pruning techniques (including exhaustive
parsing); that it is machine-independent; and
that it is, to a certain extent, implementation-
independent. The last of these might be what
recommends the metric most, insofar as it is not
the case for other simple metrics. For example,
using time as a metric is perfectly general, and
there are ways to normalize for processor differ-
ences (see Moore, 2000b). However, unless one
is comparing two implementations that are es-
sentially identical in all incidental ways, it is not
possible to normalize for certain specifics of the
implementation. For example, how probabili-
ties are accessed, upon which processing time
is very dependent, can differ from implementa-
tion to implementation (see discussion below).
Thus, while time may be ideal for highly con-

30

trolled studies of relatively similar algorithms
(as in Moore, 2000a), its applicability for com-
paring diverse parsers is problematic.

Let us consider a specific example: calculat-
ing scores from highly conditioned, interpolated
probability distributions. First we will discuss
conditional probability models, followed by an
illustration of interpolation.

A simple probabilistic context free grammar
(PCFG) is a context free grammar with a prob-
ability assigned to each rule: the probability of
the righthand side of the rule given the lefthand
side of the rule. These probabilities can be esti-
mated via their relative frequency in a corpus of
trees. For instance, we can assign a probability
to the rule S — NP VP by counting the number
of occurrences of this rule in the corpus, and
dividing by the total number of S nodes in the
corpus. We can improve the probability model
if we add in more conditioning events beyond
the lefthand side of the rule. For example, if we
throw in the parent of the lefthand side in the
tree within which it appears, we can immedi-
ately see a dramatic improvement in the maxi-
mum likelihood parse (Johnson, 1998). That is,
instead of:

_ P(LHS,RHS)

P(RHS|LHS) PILHS)
the probability of the rule instance is:

P(LHS,RHS, Ppus)
P(LHS, Ppus)

P(RHS|LHS, Ppys)

where Pppgg is the parent above the lefthand
side of the rule. This additional conditioning
event allows us to capture the fact that the dis-
tribution of, say, S node expansions underneath
VPs is quite different than that of S nodes at
the root of the tree. The models that we will be
discussing in this paper condition on many such
events, somewhere between five and ten. This
can lead to sparse data problems, necessitating
some kind of smoothing - in these cases, deleted
interpolation.

The idea behind deleted interpolation (Je-
linek and Mercer, 1980) is simple: mix the em-
pirically observed probability using n condition-
ing events with lower order models. The mixing
coefficients, \,, are functions of the frequency of
the joint occurrence of the conditioning events,
estimated from a held out portion of the cor-
pus. Let eg be the event whose probability is

to be conditioned, e; ...e, the n conditioning
events used in the model, and P the empirically
observed conditional probability. Then the fol-
lowing is a recursive definition of the interpo-
lated probability:

Plegler...en) = An(er...en)Peoler...en) +
(I1-An(er...en))Pegler...en—1)

This has been shown to be very effective in cir-

cumstances where sparse data requires smooth-
ing to avoid assigning a probability of zero to
a large number of possible events that happen
not to have been observed in the training data
with the n conditioning events.

Using such a model?, the time to calculate a
particular conditional probability can be signif-
icant. There are a variety of techniques that
can be used to speed this up, such as pre-
compilation or caching. These techniques can
have a fairly large effect on the time of computa-
tion, but they contribute little to a comparison
between pruning techniques or issues of search.
More generally, optimization and lack of it is
something that can obscure algorithm similari-
ties or differences, over and above differences in
machine or platform. Researchers whose inter-
est lies in improving parser accuracy might not
care to improve the efficiency once it reaches an
acceptable level. This should not bar us from
trying to compare their techniques with regards
to efficiency.

Another such example contrasts our metric
with one that measures total heap operations.
Depending on the pruning method, it might be
possible to evaluate an event’s probability and
throw it away if it falls below some threshold,
rather than pushing it onto the heap. Another
option in the same circumstance is to simply
push all analyses onto the heap, and let the heap
ranking decide if they ever surface again. Both
have their respective time trade-offs (the cost of
thresholding versus heap operations), and which
is chosen is an implementation issue that is or-
thogonal to the relative search efficiency that we
would like to evaluate.

In contrast to time or total heap operations,
there is no incidental optimization that allows
the parser to avoid calculating scores for analy-
ses. A statistical parser that prunes the search

2The same points hold for other smoothing methods,
such as backing off.

31

space cannot perform this pruning without scor-
ing events that must be either retained or dis-
carded. A reduction in events considered with-
out a loss of accuracy counts as a novel search
or pruning technique, and as such should be ex-
plicitly evaluated as a competitor strategy. The
basic point that we are making here is that our
metric measures that which is central to statisti-
cal parsing techniques, and not something that
can be incidentally improved.

In the next section, we outline two quite dif-
ferent statistical parsers, and present some re-
sults using our new metric.

2 Comparing statistical parsers

To illustrate the utility of this metric for com-
paring the efficiency of radically different ap-
proaches to broad-coverage parsing, we will
contrast some results from a two-stage best-
first parser (Charniak, 2000) with a single-pass
left-to-right, incremental beam-search parser
(Roark, 2000). Both of these parsers (which
we will refer to, henceforth, as the EC and BR
parsers, respectively) score between 85 and 90
percent average precision and recall; both con-
dition the probabilities of events on a large num-
ber of contextual parameters in more-or-less the
way outlined above; and both use boundary
statistics to assign partial structures a figure-
of-merit, which is the product of the probability
of the structure in its own right and a score for
its likelihood of integrating with its surrounding
context.

Both of the parsers also use parameterized
pruning strategies, which will be described
when the parsers are outlined. Results will be
presented for each parser at a range of parame-
ter values, to give a sense of the behavior of the
parser as more or fewer events are taken into
consideration. From this data, we shall be able
to see the degree to which the events consid-
ered score correlates with time, as well as the
convergence in accuracy.

The parsers were trained on sections 2-21
and tested on section 23 of the Penn Wall
St. Journal Treebank (Marcus, Santorini, and
Marcinkiewicz, 1993), which are the standards
in the statistical parsing literature. Accuracy
is reported in terms of average labelled pre-
cision and recall. Precision is the number of
correct constituents divided by the number of

section 23: 2416 sentences of length < 100
Average length: 23.46 words/sentence
Times past | Avg. Events Time in
first parse | Prec/Rec | Considered! | seconds!
21 89.7 212,014 26.7
13 89.6 107,221 14.0
7.5 89.1 48,606 6.7
2.5 6.8 9,621 15
2 85.6 6,826 1.1

Tper sentence

Table 1: Results from the EC parser at different
initial parameter values

constituents proposed by the parser. Recall is
the number of correct constituents divided by
the number of constituents in the actual parse.
Labelled precision and recall counts only non-
part-of-speech non-terminal constituents. The
two numbers are generally quite close, and are
averaged to give a single composite score.

2.1 EC parser

The EC parser first prunes the search space by
building a chart containing only the most likely
edges. Each new edge is assigned a figure-of-
merit (FOM) and pushed onto a heap. The
FOM is the product of the probability of the con-
stituent given the simple PCFG and the bound-
ary statistics. Edges that are popped from the
heap are put into the chart, and standard chart
building occurs, with new edges being pushed
onto the heap. This process continues until a
complete parse is found; hence this is a best-first
approach. Of course, the chart building does
not necessarily need to stop when the first parse
is found; it can continue until some stopping cri-
terion is met. The criterion that was used in the
trials that will be reported here is a multiple of
the number of edges that were present in the
chart when the first parse was found. Thus, if
the parameter is 1, the parser stops when the
first parse is found; if the parameter is 10, the
parser stops when the number of edges in the
chart is ten times the number that were in the
chart when the first parse was found.

This is the first stage of the parser. The
second stage takes all of the parses packed in
the chart that are above a certain probability
threshold given the PCFG, and assigns a score
using the full probability model. To evaluate
the probability of each parse, the evaluation

32

proceeds from the top down. Given a particu-
lar constituent, it first evaluates the probability
of the part-of-speech of the head of that con-
stituent, conditioned on a variety of contextual
information from the context. Next, it eval-
uates the probability of the head itself, given
the part-of-speech that was just predicted (plus
other information). Finally, it evaluates the
probability of the rule expansion, conditioned
on, among other things, the POS of the head
and the head. It then moves down the tree to
evaluate the newly predicted constituents. See
Charniak (2000) for more details on the specifics
of the parser.

Notice that the events are heterogeneous.
One of the key events in the model is the con-
stituent /head relation, which is not an edge.
Note also that this two-stage search strategy
means that many edges will be considered mul-
tiple times, once by the first stage and in every
complete parse within which they occur in the
second stage, and hence will be counted multi-
ple times by our metric.

The parse with the best score is returned for
evaluation in terms of precision and recall. Ta-
ble 1 shows accuracy and efficiency results when
the EC parser is run at various initial parameter
values, i.e. the number of times past the first
parse the first-stage of the parser continues.

2.2 BR parser

The BR parser proceeds from left-to-right across
the string, building analyses top-down in a sin-
gle pass. While its accuracy is several points be-
low that of the EC parser, it is useful in circum-
stances requiring incremental processing, e.g.
on-line speech recognition, where a multi-stage
parser is not an option.

Very briefly, partial analyses are ranked by
a figure-of-merit that is the product of their
probability (using the full conditional probabil-
ity model) and a look-ahead probability, which
is a measure of the likelihood of the current
stack state of an analysis rewriting to the look-
ahead word at its left-corner. Partial analy-
ses are popped from the heap, expanded, and
pushed back onto the heap. When an analysis
is found that extends to the look-ahead word, it
is pushed onto a new heap, which collects these
“successful” analyses until there are “enough”,
at which point the look-ahead is moved to the
next word in the string, and all of the “unsuc-

section 23: 2416 sentences of length < 100
Average length: 23.46 words/sentence

Base Beam | Avg. Events Time in | Pct. failed
Factor Prec/Rec | Considered! | seconds!

10 12 85.9 265,509 7.6 1.3

1011 85.7 164,127 4.3 1.7

1010 85.3 100,439 2.7 2.2

10~8 84.3 36,861 0.9 3.8

108 81.8 13,512 0.4 7.1

Tper sentence

Table 2: Results from the BR parser at different initial parameter values

cessful” analyses are discarded. This is a beam-
search, and the criterion by which it is judged
that “enough” analyses have succeeded can be
either narrow (i.e. stopping early) or wide (i.e.
stopping late). The unpruned parse with the
highest probability that successfully covers the
entire input string is evaluated for accuracy.

The beam parameter in the trials that will be
reported here, is called the base beam factor,
and it works as follows. Let # be the base beam
factor, and let p be the probability of the high-
est ranked “successful” parse. Then any analy-
sis whose probability falls below af8p, where «
is the cube of the number of successful analyses,
is discarded. The basic idea is that we want the
beam to be very wide if there are few analyses
that have extended to the current look-ahead
word, but relatively narrow if many such anal-
yses have been found. Thus, if 8 = 10 '2, and
100 analyses have extended to the current look-
ahead word, then a candidate analysis must
have a probability above 10765 to avoid being
pruned. After 1000 candidates, the beam has
narrowed to 1073p. Table 2 shows accuracy and
efficiency results when the BR parser is run at
various base beam factors. See Roark (2000) for
more details on the specifics of this parser.

The conditional probability model that is
used in the BR parser is constrained by the left-
to-right nature of the algorithm. Whereas the
conditional probability model used in the sec-
ond stage of the EC parser has access to the full
parse trees, and thus can condition the struc-
tures with information from either the left or
right context, any model used in the BR parser
can only use information from the left-context,
since that is all that has been built at the mo-
ment the probability of a structure is evaluated.

33

For example, a subject NP can be conditioned
on the head of the sentence (usually the main
verb) in the EC parser, but not in the BR parser,
since the head of sentence has yet to be encoun-
tered. This accounts for some of the accuracy
difference between the two parsers. Also, note
that the BR parser can and does fail to find a
parse in some percentage of cases, as a conse-
quence of the incremental beam-search. This
percentage is reported as well.

3 Discussion

The number of ways in which these two parsers
differ is large, and many of these differences
make it difficult to compare their relative ef-
ficiency. A partial list of these complicating dif-
ferences is the following:

e Best-first vs. beam search pruning strat-
egy, which impacts the number of events
that must be retained

e Two-stage vs. single pass parsing

e Heterogeneous events, within and between
parsers

e Different conditional probability models,
with different numbers of conditioning
events, and slightly different methods of in-
terpolation

e EC parser written in C++; BR parser writ-
ten in C

In addition, for these runs, the EC parser par-
allelized the processing by sending each sentence
individually off to different processors on the
network, whereas the BR parser was run on a
single computing server. Since for the EC parser
we do not know which sentence went to which

a

o BR parser runs
o EC parser runs

»
o

I
T

3.5

Events Considered per Second
= N
w N [w
T T T T

[
T

0.5
o ‘ ‘ ‘
1 2 3 4 5
Parser Run
Figure 1: Events Considered per Second for

each parser run, with a linear fit

processor, nor how fast each individual proces-
sor was, time is a particularly poor point of com-
parison.

In order for our metric to be useful, however,
it should be highly correlated with time. Figure
1 shows the number of events considered divided
by the total parse time for each of the five runs
reported for each parser. While there is some
noise between each of the runs, this ratio is rel-
atively constant across the runs, as shown by
the linear fit, indicating a very high correlation
between the number of events considered and
the total time. Figure 2 plots the edges con-
sidered versus time per sentence for all of the
runs reported in the tables above, and the lin-
ear fit for each is drawn as well. As we can see
from both plots, number of events considered is
a good proxy measure for time in both parsers.

Now the question is how to judge the rela-
tive efficiency using this measure. Given that
both parsers are parameterized, the number of
events considered can be made essentially arbi-
trarily high or arbitrarily low. We should thus
look at the performance of the parsers over a
range of parameter values. Figure 3 shows the
convergence in accuracy of the models, as more
and more events are considered. The improve-
ment in accuracy in the graph is represented
as a reduction in parser error, i.e. 100 - aver-
age precision/recall. Both of the parsers show
a fairly similar pattern of convergence to their
respective minimum errors.

30

i i
o BR parser runs
o EC parser runs

25f 1

N
o

Seconds
[
[$)]

10

1.5 2 2.5 3
Events Considered per Sentence X 16

Figure 2: Time vs. Events Considered per Sen-
tence, with a linear fit

Given this information, there are two direc-
tions that one can go. The first is to simply take
this information at face value and make judg-
ments about the relative efficiency on the basis
of these numbers. We may, however, want to
take the comparison one step further, and look
at how quickly each parser converges to its re-
spective best accuracy, regardless of what that
best accuracy is. In a sense, this would focus the
evaluation on the search aspects of the parser,
apart from the overall quality of the probability
model.

Figure 4 plots the percentage of the highest
accuracy parse achieved versus the number of
events considered. The convergence of the BR
parser lies to the right of the convergence of
the EC parser, indicating that the EC parser
takes fewer edges considered to converge on the
best possible accuracy given the model. No-
tice that both parsers had runs with approxi-
mately 100,000 events considered, but that the
EC parser is within .1 percent of the best ac-
curacy (basically within noise) at that point,
while the BR parser still has a fair amount of
improvement to go before reaching the best ac-
curacy. Thus the EC parser needs to consider
fewer events to find the best parse.

This is hardly surprising given what we know
about the pruning strategies. The first stage of
the EC parser uses dynamic programming tech-
niques on the chart to evaluate edges only once.
The BR parser, in contrast, must evaluate con-

20
-6 BR parser runs
19+ —=— EC parser runs

18-

w0 .

H
St

Parser Error
= = = =
N w D [$)]

=
[

. , | .
0.5 1 15 2 25 3
Events Considered per Sentence x 10

=
OO

Figure 3: Reduction in parser error as the num-
ber of events considered increases

100

© ©
[e5] ©

©
<

Percent of Best Accuracy

96

950 0.5 1 15 2 25 3
Events Considered per Sentence X 10°
Figure 4: Convergence to highest accuracy

parse as number of events considered increase

stituents once for every parse within which they
occur. Particularly useless constituents will be
thrown out once by the EC parser, but perhaps
many times by the BR parser.

This difference in efficiency is tangible, but it
is relatively small. What would be problematic
in this domain would be orders of magnitude
differences, which we don’t get here.

4 Conclusion

We have presented in this paper a very gen-
eral, machine- and implementation-independent
metric that can be used to compare the effi-

35

ciency of quite different statistical parsers. To
illustrate its usefulness, we compared the perfor-
mance of two parsers that follow different strate-
gies in arriving at their parses, and which on
the surface would appear to be very difficult to
compare with respect to efficiency. Despite this,
the two algorithms seem to require a fairly sim-
ilar number of events considered to squeeze the
most accuracy out of their respective models.
Furthermore, the decrease in events considered
in both cases was accompanied by a more-or-
less proportional decrease in time. This data
confirmed our intuitions that the two algorithms
are roughly similar in terms of efficiency. It also
lends support to consideration of this metric as
a legitimate, machine and implementation inde-
pendent measure of statistical parser efficiency.

In practice, the scores on this measure could
be reported alongside of the standard PARSE-
VAL accuracy measures (Black et al., 1991), as
an indicator of the amount of work required to
arrive at the parse. What is this likely to mean
to researchers in high accuracy, broad-coverage
statistical parsing? Unlike accuracy measures,
whose fluctuations of a few tenths of percent
are attended to with interest, such an efficiency
score is likely to be attended to only if there is
an order of magnitude difference. On the other
hand, if two parsers have very similar perfor-
mance in accuracy, the relative efficiency of one
over the other may recommend its use.

When can this metric be used to compare
parsers? We would contend that it can be used
whenever measures such as precision and recall
can be used, i.e. same training and testing cor-
pora. If the parser is working in an entirely
different search space, such as with a depen-
dency grammar, or when the training or test-
ing portions of the corpus are different, then
it is not clear that such comparisons provide
any insight into the relative merits of different
parsers. Much of the statistical parsing liter-
ature has settled on specific standard training
and testing corpora, and in this circumstance,
this measure should be useful for evaluation of
efficiency.

In conclusion, our efficiency metric has
tremendous generality, and is tied to the op-
eration of statistical parsers in a way that rec-
ommends its use over time or heap operations
as a measure of efficiency.

References

Black, E., S. Abney, D. Flickenger, C. Gdaniec,
R. Grishman, P. Harrison, D. Hindle, R. In-
gria, F. Jelinek, J. Klavans, M. Liberman,
M. Marcus, S. Roukos, B. Santorini, and
T. Strzalkowski. 1991. A procedure for quan-
titatively comparing the syntactic coverage
of english grammars. In DARPA Speech and
Natural Language Workshop, pages 306-311.

Blaheta, D. and E. Charniak. 1999. Automatic
compensation for parser figure-of-merit flaws.
In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguis-
tics, pages 513-518.

Caraballo, S. and E. Charniak. 1998. New
figures of merit for best-first probabilistic
chart parsing. Computational Linguistics,
24(2):275-298.

Charniak, E. 1997. Statistical parsing with a
context-free grammar and word statistics. In
Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence, Menlo Park.
AAAT Press/MIT Press.

Charniak, E. 2000. A maximum-entropy-
inspired parser. In Proceedings of the 1st
Conference of the North American Chapter of
the Association for Computational Linguis-
tics.

Charniak, E., S. Goldwater, and M. Johnson.
1998. Edge-based best-first chart parsing. In
Proceedings of the Sixth Workshop on Very
Large Corpora, pages 127-133.

Collins, M.J. 1997. Three generative, lexi-
calised models for statistical parsing. In The
Proceedings of the 35th Annual Meeting of
the Association for Computational Linguis-
tics, pages 16-23.

Collins, M.J. 2000. Discriminative reranking
for natural language parsing. In The Proceed-
ings of the 17th International Conference on
Machine Learning.

Jelinek, F. and R.L. Mercer. 1980. Interpo-
lated estimation of markov source parame-
ters from sparse data. In Proceedings of the
Workshop on Pattern Recognition in Prac-
tice, pages 381-397.

Johnson, M. 1998. PCFG models of linguistic
tree representations. Computational Linguis-
tics, 24(4):617-636.

Marcus, M.P., B. Santorini, and M.A.
Marcinkiewicz. 1993. Building a large anno-

36

tated corpus of English: The Penn Treebank.
Computational Linguistics, 19(2):313-330.

Moore, R. 2000a. Improved left-corner chart
parsing for large context-free grammars. In
Proceedings of the Sixth International Work-
shop on Parsing Technologies, pages 171-182.

Moore, R. 2000b. Time as a measure of parsing
efficiency. In Proceedings of the COLING-00
Workshop on Efficiency in Large-scale pars-
ing systems.

Ratnaparkhi, A. 1997. A linear observed time
statistical parser based on maximum entropy
models. In Proceedings of the Second Confer-
ence on Empirical Methods in Natural Lan-
guage Processing, pages 1-10.

Roark, B. 2000. Probabilistic top-down parsing
and language modeling. Submitted.

Some Experimentson I ndicator s of
Parsing Complexity for Lexicalized Grammars

Anoop Sarkar, Fei Xiaand Aravind Joshi
Dept. of ComputerandinformationScience
Universityof Pennsylania
200South33rd Street,
PhiladelphiaPA 19104-6389USA
{anoop, fxi a, j oshi }@i nc. ci s. upenn. edu

Abstract

In this paper we identify syntacticlexical ambi-
guity and sentenceompleity asfactorsthat con-

tribute to parsingcompleity in fully lexicalized
grammarformalismssuchasLexicalized Tree Ad-

joining Grammars.We alsoreporton experiments
that explore the effects of thesefactorson parsing
compleity. We discusshow theseconstraintscan
be exploitedin improving efficiengy of parserdor

suchgrammarformalisms.

1 Introduction

The time taken by a parserto producederivations
for input sentencess typically associatedvith the
lengthof thosesentencesThelongerthe sentence,
the moretime the parseris expectedto take. How-
ever, comple algorithmslike parsersaretypically
affectedby several factors. A commonexperience
is that parsingalgorithmsdiffer in the numberof
edgesinsertedinto the chartwhile parsing. In this
papey we explore someof theseconstraintsfrom
theperspectie of lexicalizedgrammarsandexplore
how theseconstraintsnightbeexploitedto improve
parsetefficiengy.

We concentraten the problemof parsingusing
fully lexicalizedgrammarsy looking at parsergor
Lexicalized Tree Adjoining Grammar(LTAG). By
a fully lexicalized grammarwe meana grammar
in which thereare one or more syntacticstructures
associatedvith eachlexical item. In the caseof
LTAG eachstructureis a tree(or, in general,a di-
rectedagyclic graph).For eachstructurethereis an
explicit structuralslot for eachof the amgumentsof
the lexical item. The variousadwantagesf defin-
ing alexicalizedgrammarformalismin thisway are
discussedh (JoshiandSchabes]991).

An example LTAG is shawvn in Figure 1. To
parsehesentencd/s. Haag playsElianti theparser
hasto combinethe treesselectedby eachword in
the sentencdy usingthe operationof substitution
and adjunction(the two compositionoperationsn
LTAG) producinga valid deriation for the sen-
tence.

Noticethatasa consequencef this kind of lexi-

37

calizedgrammaticabescriptiortheremightbe ses-
eral different factorsthat affect parsingcomple-
ity. Eachword canselectmary differenttrees;for
example,the word playsin Figure 1 might select
several treesfor eachsyntacticcontet in which it
canoccur The verb plays canbe usedin a rela-
tive clause,a wh-extraction clause,amongothers.
While grammaticalnotions of amgumentstructure
andsyntaxcanbe processedn abstracttermsjust
asin otherkinds of formalisms,the crucial differ-
encein LTAG is thatall of thisinformationis com-
piled into a finite setof treesbefoe parsing. Each
of theseseparatéexicalizedtreesis now considered
by the parser This compilationis repeatedor other
argumentstructurese.g. the verb playscould also
selectreeswhichareintransitive thusincreasinghe
setof lexicalizedtreesit canselect.Thesetof trees
selectedby differentlexical itemsis whatwe term
in this paperaslexical syntacticambiguity

The importanceof this compilationinto a set
of lexicalizedtreesis that eachpredicate-gjument
structureacrosseachsyntacticcontext hasits own
lexicalized tree. Most grammarformalisms use
featurestructuredo capturethe samegrammatical
andpredicate-gjumentinformation.In LTAG, this
larger set of lexicalized treesdirectly corresponds
to the fact that recursve featurestructuresare not
neededfor linguistic description. Featurestruc-
turesare typically atomic with a few instanceof
re-entranfeatures.

Thus, in contrastwith LTAG parsing, parsing
for formalismslike HPSGor LFG concentratesn
efficiently managingthe unification of large fea-
ture structuresand alsothe packingof ambiguities
when thesefeaturestructuressubsumeeachother
(see(OeperandCarroll,2000)andreferencesited
there).We arguein this paperthattheresultof hav-
ing compiledout abstracgrammaticabescriptions
into asetof lexicalizedtreesallows usto predictthe
numberof edgeghatwill beproposedy the parser
even beforeparsingbegins. This allows usto ex-
plore novel methodsof dealingwith parsingcom-
plexity that are difficult to considerin formalisms
thatarenotfully lexicalized.

sNP.NNP@=41[Elianti]

NP

u
m

n

M.NNP@.NP*=2 1[Ms.]
S

n/\p
arg n
VAP i

n arg

sSNPsVBZ@_NPs=2Q1[plays]

Figure1l: Examplelexicalizedelementantrees. They areshavn in the usualnotation: ¢ = andor, |=
substitutiomode * = footnodena = null-adjunctionconstaint. Thesetreescanbe combinedusingsub-
stitutionandadjunctionto parsethe sentencés. Haag playsElianti.

Furthermoreasthesentencéengthincreaseghe
numberof lexicalizedtreesincreaseproportionally
increasingheattachmenambiguity Eachsentence
is composedof several clauses. In a lexicalized
grammay eachclausecan be seenas headeduy a
single predicatetree with its agumentsand asso-
ciatedadjuncts. We shall seethat empirically the
numberof clausesgrow with increasingsentence
length only up to a certainpoint. For sentences
greaterthana certainlengththe numberof clauses
do notkeepincreasing.

Basedon theseintuitions we identify the follow-
ing factorsthat affect parsingcompleity for lexi-
calizedgrammars:

Syntactic Lexical Ambiguity Thenumberof trees
selectedby the words in the sentencebeing
parsed. We shav that this is a betterindica-
tor of parsingtime thansentencdength. This
is alsoa predictorof the numberof edgeghat
will be proposedby a parser allowing us to
betterhandledifficult casedefor parsing.

Sentence Complexity The clausal complity in
thesentencet be parsedWe obsere thatthe
numberof clausesin a sentencestopsgrow-
ing in proportionto the sentencdéengthaftera
point. We shav thatbeforethis point parsing
compleity is relatedto attachmenof adjuncts
ratherthanattachmenof aguments.

2 LTAG Treebank Grammar

The grammarwe usedfor our experimentswas a
LTAG TreebanikGrammamwhichwasautomatically
extractedfrom Sections02—21 of the Wall Street
Journal Penn Treebankll corpus(Marcus et al.,

1993).Theextractiontool (Xia, 1999)corvertedthe
derivedtreesof the Treebanknto derivationtreesin
LTAG which representhe attachment®f lexical-
izedelementaryrees.Thereare6789 treetemplates
in thegrammarwith 47, 752 treenodes.Eachword
in thecorpusselectsomesetof treetemplatesThe
total numberof lexicalizedtreesis 123,039. The
totalnumberof wordtypesin thelexiconis 44, 215.
The averagenumberof treesperword typeis 2.78.
However, this averageis misleadingsinceit does
not considerthe frequeng with which wordsthat
selecta large numberof treesoccurin the corpus.
In Figure2 we seethatmary frequentlyseenwords
canselectalarge numberof trees.

400

Number of trees selected
N
S
3

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Word frequer

Figure2: Numberof treesselectedplottedagainst
wordswith aparticularfrequeng. (x-axis: wordsof

frequenyg z; y-axis: numberof treesselectederror
barsindicateleastand mostambiguousword of a

particularfrequenyg x)

Another objection that can be raisedagainsta

38

Treebankgrammarwhich has beenautomatically
extractedis that ary parsingresultsusing sucha

grammarmight not be indicatve of parsingus-

ing ahand-craftedinguistically sophisticatedgram-
mar. To addresghis point (Xia andPalmer 2000),
compareghis Treebankgrammarwith the XTAG

grammaiX TAG-Group,1998),alarge-scaléhand-
craftedLTAG grammaifor English. Theexperiment
shaws that 82.1% of templatetokensin the Tree-
bankgrammarmatcheswith a correspondindgem-

platein the XTAG grammar;14.0%arecoveredby

the XTAG grammarbut thetemplatesn two gram-
marslook different becausehe Treebankand the

XTAG grammarhave adoptedifferentanalysegor

the correspondingconstructions;L.1% of template
tokensin the Treebankgrammarare not linguisti-

cally sounddueto annotationerrorsin the original

Treebankandtheremaining2.8%arenot currently
coveredby the XTAG grammar Thus, a total of

96.1% of the structuresin the Treebankgrammar
matchup with structuresn the XTAG grammar

3 Syntactic Lexical Ambiguity

In afully lexicalizedgrammarsuchasLTAG the
combinationsof trees(by substitutionand adjunc-
tion) canbethoughtof asattachmentslt is thisper

spectve thatallows usto definetheparsingproblem
in two stepgJoshiandSchabes]991):

1. Assigningasetof lexicalizedstructurego each
wordin theinputsentence.

2. Findingthe correctattachmentbetweerthese
structurego getall parsedor thesentence.

In this sectionwe will try to find which of these
factorsdetermineparsingcompleity whenfinding
all parsesn anLTAG parser

To testthe performanceof LTAG parsingon a
realistic corpususing a large grammar(described
above) we parsed2250 sentencegrom the Wall
StreetJournalusing the lexicalized grammarde-
scribedin Section2.! All of thesesentencesvere
of length21 wordsor less. Thesesentencesvere
taken from the samesections(02-21) of the Tree-
bank from which the original grammarwas ex-
tracted. This was doneto avoid the complication
of usingdefaultrulesfor unknavn words.

In all of theexperimentgeportechere theparser
producesall parsedor eachsentence.lt produces
a sharedderivation forestfor eachsentencevhich
storesjn compacform, all deriationsfor eachsen-
tence.

1Someof theseresultsappeain (Sarkar2000).1n this sec-
tion we presensomeadditionaldataonthepreviousresultsand
alsotheresultsof somenew experimentshatdo not appeain
theearlierwork.

39

We found that the obsered compleity of pars-
ing for LTAG is dominatedby factorsotherthan
sentencdength? Figure 3 shaws the time taken
in secondsby the parserplotted againstsentence
length. We seea greatdeal of variationin timing
for the samesentencdength, especiallyfor longer
sentences.

We wantedto find therelevantvariableotherthan
sentencdengthwhich would be the right predictor
of parsingtime compl«ity. Therecan be a large
variationin syntactidexical ambiguitywhich might
be a relevantfactorin parsingtime compleity. To
draw this out, in Figure4 we plottedthe numberof
treesselectedby a sentenceagainstthe time taken
to parsethatsentenceBy examiningthis graphwe
canvisuallyinfer thatthenumberof treesselecteds
a betterpredictorof increasdn parsingcompleity
thansentencdength. We canalsocomparenumetr
ically the two hypothesedy computingthe coefi-
cientof determinatior(R?) for thetwo graphs.We
geta R? valueof 0.65 for Figure3 anda value of
0.82 for Figure4. Thus,we infer thatit is the syn-
tacticlexical ambiguityof thewordsin thesentence
whichis themajor contritutor to parsingtime com-
plexity.

o 4
© 0 00 G000 SMAMIXD WA WO O
° 0G0 QUEEBIOD 0B OO O |

log(time) in seconds
IS @
0000 O EHMBCTOMOTONDOO O SO

oooooooo

0 © 00000 X0 CNHHRMIBIDMIOIIDIMO BIXXO 0O ©

oooooooooo

- - L
2 4 6 8 10 20

12 16
Sentence length

Figure 3: Parse times plotted against sentence
length. Coeficient of determination:R?> = 0.65.

(x-axis: Sentencdength; y-axis: log(timein sec-
onds))

Since we can easily determinethe number of
treesselectedy asentencédeforewe startparsing,
we can usethis numberto predictthe numberof
edgeghatwill be proposecdy a parserwhenpars-
ing this sentenceallowing usto betterhandlediffi-
cult casedefoe parsing.

2Note that the precisenumberof edgesproposedby the
parserandothercommonindicatorsof compleity canbe ob-
tainedonly while or afterparsing.We areinterestedn predict-
ing parsingcompleity.

10 T T T T T £

®
T
8,0
%ﬁ% oo
8
% IBH o
Bs 08,0 0
%} o we®
>

o
&
é

258 %
B0®
%
< o
% &

°
<,
s
B

log(Time taken) in seconds

Figure4: The impactof syntacticlexical ambigu-
ity on parsingtimes. Log of thetime takento parse
a sentencelottedagainstthe total numberof trees
selectedby the sentence Coeficient of determina-
tion: R? = 0.82. (x-axis: Total numberof treesse-
lectedby a sentencey-axis: log(time)in seconds).

We testthe abore hypothesigurther by parsing
the samesetof sentenceasabove but this time us-
ing an oraclewhich tells usthe correctelementary
lexicalizedstructurefor eachword in the sentence.
This eliminatedexical syntacticambiguitybut does
not eliminateattachmenambiguity for the parser
The graphcomparingthe parsingtimesis shavn in
Figure5. As the comparisonshaws, the elimina-
tion of lexical ambiguityleadsto a drasticincrease
in parsingefficieng. Thetotal time takento parse
all 2250 sentencewentfrom 548K secondgo 31.2
seconds.

Figure 5 shaws us that a model which disam-
biguatessyntacticlexical ambiguitycanpotentially
be extremelyusefulin termsof parsingefficiengy.
Thus disambiguationof tree assignmentor Su-
perTagging (Srinivas, 1997) of a sentencebefore
parsingit might be a way of improving parsingef-
ficieng. This givesus a way to reducethe pars-
ing compleity for preciselythe sentencesvhich
wereproblematictheoneswhichselectedoomary
trees.To testwhetherparsingtimesarereducedaf-
ter Superfggingwe conductedan experimentin
which the output of an n-best Superbggerwas
taken asinput to the parser In our experimentwe
setn to be60.2 Thetimetakento parsehesameset
of sentencewasagaindramaticallyreducedtheto-
tal time takenwas21K seconds)However, the dis-
adwantageof this methodwasthat the coverageof

3(Chenetal., 1999)shaws thatto getgreaterthan97%ac-
curay using Superhggingthe value of n mustbe quite high
(n > 40). They useadifferentsetof Superhgsandsowe used
their resultsimply to getan approximateestimateof the value
of n.

40

the parserwasreduced: 926 sentencegout of the
2250)did notgetary parse.Thiswasbecaussome
crucial treewasmissingin the n-bestoutput. The
resultsaregraphedn Figure6. Thetotal numberof
deriationsfor all sentencesentdovnto 1.01e+10
(the original total numberwas 1.4e+18)indicating
(notsurprisingly)thatsomeattachmenambiguities
persistalthoughthe numberof treesare reduced.
We are experimentingwith techniqueswhere the
outputof the n-bestSuperhggeris combinedwith
otherpiecesof evidenceto improve the coverageof
the parsemwhile retainingthe speedup.

0 + + * ¢

-0.5 |

al

-15 |

21

-25 |

3l

log(Time taken in secs)

o
o o o
°
°
°
°
°
°
o
°
e o o o
°
°
°

-35 o o o o 6 6 6 © 6 06 6 6 © o

4L © © 0 0 0 0 0 0 0 0o 0o 0 0 0 0o o 0o o o o 4

-45
o © o o © ° o ° ° ° ° ° ° ° ° °

-5

Figure5: Parsetimeswhenthe parsergetsthe cor

recttreefor eachword in the sentencdeliminating
ary syntacticlexical ambiguity). The parsingtimes
for all the 2250 sentencefor all lengthsnever goes
above 1 second. (x-axis: Sentencdength; y-axis:

log(time)in seconds)

00 BSOS 00 0O
00 BEAEEO®D
00 ©0®e

© | PN SRRSO O 0O
© 6 © PO ISP OO

log(Time in secs)
0 0000w 00
0 0 000 O
0 0 0ocNEBMEXCE o O
© OOEBBOBMIBEED: X0 >
000 O HNNENNIEBED O O
00 © EBONINICREEID B DO
HOCODENDMMBIDO © O
0 0 COMMIENONNSEEEEGD:E 0O
00 00 CEDEIEIIENIENDBIND O O O
000 SCEOCHBONIESIREIEECSE- D O O
© 0000 EOIESSCSN80 0D
0 OMOENEEROEEEO OO O
©0 PO E————— 0O O

0 000000 ©

°
°
°

0 15 25
Sentence length

Figure6: Time taken by the parseraftern-bestSu-
perTagging(n = 60). (x-axis: Sentencdength;y-
axis: log(time)in seconds)

4 Sentence Complexity

Therearemary waysof describingsentenceeom-
plexity, which are not necessarilyindependenbf

each other In the contet of lexicalized tree-

adjoining grammar (and in other lexical frame-

works, perhapswvith somemaodifications)the com-

plexity of syntacticand semanticprocessings re-

latedto thenumberof predicate-ajumentstructures
beingcomputedor agivensentence.

In this sectionwe explorethepossibilityof char
acterizingsentenceompleity in termsof thenum-
berof clausesvhichis usedasanapproximatiorto
the numberof predicate-ajumentstructuresto be
foundin asentence.

The numberof clausesof a given sentencen
the PennTreebankis countedusingthe bracleting
tags. The countis computedto be the numberof
S/SINV/SQ/RRModeswhichhave aVP child or a
child with -PRD functiontag. In principle number
of clausescan growv continuouslyas the sentence
lengthincreases.However it is interestingto note
that 99.1%o0f sentences the PennTreebankcon-
tain 6 or fewer clauses.

Figure 7 shavs the averagenumberof clauses
plottedagainstsentencdength. For sentencesvith
no morethan50 words,which accountdor 98.2%
of the corpus,we seea linear increasein the av-
eragenumberof clauseswith respectto sentence
length. But from thatpoint on, increasingthe sen-
tencelengthdoesnotleadto aproportionaincrease
in the numberof clauses. Thus, empirically the
numberof clausess boundedby a constant. For
somevery long sentencesthe numberof clauses
actuallydecreasebecausdhesesentenceinclude
long but flat coordinatecphrases.

Figure 8 shavs the standarddeviation of the
clause number plotted against sentencelength.
There is an increasein deviation for sentences
longerthan50 words. This is dueto two reasons:
first, quite often, long sentencegither have mary
embeddealausesor areflat with long coordinated
phrasessecondthe databecomesparseasthe sen-
tencelengthgrows, resultingin high deviation?

In Figure9 andFigure 10 we shav how parsing
time variesasa function of the numberof clauses
presentin the sentencebeing parsed. The figures
areanalogougo the earliergraphsrelatingparsing
time with otherfactors(seeFigure3 andFigure4).
Surprisingly in both graphswe seethat whenthe
numberof clausesis small (in this caselessthan
5), anincreasdn the numberof clauseshasno ef-
fectontheparsingcompleity. Evenwhenthenum-
berof clausess 1 we find the samepatternof time
compleity thatwe have seenin the earliergraphs
when we ignored clausecompleity. Thus, when
the numberof clauseds small parsingcompleity

“For somesentencdengths(e.g.,length= 250), thereis
only onesentencavith thatlengthin thewhole corpus result-
ing in zerodeviation.

41

Average number of clauses in the sentences

. . . .
0 50 100 150 200 250
Sentence length

Figure7: Averagenumberof clauseplottedagainst
sentencéength

35

25

15

Standard deviation of clause number

05

0 L "

I
100 150 200 250
Sentence length

Figure8: Standardleviation of clausenumbermlot-
tedagainsssentencéength

is relatedto attachmenof adjunctsratherthanamu-
ments. It would be interestingto continueincreas-
ing the numberof clausesandthe sentencdength
andthencomparehedifferencesn parsingtimes?
We have seenthat beyond a certain sentence
length,the numberof clausesdo not increasepro-
portionally We conjecturethat a parsercan ex-
ploit this obsered constrainton clausecompleity
in sentencew improve its efficiengy. In away sim-
ilar to methodsthat accountfor low attachmentf
adjunctsvhile parsingwe canintroduceconstraints
on how mary clausesa particularnode can domi-
natein a parse. By makingthe parsersensitve to
this measurewe canpruneout unlikely derivations
previously consideredo be plausibleby the parser
Thereis also an independenteasonfor pursuing
this measureof clausalcompleity. It canbe ex-
tendedto a notion of syntacticand semanticcom-
plexity asthey relateto both the representational

SWe planto conductthis experimentandpresentheresults
duringtheworkshop.

10

ORNWAUNIO~N®O

35
Num of clauses

Figure 9: Variation in times for parsing plotted
againstengthof eachsentencevhile identifyingthe
numberof clauses.

1000

S8um of trees selected

35
Num of clauses

Figure 10: Variationin times for parsingplotted
againstthe numberof treesselectedby eachsen-
tencewhile identifying the numberof clauses.

andprocessin@spect$Joshi,2000). Theempirical
studyof clausalkcompleity describedn thissection
might shedsomelight on the generalissueof syn-
tacticandsemanticcomplexity.

5 Conclusion

In this paper we identified syntacticlexical ambi-
guity and sentenceompleity asfactorsthat con-
tribute to parsingcompleity in fully lexicalized
grammars.

We shavedthatlexical syntacticambiguityhasa
strongeffecton parsingime andthatamodelwhich
disambiguatesyntacticlexical ambiguity can po-
tentially be extremelyusefulin termsof parsingef-
ficieng.. By assigningeachword in the sentence
with thecorrectelementaryreeshavedthatparsing
timeswerereducedy several ordersof magnitude
(the total time taken to parse2250 sentencesvent
from 548K seconddo 31.2seconds).

42

We conductedan experimentin which the out-
put of ann-bestSuperftggerwastakenasinputto
the parser Thetime takento parsethe samesetof
sentencewasagaindramaticallyreducedthetotal
time takenwas 21K seconds)The disadwantageof
this approachwasthat926 out of the original 2250
sentencedid notgetary parse.

We shavedthatevenassentencéengthincreases
the numberof clausess empirically boundedby a
constant. The numberof clausedn 99.1%of sen-
tencedn the PennTreebankvasboundedby 6. We
discussedhow thisfinding affectsparsingefficiengy
and shaved that for when the numberof clauses
is smallerthan 4, parsingefficiency is dominated
by adjunctattachmentgatherthanamgumentattach-
ments.

References

JohnChen, Srinivas Bangalore,and K. Vijay-Shanler.
1999. New modelsfor improving supertagdisam-
biguation. In Proceedingsof the 9th Confeenceof
the EuropeanChapterof the Associatiorfor Compu-
tational Linguistics Bergen,Norway.

A. JoshiandY. Schabes1991. Treeadjoininggrammars
andlexicalizedgrammars.in M. NivatandA. Podel-
ski, editors, Tree automataand languages North-
Holland.

Aravind K. Joshi. 2000. Some aspectsof syntactic
andsemanticompleity andunderspecificationTalk
givenatSyntactiandSemanticCompleity in Natural
Language ProcessingSystemsWbrkshopat ANLP-
NAACL 2000,Seattle May.

M. Marcus,B. Santorini,andM. Marcinkienviecz.1993.
Building alargeannotateatorpusof english. Compu-
tational Linguistics 19(2):313-330.

StephanOepenand John Carroll. 2000. Ambiguity
packingin constraint-baseparsing- practicalresults.
In Proceeding®f the 1stMeetingof the North Amer
ican ACL, NAACL-200Q Seattle WashingtonApr 29
—May 4.

Anoop Sarkar 2000. Practicalexperimentsin parsing
usingtreeadjoininggrammars.In Proceeding®f the
Fifth Workshopon Tree Adjoining Grammas, Paris,
France May 25-27.

TheXTAG-Group.1998. A LexicalizedTreeAdjoining
Grammarfor English. TechnicalReportiRCS 98-18,
Universityof Pennsylhania.

B. Srinivas. 1997. Performancdvaluationof Supertag-
ging for Partial Parsing. In Proceedingsof Fifth In-
ternationalWbrkshopon Parsing Technolagy, Boston,
USA, September

FeiXia andMarthaPalmer 2000. Evaluatingthe Cover
ageof LTAGson AnnotatedCorpora.ln Proceedings
of LREC satellite workshopUsing Evaluationwithin
HLT Programs: Resultand Trends

FeiXia. 1999. Extractingtreeadjoininggrammargrom
bracleted corpora. In Proc. of NLPRS-99 Beijing,
China.

Large Scale Parsing of Czech

Pavel Smrz and AleS Horak
Faculty of Informatics, Masaryk University Brno
Botanicka 68a, 60200 Brno, Czech Republic
E-mail: {smrz,hales}@fi.muni.cz

Abstract

Syntactical analysis of free word order lan-
guages poses a big challenge for natural lan-
guage parsing. In this paper, we describe our
approach to feature agreement fulfilment that
uses an automatically expanded grammar. We
display the insides of the implemented system
with its three consecutively produced phases —
the core meta-grammar, a generated grammar
and an expanded grammar. We present a com-
parison of parsing with those grammar forms in
terms of the parser running time and the num-
ber of resulting edges in the chart, and show the
need of a shared bank of testing grammars for
general parser evaluation.

1 Introduction

Context-Free parsing techniques are well suited
to be incorporated into real-world NLP systems
for their time efficiency and low memory re-
quirements. However, it is a well-known fact
that some natural language phenomena can-
not be handled with the context-free grammar
(CFG) formalism. Researchers therefore often
use the CFG backbone as the core of their gram-
mar formalism and supplement it with context
sensitive feature structures (e.g., Pollard and
Sag (1994), Neidle (1994)). The mechanism for
the evaluation of feature agreement is usually
based on unification. The computation can be
either interleaved into the parsing process, or it
can be postponed until the resulting structure
which captures all the ambiguities in syntax has
been built (Lavie and Rosé, 2000).

In our approach, we have explored the possi-
bility of shifting the task of feature agreement
fulfilment to the earliest phase of parsing pro-
cess — the CFG backbone. This technique can
lead to a combinatorial expansion of the num-
ber of rules, however, as we are going to show

43

in this paper, it does not need to cause serious
slow-down of the analysis.

In a certain sense, we investigate the inter-
face between phrasal and functional constraints
as described in Maxwell IIT and Kaplan (1991).
They compare four different strategies — in-
terleaved pruning, non-interleaved pruning, fac-
tored pruning, and factored extraction and see
the fundamental asset in the factoring tech-
nique. On the other hand, we use a special
structure for constraint evaluation. This struc-
ture stores all the possible propagated informa-
tion in one place and allows to solve the func-
tional constraints efficiently at the time of the
chart edge closing. Therefore, factoring cannot
play such key role in our system.

Maxwell IIT and Kaplan (1991) further dis-
cussed the possibility of translating the func-
tional constraints to the context-free (CF)
phrasal constraints and vice versa and noted
that “many functional constraints can in prin-
ciple be converted to phrasal constraints, al-
though converting all such functional con-
straints is a bad idea, it can be quite advan-
tageous to convert some of them, namely, those
constraints that would enable the CF parser to
prune the space of constituents”. To date, the
correct choice of the functional constraints se-
lected for conversion has been explored mostly
for English. However, these results cannot sim-
ply be applied in morphologically rich languages
like Czech, because of the threat of massive ex-
pansion of the number of rules. Our preliminary
results in answering this question for Czech sug-
gest that converting the functional constraints
to CF rules can be valuable for noun phrases,
even if the number of rules generated from
one original rule can be up to 56 (see below).
An open question remains, how to incorporate
the process of expansion to other agreement

test checking, especially the subject—predicate
agreement and verb subcategorization. Here,
the cause of problems are the free word order
and discontinuity of constituents omnipresent in
Czech. Moreover, ellipses (deletions) interfere
with the expansion of verb subcategorization
constraints and even of the subject—predicate
agreement tests (subject can be totally elided
in Czech).

2 Description of the System

We bring into play three successive grammar
forms. Human experts work with the meta-
grammar form, which encompasses high-level
generative constructs that reflect the meta-level
natural language phenomena like the word or-
der constraints, and enable to describe the lan-
guage with a maintainable number of rules. The
meta-grammar serves as a base for the second
grammar form which comes into existence by
expanding the constructs. This grammar con-
sists of context-free rules equipped with feature
agreement tests and other contextual actions.
The last phase of grammar induction lies in
the transformation of the tests into standard
rules of the expanded grammar with the actions
remaining to guarantee the contextual require-
ments.

Meta-grammar (G1) The meta-grammar
consists of global order constraints that safe-
guard the succession of given terminals, special
flags that impose particular restrictions to given
non-terminals and terminals on the right hand
side and of constructs used to generate combi-
nations of rule elements. The notation of the
flags can be illustrated by the following exam-
ples:

ss —-> conj clause
/* budu muset cist -

I will have to read */
futmod --> VBU VOI VI
/* byl bych byval -

I would have had */
cpredcondgr ==> VBL VBK VBLL
/* musim se ptat -

I must ask */
clause ===> V0 R VRI

The thin short arrow (->) denotes an ordi-
nary CFG transcription. To allow discontinu-
ous constituents, as is needed in Czech syntactic

analysis, the long arrow (-->) supplements the
right hand side with possible intersegments be-
tween each couple of listed elements. The thick
long arrow (==>) adds (in addition to filling in
the intersegments) the checking of correct encli-
tics order. This flag is more useful in connection
with the order or rhs constructs discussed be-
low. The thick extra-long arrow (===>) provides
the completion of the right hand side to form a
full clause. It allows the addition of interseg-
ments in the beginning and at the end of the
rule, and it also tries to supply the clause with
conjunctions, etc.

The global order constraints represent univer-
sal simple regulators, which are used to inhibit
some combinations of terminals in rules.

/* jsem, bych, se -

am, would, self */
%enclitic = (VB12, VBK, R)
/* byl, cetl, ptal, musel -

was, read, asked, had to */
%horder VBL = {VL, VRL, VOL}
/* byval, cetl, ptal, musel -

had been, read, asked, had to */
%order VBLL = {VL, VRL, VOL}

In this example, the %enclitic specifies
which terminals should be regarded as enclitics
and determines their order in the sentence. The
#order constraints guarantee that the terminals
VBL and VBLL always go before any of the ter-
minals VL, VRL and VOL.

The main combining constructs in the meta-
grammar are order(), rhs() and first(),
which are used for generating variants of assort-
ments of given terminals and non-terminals.

/* budu se ptat -
I will ask */
clause ===> order(VBU,R,VRI)

/* ktery ... -
which ... */
relclause ===> first(relprongr) \

rhs(clause)

The order () construct generates all possible
permutations of its components. The first()
and rhs() constructs are employed to implant
content of all the right hand sides of specified
non-terminal to the rule. The rhs(N) construct

generates the possible rewritings of the non-
terminal N. The resulting terms are then subject
to standard constraints and intersegment inser-
tion. In some cases, one needs to force a certain
constituent to be the first non-terminal on the
right hand side. The construct first(N) en-
sures that N is firmly tied to the beginning and
can neither be preceded by an intersegment nor
any other construct. In the above example, the
relclause is transformed to CF rules starting
with relprongr followed by the right hand sides
of the non-terminal clause with possible inter-
segments filled in.

In the current version, we have added two
generative constructs and the possibility to de-
fine rule templates to simplify the creation and
maintenance of the grammar. The first con-
struct is formed by a set of %list_* expres-
sions, which automatically produce new rules
for a list of the given non-terminals either sim-
ply concatenated or separated by comma and
co-ordinative conjunctions:

/* (nesmim) zapomenout udelat -
to forget to do */

%list_nocoord vi_list

vi_list -> VI

%list_nocoord_case_number_gender modif
/* velky cerveny -

big red */
modif -> adjp

/* krute a drsne -

cruelly and roughly */
%list_coord adv_list
adv_list -> ADV

%list_coord_case_number_gender np
/* krasny pes -

beautiful dog */
np -> left_modif np

The endings *_case, *_number_gender and
*_case number_gender denote the kinds of
agreements between list constituents. The in-
corporation of this construct has decreased the
number of rules by approximately 15%.

A significant portion of the grammar is made
up by the verb group rules. Therefore we have
been seeking for an instrument that would catch

45

frequent repetitive constructions in verb groups.
The obtained addition is the %group keyword
illustrated by the following example:

hgroup verb={
V:head($1,intr)
add_verb($1),
VR R:head($1,intr)
add_verb($1)
set_R($2)
}

/* ctu - I am reading */
/* ptam se - I am asking */
clause ====> order (group(verb),vi_list)

Here, the group verb denotes two sets of
non-terminals with the corresponding actions
that are then substituted for the expression
group(verb) on the right hand side of the
clause non-terminal.

Apart from the common generative con-
structs, the metagrammar comprises feature
tagging actions that specify certain local aspects
of the denoted (non-)terminal. One of these ac-
tions is the specification of the head-dependent
relations in the rule — the head() construct:

/* prvni clanek - first article */
np -> left_modif np
head($2,$1)
/* treba - perhaps */
part -> PART
head (root,$1)

In the first rule, head ($2,$1) says that (the
head of) left_modif depends on (the head of)
np on the right hand side. In the second ex-
ample, head (root,$1) links the PART terminal
to the root of the resulting dependency tree.
More sophisticated constructs of this kind are
the set_local_root () and head_of (), whose
usage is demonstrated in the following example:

/* ktery ... -
which ... */
relclause ===> first(relprongr) \
rhs(clause)

set_local_root (head_of ($2))

Here, the heads in rhs(clause) are as-
signed as specified in the derivation rules for

clause. This way we obtain one head of the
rhs(clause) part and can link all yet unlinked
terms to this head.

The Second Grammar Form (G2) As
we have mentioned earlier, several pre-defined
grammatical tests and procedures are used in
the description of context actions associated
with each grammatical rule of the system. We
use the following tests:

e grammatical case test for particular words

and noun groups
noun-gen-group -> noun-group \
noun-group
test_genitive ($2)
propagate_all($1)

agreement test of case in prepositional con-
struction

-> PREP \
noun-group
agree_case_and_propagate($1,$2)

prep-group

agreement test of number and gender for
relative pronouns
ng-with-rel-pron -> noun-group \
’,’ rel-pron-group
agree_number_gender\
_and_propagate ($1,$3)

agreement test of case, number and gender
for noun groups

adj-ng -> adj-group noun-group
agree_case_number_gender)\
_and_propagate ($1,$2)

test of agreement between subject and
predicate

test of the verb valencies

clause -> subj-part verb-part
agree_subj_pred($1,$2)
test_valency_of ($2)

The contextual actions propagate_all and
agree_*_and propagate propagate all rele-
vant grammatical information from the non-
terminals on the right hand side to the one on
the left hand side of the rule.

46

Expanded Grammar Form (G3) The fea-
ture agreement tests can be transformed into
the context-free rules. For instance in Czech,
similar to other Slavic languages, we have 7
grammatical cases (nominative, genitive, da-
tive, accusative, vocative, locative and instru-
mental), two numbers (singular and plural) and
three genders (masculine, feminine and neuter),
in which masculine exists in two forms — ani-
mate and inanimate. Thus, e.g., we get 56 pos-
sible variants for a full agreement between two
constituents.

2.1 Parser

In our work, we have successively tried several
different techniques for syntactic analysis. We
have tested the top-down and bottom-up vari-
ants of the standard chart parser. For more
efficient natural language analysis, several re-
searchers have suggested the concept of head-
driven parsing (e.g., Kay (1989), van Noord
(1997)). Taking advantage of the fact that the
head-dependent relations are specified in ev-
ery rule of our grammar to enable the depen-
dency graph output, the head-driven approach
has been successfully adopted in our system.
Currently, we are testing the possibility of in-
corporating the Tomita’s GLR parser (Tomita,
1986; Heemels et al., 1991) for the sake of com-
paring the efficiency of the parsers and the feasi-
bility of implanting a probabilistic control over
the parsing process to the parser.

Since the number of rules that we need to
work with is fairly big (tens of thousands), we
need efficient structures to store the parsing
process state. The standard chart parser im-
plementation used in our experiments employs
4 hash structures — one for open edges, one
for closed edges, one hash table for the gram-
mar rules (needed in the prediction phase) and
one for all edges in the agenda or in the chart
(the hash key is made of all the attributes of an
edge — the rule, the dot position and the sur-
face range). In the case of a head-driven chart
parser, we need two hashes for open edges and
also two hashes for closed edges.

The gain of this rather complex structure is
the linear dependency of the analysis speed on
the number of edges in the resulting chart. Each
edge is taken into consideration twice — when
it is inserted into the agenda and when it is
inserted into the chart. The overall complexity

is therefore 2k, where k is the number of edges
in the resulting chart.

The number of chart edges that are involved
in the appropriate output derivation structure
is related to:

a) the number of words in the input sentence,
and

b) the ambiguity rate of the sentence.

The output of the chart parser is presented
in the form of a packed shared forest, which is
also a standard product of the generalized LR
parser. Thus, it enables the parser to run the
postprocessing actions on a uniform platform
for the different parsers involved.

During the process of design and implemen-
tation of our system, we started to distinguish
four kinds of contextual actions, tests or con-
straints:

rule-tied actions
agreement fulfilment constraints

1.
2.
3. post-processing actions
4. actions based on derivation tree

Rule-tied actions are quite rare and serve only
as special counters for rule-based probability es-
timation or as rule parameterization modifiers.
Agreement fulfilment constraints are used in
generating the G3 expanded grammar, in G2
they serve as chart pruning actions. In terms
of (Maxwell III and Kaplan, 1991), the agree-
ment fulfilment constraints represent the func-
tional constraints, whose processing can be in-
terleaved with that of phrasal constraints. The
post-processing actions are not triggered until
the chart is already completed. They are used,
for instance, in the packed dependency graph
generation. On the other hand, there are some
actions that do not need to work with the whole
chart structure, they are run after the best or
n most probable derivation trees are selected.
These actions do not prune anything, they may
be used, for example, for outputting the verb
valencies from the input sentence.

3 Results

In our system, we work with a grammar of the
Czech language (Smrz and Hordk, 1999), which
is being developed in parallel with the parsing

47

mechanism. The grammar in the three forms,
as exemplified above, has the following numbers
of rules:

G1 meta-grammar — # rules 326
G2 generated grammar — # rules | 2919
shift /reduce conflicts 48833
reduce/reduce conflicts 5067
G3 expanded grammar — # rules | 10207

As a measure of the ambiguity rate of G2,
we display the number of shift/reduce and re-
duce/reduce conflicts as counted with a stan-
dard LR parser generator. These data, together
with the number of rules in the grammar, pro-
vide basic characteristics of the complexity of
analysis.

The comparison of parsing times when using
the grammars G3 and G2 without the actions
taken into account is summarized in Table 1.
We present the time taken for parsing a se-
lected subset of testing sentences — only sen-
tences with more than 50 words were chosen.

The results show that in some cases, which
are not so rare in highly inflectional languages,
the expanded grammar achieves even less num-
ber of edges in the chart than the original gram-
mar. This effect significantly depends on the
ambiguity rate of the input text. A question re-
mains, how to exactly characterize the relation
between ambiguity in the grammar and in the
input.

The fully expanded grammar G3 is only mod-
erately larger than the G2 grammar (about
three times the size). The reason lies in the
fact that the full expansion takes place mainly
in the part of the grammar that describes noun
phrases. This part forms only a small amount
of the total number of G2 rules. Considering
this, it is not surprising that the parse times are
not much worse or even better. It also benefits
from early pruning by transforming the unifica-
tion constraints into the CFG. The agreement
tests between subject and predicate should also
be expanded. Nevertheless, we do not do this,
since the position of subject is free, it cannot
be described with CF rules without imposing a
huge amount of ambiguity to every input sen-
tence.

4 Packed Dependency Graph

Ambiguity is a fundamental property of natural
languages. Perhaps the most oppressive case of

Sent # of G2 G3 # edges

| words | # edges | time | # edges | time | G3/G2
1100 52 115093 1.95 143044 2.53 124 %
1102 51 84960 1.56 107318 2.02 126 %
1654 51 202678 3.23 361072 6.81 178 %
1672 59 269458 4.08 434430 7.13 161 %
1782 51 212695 3.36 168118 3.05 79%
2079 66 98363 1.83 223063 3.75 227 %
2300 60 262157 4.03 443022 7.28 169 %
2306 102 739351 | 12.94 715835 | 10.95 97 %
2336 103 355749 5.21 565506 8.83 159 %

Table 1: Running times for G2 and G3

ambiguity manifests itself on the syntactic level
of analysis. In order to face up to the high num-
ber of obtained derivation trees, we define a sort
order on the output trees that is specified by
probabilities computed from appropriate edges
in the chart structure. The statistics is also in-
volved in the process of sorting out the edges
from the agenda in the order that leads directly
to n most probable analyses.

A common approach to acquiring the statis-
tical data for the analysis of syntax employs
learning the values from a fully tagged tree-
bank training corpus. Building such corpora is
a tedious and expensive task and it requires a
team cooperation of linguists and computer sci-
entists. At present, the only source of Czech
tree-bank data is the Prague Dependency Tree-
Bank (PDTB) (Hajic, 1998), which contains de-
pendency analyses of about 20000 Czech sen-
tences.

The linguistic tradition of Czech syntactic
analysis is constituted by distinguishing the role
of head and dependent and describes the re-
lations between a head and its dependents in
terms of semantically motivated dependency re-
lations. In order to be able to exploit the data
from PDTB, we have supplemented our gram-
mar with the dependency specification for con-
stituents. Thus, the output of the analysis can
be presented in the form of a pure dependency
tree. At the same time, we unify classes of
derivation trees that correspond to one depen-
dency structure. We then define a canonical
form of the derivation to select one representa-
tive of the class which is used for assigning the
edge probabilities.

48

The dependency structures for all possible
analyses are stored in the form of a packed de-
pendency graph. Every “non-simple” rule (that
has more than one term on the right hand side)
is extended by a denotation of the head element
and its dependents. Thus, the dependency is of-
ten given as a relation between non-terminals,
which cover several input words. However, the
basic units of the dependency representation are
particular surface elements (words). To be able
to capture the standard dependency relations,
we propagate the information about a “local
head” from the surface level through all the pro-
cessed chart edges up to the top. A simplified
case that captures only one possible derivation
of sentence ‘Mame k vetefi kufe.’ (We have
a chicken for dinner.) can be described by the
following tree:

clause
head: 1
intr Vv intr
head: 0 head: 1 head: 2,4
inter Méame .)
inter inter
head: 0
| head: 2 head: 4
€ | |
PP np
head: 2 head: 4
|
PREP N N
head: 2 head: 3 head: 4
| |
k veceri kufe

9999-ROOT

4-bydlel

Figure 1: Dependency graph.

9999-ROOT

4-bydlel

9999-ROOT

4-bydlel

Figure 2: Two of the four possible dependency trees.

49

During the evaluation of post-processing ac-
tions, every head-dependent relation is then
recorded as an edge in the graph (without allow-
ing multi-edges). An example of the graph for
the sentence ‘V8ak Martin s kon&m bydlel u
strjce se Spinavym prasetem.’ (literally:
However, Martin with a horse lived with his un-
cle with a dirty pig.) is depicted in Figure 1.
Two examples of unpacked derivation trees that
are generated from the graph are illustrated in
Figure 2.

The packed dependency graph enables us to
recover all the possible standard dependency
trees with some additional information gathered
during the analysis. The example graph repre-
sents two dependency trees only, however, in
the case of more complex sentences, especially
those with complicated noun phrases, the sav-
ing is much higher.

5 Conclusions

In this paper, we have shown that shifting all
possible feature agreement computations to the
CFG backbone is suitable for free word order
languages and it does not need to cause a seri-
ous increase in parsing time. We discuss three
consecutively produced forms of our grammar
and give a comparison of different parser run-
ning times on highly ambiguous input.

In the process of parsers evaluation, we lacked
the possibility to compare the parsing efficiency
on a large number of testing grammars. These
grammars cannot be automatically generated,
since they should reflect the situation in real-
world parsing systems. Future cooperation in
NL parsing could therefore lead to the creation
of a commonly shared bank of testing grammars
with precisely specified ambiguity measures.

References

J. Hajic. 1998. Building a syntactically anno-
tated corpus: The Prague Dependency Tree-
bank. In Issues of Valency and Meaning,
pages 106-132, Prague. Karolinum.

R. Heemels, A. Nijholt, and K. Sikkel, edi-
tors. 1991. Tomitas Algorithm: FExtensions
and Applications : Proceedings of the First
Twente Workshop on Language Technology,
Enschede. Universiteit Twente.

M. Kay. 1989. Head driven parsing. In Pro-

50

ceedings of Workshop on Parsing Technolo-
gies, Pittsburg.

A. Lavie and P. Rosé, C. 2000. Optimal am-
biguity packing in context-free parsers with
interleaved unification. In Proceedings of
IWPT’2000, Trento, Italy.

. T. Maxwell III and R. M. Kaplan. 1991.
The interface between phrasal and functional
constraints. In M. Rosner, C. J. Rupp, and
R. Johnson, editors, Proceedings of the Work-
shop on Constraint Propagation, Linguistic
Description, and Computation, pages 105—
120. Instituto Dalle Molle IDSIA, Lugano.
Also in Computational Linguistics, Vol. 19,
No. 4, 571-590, 1994.

C. Neidle. 1994. Lexical-Functional Grammar
(LFG). In R. E. Asher, editor, Encyclopedia
of Language and Linguistics, volume 3, pages
2147-2153. Pergamon Press, Oxford.

G. Pollard and I. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of
Chicago Press, Chicago.

P. Smrz and A. Hordk. 1999. Implementation
of efficient and portable parser for Czech.
In Proceedings of TSD’99, pages 105-108,
Berlin. Springer-Verlag. Lecture Notes in Ar-
tificial Intelligence 1692.

M. Tomita. 1986. Efficient Parsing for Natu-
ral Languages: A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publishers,
Boston, MA.

G. van Noord. 1997. An efficient implemen-
tation of the head-corner parser. Computa-
tional Linguistics, 23(3).

Demos

Cross-Platform, Cross-Grammar Comparison — Can it be Done?

Ulrich Callmeier and Stephan Oepen
Saarland University
Computational Linguistics
{uc |oe}@coli.uni-sb.de

(see ‘http://www.coli.uni-sb.de/itsdb/’)

Abstract

This software demonstration reviews re-
cent improvements in comparing large-scale
unification-based parsing systems, both across
different platforms and multiple grammars.
Over the past few years significant progress
was accomplished in efficient processing with
wide-coverage HPSG grammars. A large num-
ber of engineering improvements in current
systems were achieved through collaboration of
multiple research centers and mutual exchange
of experience, encoding techniques, algorithms,
and pieces of software.

We argue for an approach to grammar and
system engineering that makes systematic ex-
perimentation and the precise empirical study
of system properties a focal point in develop-
ment. Adapting the profiling metaphor familiar
from software engineering to constraint-based
grammars and parsers enables developers to
maintain an accurate record of system evolu-
tion, identify grammar and system deficiencies
quickly, and compare to earlier versions, among
analytically varied configurations, or between
different systems. We demonstrate a suite of in-
tegrated software packages facilitating this ap-
proach, which are publicly available both separ-
ately and together.

The [incr tsdb()] profiling environment
(Oepen & Carroll, 2000) integrates empirical
assessment and systematic progress evaluation
into the development cycle for grammars and
processing systems; it enables developers to ob-
tain an accurate snapshot of current system be-
haviour (a profile) with minimal effort. Profiles
can then be analysed and visualized at vari-
able granularity, reflecting various aspects of
system competence and performance, and com-
pared to earlier results. Since the [incr tsdb()]
package has been integrated with some eight
processing platforms by now, it has greatly fa-

53

cilitated cross-fertilization between various re-
search groups and implementations.

PET is a platform for experimentation with
processing techniques and the implementa-
tion of efficient processors for unification-based
grammars (Callmeier, 2000). It synthesizes
a range of techniques for efficient processing
from earlier systems into a modular C++ im-
plementation, supplying building blocks (such
as various unifiers) from which a large number
of experimental setups can be configured. A
parser built from PET components can be used
as a time- and memory-efficient run-time sys-
tem for grammars developed in the LKB sys-
tem distributed by CSLI Stanford (Copestake
& Flickinger, 2000). In daily grammar develop-
ment it allows frequent, rapid regression tests.

We emphasize in this demonstration the cru-
cial importance of experimental system compar-
ison, eclectic engineering, and incremental opti-
mization. Only through the careful analysis of a
large number of interacting system parameters
can one establish reliable points of comparison
across different parsers and multiple grammars
simultaneously.

References

Callmeier, U. (2000). PET — A platform for ex-
perimentation with efficient HPSG processing
techniques. Natural Language Engineering, 6
(1) (Special Issue on Efficient Processing with
HPSG), 99-108.

Copestake, A., & Flickinger, D. (2000). An open-
source grammar development environment and
broad-coverage English grammar using HPSG.
In Proceedings of the Second Linguistic Re-
sources and FEwvaluation Conference (pp. 591—
600). Athens, Greece.

Oepen, S., & Carroll, J. (2000). Performance profil-
ing for parser engineering. Natural Language En-

gineering, 6 (1) (Special Issue on Efficient Pro-
cessing with HPSG), 81 -97.

Toolsfor Large-Scale Parser Development

Natural Language Processing Group
Microsoft Research
One Microsoft Way
Redmond WA 98052 USA

1. Introduction

We demonstrate the tool set available to linguistic
developers in our NLP lab, with a particular
emphasis on the tools for incremental regression
testing and creation of regression suites. These
tools are currently under use in the daily
development of broad-coverage language analysis
systems for 7 languages (Chinese, English, French,
German, Japanese, Korean and Spanish). The
system is modular, with the parsing engine and
debugging environments shared by al languages.
Linguistic rules are written in a proprietary
language (caled G) whose features are uniquely
suited to linguistic tasks (Heidorn, in press). The
engine underlying the system, as well as the user
interface for linguistic developers, is
unicode-enabled thus supporting both European
and non-Indo-European languages.

2. Toolsfor regression testing

The purpose of this class of tools is to build
regression suites, which is a collection of what we
call master files. The master files take the form of
stored output trees, and keep a record of the state
of development at any point in time.

The linguistic developer builds a set of regression
files over the course of grammar development,
thus developing annotated corpora. Because the
system is intended to cover a broad range of input
including ungrammatical input, and because we
are very open to letting real text dictate grammar
structures rather than theory, we find that
annotated structures output by the system are
more useful for development than manually
tagged corpora.

The dandard practice of parser development
within our group is schematically shown in Figure
1. As grammar work progresses, developers can
run regression tests against the regression suites to
examine the consequences of the changes to the

update master file

Regressi on
suite add new sent
A

Change | Regression
G ammar testing

Figure 1. Flow diagram of daily grammar development process

grammar. When differences are found, the system
gives a color-coded display of the differences
(new changes in green, what is in the master file
in red, and unchanged part in gray). If the change
is an improvement, the developer can choose to
update the master file by simply double-clicking
on the sentence number on the display, and add
the sentences that are newly accommodated to the
regression suite. If the change is evaluated as
negative, the linguistic developer reworks the
rules that caused the regression.

Since we run regression tests many times aday in
the grammar development, the processing speed
of the systems is a vita issue. Current
performance estimates for regression testing are
20 to 30 sentences per second on a 550 MHz
Pentium 111 machine with 512MB RAM across
languages (average sentence length = 16.51 words
in English, 49.02 chars in Japanese, for example).
We also have means to distribute the processing
of regresson testing onto multiple CPUs:
currently, 3 machines with 4 CPUs each (500
MHz, 768MB RAM) regress 27,000 sentences in
less than 100 seconds or about 275 sentences per
second (English, on the same corpus as above).

3. References

Heidorn, George. In press. Intelligent Writing
Assistance. To appear in Robert Dale, Hermann
Moid and Harold Somers (eds.), Handbook of
Natural Language Processing. Chapter 8.

