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Abstract

Development environments for spoken dialogue pro-
cessing systems are of particular interest because the
turn-around time for a dialogue system is high while
at the same time a considerable amount of compo-
nents can be reused with little or no modifications.
We describe an Integrated Development Environ-
ment (TDE) for spoken dialogue systems. The ITDE
allows application designers to interactively specify
reusable building blocks called dialogue packages for
dialogue systems. Each dialogue package consists
of an assembly of data sources, including an object-
oriented domain model, a task model and grammars.
We show how the dialogue packages can be specified
through a graphical user interface with the help of a
wizard.

1 Introduction

The specification and design of interactive spoken
language systems has become the focus of research
recently. Partly fueled by the increasing demand of
spoken language applications and telephony-based
services, the deployment of development environ-
ments has increased. At the time of writing, at
least three main types of dialogue tools can be dis-
tinguished. One approach to development environ-
ments consists of graphical editors for Finite State
Automata (FSA) [Sutton et al, 1996], [Cole, 1999].
These systems equate a dialogue with a possible path
from the start state to one of the accepting states.
Possible actions of the application are specified by
annotations on states or arcs or both. Besides rely-
ing on a dialogue model that has been considered as
problematic in the past, finite-state automata based
dialogue editors do not exploit the desirable charac-
teristics of software engineering, such as reusability
and orthogonality of the components. For example,
recovery strategies need to be duplicated for each
state in which they should be applied. Moreover,
they require a system designer to anticipate every
single possible path through the system, a fact that
leads to an explosion of dialogue states.

Another approach to development environments
emphasizes reusability of the domain model over

graphical design interfaces. Here, object-oriented
features of the underlying programming language
such as Java or C++4 are used to design a class
hierarchy of speech objects or dialogue modules that
can be assembled and re-assembled for new applica-
tions. These modules are often used for basic data
types, such as date, time, credit card numbers, etc.
This approach has proven its practicability in nu-
merous commercial applications. Since the modules
can be reused, this is an improvement over finite-
state based dialogue machines. However, fine tuning
of recovery strategies requires separate fine-tuning in
each module. Moreover, the dialogue flow is partly
defined by an FSA whose nodes consist of the dia-
logue modules. When a node is reached, the dialogue
module determines the dialogue control until it gives
up control and an adjacent arc is traversed.

A third approach consists in designing a library
of reusable dialogue strategies based on the observa-
tion that the behavior of a dialogue manager should
be predictable in similar situations across several do-
mains. Araki et al [Araki et al, 1999] proposed a li-
brary of dialogue strategies to be reused. Koelzer
[Koelzer, 1999] proposed a reusable dialogue sys-
tem architecture based on specifications of knowl-
edge sources for the different components.

In this paper, we identify knowledge sources such
as grammars, task models and database conversion
rules, that characterize our dialogue manager for a
given application. Each of the knowledge sources
can be composed of smaller, modular knowledge
sources. A collection of these knowledge source mod-
ules, called a dialogue package, specifies a subdo-
main of a dialogue application. We borrow tech-
niques known from object oriented programming
languages to combine partial specifications of knowl-
edge sources to form the knowledge sources for a new
application. The specifications are mostly declara-
tive rather than procedural, leaving to the dialogue
manager the decision how best to interpret them in
the context of the dialogue. We describe the im-
plementation of a wizard-based integrated develop-
ment environment called Chapeau Clac that allows
the specification of the knowledge sources, their in-



tegration and testing.

2 The Architecture of the IDE and
the Dialogue System

2.1 The Architecture of the Dialogue
System

The dialogue manager makes use of different knowl-
edge sources. First, it contains a set of task de-
scriptions or task models. A task description can
be considered as a form to be filled in through the
dialogue, together with constraints stating the mini-
mum amount of information necessary to execute the
task. The dialogue strategy is specified in a declara-
tive programming language similar to PRoL.0OG that
can be easily adapted to the task at hand should the
need arise.

The state of the dialogue system at any given time
is determined implicitly by the relations of the forms
with the information available in the discourse at
that time. For example, a task description whose
constraints are inconsistent with information in the
discourse can not be a description of the intent of
the user. The elements the forms can be populated
with are descriptions of objects, actions and prop-
erties of objects and actions drawn from a domain
model. The domain model can loosely be compared
to a class hierarchy in object oriented programming
languages. In addition to task model and domain
model, the dialogue manager uses data base conver-
sion rules to generate SQL queries and to transform
the result sets. As the domain model 1s dependent
on the particular speech application, it belongs to
the knowledge sources to be specified through the
wizard.

As the semantics of the utterances are expressed
in terms of the domain model, we need to provide
a mechanism to translate the text input from the
speech recognizer into a canonical representation.
Attributed grammar rules provide transformation
between text input and semantic representations.

The place of the dialogue manager in the system
is similar in spirit to, but different in functionality
from, the design of a Graphical User Interface for a
back-end application. In the case of the GUI, the
design of windows, dialog boxes and menus is inde-
pendent from the design of the back-end application
that uses these graphical display elements. Simi-
larly, in our approach, the design of dialogue gram-
mars, dialogue goals and domain models is indepen-
dent of the design of the back-end application. As
in GUIs, the back-end application is notified of ma-
nipulations through events and callback functions.
This approach separates clearly the speech user in-
terface from the back-end application. The call-
backs and events constitute one integration point
between speech user interface and back-end appli-
cation whose form and content needs to be specified

for each new speech application.

It should be noted, however, that the analogy be-
tween graphical and speech user interfaces ends here.
Reference in GUIs is extensional. For example, the
click of the button or a menu, together with the state
of the application and the focus, determines the in-
tended action. In spoken dialogue systems, the need
to resolve reference of noun phrases or ellipsis forces
us to provide one more integration point with the
back-end application in order to allow database re-
trieval.

Consequently, we argue that a dialogue manager
for a given speech application can be character-
ized by the specification of four knowledge sources,
namely (i) the domain model to characterize the se-
mantic content of the utterances, (ii) the conversion
from the text input into a canonical semantic rep-
resentation and vice versa, (iii) the task model to
describe the event stream from the speech user in-
terface to the back-end application, and (iv) the con-
version from semantic representation into database
retrieval requests. Figure 1 shows the place of the
knowledge sources in the dialogue manager. As can
be seen, the knowledge sources (ii) to (iv) encapsu-
late entirely the dialogue manager from the remain-
ing components of the system.

Note that we make no assumptions as to how the
dialogue manager might make use of these knowl-
edge sources. In particular, we do not make any as-
sumptions as to how the dialogue strategy might de-
termine the actions of the dialogue manager. Aslong
as the provided knowledge sources are sufficient for
the dialogue manager to determine its actions, the
dialogue manager could implement a simple informa-
tion seeking dialogue system or a more sophisticated
system based on speech act or discourse theories.

All four knowledge sources can be modularized
more or less straightforwardly. The domain model
can be composed of different subdomain [Denecke
and Waibel, 1999]: new concepts may use multiple
inheritance of abstract base types. Grammar rules
containing generic semantic information can be spe-
cialized and adapted to the given domain. Database
conversion and dialogue goal specification modules
may simply be joined; but see section 6 for poten-
tial problems. It is the task of the wizard to help
the user in specifying and reusing these knowledge
sources.

2.2 Requirements for the IDE

The requirements for the IDE’s functionality com-
prise three main items. First, it should guide the
application designer to specify and modify the spo-
ken language part of an entire application through a
GUI. The data sources relevant for the spoken lan-
guage interface currently include grammars, domain
model, data bases, task model and input/output
channels. Moreover, conversions back and forth
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Figure 1: The place of the knowledge sources in the
system architecture.

between semantic representation of utterances and
database queries and results on one hand and text
on the other need to be specified. The object model
of the data sources used in the dialogue system is
shown in figure 2. Second, the IDE should support
a developer by adapting and modifying the existing
dialogue strategy through the usual debugging tools
such as tracer, walk through, call stacks, breakpoints
and variable dumps. Third, it should support an
application designer in testing the final application
using batch tests and single utterance tests.

In addition, since experienced users may obtain
results faster using a keyboard rather than a wizard
interface, the system designer should be able switch
between a standard text editor and the wizard in-
terface at any time in the design process. Surpris-
ingly, this design requirement had a more thorough
impact on the layout of the system implementation
than anticipated. For each data source to be spec-
ified, we need two classes that implement the data
source: one class implementing the data source it-
self, and a second class implementing a description
of the data source. The second class consists only
of primitive data types such as strings and integers
that can easily be manipulated by a wizard interface
and can also be easily parsed from a file. When the
final data sources are instantiated, the constructor
of the data source, taking a description as its only
argument, creates the data source according to the
specification.

In addition to the decoupling of the GUI with the
dialogue system itself, the description objects also
introduce an additional level of abstraction that al-
lows the replacement of similar data source imple-
mentations (such as different grammar formalisms
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Figure 2: The object model for the dialogue system.

as required by JSAPT and Sap1). Figure 3 depicts
the relationship between the different entities.

The data source specifications are organized in a
modular fashion in dialogue packages. Each dialogue
package consists of at least one and possibly all the
mentioned data sources. A final application is then
composed of several dialogue packages. In order to
avoid naming conflicts, each dialogue package intro-
duces its own namespace. As an example of a dia-
logue package, consider the task of a hotel reserva-
tion. The implementation of the hotel reservation
package may contain several tasks, such as calcu-
lating the price of a stay or displaying the hotel’s
location on a map. The interface between the im-
plementation of the package and the dialogue system
is regulated by the knowledge sources in the pack-
age description. For example, the hotel reservation
package may consist of several concepts such as ho-
tel, room, reservation, and all possible actions that
go with 1t. The dialogue system notifies the dialogue
package in case an event related to the package oc-
curs. It 1s then the responsibility of the dialogue
package to process the event properly.

Similar to class libraries in object-oriented pro-
gramming languages, the dialogue packages may
be reused in different applications.  The hotel
reservation package may be reused in an informa-
tion booth application (which uses another dialogue
package concurrently offering services related to cur-
rent events) and in a travel agency setting (which, in
turn, allows the user to book flights through the use
of a third dialogue package). The intention of this
level of granularity 1s it to have each package cover
all aspects of an entire subdomain.

3 The Specifications

The IDE offers a wizard-style GUI to specify the
data sources described above. The wizard guides
the user through the process of specifying a dialogue
package. In this section, we describe the steps the
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Figure 3: Descriptions specify the content of the
data sources to be used in the application. Descrip-
tions of data sources can be created and modified
using the IDE or a plain text editor.

wizard guides a user through for each dialogue pack-
age. In each step, one of the four knowledge sources
described above is interactively specified.

3.1 The Domain Model Specification

The domain model employed in the dialogue sys-
tem uses a simple class hierarchy. A class hierarchy
is a type hierarchy [Carpenter, 1992] extended by
method descriptions. Class specifications may con-
tain variables (whose type is a class from the on-
tology) and methods (whose arguments are classes
from the ontology). In addition, class specifications
may be related through multiple inheritance. While
in conventional object-oriented design, objects in the
domain correspond to classes, actions of the objects
correspond to methods, and properties correspond
to variables, we chose to model these elements by
classes. First, this allows us to uniformly express
mappings from noun phrases, verbal phrases and
adjuncts to classes (see section 3.3). Second, any
constituent of a spoken utterance may be under-
specified. Our approach allows us to select through
the inheritance mechanism the most specific class
from the ontology whose informational content can
be warranted in the absence of complete informa-
tion.

A method specification does not implement any
particular behavior of the class it belongs to.
Rather, it can be seen as a constraint specification
that generates an event to the back-end application
as soon as it 1s satisfied. It is then the task of the
back-end application to carry out the functional-
ity associated with the method. Consider a class
obj_displayable with an associated method display()
and the constraint string < obj_displayable.name,int
< obj_displayable.x,int < obj_displayable.y (read: the
variable obj_displayable.name contains more informa-
tion than the fact that it is a string,i.e. it is instan-
tiated). As soon as the position and the name of the

object become known to the dialogue system (e.g.
through database retrieval), an event is generated
and sent to the implementation of the dialogue pack-
age, providing class information as well as the values
of the three variables expressed in the constraint.
Should a description of an object refer ambiguously,
an event is generated for each retrieved object that
verifies the constraint. Not only does this approach
provide a declarative way of specifying behavior and
abstract over the form of the dialogue, it also decou-
ples the natural language understanding component
from the application itself in a natural way.

This form of method invocation interacts nicely
with another characteristic of our approach to
object-oriented design. While traditionally an in-
stance of a class is an object, in dialogue process-
ing an instance of a class can only be a (possibly
incomplete) description of an object. Necessary in-
formation for object instantiation may be missing
and can only be acquired through dialogue. Since
descriptions of objects do not need to refer uniquely
to objects, procedural method invocations become
more complicated. For this reason, we chose the
declarative approach to method invocation over a
procedural one.

The domain model is the backbone of the spec-
ification process. Not only does the dialogue man-
ager use the domain model for inferences at runtime,
but other knowledge sources such as grammar and
database access specifications can partly be derived
from the domain model. Moreover, the type infor-
mation helps to restrict choices and to verify the
consistency of the specification at the design stage.
Consequently, the design of the domain model is the
first step in the design process. This is in contrast to
many other design tools whose first step is to design
the information flow of the dialogue.

Example

By way of an example, we describe the design of a
fast food order service. The service offers pizza with
different toppings and different pasta with different
sauces. Pizzas and pasta come in different sizes. The
price of the items varies as a function of the size and
the toppings or the sauce, respectively. The user
should be able to query properties of the items, such
as price, add and remove items from a virtual shop-
ping list, and finalize the purchase. We introduce
one abstract base type obj_priceable with the real
valued feature BASEPRICE and a feature SIZE, the
value being one of small, medium, large. As toppings
and sauces may not be purchased separately, a sec-
ond abstract base type obj_buyable, inheriting from
obj_priceable, allows to distinguish the dishes from
its ingredients. obj_buyable serves then as a base
type for obj_pizza and obj_pasta while obj_topping
and obj_sauce are derived from obj_priceable. As the
calculation of the price is a task specific to the back-



end application, we introduce a method
obj _buyable.caleprice : real x set(real) X real

with the constraints

obj_buyable.baseprice > real,
obj buyable.ingredients {baseprice} > real,
obj_buyable.price > real

As soon as an obj_buyable whose values of the
BASEPRICE features is defined appears in the dis-
course, all values are passed on to the back-end ap-
plication. Tt is the task of the back-end applica-
tion to determine the price of the dish and to return
the result in the third argument of the method de-
scription. Since the third argument is described by
the constraint obj _buyable.price > real (a constraint
that is always satisfied due to the feature definition),
the dialogue manager places the result returned from
the back-end application at the appropriate place in
the feature structure.

3.2 The Dialogue Goal Specifications

The application designer needs to design a descrip-
tion of a dialogue goal for each task the back-end
system can execute. A dialogue goal can be consid-
ered as the description of a form that is filled out
through the spoken dialogue with the system [Pa-
pineni et al, 1999]. The goal description consists
of a typed feature structure [Carpenter, 1992] whose
types are drawn from the class hierarchy designed in
step 3.1. Tt serves as an informational lower bound,
guaranteeing that the back-end application is noti-
fied if and only if the information acquired through
the dialogue is at least as specific as the specification
in the dialogue goal.

Note that the dialogue goal specification does not
make any assumptions as to how this information
is acquired, nor as to how the acquired information
is to be processed. Thus, the dialogue goals form
the specification of a task model that is orthogonal
to any dialogue strategy specification and indepen-
dent from the implementation of the back-end sys-
tem. Furthermore, it should be noted that the spec-
ification of dialogue goals in typed feature structures
does not restrict the dialogue strategy to be a sim-
ple form filling strategy. Rather, the dialogue goal
specification is an encapsulation of a method invo-
cation which, when triggered, causes the back-end
application to do what the user intended the system
to do. The assumptions made here are similar to
those in the general PARADISE framework [Walker
et al, 1997] for dialogue evaluation where the task
model for dialogue managers 1s equally described in
attribute value matrices.

Example (continued)

We continue the fast food service example. We con-
centrate on the dialogue goals relevant to the pizza

and pasta objects, as we assume that we have re-
course to a dialogue package Shopping Cart that de-
fines the knowledge sources relevant to the virtual
shopping list. We thus need to introduce only one
dialogue goal, namely the one allowing the user to
seek information on the buyable objects.

3.3 The Grammar Specification

It 1s the task of the grammar specification to map
an utterance onto a feature structure. We use the
robust spoken language parser described in [Gavalda
and Waibel, 1998] for context free parsing. In addi-
tion to the grammar rule specification, a set of con-
version rules needs to be created to declare the way
a parse tree is mapped onto a semantic representa-
tion. A parse tree generated by this parser contains
semantic concepts as nonterminal symbols.

Grammar rules can be either lexical rules, i.e.
rules whose right hand side consists entirely of lex-
ical entries, or phrasal rules, 1.e. rules whose right
hand side consists entirely of nonterminal symbols.
A grammar nonterminal symbol consists of three
part (sem, sYynmaj, SYnmin) Where sem is a type
drawn from the type hierarchy, synn,; is the name
of the major syntactic category, currently one of
N,V, A or their phrasal projections NP, AP,V P,
and syn,i, 18 the name of their minor syntactic
category. Minor categories depend on the major
categories. For example, minor categories for ad-
jectives are predicative, comparative and superla-
tive. The purpose of separating syntactic and se-
mantic information in the nonterminal symbols 1s
threefold. First, it allows the technique of multi-
ple inheritance to be applied during grammar de-
sign and parsing. For example, a nonterminal sym-
bol (sem, synmaj, SYnmin) might be expanded by a
rule with a left hand symbol (sem’, synmaj, synmin ),
provided that sem subsumes sem’ in the type hier-
archy. Second, it provides more information to com-
pare nonterminal symbols during parsing than plain
slot names. Third, the semantic information 1s help-
ful in ensuring the semantic constructions associated
with the grammar rules is well-typed. Please refer
to [Denecke, 2000] for more information on the first
two points. In this paper, we will concentrate on
the third point as it is relevant to the design of the
wizard interface.

As the syntactic structure of the input sentences
might vary, it is not sufficient to rely on the names
of the concept to extract the meaning of the utter-
ances. Rather, we pursue an approach that is re-
sembles the one found in attributed grammars used
in compiler construction or Montague grammars in
that the grammar rules contain an annotation de-
scribing how to construct the semantics. Consider a



rule

1 1 1
<Sem73ynma]73ynmin> — (sem 7synmaj7synmin>

(sem™, syng,a;, SYNmin )
for an expression describing an object of type
sem.  We assume by induction that the con-
stituents described by <semi,syn£mj,syninm> are
expressions describing objects of type sem’. As the
semantic representation of the phrases covered by
(sem, sYNmaj, SYNmin) Needs to be a feature struc-
ture of type sem, all that remains to be done is to
define n feature paths m = fi .. f;nz for each of the
right hand symbols such that sem.r’ is allowable
according to the type hierarchy specification and
sem.m" takes a value that is compatible with sem’.
This sort of type information restricts the number of
possible feature paths. Only allowable feature paths
are offered through the wizard interface so as to en-
sure that the resulting structures correspond to the
domain model.

As an application designer sets out to develop a
new application, he can take recourse to a base ontol-
ogy and a base grammar. We make the assumptions
that the base grammar and the base ontology al-
ready cover a wide variety of surface forms of the
input sentences. The application designer simply
needs to provide the lexical rules and to specialize
existing generic rules. The nonterminals in the base
grammar do not contain any domain-specific seman-
tic information, but only rather general information
such as object, or location. It is then only necessary
for the application designer to specialize the prede-
fined rules and to provide the “ontological” part of
the grammar.

Robust Parsing

The fact that syntactic and semantic information are
represented separately in the nonterminal symbols
enables a more fine grained comparison of nontermi-
nal symbols. This can be exploited for robust pars-
ing. For example, two symbols differing only in their
minor syntactic category could be matched, with an
appropriate penalty, to allow for robust parsing. At
the time of writing, a standard context free gram-
mar to be used in the parser is created from the
rule specifications. Additional rules covering close
matches are created for robustness.

The well-typed constraint imposed on the rules by
the conversion information does not render the pars-
ing more brittle as robustness is achieved by loosely
matching the input and by a fuzzy matching of non-
terminal symbols. The form of the rules can be ex-
pected to be unaltered.

Clarification Questions

The need to generate a clarification question arises
in the case of ambiguous reference. The dialogue
manager determines discriminating information of a

set of representations using a technique described in
[Denecke and Waibel, 1997]. As the grammar rules
contain syntactic and semantic information, they are
reversible to a limited extent. Thus, the rules can
be used to generate phrases describing the discrimi-
nating information.

Example (continued)

In the fast food application, phrases such as a pizza
with salami or tortellini with cream sauce need to be
covered. The generic grammar provides an abstract
rule of the form (obj, N) — (obj, N){p, with){obj, N')
which is specialized to

(objpizza, N) —

(obj _pizza, N){p, with){obj_topping, N) and
(obj_pasta, N) —

(obj _pasta, N){p, with){obj_sauce, N

respectively (minor categories are omitted for clar-
ity). Each nonterminal symbol on the right hand
side is assigned a part of the resulting semantic rep-
resentation. The first right hand symbol gets as-
signed an empty feature path, since its relation to
the left hand symbol relation needs to be an is — a
relation. The semantics of the second nonterminal
symbol is ignored. We concentrate on the third
nonterminal symbol in both rules. In this exam-
ple, TOPPINGS and SAUCE, respectively, are the only
feature paths that express an is — part — of relation
between obj_pizza and obj_toppings, and obj_pasta
and obj_sauce, respectively. This yields the follow-
ing annotated rules.

(objpizza, N) —
(obj_pizza, N)
(p, with)
(obj topping, N)

and

(obj_pasta, N) —
(obj_pasta, N)
(p, with)
(obj_sauce, N')

The type information serves to restrict the number
of admissible feature paths for the semantic con-
struction. Only admissible feature paths are offered
as choices in the wizard, thus reducing the burden on
the grammar designer. Had the designer erroneously
specialized the abstract rule to

[0bj_pizza)

[0bj_pizza TOP’S obj_topping]

[0bj_pasta)

[0bj_pasta SAUCE obj_sauce]

(objpizza, N) —

(obj _pizza, N){p, with){obj_sauce, N)
the wizard would not be able to offer any consis-
tent semantic interpretation, thus uncovering incon-

sistencies in the specification early in the design pro-
cess.

3.4 The Database Access Conversion Rules

The IDE provides an interface to SQL databases.
The tables of SQI databases are self-describing in



that the form, the datatypes and the relations be-
tween the tables can be determined at run-time. If
the user wishes to create a new database for some
of the objects specified in step 3.1, then the cor-
responding SQL data definition query is generated
from the domain model automatically. In this case,
there is a one-to-one relationship between a type de-
scription and a table, and conversion rules are cre-
ated automatically. However, it is more probable
that application designers are faced with the design
requirement that existing databases be reused. In
this case, the wizard interface allows the user to es-
tablish a conversion between features and entries in
tables. Please note that in this case there is not nec-
essarily a one-to-one correspondence between type
descriptions and tables. Here, the databases con-
sist typically of multiple tables T" that are linked via
primary keys F.

The dialogue strategy executes database requests
at appropriate times during the dialogue with the
goal being to fill in missing feature values. Tt is
then the responsibility of the database manager to
determine the database that needs to be queried
and to generate the query itself based on the in-
formation available. This 1s done in the following
manner. First, by examining the partly filled form
and scanning the conversion rules, the set of tables
th, ..., tL € Ty for which keys are given are deter-
mined. Then, we need to obtain all pairs of pri-
mary keys that establish the links between the ta-
bles in T7. However, a link between two tables can
be given through a chain of tables not all of which
need to be in T;. Thus, we need to determine the set
t2,...,t2 € Ty of all tables involved in the query by
calculating a minimal subtree (T, Fs) of the graph
(T, F) that spans over all tables from T;. The infor-
mation in 71,75 and E5 together with the partially
filled form is then sufficient to arrive at a query of
the form

SELECT
2 2
ti.e1, cee, tl.eny
2 2
tr,.e1, -+, ty.€n,.
Frowm t3,...,t2,
WHERE
t%.el = UlAND
t7.ep = v,AND
t?.ek = t?.elAND V(t?.ek, t;‘).el> c b

where the v; are the values provided by the partly
filled form. The result set returned from the query
engine is then converted back to feature structures
corresponding to the domain model. There exist ad-
ditional constraints on the size of the result set that
are verified before converting in order to avoid time
consuming conversion operations in the case of large
result sets.

Example (continued)

In the fast food application, the data is stored
in four tables, namely pizza,pasta,sauces and
toppings. The tables are assigned to the types
obj_pizza,obj_pasta, obj_sauces and obj _toppings in
the same order; additional assignments exist be-
tween feature names and table entries. The tables
pizza and toppings, and pasta and sauces, respec-
tively, are linked in the database through unique IDs.
As the relationships between the tables is is-part-of,
the links are assigned the path prefixes SAUCES and
TOPPINGS. A feature structure
obj_pasta

SAUCE  obj_cheesesauce

is then converted to the query

SELECT
pasta.name, pasta.baseprice, pasta.size,
sauces.name, sauces.baseprice
FRrOM pasta, sauces
WHERE
sauces = cheesesauce AND
pasta. D = sauce.ID

Using the same conversion rules backwards, un-
derspecified feature structures are constructed from
the resulting table. Note that the database
as a relational database cannot express inheri-
tance relationships.  This means that although
tortellini, greennoodles and spaghetti all are de-
rived from pasta, a query containing the constraint
pasta.name = ”pasta” would return the empty set,
as the database does not know about the inheri-
tance relationships. For this reason, the conversion
rules associated with the table entries also contain
a type restricting the constraint generation. Only
types that are more specific than the restriction are
taken into consideration for query generation. In
this example, the types taken into consideration for
query generation would need to be more specific
than obj_pasta. This is to ensure extensionality for
database access. Alternatively, one could employ
extensional feature structures as described by Car-
penter [Carpenter, 1992] and make sure that only
extensional types are used for queries.

3.5 Interfacing the Wizard with the
Knowledge Sources

A wizard-style GUI guides the application designer
through the design process of the dialogue package.
The knowledge sources are introduced in the order in
which they are described in this section. The result
of the process is a prototypical system that needs
to be refined interactively using test sets. Figure 4
shows a screenshot of the wizard in step 1 at the
point of specifying the domain model.

In order to abstract over different input and out-
put modalities, the dialogue system contains an en-
tity to maintain input and output channels. For each
channel, there is a channel specification that allows
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Figure 4: The wizard in action. Currently, a class
hotelreservation is being specified. The list boxes
in the larger dialog box display the base class, the
member variables and the methods associated with
the class. A new member variable is being added
through the smaller dialog box in the foreground.
The tree-shaped interface item provides a view on
the domain model.

to transform an array of strings into a feature struc-
ture (for an input channel) or a feature structure into
an array of strings (for an output channel). Tnput
and output devices communicate with the dialogue
system only through these channels. The intention
of this approach 1is it to abstract away the particu-
lar form of input and output events, thus achieving
modularity and extensibility.

4 Debugging of the Dialogue
Strategy

The dialogue manager is driven by a PROLOG style
program which contains the dialogue strategy. As
long as a user is engaged with the system in a dia-
logue, it is then the task of the dialogue system

1. to determine if the user intends to have the sys-
tem perform one of the tasks known to the sys-
tem, and if so,

2. to interactively acquire all the information that
is needed for the system to uniquely determine
the task to be executed and all its parameters,
and

3. finally to notify and pass control to the subsys-
tem responsible for the task execution once this
state has been reached.

For that purpose, each task description has an in-
ternal state that can take one of the following values:
NEUTRAL, SELECTED, DESELECTED, DETERMINED
and FINALIZED. The state transitions are as shown
in figure 5. FEach state transition i1s passed on to
the implementation of the dialogue package in the

Neutral /™ Selected — ™ _Determined —* Finalized

s

Deselected

Figure 5: State transitions of the dialogue goals

back-end application which may or may not choose
to make use of this information.

The state of the dialogue system 1s implicitly rep-
resented by the vector of dialogue goal states. The
states of the dialogue goals are updated by a set of
rules that compare the representations of the utter-
ances with the representations in the dialogue goals.
The state of a goal incompatible with the current
representation becomes DESELECTED. A goal in the
state SELECTED becomes DETERMINED as soon as
it is the only goal in the SELECTED state. A DE-
TERMINED goal becomes FINALIZED as soon as the
information acquired in the dialogue is at least as
specific as it 1s required by the goal.

There is a generic dialogue strategy that serves as
a starting point for system development. As possible
domains may be very distinct, it becomes necessary
to adapt the strategy to the domain at hand. For
this reason, the IDE offers an interactive debugger
interface to the rule program. It allows for single
step execution, display of call stacks and variable
substitutions as well as a direct query interface to
evaluate the effects of single rules.

5 Testing

The cycle of grammar maintenance, testing and eval-
uation is a tedious and time consuming part of the
development of a new application. The IDE offers a
set of utilities simplifying the task.

5.1 Batch Testing
Grammar Testing

The IDE offers a tool for batch testing of grammar
coverage. Here, a text string is passed through the
semantic parser and conversion routine. The result-
ing feature structure is then presented graphically to
the user. The designer is then prompted to evaluate
the semantic representation of the utterance. Cur-
rent choices are those defined by the partial order
of feature structures. In other words, the system’s
designer can specify if the semantic content contains
information that is equal to, less specific than, more
specific than or inconsistent with the information
the sentence conveys. The text string, the feature
structure and the evaluation are then automatically
entered to the batch test set. The system designer
can then run this batch test set later in the devel-
opment process and receive notification should the
resulting feature structures differ in informational
content. This procedure assumes, however, that the
domain model i1s not changed between the tests. Al-
ternatively, the system designer can enter the desired



feature structure directly.
Testing for Goal State Transitions

In addition to the grammar coverage batch test,
there is a dialogue goal batch test. As mentioned
above, the state of the dialogue manager is implic-
itly described by the vector of goal states. FEach
utterance is assumed to represent a speech act that
performs a state transition in some of the dialogue
goals. Here, we store together with the utterance
two vectors of dialogue goal states: before the utter-
ance has been processed and after the utterance has
been processed. During batch testing, the dialogue
goals are set to the states specified in the first vec-
tor. Subsequently, the utterance is passed through
the dialogue system. Then the actual goal states af-
ter processing of the utterance are compared with
those in the batch test and differences are prompted
to the application designer.

Testing for Orthogonality between Modules

Testing for dialogue goal state transitions requires
the configuration of dialogue packages to be constant
between tests. However, there are several utterances
whose meaning can unambiguously be attributed to
one dialogue package. For this reason, the IDE of-
fers an additional batch test. Here, the utterances
are assigned a dialogue package as well as vectors of
goal states. In contrast to the state transition test,
we only represent goal states from dialogue goals in
the package in question. As above, the application
developer is notified if the desired goal configuration
in the package differs from the calculated one. More-
over, any goals not in the assigned dialogue package
whose state differs from DESELECTED are displayed
to the user.

5.2 Dialogue Goal Activation and WOZ

Since the IDE contains a detailed description of
the dialogue goals, it is possible to present the di-
alogue goals to the application designer in form that
needs to be filled in through the standard graphi-
cal user interface rather than through speech. Once
the back-end application is in place, the application
designer may proceed to test the interface of the di-
alogue system with the back-end application. An-
other possibility would be to use this feature as a
poor man’s Wizard of Oz interface, in which case
only the domain model and the task model need to
be in place (although additional support from the
database would be desirable). This feature is cur-
rently under development.

6 Discussion

We are currently using the described system to pro-
totype two spoken language applications. While it is
too early to arrive at any conclusive results, our pre-
liminary experience shows that a substantial amount
of time 1s saved simply by using the wizard to avoid

formatting errors and typographic errors in the sev-
eral specification files. Moreover, as the wizard dis-
plays the options available for the user to choose
from, 1t is easier to arrive at consistent specifications.
This is particularly true in the instances where type
information from the domain model can be used to
reduce the number of options.

Another characteristic of the system is its inte-
grated architecture. The entire system runs as a
single thread in a single process. Comparing to an
earlier version of the system in which a client/server
architecture was employed, we find debugging and
testing easier.

From a domain model perspective, the dialogue
packages as a primary building block offer a coarse
granularity compared to dialogue states, speech ob-
jects or dialogue libraries. We feel it is for this reason
more comprehensive. Whether this characteristic is
of benefit and whether the specifications in the dif-
ferent packages are sufficiently orthogonal to not in-
teract when building the final system remains to be
seen.

Although the specifications of knowledge sources
in separate modules can be independent of each
other, undesired interaction may not be excluded.
In particular, the informational content of the dia-
logue goal specifications need pairwise inconsistent.
The reason is that the dialogue manager bases its de-
cision on the compatibility of the dialogue goals with
the information in the discourse. If one dialogue goal
were less specific than another, the second dialogue
goal could never be reached as the first is satisfied
first. For this reason, the dialogue manager checks
for pairwise inconsistency of the goals at runtime.

Future work includes the integration of a speech
recognizer directly into the development environ-
ment and improvements of the graphical user in-
terface to speed up the design process. These im-
provements can only be made by experiences gained
through continuous use of the wizard.
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