The XML Framework and Its Implications for the Development

of Natural Language Processing Tools

Nancy IDE

Department of Computer Science

Vassar College
Poughkeepsie, New York, USA 12604-0520

ide@cs.vassar.edu

Abstract

The eXtensible Markup Language (XML)
(Bray, et al., 1998) is the emerging standard
for data representation and exchange on the
World Wide Web. The XML Framework
includes very powerful mechanisms for
accessing and manipulating XML
documents that are likely to significantly
impact the development of tools for
processing natural language and annotated

corpora.

Introduction

All language processing applications, including
machine translation, information retrieval and
extraction, text summarization, user/machine
dialogue systems, and speech understanding and
synthesis, manipulate language data represented
in some electronic format. Some applications
(e.g., machine translation, summarization,
speech understanding) process streams of data
more or less sequentially, while others (e.g.,
retrieval and extraction) rely more heavily on
search and access over large bodies of data. In
either case, processing exploits the markup in
the data to assist in the analysis. For example, in
textual data, markup for logical structure (e.g.,
section, paragraph, and sentence boundaries,
etc.) provides essential information for any
language processing task. In addition, markup
identifying terms, foreign words, names, dates,
etc. can be exploited for tasks such as machine

translation and information retrieval, while
identification of titles, footnotes, and other
extra-textual matter can be used to limit the data
to be searched. Because the data that will be
analyzed by language processing applications in
the future will consist largely of documents
delivered over the World Wide Web, the markup
format these applications process will be XML.
The language processing community also
creates text and speech data for training
statistical language processing algorithms. The
cost of creating annotated data can be very high,
both in direct financial terms and in terms of the
cost of allocating skilled labor. So funders,
whether public or commercial, have come to
expect that the cost of resource creation will be
amortized over multiple research and
development efforts. Such reusability demands
the use of standardized, non-proprietary
encoding formats for data interchange and to
enable easy human-readable display and access
to data. For the applications we are now
beginning to develop, these formats must
support multi-lingual, multi-media, and multi-
modal data, as well as linkage among them.

As an international standard, the eXtensible
Markup Language (XML) (Bray, et al., 1998) is
the obvious basis for a standardized encoding
format, and is or will be used by several
language processing projects (e.g., LT XML/,
ATLAS?, XCES3, ANC%). At its most basic level

I McKelvie, Brew, and Thompson, 1998.
2 Bird, et al., 2000.

XML is a document markup language directly
derived from SGML (i.e., allowing tagged text
(elements), element nesting, and element
references). However, various features and
extensions of XML make it a far more powerful
tool for data representation and access than
SGML, including means for complex linkage
within and between documents, easy data
transformations using the XML Transformation
Language (XSLT) (Clark, 1999), constraint and
validation of markup using XML Schemas
(Thompson, et al., 2000; Biron & Malhotra,
2000), and display, manipulation, and search of
data via the World Wide Web.

This paper provides an overview of the most
important XML mechanisms and suggests how
they may impact the design of language
processing tools. The focus here is on the use of
XML for the creation and annotation of text and
speech data; however, we also consider some of
the capabilities for search and retrieval from
XML-encoded documents.

1 XML Links

The recommended practice in encoding
annotated corpora is to maintain all or most
annotations in separate documents, each of
which references appropriate locations in the
document containing the original data (Ide &
Brew, 2000). This strategy yields, in essence, a
finely linked hypertext format where the links
specify a semantic role rather than navigational
options. That is, links signify the location(s)
where markup contained in a given annotation
document would appear in the document to
which it is linked. As such, annotation
information comprises remote or "stand-off"
markup that is virtually added to the document
to which it is linked. In principle, the original
data may contain no markup at all (or, more
likely, markup for gross logical structure only);
all markup can be retained in separate

3 Ide, Bonhomme, and Romary, 2000.
4 Macleod, Ide, and Grishman, 2000.

documents with links into the original based on

offsets.

The standoff scheme, then, requires addressing

elements within the original document, as well

as characters and chains of characters within
those elements. It also requires that elements and
characters can be addressed both within the

same document and other documents. XML

provides the following linking mechanisms,

which satisfy these requirements:

o XLink (DeRose, et al., 2000), a mechanism
for specifying a link (uni-directional or more
complex linking structures) between two or
more resources or portions of resources;

e the XML Path Language (XPath) (Clark &
DeRose, 1999), an extended addressing
syntax that defines a concise notation for
element localization in the document tree (as
defined by the nesting of elements in the
document itself), and allows addressing
fragments within a particular element by
providing predicates for manipulating chains
of characters;

e XPointer (DeRose, Daniel, & Maler, 1999),
which extends XPath syntax to allow
addressing points and ranges as well as
nodes, locating information by string
matching, and use of addressing expressions
in URI-references as fragment identifiers.

Xpath

specifies the third <s >

For example, the
/div/pl2] /s3]
(sentence) element within the second <p-»>

expression

(paragraph) element within each <divs (text
division) element; /descendant: :p specifies all
<p> elements in the document. In addition,
Xpath allows addressing text fragments within a
particular element by providing predicates for
manipulating chains of characters. The

expression
substring (/p/s[2]/text(),6)

selects the string "one would expect that the
whole sky would be as bright as the sun, even at

night." from the following text:

<p><s 1d="d3pl3s4">The difficulty
is that in an infinite static
universe nearly every 1line of
sight would end on the surface of

a star.</s><s 1d="d3pl3s5">Thus
one would expect that the whole
sky would be as bright as the sun,
even at night.</s></p>

The Xlink mechanism can be used to link
corresponding segments of two or more primary
documents (as for alignment of text or speech),
to link annotation documents to a base document
containing the primary data, or, more generally,
to link resources in any medium (audio, video,
etc.). This allows for linking speech, external
images, video, applets, form-processing
programs, style sheets, etc.

In addition to specifying the target location for
information in the same or external documents,
XLink attributes can be used to specify the role
of the link, i.e., how the link should be activated
(by hand, or automatically by the browser) and
what to do with the target fragment (replace it or
insert it into the source document).

2 XML transformations

The Extensible Style Language (XSL) is a part
of the XML framework, consisting of two parts:
the XSL formatting or "style sheet" language,
and a powerful tree-traversal language, XSLT
(Clark, 1999), that can be used to convert any
XML document or documents into another
document in any form (e.g., XML, well-formed
HTML, plain text, etc.) by
rearranging, and/or adding information to it. The

selecting,

transformed documents may or may not be
intended for rendering data on a computer
screen, but may be used to move data from one
computer system or program to another (e.g., to
transduce between encoding and/or annotation
formats, etc.).

XSLT supports the following kinds of document

manipulation:

e selection of elements or portions of element
content using the XPath syntax, from one or
more XML documents;

e rearrangement or transformation of extracted
information (including not only text content
but also element names, etc.) in the target
document;

e addition of information in the target
document.

A suite of documents representing a base
document (or documents) and its annotations
can be manipulated to serve any application that
relies on part or all of its contents. Thus, XSLT
is likely to have the most impact on the design
of language processing tools.

Several projects have developed and
implemented language processing tools and tool
architectures intended to facilitate flexibility and
reusability: for example, MULTEXT (Ide &
Véronis, 1994), LT XML (McKelvie, Brew, &
Thompson, 1998), GATE (Cunningham, Wilks,
& Gaiauskas, 1996), ATLAS (Bird, et al., 2000).
While each of these systems is slightly different,
they all implement a modular, "plug-and-play"
tool architecture based on a three-layered
design: one for physical storage representation;
one to translate to and from the physical storage
representation to one or more internal formats,
and an API to enable application development.
In addition, all assume SGML or (in the more
recently developed systems) XML as the
physical representation, together with the use of
the stand-off strategy for annotation. The SGML
or XML documents containing the data and its
annotations are typically transduced into some
internal format used by the tools; at any stage in
the processing, the results may be transduced
back into SGML or XML As a powerful
language for selecting from one or several
documents and transducing the data into other
formats, XSLT provides the means to enable the
import and export of data from and to XML.

Of course, XSLT can be used with the
documents resulting from processing by tools to
deliver the data in any desired format. Although
space prevents a full description of XSLT,
which is relatively complex, a short example can
provide some idea of the possibilities. Using as
input a document containing morpho-syntactic
information (e.g., a document containing the
fragment in Figure 1°), the XSLT document in

5 Note that this document, encoded according to the

Figure 2 can be used to create an HTML
document that displays a text in "word | lemma |
pos" form. When the resulting HTML document
is loaded into a browser, it will display the
following:

It|it|PPER3 was|be|PAST3 a|a|DINT
bright |bright |ADJE cold|cold|ADJE
day|day | NN...

<?xml version="1.0">
<chunk type="BODY" lang="en"
xml :base=
"http://www.cs.vassar.edu/~ME/Oen.xcesDoc#" >
<par xlink:href="xptr (substring(//pl[1]">
<s xlink:href="xptr (substring(//p/s[1]">
<tok type="WORD"
xlink:href=
"xptr (substring(//p/s[1]/text(),1,2">
<orth>It</orth>
<disamb>
<base>it</base>
<msd>Pp3ns</msd>
<ctag>PPER3</ctag></lex>
<lex>
<base>it</base>
<msd>Pp3ns</msd>
<ctag>PPER3</ctag></lex></tok>
<tok type="WORD"
xlink:href=
"xptr (substring (//p/s[1]/text(),4,2">
<orth>was</orth>
<disamb>
<base>be</base>
<msd>Vmis3s</msd>
<ctag>PAST3</ctag></lex>
<lex>
<base>be</base>
<msd>Vaisls</msd>
<ctag>AUX1l</ctag></lex>
<lex>
<base>be</base>
<msd>Vais3s</msd>
<ctag>AUX3</ctag></lex>
<lex>
<base>be</base>
<msd>Vmisls</msd>
<ctag>PAST1l</ctag></lex>
<lex>
<base>be</base>
<msd>Vmis3s</msd>
<ctag>PAST3</ctag></lex></toks>..

complex examples). Similarly, XSLT can be
used to produce concordances, paired sentences
or words from a parallel text, or even a web
document that displays the orthographic
representation of a text and provides the audio
rendition when the word is clicked on, etc.
XSLT can also be used to implement an
inheritance mechanism over the document tree®;
for example, Ide, Kilgarriff, & Romary (2000)
show how XSLT can implement inheritance
mechanism for lexical information.

<xsl:stylesheet version="1.0"
xmnls:xsl=
"http://www.w3.0rg/1999/XSL/Transform" >

<xsl:template match= “/”">
<htmls>
<body>
<xsl:apply-templates/>
</body>
</html>

</xsl:template>
<xsl:template match="//par"/>

<xsl:for-each select="//tok”/>
<xsl:value-of select="orth”/>
<xsl:text>|</xsl:text>
<xsl:value-of select="disamb/base”/>
<xsl:text>|</xsl:text>
<xsl:value-of select="disamb/ctag”/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Figure 1 : Fragment of an xcesAna document

The XSLT script in Figure 2 could be modified
to produce output in any desired form, or to
produce another XML document containing the
merged data and annotation documents (see
[www.cs.vassar.edu/XCES] for some more

xcesAna specifications (Ide, Bonhomme, & Romary,
2000), contains full segmentation and annotation
information, including full morpho-syntactic
specifications for all potential annotations and the
results of automatic disambiguation.

Figure 2 : XSLT document to create HTML output

3 XML Schemas

The XML Schema definition language
(Thompson, et al.,2000; Biron & Malhotra,
2000) enables document creators to constrain
and document the meaning, usage and
relationships of the constituent parts of XML
documents: datatypes, elements and their
content, and attributes and their values. Schemas
can also be used to provide default values for
attributes and elements. As such, XML schemas
provide means to define an abstract data model
for a class of documents. While duplicating (or
making explicit) some of the capabilities
provided by XML DTDs, they significantly
extend their power and provide for much tighter
validation of document form and content.

6 See also Erjavec et al. (2000)

XML schemas have considerable implications

for the creation of annotated data. The following

lists only a few possibilities for the application
of XML schemas:

e different attribute declarations and/or
content models can apply to elements with
the same name in different contexts,

using XML

Namespaces (Bray, Hollander, and Layman,

1999). This allows for more tightly

constrained content models than possible

building on definitions

with DTDs. For example, names in headers
(names of authors, etc., consisting of the
usual "first name", "last name" elements)
and names in the text ("named entities")
should have different content models and
attributes in order to provide for tight
validation of form in each context.

e equivalence classes can be defined for
groups of elements and/or attributes,
indicating that they may be used in the same
ways as defined for a particular named
element ("the exemplar").

e attribute or element values, or combinations
of attribute and element values, can be
constrained to be unique. That is, it is
possible to indicate in a computational
lexicon that only one entry can be defined
with the value of a given word form as its
content (or the content of one of its child
elements), only one paragraph can have an
attribute indicating that it is the 23rd, only
one disambiguated form is given for each
token in an annotation document, or only
one correspondence for a given item in an
alignment document. Obviously, this is
useful for error detection and prevention.

dependencies can be established based on values

of elements or attributes. This has similar
benefits for error detection in creating
annotation documents: nouns can be prevented
from being assigned a tense, tokens whose fype
attribute has the value PUNCT can be specified
to include only <orths elements containing
specific characters, etc. In addition, annotation
labels (e.g., POS indicators) used in an

annotation document can be specified elsewhere,
and element content can be constrained to these
values only.

Conclusion

This paper outlines some of the potential uses of
the mechanisms provided within the XML
framework for the creation and use of annotated
text and speech data. Because XML is an
international standard that is becoming the base
of information exchange and access over the
World Wide Web, high-end language processing
applications intended to extract and manipulate
information from diverse sources will
necessarily handle XML. It is to our advantage
to exploit the XML framework to our greatest
advantage, and to ensure compatibility of the

data we create with the emerging standard.

Acknowledgements

The author gratefully acknowledges the
contributions of Laurent Romary, Patrice
Bonhomme, and Chris Brew to the ideas and
examples in this paper.

References

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun,
C. Liberman, M., 2000. ATLAS: A Flexible and
Extensible Architecture for Linguistic Annotation.
In Proceedings of the Second International
Language Resources and Evaluation Conference.
Paris: European Language Resources Association,
1699-1706.

Biron, P. & Malhotra, A., 2000. XML Schema Part 2:
Datatypes. W3C Working Draft, 25 February 2000.
http://www.w3.org/TR/xmlschema-2/.

Bray, T., Paoli, J., Sperberg-McQueen, C.M. (eds.),
1998. Extensible Markup Language (XML)
Version 1.0. W3C Recommendation.
http://www.w3.0org:TR/1998/REC-xml-19980210.

Bray, T., Hollander, D., Layman, M., 1999.
Namespaces in XML. World Wide Web
Consortium Recommendation, 14 January 1999.
http://www.w3.org/TR/REC-xml-names/.

Clark, J. (ed.), 1999. XSL Transformations (XSLT). McKelvie, D., Brew, C., & Thompson, H. 1998.

Version 1.0. W3C Recommendation. Using SGML as a Basis for Data-Intensive Natural

http://www.w3.org/TR/xslt. Language Processing. Computers and the
Clark, J. and DeRose, S., 1999. XML Path Language Humanities 31:5, 367-388.

(XPath). Version 1.0. W3C Recommendation. Thompson, H., Beech, D., Maloney, M. Mendelsohn,

http://www.w3.org/TR/xpath. N., 2000. XML Schema Part 1: Structures. W3C
Cunningham, H., Wilks, Y., Gaizauskas, R., 1996. Working Draft, 25 February 2000.

GATE -- a General Architecture for Text http://www.w3.org/TR/xmlschema-1/.

Engineering. In Proceedings of the 16th
International Conference on Computational
Linguistics, COLING-96, Copenhagen, Denmark,
1057-1060.

DeRose, S, Maler, E., Orchard, D., Trafford, B.
(eds.), 2000. XML Linking Language (XLink).
W3C Working Draft, 21 February 2000.
http://www.w3.org/TR/xlink.

DeRose, S., Daniel, R., & Maler, E., 1999. XML
Pointer Language (XPointer). W3C Working Draft,
6 December 1999. http://www.w3.org/TR/xptr.

Ide, N. & Brew, C., 2000. Requirements, Tools, and
Architectures for Annotated Corpora. In
Proceedings of the EAGLES/ISLE Workshop on
Meta-Descriptions and Annotation Schemas for
Multimodal/Multimedia Language Resources and
Data Architectures and Software Support for Large
Corpora. Paris: European Language Resources
Association, 1-6.

Ide, N., & Véronis, J., 1994. MULTEXT:
Multilingual Text Tools and Corpora. In
Proceedings of the 15th International Conference
on Computational Linguistics, COLING'94, Kyoto,
Japan, 588-92.

Ide, N., Bonhomme, P., & Romary, L., 2000. XCES:
An XML-based Encoding Standard for Linguistic
Corpora. In Proceedings of the Second
International Language Resources and Evaluation
Conference. Paris: European Language Resources
Association, 825-30.

Ide, N., Kilgarriff, A., Romary, L., 2000. A Formal
Model of Dictionary Structure and Content. In
Proceedings of EURALEX'00 (to appear).

Macleod, C., Ide, N., Grishman, R., 2000. Progress
Report on the American National Corpus. In
Proceedings of the Second International Language
Resources and Evaluation Conference (to appear).
Paris: European Language Resources Association,
831-35.

