Composing a General-Purpose Toolbox for Swedish

Fredrik Olsson and Bjorn Gambéck

{fredriko,gamback}@sics.se

Information and Language Engineering Group
Swedish Institute of Computer Science
Box 1263, S-164 29 Kista, Sweden
http://www.sics.se/humle/ile

Abstract

The paper discusses the lessons we have learned
from the work on building a reusable toolset
for Swedish within the framework of GATE, the
General Architecture for Text Engineering, from
the University of Sheffield, UK.

We describe our toolbox SVENSK and the rea-
sons behind the choices made in the design, as
well as the overall conclusions for language pro-
cessing toolbox design which can be drawn.

1 Introduction

Why is it desirable to have a general-purpose
toolset for Language Engineering? In general,
it is likely that the following items hold:

language diversity

Research in Language Engineering tends to
be expensive since the results may not al-
ways be shared across languages, e.g., a tag-
ger or parser for German is not applicable
to Swedish. This implies that much of the
work carried out in one language has to be
carried out in other languages as well.

evaluation
Evaluation of language processing software
is a cumbersome task, and it would ease up
things if researchers could cooperate in con-
structing test-suits and measures that ap-
ply to those and then share data and meth-
ods within a common framework.

commercialisation
If you want to go commercial, it is im-
portant that the prototyping and testing
phases can be carried out without the over-
head of having to construct a new frame-
work each time a new kind of system is to
be developed.

In addition, for small languages like Swedish
(with about 9 million speakers), there are not
that many researchers in Computational Lin-
guistics, and thus not many at all in the various
sub-fields of the area. To be able to share re-
sults between groups in the same research area
is crucial for every-day research. Both to show
off results and for teaching purposes.

In order to encompass this, a general frame-
work for Language Engineering could, or should,
be expected to:

e cut development time and cost by reusing
what has been done before;

e ensure that systems are scalable to pre-
vent unexpected draw-backs due to the “toy
problem syndrome”;

e provide, in the long run, a good setting for
evaluation of language engineering tasks.

In this paper we will discuss the lessons we
have learned from the work on building such a
toolbox for Swedish; however, we set out by de-
scribing some of the reasons for why our project
from the start was laid out as it was.

In particular, the section following concen-
trates on our own project and toolbox architec-
ture together with University of Sheffield’s un-
derlying GATE system, while Section 3 draws
on the experiences from some other, previous
and current, work on designing large language
processing systems. Section 4 then moves on to
the central purpose of the paper, discussing the
main insights gained during the course of the
project. Finally, Section 5 supplies a short bul-
let list with some of the overall conclusions we
have drawn.

2 A toolbox for Swedish: SVENSK

The sVENSK project (Eriksson and Gambéck,
1997; Olsson et al., 1998; Gambéck and Olsson,
2000) is a national effort funded by the Swedish
National Board for Industrial and Technical De-
velopment (NUTEK) to encompass some of the
difficulties outlined above. The aim of SVENSK
has been to develop a multi-purpose language
processing system for Swedish based, where pos-
sible, on existing components, and targeted at
research and teaching. The SVENSK system as
such is thus mainly the sum of a fairly large set
of different reusable language resources.

2.1 Choice of platform

In 1995 when the SVENSK project started to take
shape, there was a need for a platform flexible
enough to act as a framework for the language
processing programs intended to constitute the
toolbox. At the end of the selection process,
there were two platforms remaining; the Eu-
ropean Commission initiative ALEP, Advanced
Language Engineering Platform (Simpkins and
Groenendijk, 1994) and GATE, General Archi-
tecture for Text Engineering, from the Univer-
sity of Sheffield, UK (Cunningham et al., 1996).

GATE was chosen since it was, among other
things, freely available and did not impose its
own linguistic theories on the modules to be
integrated. Even though ALEP, at the time,
turned out to be too slow to fit as a software
framework for SVENSK, it was considered feasi-
ble to integrate external modules in it (Eriksson
and Gamback, 1997).

More general points about both these projects
will be discussed below, ALEP in Section 3.3
and GATE in Section 3.5. We will right away de-
scribe the GATE system as such, though, from
our perspective within the SVENSK project.

2.2 GATE

GATE consists of three different parts; a docu-
ment manager, a graphical interface, and a set
of language engineering objects. This section
gives an overview of each one of them.

2.2.1 GATE Document Manager, GDM

The GDM, which is based on the TIPSTER
database architecture (Grishman and others,
1997), serves as a communication center for the
components in GATE. It stores all information
about texts that language processing systems re-

quire to run, as well as the information they pro-
duce. The GDM stores annotations associated
to sequences of byte offsets in the original text.
Each annotation may have several attributes,
which in turn may have zero or more values. The
byte offsets are used as pointers into the original
text in order to enable separate storage of the
source text and the database holding informa-
tion associated to it. Also, the GDM provides a
well-defined application programming interface
(API) for handling the data it stores.

2.2.2 GATE Graphical Interface, GGI

The GGI is a graphical launch-pad which en-
ables interactive testing and building of langu-
age processing systems within GATE. Various
tasks are supported, such as integrating new
language processing modules, building systems,
launching them, and viewing the results. The
philosophy of the interface is to provide the user
woth a rich set of tools. There are, for example,
several generic viewers for displaying module re-
sults, ranging from raw annotations to complex
parse trees via output from part-of-speech tag-
gers.

2.2.3 Language engineering objects

At the very heart of building a GATE-based
system system we find the so-called Collection
of REusable Objects for Language Engineering,
CREOLE. The CREOLE modules/objects in
the GATE system should be thought of as in-
terfaces to resources; data, algorithmical or a
mixture of both. A CREOLE module may be
a “wrapper” around an already existing piece of
software or it may be an entire program devel-
oped explicitly for GATE compliance. It is the
CREOLE modules that perform the real work
of analysing texts in a GATE-based system.

The tasks for a CREOLE module involve set-
ting up the environment for the language pro-
cessing program it implements, or “wraps” (e.g.,
processing arguments given by the user via the
GGI), as well as retrieving information from the
GDM, invoking the program, and taking care
of the output produced, that is, format it and
record it in the GDM.

2.3 CREOLE modules in SVENSK

From GATE’s point of view, SVENSK is a set
of CREOLE objects. The language processing
software wrapped by the CREOLE objects are
in-house modules, commercially available mod-

FreeI text

Y

GATE | TextCat

Y
Y

Text preprocessor |

Tokeniser |

SWECG: Swedish
Constraint Grammar

I.
Constravlnt tags

[
Tokeni1ed text

| Sentence splitter |

SWECG2SLE
(format converter)

ucp: Uppsala
Chart Processor

I
Sente ces ﬁ

. |
Lexical templates
Y Y

DSP: Domain DUP: Deep-level
Specific Processor Unification Processor

ParserBox
(educational tool):
Top-Down, BUP, wfst,
Brill Tagger HeadParse, LinkParse,
for Swedlsh ChartParse, LR-Parse

Dependechy graphs

Y
Quasi—Log*lcal Forms Morphological structures POS-tagged text Attribute—val*ue structures

Figure 1: How the modules in SVENSK are interconnected to form different processing chains.

ules, and modules from Swedish academia. The
modules integrated so far are shown in Figure 1.

As indicated in the figure, there are dif-
ferent ways the input texts can take through
the system. At the top end of the picture,
van Noord’s freely available! language identi-
fier TextCat constitutes the starting point for
all processing chains in SVENSK. Here, it allows
the user to restrain the input to the system to
be in Swedish.

We then have two main options, either to pass
the input through SWECG, the Swedish ver-
sion of LingSoft oy’s and Helsinki University’s
Constraint Grammar (Karlsson et al., 1995), or
through a parallel sequence of tokenisation and
sentence segmentation developed specifically for
the SVENSK project (Olsson, 1998).

The processing chains then split further, and
— from left to right in Figure 1 — end in the
following modules;

e DSP, the Domain Specific Processor (Sun-
nehall, 1996) produces shallow dependency
graphs intended for use in applications re-
quiring a robust interface for a specific ap-
plication, such as the Olga dialogue system
(Beskow et al., 1997);

e DUP, the Deep-level Unification-based Pro-
cessor, a component made up of a
large-scale unification-based grammar for

'At www.let.rug.nl/"vannoord/TextCat

Swedish (Gambéck, 1997) and an LR-
parser (Samuelsson, 1994). It yields a rel-
atively 'deep’ level of analysis but at the
cost of robustness, and has previously been
used for machine translation and database
interfacing projects, including the SICS-
SRI-Telia “Spoken Language Translator”
(Rayner et al., 1993).

e the Uppsala Chart Processor (Sagvall-Hein,
1981) produces morphological analyses;

e a Swedish version (Priitz, 1997) of the Brill
Tagger (Brill, 1992);

e the ParserBox, an educational tool consist-
ing of seven parsers operating on a small
grammar. At this end the different ways
the parsers process the input is of main in-
terest, rather than the output produced.

Each of the components has a standardised in-
put/output interface, users will have the choice
of working with the supplied development sys-
tem — as may be appropriate for academic re-
search on particular aspects of language use —
or selecting and combining modules for integra-
tion into a user application. Since the I/O in-
terfaces conform to the annotation model of the
TIPSTER architecture (Grishman, 1995) devel-
opers (and users) can easily add components to
the platform, and then link them together to
form an application.

File View Layout Options Utilities | MODULE Help
A
uppbnll
svensk svensk Parserbox:
TextCat token lextoken split Head
Parserhox:
SWecq dsp Chart
=~ [0

Collection: lmome/fgamback/Collections/coling_coll

Document: {all} |

Figure 2: An example of a system built by some of the SVENSK modules.

Alternatively, two components with the same
interfaces and functionality can be defined for
the platform, and then evaluated in the same
application. This allows students to experi-
ment with different approaches to a linguis-
tic problem (such as parsing, using the algo-
rithms supplied on the ParserBox), or research
experiments to use the most appropriate compo-
nent for their purposes and performance criteria
(such as speed, robustness, etc).

Figure 2 shows how some of the SVENSK mod-
ules can be linked within GATE to form four
different processing chains, in this case with
three possible output levels: dependency-based
semantics (from DSP), POS-tagged text (from
Brill), or syntactic analyses obtained from either
a chart parser or a head-based parsing strategy.

3 Related work

Over the years there have been many efforts in
the direction of creating large toolsets for langu-
age processing. Some have been built with one
particular application — or class of applications
— in mind, but mostly the more or less explicit
aim has been to create reusable toolsets for a
wide range of tasks. In this section we will look
at some of the major stepping stones.

3.1 Setback 1: Eurotra

Back in 1977, the first steps were taken towards
what would become the most ambitious effort
in the field seen so far. The goal of the Eurotra
Programme was to develop a machine transla-
tion system collaboratively in all the member-
states of the (then) European Community. A
working group tried to establish linguistic and
software standards as the basis for the project,
but the amount of work done in this group was
intended to be small, while the main efforts were
to be localised to centra in the different states,
working on some of the (at the end) nine langu-
ages and 72 language pairs (King and Perschke,
1987; Bech and Nygaard, 1988).

After the project, “Eurotra bashing” has de-
veloped into something of a sport for Euro-
pean computational linguists, resulting in that
the reasons for why the project failed (at least
partially?) have in themselves not been dis-

*Failure’ is a relative notion, since it was not orig-
inally a goal of the Eurotra Programme to build one
production-quality system. The degrees of freedom left
for the different groups had the positive effect of building
up language processing competence and infrastructure in
the EC countries and of producing some working, full-
scale “spin-off” systems, such as PaTrans (Hansen, 1994).

cussed enough. Certainly, the lack of over-
all coordination soon became a liability. In-
herent short-comings of the formalisms, and
inefficiency of the implementation related to
fundamental problems with the formalisms are
another reason which have been pointed out
(Crookston, 1990; Pulman et al., 1991).

However, the main problem with the frame-
work was probably that it never in itself moved
towards one system; indeed, Johnson and Ros-
ner (1987) discussed a software environment for
Eurotra building on tools for rapid implementa-
tion and evaluation of a variety of experimen-
tal theories. In the spirit of that several paral-
lel systems and formalisms were used, and the
formalisms changed rapidly over time. Still,
no framework was developed which could ac-
commodate these different types of modules, no
clear interfaces were designed, no central in-
stance under-took the integration task.

3.2 Success Story 1: CLE

In contrast to the multi-site Eurotra effort, SRI
International’s Cambridge Research Centre and
Cambridge University’s Computer Laboratory
in 1985 suggested a UK-internal project devel-
oping a Core Language Engine (CLE), a domain
independent system for translating English sen-
tences into formal representations (Alshawi et
al., 1992). SRI's CLE built on a modular-staged
design in which explicit intermediate levels of
linguistic representation were used as an inter-
face between successive phases of analysis.

The CLE has been applied to a range of tasks,
including machine translation and interfacing to
a reasoning engine. The modular design also
proved well suited for porting to other langu-
ages and the implementation was quite efficient.
Thus, the project proved its purpose. However,
even though the CLE system received consider-
able attention, it failed to spread in the commu-
nity, the main reason being that it simply was
too expensive to obtain it.?

3.3 Setback 2: ALEP

Following the Eurotra tradition, ALEP, the Ad-
vanced Language Engineering Platform (Simp-
kins and Groenendijk, 1994; Bredenkamp et

3«You don’t give away a one million pound program”
(SRI research manager). Contrast this with the strategy
of, e.g., John McAfee to give away his antivirus software
for free — and making millions on selling the updates!

al., 1997), introduced in Section 2.1, was an-
other European Commission initiative to pro-
vide the European language research and engi-
neering community with a general purpose re-
search and development environment.

The ALEP platform supplied a range of pro-
cessing resources and was particularly targeted
at supporting multilinguality. However, it im-
posed its own formalisms (for grammars, etc.)
on the developers and users. In addition, the
initial implementations were as inefficient as Eu-
rotra’s and ALEP never became widely spread.

3.4 Success Story 2: Verbmobil

The real contrast to Eurotra came with Verb-
mobil, a multi-site German government effort
which started in the early 90’s (Kay et al., 1994).
The main processing stream of the project was
clearly defined (even though parallel and com-
plementary modules were allowed) and the in-
terfaces between different groups and modules
were developed during the project in intense
inter-group discussions.

A major reason why the project succeeded in
producing an overall joint system was a con-
centrated effort by a central system administra-
tion group which incorporated components de-
veloped at several different sites and in many
different programming paradigms into one plat-
form (Bub and Schwinn, 1996). The Verbmo-
bil architecture employs ICE, Intarc Communi-
cation Environment (Amtrup, 1997), a general
communication package, but which of course has
been primarily developed for the specific needs
of the Verbmobil task, non-incremental multi-
lingual spoken dialogue translation.

3.5 Success Story 3: GATE

In the mid 90’s, the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) started
to fund a project at the University of Sheffield
aimed at building a General Architecture for
Text Engineering, GATE (Cunningham et al.,
1996; Gaizauskas et al., 1996; Cunningham et
al., 1997; Cunningham et al., 1999).

As described in Section 2.2, GATE does not
adhere to a particular linguistic theory, but is
rather an architecture and a development envi-
ronment designed to fit the needs of researchers
and application developers. It presents users
with an environment in which it is easy to use
and integrate tools and databases, all accessi-

Table 1: Language processing resources in SVENSK

Processing resource Main task

Author(s)

TextCat Language identification
Tokeniser Tokenisation
LexToken Lexicalised phrase tokenisation

Sentence splitter

Swedish Brill Tagger

Segmentation

Uppsala Chart Processor
LP-Detect

Morphology

Swedish Constraint Grammar
SWECG2CLE Format converter

Deep-level Unification-based
Processor

Swedish grammar
& LR-parser

Domain-specific Processor

ParserBox Educational tool

Part-of-speech tagging

Lexicalised phrase recognition

Morphosyntactic analysis

Dependency structure semantics

[van Noord; U Groningen]

[Olsson; SICS & Uppsala U]

[Hassel, Johansson; SICS & Sthlm U]
[Olsson; SICS & Uppsala U]

[Priitz; Uppsala U]

[Sagvall-Hein; Uppsala U]

[J. Lindberg; Stockholm U]

[LingSoft oy & Helsinki U]

[Eriksson; SICS]

|Gambéck; SICS],
[Samuelsson; SICS]

[Sunnehall; SICS]
[Eineborg, Olsson et al; SICS]

ble through a friendly user interface. The plat-
form is free for non-commercial and research
purposes, and has so far been distributed to
more than 250 different sites around the world.*

3.6 Meanwhile in the US... Galaxy

In the US, there have also been some efforts in
the direction of open architectures that incor-
porates language processing resources, in par-
ticular within the research programmes spon-
sored by DARPA, the Defense Advanced Re-
search Projects Agency. With TIPSTER (Gr-
ishman, 1995), the design of a general architec-
ture was agreed upon; however, the full TIP-
STER annotation scheme (Grishman and oth-
ers, 1997) has not been implemented as such.
Instead, the MITRE Cooperation is currently
(under DARPA funding) developing Communi-
cator, a testbed similar to the Verbmobil one.
The initial DARPA Communicator architec-
ture builds on MIT’s Galaxy system (Seneff et
al., 1998). A central process, the Hub, is con-
nected with a variety of server processes and
governs the control flow between them. A wide
range of component types are supported: langu-
age understanding and generation, speech recog-

*In June 2000, according to the “incomplete” list of
licensees given on the GATE web pages:
www.dcs.shef.ac.uk/research/groups/nlp/gate

nition and synthesis, dialogue management, and
context tracking (Goldschen and Loehr, 1999).

The goal of the Communicator — to provide
an architecture used by everyone, easing the
work of porting modules and system evaluation
— seems decent in itself; however, the system
has not been that well received within the US
research community. (“We’ve spent most of our
time the last year trying to make our stuff follow
Communicator standards, rather than on doing
research,” anonymous US researcher, personal
communication 2000).

4 Issues in composing a toolset

A result of the integration in SVENSK is that
programs from many different sources and back-
grounds, which originally were not built to com-
municate which each other are doing this now.
Table 1 shows the main tasks of all the SVENSK
modules, as well as the author(s) and sources
behind the different units.

Collecting and distributing algorithmic re-
sources and making different programs interop-
erate present a wide range of challenges, along
several different dimensions; we will denote the
key dimensions ‘diplomatic’, technical, and lin-
guistic. In the rest of this section we will discuss
some of the experiences we have drawn from the
project with regards to these dimensions.

4.1 Diplomatic challenges

With ‘diplomatic’, we mean some of the conclu-
sions which can be drawn from the examples of
other systems in Section 3. Eurotra and ALEP
both had the problem of linguists not wanting to
agree on formalism standards while a framework
supporting diversity was lacking. The CLE was
successful as a system, but commercial short-
sightedness destroyed its chances of more wide-
spread popularity.

Commercial interests have also been a prob-
lem within SVENSK, but we have also seen that
it is hard to get access to academic LE resources.
The need for component reuse is often appreci-
ated by everybody in the field. However, to put
action behind words is not as easy. In particu-
lar, researches need to be convinced to invest the
extra time and resources to package their com-
ponents in an exportable and reusable form.

Table 2: Resource availability

Availability Resource(s)

In-house and free DSP, DUP, Tokeniser,
LexToken, ParserBox,

Sentence splitter

External and free TextCat, GATE,

LP-Detect
External, restricted UCP, Swedish Brill
Commercial, closed SWECG

A key aim of the project has been that the
resources included in SVENSK should be freely
available for non-commercial use, at least for
Swedish institutions. As can been seen in Ta-
ble 2 all current components except for SWECG
meet this requirement.® Of course, process-
ing resources included in the system in the fu-
ture should preferably also match this free-for-
all strategy.

Still, making language processing resources
freely available and, in particular, reusability
of resources is really a very uncommon con-
cept in the computational linguistic community.
Possibly this also reflects another uncommon
concept, that of experiment reproducibility; in

SSWECG, the Swedish Constraint Grammar, is avail-
able from LingSoft oy, Helsinki, unfortunately for a cur-
rently discouragingly high license fee, albeit reduced for
academic SVENSK users.

most research areas the possibility for other re-
searchers to reproduce an experiment is taken
for granted. Yes, this is the very core of what
is accepted as good research at all. Strangely
enough, this is rarely the case in Computer Sci-
ence in general and definitely not within Com-
putational Linguistics.

We believe that this will change and that re-
producibility will be generally accepted as a cri-
teria of good research even in Computational
Linguistics. And to give other researchers the
option of reproducing an experiment means giv-
ing them access to the language engineering re-
sources used in the experiment. Convincing the
members of the CL research community to both
make their own processing resources freely avail-
able to the rest of the community and actually
even to try to reuse somebody else’s resources is
indeed a tough ‘diplomatic’ challenge.

4.2 Technical/software challenges

From the technical point of view, one major
conclusion is that the difficulties of integrating
language processing software never can be over-
estimated. Even when using a liberal frame-
work like GATE it is hard work making differ-
ent pieces of software from different sources and
built according to different programming tradi-
tions meet any kind of interface standard.

To give the flavour of the problem, Table 3
singles out the underlying implementation lan-
guages of some of the SVENSK components,
while diversity in software authors and sources
was shown already in Table 1.

Table 3: Implementation languages

Language Resource(s)

Prolog DSP, DUP, ParserBox

C/C++ SWECG, Brill,
Tokeniser, GATE (part)

Tel/Tk GATE

Perl TextCat, Brill (part),
LexToken, LP-Detect,
Sentence splitter

LISP UCP

The application programming interface thus
moves to the centre of attention: No matter how

linguistically adequate a piece of language pro-
cessing software is, without a proper API it can-
not be used in conjunction with other programs.

In a way, it is understandable that academia
does not always put much effort in packag-
ing and documenting their software, since their
main purpose is not to sell and widely distribute
it. The trouble is that some of the actors on the
commercial scene do not document their sys-
tems in a proper manner, either. Far too of-
ten this has resulted in inconsistencies with the
input and output of other modules. This prob-
ably reflects a certain level of immaturity in the
field when it comes to software development; the
problem might solve itself when the level of com-
petition between different companies increases.

Software portability is another issue: The
components available often rely on a particular
operating system or a particular software envi-
ronment to work, something which may cause
problems in settings when you wish to distribute
your collected efforts to other parties, or when
you wish to add a new component to your col-
lection. If you are not careful when integrating
components that are not first and foremost in-
tended to function together, it is not likely that
their combined performance will even level with
the performance of the individual programs re-
garding, e.g., time and memory requirements.

In software industry in general, it is hard to
recreate the situations where bugs occur, and it
is even harder to correct them once you have
found them. When collecting and integrating a
set of heterogenous language processing compo-
nents, the problem of localising a bug is even
harder. As long as the source code of the soft-
ware under consideration is available, you might
be able to correct the bugs yourself; however,
software delivered as a “black-box” (that is, if it
is impossible to access the code inside, which is
common for commercial software), allow no one
to remedy even the smallest flaw.

4.3 Linguistic challenges

Of course, LE components differ with respect to
such things as language coverage, processing ac-
curacy and the types of tasks addressed. It is
also the case that tasks can be done at various
levels of proficiency. The trouble is that there
is no quality control available to either the tool-
box developer nor to the end-user. If a large

number of LE components are to be integrated,
they should first be categorised so that compo-
nents with a great difference in, say, lexical cov-
erage are not combined.

A familiar problem for all builders of language
processing systems relates to the adaptation to
new domains. When reusing resources built by
others this becomes even more accentuated, es-
pecially if an LE resource is available only in the
“black box” form (and thus relates to the issues
of the previous subsection).

In general, the power required of a language
processing system is affected by three main fac-
tors: the type of task involved, the needs of the
specific application, and the application domain,
including the vocabulary and the register (sub-
language) complexity. It seems impossible — or
at least very hard! — to compose a really gen-
eral toolkit. Toolkits will always have to focus
on some classes of tasks and applications and /or
on some language and operation domains.

A classification of the SVENSK components ac-
cording to three different limitation dimensions
is given in Table 4.

Table 4: Linguistic limitations

Limitations Resource(s)

All except TextCat and
Sentence splitter (some)

DSP
(most others more or less)

DSP, DUP, ParserBox

Language dependent

Domain dependent

Sentence-based

5 Conclusions

e A toolset should not be too general. There
has to be some focus on its end-usage, at
least to some manageable set of classes of
tasks and applications.

e The portability issues across operating sys-
tems as well as institutional borders de-
pends on technical issues such as licenses
and availability. The “a chain is never
stronger than its weakest link’-metaphor is
certainly applicable!

e The domain and coverage of language pro-
cessing software is an additional obstacle;
it is important to match pieces of software
accordingly!

Acknowledgements

The SVENSK project has been funded by SICS
and NUTEK under grants P5475 and P13338-1.

Several persons have been involved in the
project since its start in 1995, in particular
Mikael Eriksson who did the first work on the
GATE interfacing. Mats Wirén and Barbro
Atlestam were the key persons behind ensur-
ing the project’s funding. Scott McGlashan,
Charlotta Berglund, Victoria Johansson and
Kristina Hassel all worked directly on SVENSK
at SICS, while Christer Samuelsson, Jussi Karl-
gren, Nikolaj Lindberg, Lena Santamarta and
Ivan Bretan worked on other SICS projects
which contributed indirectly to the system.

Klas Priitz, Anna Sagvall-Hein and Jan “Beb”
Lindberg donated language processing resources
to the project. Gertjan van Noord sat an ex-
ample for all researchers by making his software
freely available, as did Hamish Cunningham and
the rest of the Sheffield GATE group. Thanks
also to the members of SVENSK’s scientific ad-
visory board which have greatly influenced the
project: Barbro, Anna, Mats, Robin Cooper,
Lars Ahrenberg, and Calle Welin.

References

Hiyan Alshawi, editor, David Carter, Jan van
Eijck, Bjorn Gambick, Robert C. Moore,
Douglas B. Moran, Fernando C. N. Pereira,
Stephen G. Pulman, Manny Rayner, and
Arnold G. Smith. 1992. The Core Language
Engine. MIT Press, Cambridge, Mass.

Jan W. Amtrup. 1997. ICE: A communica-
tion environment for Natural Language Pro-
cessing. In Proc. International Conference
on Parallel and Distributed Processing Tech-
niques and Applications, Las Vegas, Nevada.

Annelise Bech and Anders Nygaard. 1988. The
E-framework: A formalism for Natural Lan-
guage Processing. In Proc. 12th Interna-
tional Conference on Computational Linguis-
tics, volume 1, pages 36-45, Budapest, Hun-
gary. ACL.

Jonas Beskow, Kjell Elenius, and Scott Mac-
Glashan. 1997. Olga — a dialogue system
with an animated talking agent. In G. Kokki-
nakis, N. Fakotakis, and E. Dermatas, editors,
Proc. 5th European Conference on Speech
Communication and Technology, volume 3,
pages 1651-1654, Rhodes, Greece. ESCA.

Andrew Bredenkamp, Thierry Declerck, Fred-
erik Fouvry, Bradley Music, and Axel The-
ofilidis. 1997. Linguistic engineering using
ALEP. In (Mitkov and Nicolov, 1997), pages
92-97.

Eric Brill. 1992. A simple rule-based part of
speech tagger. In Proc. 3rd Conference on
Applied Natural Language Processing, pages
152-155, Trento, Italy. ACL.

Thomas Bub and Johannes Schwinn. 1996.
Verbmobil: The evolution of a complex large
speech-to-speech translation system. In Proc.
4th International Conference on Spoken Lan-
guage Processing, Philadelphia, Pennsylvania.

lan Crookston. 1990. The E-framework:
Emerging problems. In H. Karlgren, editor,
Proc. 13th International Conference on Com-
putational Linguistics, volume 2, pages 66-71,
Helsinki, Finland. ACL.

Hamish Cunningham, Yorick Wilks, and
Robert J. Gaizauskas. 1996. GATE — a Gen-
eral Architecture for Text Engineering. In
Proc. 16th International Conference on Com-
putational Linguistics, volume 2, pages 1057—
1060, Kgbenhavn, Denmark. ACL.

Hamish Cunningham, Kevin Humphreys,
Robert J. Gaizauskas, and Yorick Wilks.
1997. Software infrastructure for Natural
Language Processing. In Proc. 5th Confer-
ence on Applied Natural Language Processing,
Washington, DC. ACL.

Hamish Cunningham, Robert J. Gaizauskas,
Kevin Humphreys, and Yorick Wilks. 1999.
Experience with a Language Engineering ar-
chitecture: Three years of GATE. In Proc.
Workshop on Reference Architectures and
Data Standards for NLP, Edinburgh, Scot-
land. AISB.

Mikael Eriksson and Bjorn Gambéck. 1997.
SVENSK: A toolbox of Swedish language pro-
cessing resources. In (Mitkov and Nicolov,
1997), pages 336-341.

Robert Gaizauskas, Hamish Cunningham,
Yorick Wilks, Peter Rodgers, and Kevin
Humphreys. 1996. GATE: An environment
to support research and development in
Natural Language Engineering. In Proc. 8th
International Conference on Tools with Al
Toulouse, France. IEEE.

Bjorn Gambéck. 1997. Processing Swedish Sen-
tences: A Unification-Based Grammar and

some Applications. PhD Thesis, The Royal
Institute of Technology, Dept. of Computer
and Systems Sciences, Stockholm, Sweden.

Bjorn Gambéck and Fredrik Olsson. 2000. Ex-
periences of Language Engineering algorithm
reuse. In Proc. 2Znd International Confer-
ence on Language Resources and Evaluation,
volume 1, pages 161-166, Athens, Greece.
ELRA.

Alan Goldschen and Dan Loehr. 1999. The role
of the DARPA Communicator architecture as
a human computer interface for distributed
simulations. In Spring Simulation Interoper-
ability Workshop, Orlando, Florida. SISO.

Ralph Grishman et al., 1997. TIPSTER Text
Phase II Architecture Design. Version 2.3.
New York, NY.

Ralph Grishman, 1995. TIPSTER Phase II Ar-
chitecture Design Document (Tinman Archi-
tecture) Version 1.52. New York, NY.

Viggo Hansen. 1994. PaTrans — a MT-system:
Development and implementation of and ex-
periences from a MT-system. In Proc. Ist
Conference of the Association for Machine
Translation in the Americas, pages 114-121,
Columbia, Maryland. AMTA.

Rod Johnson and Mike Rosner. 1987. Machine
translation and software tools. In (King,
1987), chapter 11, pages 154-167.

Fred Karlsson, Atro Voutilainen, Juha Heikkila,
and Arto Anttila, editors. 1995. Constraint
Grammar: A Language-Independent System
for Parsing Unrestricted Text. Mouton de
Gruyter, Berlin, Germany.

Martin Kay, Jean Mark Gawron, and Peter
Norvig. 1994. Verbmobil: A Translation Sys-
tem for Face-to-Face Dialog. Number 33 in
Lecture Notes. CSLI, Stanford, California.

Maggie King, editor. 1987. Machine Transla-
tion Today: the State of the Art. Edinburgh
University Press, Edinburgh, Scotland.

Maggie King and Sergei Perschke. 1987. EU-
ROTRA. In (King, 1987), chapter 19, pages
373-391.

Ruslan Mitkov and Nicolas Nicolov, editors.
1997. Proc. 2nd International Conference on
Recent Advances in Natural Language Pro-
cessing, Tzigov Chark, Bulgaria.

Fredrik Olsson. 1998. Tagging and morpholog-
ical processing in the SVENSK system. MA
Thesis, Uppsala University, Sweden.

Fredrik Olsson, Bjorn Gambéck, and Mikael
Eriksson. 1998. Reusing Swedish language
processing resources in SVENSK. In Proc.
Workshop on Minimizing the Effort for Lan-
guage Resource Acquisition (LREC98), pages
27-33, Granada, Spain. ELRA.

Klas Priitz. 1997. Preparing a training corpus
in Swedish for training an automatic part of
speech tagging system. In H. Kalverkdmper
and B. Svane, editors, Ubersetzen und Dol-
metschen. Forschungsstand und Perspektive.
Translation and Interpreting. State and Per-
spectives. Proc. Humboldt-Stockholm Sympo-
stum, Stockholm University, Sweden.

S. G. Pulman, editor, H. Alshawi, D. J. Arnold,
D. M. Carter, J. Lindop, K. Netter, J. Tsu-
jii, and H. Uszkoreit. 1991. Eurotra ET6/1:
Rule Formalism and Virtual Machine Design
Study. CEC, Luxembourg.

Manny Rayner, Ivan Bretan, David Carter,
Michael Collins, Vassilios Digalakis, Bjorn
Gambéck, Jaan Kaja, Jussi Karlgren, Bertil
Lyberg, Steve Pulman, Patti Price, and
Christer Samuelsson. 1993. Spoken language
translation with mid-90’s technology: A case
study. In Proc. 3rd FEuropean Conference on
Speech Communication and Technology, vol-
ume 2, pages 1299-1302, Berlin, Germany.
ESCA.

Anna Sagvall-Hein. 1981. An overview of the
Uppsala Chart Parser version 1 (UCP-1).
Technical report, Center for Computational
Linguistics, Uppsala University, Sweden.

Christer Samuelsson. 1994. Fast Natural-
Language Parsing Using Ezplanation-Based
Learning. PhD Thesis, The Royal Institute of
Technology, Dept. of Computer and Systems
Sciences, Stockholm, Sweden.

Stephanieo Seneff, Ed Hurley, Raymond Lau,
Christine Pao, Philipp Schmid, and Victor
Zue. 1998. Galaxy-II: A reference architec-
ture for conversational system development.
In Proc. 5th International Conference on Spo-
ken Language Processing, volume 3, pages
931-934, Sydney, Australia.

Neil Simpkins and Marius Groenendijk. 1994.
The ALEP project. Technical report, Cray
(now Anite) Systems / CEC, Luxembourg.

Joel Sunnehall. 1996. Robust parsing using
dependency with constraints and preference.
MA Thesis, Uppsala University, Sweden.

