
A D e v e l o p m e n t E n v i r o n m e n t for an M T T - B a s e d S e n t e n c e

G e n e r a t o r

Bernd Bohne t , Andreas Lang jahr and Leo Wanner
C o m p u t e r Science D e p a r t m e n t

Un ive r s i t y of S t u t t g a r t
Bre i twiesens t r . 20-22

- 7 0 5 6 5 : S t u t t g a r t , G e r m a n y "

{bohne t [l ang jahr [wanner}©info rmat ik .un i - s tu t tga r t .de

1 I n t r o d u c t i o n

With the rising standard of the s ta te of the art in
text generation and the increase of the number
of practical generation applications, it becomes
more and more important to provide means for
the maintenance of the generator, i.e. its ex-
tension, modification, and monitoring by gram-
marians who are not familiar with its internals.
However, only a few sentence and text gener-
ators developed to date actually provide these
means. One of these generators is KPML (Bate-
man, 1997). I~PML comes with a Development
Environment and there is no doubt about the
contribution of this environment to the popular-
ity of the systemic approach in generation.

In the generation project at Stut tgar t , the
realization of a high quality development en-
vironment (henceforth, DE) has been a central
topic from the beginning. The De provides sup-
port to the user with respect to writing, mod-
ifying, testing, and debugging of (i) g rammar
rules. (ii) lexical information, and (iii) linguis-
tic s t ructures at different levels of abstraction.
Furthermore, it automatically generalizes tile or-
ganization of the lexica and the grammar. In
what follows, we briefly describe oF,'s main fea-
tures. The theoretical linguistic background of
the DE is the Meaning-Tex t Theory (Mel'euk,
1988: Polgu~re, 1998). However. its introduc-
tion is beyond tile scope of this note: tile inter-
ested reader is asked to consuh the above reg
erences as well as further literature on the use
Of M T T ill text generation---for illSlallCe, (Ior-
danskaja c t a l . , 1992: I,avoie £- Rainbow. 1997:
(.'och. 1997).

2 G l o b a l V i e w on t h e D E

In MTT, seven levels (or strata) of linguis-
tic description are distinguished, of which
five are relevant for generation: semantic
(Sem), deep-syntactic (DSynt) , surface-syntactic
(SSynt), deep-morphologicM (DMorph) and
surface-morphological (SMorph). In order to be
able to generate starting from the data in a data
base, we introduce an additional, the conceptual
(Con) s t ra tum. The input s t ruc ture to DE is thus
a conceptual structure (ConStr) derived from the
da ta in the DB. The generation process consists
of a series of structure mappings between adja-
cent s t ra ta until the SMorph s t ra tum is reached.
At the SMorph stratum, the s tructure is a string
of linearized word forms.

The central module of the DE iS a compiler
that maps a structure specified at one of tile five
first of the above strata on a structure at the
adjacent s t ra tum. To suppor t the user in the ex-
amination of the internal information gathered
during the processing of a structure, a debug-
ger and an inspector are available. The user can
interact with the compiler either via a graphic
interface or via a text command interface. For
the maintenance of the grammar, of the lexica
and of the linguistic structures, the DE possesses
separate editors: a rule editor, a lexicon editor,
and a s tructure editor.

2.1 T h e R u l e E d i t o r

T h e R u l e s . Most of the grammatical rules
in an MTT-based generator are two-level rules.

.'\ two-level rule establishes a correspomlence

260

between minimal s tructures of two adjacent
strata. Given that in generation five of
MTT'S s t ra ta are used, four sets of two-level
rules are available: (1) Sem=vDSynt-rules, (2)
DSynt~SSynt-rules, (3) SSynt=vDMorph rules,
and (4) DMorph~SMorph-rules .

Formally, a two-level rule is defined by the

optimize the organization of the grammar by a u -
tomatic detection Of common parts in several
rules and their extraction into abstract 'class'
rules. The theoretical background and the proce-
dure of rule generalization is described in detail
in (Wanner & Bohnet, submitted) and will hence
not be discussed in this note.

quintuple (/2, Ctxt, Conds, 7~, Corr). £ specifies While editing a rule, the developer has the
the lefthand side :of the r.,ule-~a,~minimal~so~rce~a stc~nd~r.d,c.ommands:,:~t,,his/'her~ disposal . Rules
substructure that is mapped by the rule onto its can be edited either in a text rule editor or via
destination structure specified in 7~, the right-
hand side of the rule. Ctxt specifies the wider
context of the lefthand side in the input structure
(note that by far not all rules contain context in-
formation). Conds specifies the conditions that
must be satisfied for the rule to be applicable to
an input substructure matched by £. Corr spec-
ifies the correspondence between the individual
nodes of the lefthand side and the righthand side
structures.

Consider a typical Sem=~,DSynt-rule,
which maps the semantic relation '1' that
holds between a property and an entity
that possesses this property onto the deep-
syntactic relation ATTR. The names begin-
ning with a '7' are variables. The condition
'Lex::(Sem::(?Xsem.sem).lex).cat = adj'

requires that the lexicalization of the property

is an adjective. '?Xsem ~ ?Xdsynt ' and '?Ysem
¢:~ ?Ydsynt' mean that the semantic node ?Xsem

is expressed at the deep-syntactic stratum by

?Xdsynt, and ?Ysem by ?Ydsynt.

property (Sem_DSynt) {
leftside :

?Xsem -i-+ ?Ysem
condit ions :

Sem: :?Xsem.sem,1:ype = property
Lex: :(Sem::(?Xsem.sem).lex).cat = adj

rightside:
?Xds
?Yds
?Yds -ATTR-+?Xds

correspondence :
?Xsem ~ ?Xds
?Ysem ~ ?Yds}

The rule editor (l~t-~) has two main ['unctions:
(i) to support the mai)~tenance (i.e. editing and
examination) of grammatical rules, and (ii) to

a graphic interface. Obviously incorrect rules
can be detected during the syntax and the se-
mantic rule checks. The syntax check exam-
ines the correctness of the notation of the state-
ments in a rule (i.e. of variables, relations, con-
ditions, e tc .)-- in the same way as a conventional
compiler does. The semantic check examines
the consistency of the conditions, relations, and
at tr ibute-feature pairs in a rule, the presence of
an a t t r ibute ' s value in the set of values that are
available to this attribute, etc. If, for instance
in the above rule 'adj' is misspelled as 'adk' or
erroneously a multiple correspondence between
?gds and ?Xsem and ?Ysem is introduced, the
rule editor draws the developer's attention to tile
respective error (see Figure 1).

R u l e Tes t i ng . Rule testing is usually a very
time consuming procedure, this is so partly be-
cause tile generator needs to be started as a
whole again and again, partly because tlle re-
suiting structure and the trace must be carefully
inspected in order to find out whether tile rule
in question fired and if it did not fire why it
did not. The DE at tempts to minimize this el'-
fort. With "drag and drop' the developer can
select one or several rules and apply them onto
an input s tructure (which can be presented ei-
ther graphically or in a textual format; see be-
low). When a rule dropped onto the structure
fires, the affected parts of the input structure are
made visually prominent, and the resulting out-
put (sub)structure appears in the corresponding
window of the slructure editor. If a rule did not
fire. the inspector indicates which conditions of
tim rule in question were not satisfied. See also
I)elow lhe description of the features of lhe in-
spect or.

261

Figure 1: Error messages of the rule editor

2.2 T h e S t r u c t u r e E d i t o r

The structure editor manages two types of win-
dows: windows in which the input structures are
presented and edited, and windows in which the
resulting structures are presented. Both types of
windows can be run in a text and in a graphic
mode. The input s t ructures can be edited in
both modes, i.e., new nodes and new relations
can be introduced, at tr ibute-value pairs associ-
ated with the nodes can be changed, etc.

In the same way as rules, structures can be
checked with respect to their syntax and se-
mantics. Each s t ructure can be exported into
postscript files and thus conveniently be printed.

2.3 T h e L e x i c o n E d i t o r

The main function of the lexicon editor is to sup-
port the maintenance of the lexica. Several types
of lexica are distinguished: conceptual lexica, se-
mantic lexica, and lexico-syntactic lexica..

Besides tile s tandard editor functions, the
lexicon editor provides the following options: (i)
sorting of tile entries (either alphabetically or ac-
cording to such criteria as 'category'); (ii) syntax
check; (iii) finding information that. is common
to several entries and extracting it into abstract
entries (the result is a hierarchical organization
of the resource). During the demonstration, each
of these options will be shown ilt action.

2.4 T h e I n s p e c t o r

The inspector fulfils mainly three functions.
First . it presents i n fo rma t i on col lected (lu r ing
the application of the rules selected by the de-
veloper Io :-ill i npu l s t ruc tu re . Th is i l l fo rn ia-

tion is especially useful for generation experts
who are familiar with the internal processing. It
concerns (i) the correspondences established be-
tween nodes of the input s t ructure and nodes of
the resulting structure, (ii) the instantiation of
the variables of those rules tha t are applied to-
gether to the input s t ructure in question, and
(iii) the trace of all operat ions performed by the
compiler during the application of the rules.

Second, it indicates to which part of the input
s t ructure a specific rule is applicable and what
its result at the destination side is. Third, it in-
dicates which rules failed and why. The second
and third kind of information is useful not only
for generation experts, but also for grammarians
with a pure linguistic background.

Figure 2 shows a snapshot of the inspecLor
editor interface. Sets of rules tha t can simulta:
neously be applied together to an input struc-
ture without causing conflicts are grouped dur-
ing processing into so-called clusters. At the
left side of the picture, we see two such clus-
ters (Cluster 13 and Cluster 22). Tile instances
of the rules of Cluster 13 are shown to the righl
of the cluster pane. The cluster pane also con-
tains sets of rules that failed (in the picture, the
corresponding icon is not expanded). The left
graph in Figure 2 is the input s t ructure to which
the rules are applied. For illustration, one of
the rules, namely da te , has been selected for ap-
plication: tile highlighted arcs and nodes of tile
input s t ructure are the part to which d a t e is ap-
plicable. 'Pile result of its application is tile tree
at the right. Beneath the graphical structures,
we see tile correspondence between input nodes

262

SOUlCe s~ 'uc ture : (1)

Eva lua t i on F a l lec l

C l u$1e r 22 ~3 •

+ , \ \ !

I X " + , \ \

• , . j ~ m . + 2

t aq t m , . : a, , : ; , t , i

i i . i . i . ~ i + _

~ J t " l

R I ~ ¢ ~ - , ~ k - - , ~ + - - B g ~ t I l * \ '

T
A r r ~

~4

+] l i .
N}~Y?P: ' - . . 4 J .~ ~ ,. - 7 " - - = - - - -

! p ! e (?) I o ¢ i n U m e , ~ . ~ ! e (? }

• ~ :o9(.__~

oca lJo ln (5) : l oc l n .spaco(6)
171 (g) . 371 (9)

;~yerltB.~__)VVOrI(I 1) _ _ _ .

+.~(L0). i.~7.(!_al
:CO(B) ,CO(141

. ,,,, , , ,,,,,

Figure 2: The inspector interface of the D E .

and result nodes. The numbers in parentheses
are for system use.

2.5 T h e D e b u g g e r
In the rule editor, break points within individual
rules can be set. When the compiler reaches a
break point it stops and enters the debugger. In
the debugger, the developer can execute the rules
statement by statement. As in the inspector, the
execution trace, the variable instantiation and
node correspondences can be examined. During
the demonstration, the function of the debugger
will be shown in action.

3 C u r r e n t W o r k
DE is written in ,Java 1.2 and has been tested on
a SUN workstation and on a PC pentium with
300 MHz and 128 MB of RAM.

Currently, the described functions of the D E

are consolidated and extended bv new features.
The most important of these features aa'e the im-
port and the export feature. The import feature
allows for a transformation of grammatical rules
and lexical information encoded in a different
format into the format used bv our generator.
Tests are being carried out with the import of
RealPro (Lavoie ,~,: Rainbow. 1997) grammati-
cal rules and lexical information (in particular

subcategorization and diathesis information) en-
coded in the DATR-formalism. The export fea-
ture allows for a transformation of the rules and
lexical information encoded in our format into
external formats.

B i b l i o g r a p h y

Bateman, J.A. 1997. Enabling technology for mul-
tilingual natural language generation: the KPblL
development environment. Natural Language Engi-
neering. 3.2:15-55.

Coch, J. 1997. Quand l'ordinateur prend la plume :
la gdn4ration de textes. Document Numdrique. 1.:~.

Iordanskaja, L.N., M. Kim, R. Kittredge, B. Lavoie
~: A. Polgu6re. 1992. Generation of Extended Bilin-
gual Statistical Reports. COLING-92. 1019 1022.
Nantes.

Lavoie, B. & O. Rainbow. 1997. A fast and portable
realizer for text generation systems. Proceedings of
the Fifth Conference on Applied Natural Language
Processing. Washington, DC.

Mel'euk, I.A. 1988. Dependenc!l Syntaz:: Theory and
Prac&ce. Albany: State University of New York
Press.

Polgu6re, A. 1998. La th~orie sens+textre. I)t-
alangue,. 8-9:9-30.

Wanner. L. ~ B. Bohnet. submitted. Inheritance in
the MTT-grammar.

263

