
Enriching Part ial ly-Specif ied Representat ions for Text Real izat ion
Using an Attr ibute Grammar *

Songsak Channarukul Susan W. McRoy Syed S. Ali
{ songsak, mcroy, syali} @cs.uwm. edu

Naturat.,L~,ng~uage,and:J4rmwledge:,Rep~esentation.Research G r o u p . •
http ://tigger. ca. uwm. edu/ ~lkrrg

E l e c t r i c a l E n g i n e e r i n g a n d C o m p u t e r Sc ience D e p a r t m e n t
U n i v e r s i t y of W i s c o n s i n - M i l w a u k e e

A b s t r a c t

We present a new approach to enriching under-
specified representations of content to be realized
as text. Our approach uses an at t r ibute gram-
mar to propagate missing information where needed
in a tree that represents the text to be realized.
This declaratively-specified grammar mediates be-
tween application-produced output and the input to
a generation system and, as a consequence, can eas-
ily augment an existing generation system. End-
applications that use this approach can produce high
quality text without a fine-grained specification of
the text to be realized, thereby reducing the bur-
den to the application. Additionally, representations
used by the generator are compact, because values
that can be constructed from the constraints en-
coded by the grammar will be propagated where nec-
essary. This approach is more flexible than default-
ing or making a statistically good choice because it
can deal with long-distance dependencies (such as
gaps and reflexive pronouns). Our approach differs
from other approaches that use at tr ibute grammars
in that we use the grammar to enrich the represen-
tations of the content to be realized, rather than
to generate the text itself. We illustrate the ap-
proach with examples from our template-based text-
realizer, YAG.

1 I n t r o d u c t i o n

Typically, a text realization system requires a great
deal of syntactic information from an application
in order to generate a high quality text; however,
an application might not have this information (un-
less it has been built with text generation in mind).
This problem has been referred to as the Genera-
tion Gap (Meteer, 1990). Meteer first identified the
generation gap problem as arising at the text plan-
ning stage. A text planner must decide what content
needs to be expressed and creates a corresponding
text plan for generating it. A sentence planner is
then used to select an appropriate syntactic struc-

° T h i s work was suppor ted by a gift from Intel Corporat ion;
and by t he National Science Foundat ion, under grants IRI-
9701617 a n d IRI-9523666.

ture for a given plan. Typically, neither a text plan-
ner nor a sentence planner is concerned with fine-
grained syntactic issues, such as whether the subject
of the sentence is a singular or plural noun. Thus,
it becomes the responsibility of a text realizer to in-
fer the missing information and to generate the best
possible text from a given input.

Most generation systems (such as F U F / S U R G E
(Elhadad, 1992), Penman (Mann, 1983), Real-
Pro (Lavoie and Rainbow, 1997), TG/2 (Busemann,
1996), and YAG (Channarukul, 1999; McRoy et al.,
1999)) alleviate this problem by using defaulting,
in which a grammar writer specifies a default for
each syntactic constraint. This approach is inflexi-
ble and prone to errors, because there might not be
one default that suits all applications or situations.
Another approach that has been proposed is to fill
in the missing information on the basis of word co-
occurrence data collected from a large corpus of text
(see Nitrogen (Knight and Hatzivassiloglou, 1995)).
However, statistical approaches have difficulty when
there are long-distance dependencies among con-
stituents in a text.

In this paper, we present a new approach to re-
solving the so-called generation gap that uses an At-
tribute Grammar (Knuth, 1968) to enrich partially-
specified inputs to a realization system to pro-
duce high quality texts. Attribute Grammars are a
declarative formalism for defining rules for a t t r ibute
propagation (see Section 3). They have been used
primarily for specifying the .semantics of program-
ruing languages, although a few researchers have also
used them to drive a text generator (see (Levison
and Lessard, 1990), for exaanple). The main advan-
tage of our approach is that it allows a generator
to enjoy the computational efficiency of a template-
based realization system, while reducing the linguis-
tic burden on an application and increasing the qual-
ity of the generated texts.

Our work differs from previous uses of a t t r ibute
g rammars in natural language generation, which
are similar to Levison and Lessard (Levison and
Lessard, 1990)in that they apply at tr ibute gram-
mars directly to text realization. For example, Lev-

163

L

((template CLAUSE)
(process-type MENTAL)
(process "want")
(processor ((template NOUN-PNRASE)

(head ((template CONJUNCTION)
(first ((template NOUN-PHRASE)

(head "Jack")
(np-type PROPER)

,~(gender .MASCULINE) :
(definite NOART)))

(second ((template PRONOUN)))))
(person SECOND)
(number PLURAL)))

(phenomenon ((template NOUN-PHRASE)
(head "dog")
(definite NOART)
(possessor ((template NOUN-PHRASE)

(head "sister")
(gender FEMININE)
(definite NOART)
(possessor ((template NOUN-PHRASE)

(rear-circum ((template CLAUSE)
(mood T0-INFINITIVE)
(process-type MATERIAL)
(process "swim"))))

Figure 1: A Feature Structure for

(head "Jack")
(np-type PROPER)
(gender MASCULINE)
(pronominal YES)
(definite NOART)))))))

the Sentence "Jack and I want his sister's dog to swim."

ison and Lessard extend a context-free grammar
with attributes and semantic rules similar to classi-
cal attribute grammars presented by Knuth (Knuth,
1968). Attributes in their system assist the realiza-
tion by propagating information down a tree that
specifies the complete syntactic structure of the out-
put text. By contrast, our work employs attribute
grammars, not to realize a text, but to perform a
generation gap analysis prior to actual realization.
We use both inherited and synthesized attributes
(i.e., propagating information both down and up a
tree) to share information and to determine appro-
priate values for any missing features.

2 A n O v e r v i e w o f Y A G

YAG (Yet Another Generator) (Channarukul, 1999;
McRoy et al., 1999) is a template-based text-
realization system that generates text in real-time.
YAG uses templates to express text. structures corre-
sponding to fragments of the target language. Tem-
plates in YAG are declarative and modular. Coln-
plex texts can be generated 173" embedding templates
inside other tenlplates.

Values for the tenlplates are provided by an appli-
cation; inputs can include either,a conceptual repre-
sentation of content or a feature structure. When an

input is only partially specified, defaults defined in a
template will be applied. Figure I shows an example
of YAG's feature-structure based input; YAG would
realize this example as "Jack and I want his sister's
dog to swim. ". This input is partially specified, and
thus is more compact and easier for an application
to specify, than a complete specification. Figure 2
shows the features that have been omitted and the
defaults used t75 YAG to realize the sentence from
tile input.

Although the input is already more compact than
a full specification, further simplification of the in-
put provided from an application would have been
possible, if certain inferences could be made. For ex-
ample, Figure 3 shows an input structure that could
replace the one given in Figure 1. In Figure 3, it was
not necessary for the application to specify that the
conjunction of two noun phrases is a phlral noun
phrase, nor that component noun phrases (proper
nouns, pronouns, and possessives) should not, con-
tain an article. In the case of conjunctions, there is
no default that would provide the correct outputs in
all cases, because the same conjunction template is
used to conjoin adjectives and clauses. Instead, our
approach uses an attribute grammar to make the
appropriate inferences and enrich the feature struc-

164

Template Name] Template Slot Default Allowed VMues
CLAUSE sentence

NOUN-PHRASE

mood

process-type

•mode
tense
future
progressive
perfective
voice
quality
np-type
person
number
gender
definite
regular-noun
countable
inflected
pronominal

YES
DECLARATIVE

type

ASCRIPTIVE

.nil
"PRESENT
NO
NO
NO
ACTIVE
POSITIVE
COMMON
THIRD
SINGULAR
NEUTRAL
NO
YES
YES
YES
NO

YES, NO
DECLARATIVE, YES-N0, WH, IMPERATIVE,
T0-INFINITIVE
ASCRIPTIVE, MENTAL, MATERIAL,
COMPOSITE, POSSESSIVE, LOCATIVE,
TEMPORAL, VERBAL, EXISTENTIAL
ATTRIBUTI~E,,EQUATIVE,.CAUSATIVE
PRESENT, PAST
YES, NO
YES, N0
YES, N0
ACTIVE, PASSIVE
POSITIVE, NEGATIVE
COMMON, PROPER
FIRST, SECOND, THIRD
SINGULAR, PLURAL
NEUTRAL, MASCULINE, FEMININE
YES, N0, NOART
YES, NO
YES, NO
YES, NO
YES, NO

POSSESSOR pronominal YES YES, NO
PRONOUN PERSONAL

FIRST
SINGULAR
NEUTRAL

person
number
gender

PERSONAL, OBJECTIVE, REFLEXIVE,
POSSESSIVE-PRONOUN,
POSSESSIVE-DETERMINER,
RELATIVE, DEMONSTRATIVE
FIRST, SECOND, THIRD
SINGULAR, PLURAL
NEUTRAL, MASCULINE, FEMININE

CONJUNCTION sentence NO YES, NO

Figure 2: Some Defaults from YAG's Syntactic Templates.

((template CLAUSE)
(process-type MENTAL)
(process "want")
(processor ((template CONJUNCTION)

(first ((template NOUN-PHRASE)
(head "Jack")
(np-type PROPER)
(gender MASCULINE)))

(second ((template PRONOUN)))))
(phenomenon ((template NOUN-PHRASE)

(head "dog")
(possessor ((template NOUN-PHRASE)

(head "sister")
(gender FEMININE)

• ~(possessor<(template NOUN-PHRASE)
(head "Jack")
(np-type PROPER)
(gender MASCULINE)
(pronominal YES)))))))

(rear-circum ((template CLAUSE)
(mood T0-INFINITIVE)
(process-type MATERIAL)
(process "swim"))))

Figure 3: A (shorter) Feature Struclur() of the Sentence "Jack and I want his ._zste7 s dog to swim.".

165

tu re i n p u t so tha t ne i the r the appl ica t ion , nor the
t e m p l a t e s need to be a l t e red to handle dependencies ,
like conjunct ions , correct ly.

3 A t t r i b u t e G r a m m a r s

A n a t t r i b u t e g r a m m a r consis ts of a context - f ree
g r a m m a r , a finite set of a t t r i b u t e s , and a set of se-
m a n t i c rules. The ,.C-,on.~eezt-Free :Grammar (C F G)
specifies the syntax of a l anguage by express ing how
to cons t ruc t a syn tax tree f rom non- te rmina l a n d ter-
mina l symbo l s defined in a language. T h e Attributes
and Semantic Rules speci fy the semant ics . A finite
se t of a t t r i b u t e s is a s soc ia t ed wi th each non- t e rmina l
symbol . Each of these se ts is d iv ided into two dis-
j o in t subse ts , namely Inherited Attributes and Syn-
thesized Attributes. I n h e r i t e d a t t r i b u t e s p r o p a g a t e
down a syn tax tree whereas synthes ized a t t r i b u t e s
p r o p a g a t e upward. A s e m a n t i c rule specifies how to
c o m p u t e the value of an a t t r i b u t e from others . This
spec i f ica t ion implici t ly defines dependenc ies among
a t t r i b u t e s in an a t t r i b u t e g r a m m a r , local ly (wi th in a
p r o d u c t i o n) and global ly (a m o n g p roduc t ions) . At-
tribute Evaluation is the process of c o m p u t i n g values
for every a t t r i bu t e ins t ance in the t ree accord ing to
the s e m a n t i c rules defined for each p roduc t ion .

An example of an a t t r i b u t e g r a m m a r and i ts com-
ponen t s is given in F igu re 4 (a d a p t e d from (Alblas ,
1991)). Th i s a t t r i bu t e g r a m m a r consists of two non-
t e rmina l s , two terminals , a n d t h r e e p roduc t ion rules.
The inher i t ed a t t r i bu te s of t he non- t e rmina l A are a
and b. I t s synthesized a t t r i b u t e s are x and y. No
a t t r i b u t e s are assigned to the non- t e rmina l S.

nonterminals: S, A.
terminals: s, t.

start symbol: S.

description of attributes:

a, b: integer, inh of A;

x, y: integer, syn of A;

productions and semantic rules:

1) S -> A.
A.a := A.x

2) AO -> AI s.
Al.a := AO.a; Al.b := Al.y;

AO.x := Al.x; AO.y := l

3) A -> t .
A.y := A.a; A.x := A.b

Figure 4: An Example A t t r i b u t e G r a m m a r .

As ment ioned earlier, s emant i c rules define depen-
dencies a m o n g a t t r ibutes• F igure 5 shows depen-
dency g raphs cor responding to the semant ic rules of
F igure 4. In the graphs , a do t t ed line represents a
de r iva t ion of a product ion rule, ' while an arrow de i-
notes an a t t r i b u t e dependency . Thus . .4 ~ B means

S a b A x y a b A x y

(% I

a b A x y a b A x y s t

(1) (2) (3)

• . . F i g u r e 5 : D e p e n d e n c y G raphs .

B is d e p e n d e n t on A, but no t the o the r way around.
In o the r words, we canno t know B before we know
A.

4 E x t e n d i n g a G r a m m a r t o E n a b l e

G e n e r a t i o n G a p A n a l y s i s

To make a genera t ion gap ana lys i s possible, a g ram-
mar wr i t e r mus t first ex tend the g r a m m a r of his
or her ex is t ing genera tor to c a p t u r e the propaga-
t ion seman t i c s of a t a rge t l anguage . Th is extension
involves def ining a t t r i bu te s (synthes ized and inher-
i ted) and assoc ia ted semant ic rules. Next , a small
p r o g r a m m u s t be bui l t to cons t ruc t a tree from
a given i n p u t and re t r ieve semant i c rules and at -
t r i bu te s f rom associa ted g r a m m a r units .

A t t r i b u t e evaluat ion begins by ins t an t i a t ing each
inher i ted a t t r i b u t e with values from the input and
then the remain ing a t t r i b u t e s a re evalua ted . This
process is incrementa l in the sense t h a t new infor-
ma t ion ga ined from previous eva lua t ions might lead
to the d iscovery of add i t i ona l informat ion. When
all a t t r i b u t e s remain unchanged , or there is a con-
flict d e t e c t e d in the input , the process terminates .
The g e n e r a t o r then passes the enr iched input to the
rea l iza t ion component .

Cons ide r the following f r agmen t of input from
Figure 3 t h a t uses the CONJUNCTION t empla te to
join a noun phrase and a p ronoun .

((t e m p l a t e CONJUNCTION)
(: f i r s t ((t e m p l a t e NOUN-PHRASE)

(h e a d " J a c k ")
(n p - t y p e PROPER)
(g e n d e r MASCULINE)))

(second ((template PRONOUN))))

This f r agmen t is the sub jec t of the sentence, there-
fore fea tures such as p e r s o n and n u m b e r would be
required to enforce tile subject-verb agreement of En-
glish. F igu re 6 shows a d e p e n d e n c y g raph ~ for this

i The notatio, used in the dependency graph is the fol-
lowing:
The oval represents a template slot that is bound to an atomic
value. The rectangle denotes a slot that is bound to another
feature structure. The top text in a rectangle specifies a slot
name, and the bottom text is the name of a template ~kssigned
to this slot,. A value with an underline'means a default of the
above slot. The bold fdnt represents a value yielded from
attribute evaluations.

166

J CONJUNCTION

sentence , ' ' ' = : : - . . oetson number gender definite sentence error

first s e c o o d , 1I 1/ / -._o. \
definite , ' , T , ' , person number gender definite sentence

PROPER "Jack" THIRD SINGULAR MASCULINE N O A R T

@ @ @ @
PERSONAL FIRST SINGULAR NEUTRAL

Figure 6: A Dependency G r a p h of the CONJUNCTION Templa t e corresponding to the tex t "Jack and I".

fragment. The dependenc ies are based on the se-
mant ic rules given in F i g u r e 7 (Section 6 descr ibes
syn tax of these rules.).

The semant ic rules in F igure 7 give cons t r a in t
informat ion for the CONJUNCTION templa t e , the
NOUN-PHRASE templa te , a n d the PRONOUN templa te .
For the CONJUNCTION t e m p l a t e , the g r a m m a r will:

e Use the s e n t e n c e fea tu re of the cu r ren t tem-
pla te (which is NO by defaul t) .

o Pass up the p e r s o n fea ture found by compar -
ing the p e r s o n fea tures assoc ia ted with ti le two
conjuncts (i.e., pass up second person whenever
the conjuncts combine e i ther first person and
second or third person , or they combine second
person and third person; pass up th i rd person if
both conjuncts use t h i rd person; o therwise pass
tip nil);

• Const ra in the n u m b e r feature to be PLURAL,
the g e n d e r feature to be NEUTRAL, the d e f i n i t e
feature to be NOART, and the s e n t e n c e feature
to the same as the sentence feature of the con-
junets .

For tile NOUN-PHRASE te inp la te , the g r a m m a r will

Require this t e m p l a t e to enforce the inher i ted
values of the d e f i n i t e , n u m b e r , and n p - t y p e
features.

Require the (embedded) DETERMINER templa t e
enforce the n u m b e r fea ture of the cur ren t tem-
plate.

Pass up four features (d e f i n i t e , n u m b e r , p e r -
son , and n p - t y p e) to any templa tes t h a t use
this noun phrase , where the fotlcrwJng con-
s t ra in ts apply:

T h e definiteness feature t ha t is passed is
YES whenever the current t emp la t e has in-
heri ted YES for this value or there is a pos-
sessor or a de te rminer and one of t hem
passes up YES for this feature. (If the re is
neither possessor nor de te rminer then the
g rammar considers the n p - t y p e : if i t is
COMMON, it uses NO (for indefinite) and if it
is PROPER, it uses NOART

T h e n u m b e r f e a t u r e passed is the value
passed from the de terminer , if there is one,
or the value from the current t empla te .

T h e p e r s o n f e a t u r e passed is the one from
the current templa te .

T h e r i p - t y p e f e a t u r e passed is COMMON if the
value of definite is NO and PROPER if the
value is NOART.

For ti le PRONOUN template , the g r a m m a r will:

o Pass tip the p e r s o n , n u m b e r , and g e n d e r val-
ues fl'om the current t empla t e (possibly using
de fau l t values), along with the cons t ra in t t ha t
t t le s t r ing realized for it not be a sentence and
no t be preceded by an art icle.

I n - t h e example shown in F igure 6, inher i ted at-
t r ibu tes 2 have been init ialized to the assoc ia ted val-
ues given in an input. If the input does not specify a
value for an inherited a t t r ibu te , then the value n i l
is used.

The a t t r i bu t e evaluat ion is depth-first, and re-
quires nmlt ip le traversals. Here, the NOUN-PHRASE
sub- t ree is evaluated twice, as we discover t ha t the
d e f i n i t e feature must be NOART. Since tile PRONOUN

2 Inherited attributes are placed on the left side of each
node. Synthesized attributes are on the right.

167

Template Name Semantic Rules

CONJUNCTION

NOUN-PHRASE

PRONOUN

((this sentence) (this inh sentence))

((this syn person) (CASE (UNION (first syn person)
(second syn person)) OF

((first nil)
(second nil)
((first second) second).
((first third) second)
((second third) second)
(third third))))

((this syn number) PLURAL)
((this syn gender) NEUTRAL)
((this syn definite) NOART)
((this syn sentence) (UNION (first syn sentence) (second syn sentence)))

((this definite) (this inh definite))
((this number) (this inh number))
((this np-type) (this inh np-type))
((determiner inh number) (this inh number))

((this syn definite) (IF (AND (NULL (this possessor))
(NULL (this determiner))) THEN

(UNION (this definite)
(CASE (this np-type) OF

((common NO)
(proper NOART))))

ELSE
(UNION (this definite)

(possessor syn definite)
(determiner syn definite))))

((this syn number) (UNION (determiner syn number) (this number)))
((this syn person) (this person))
((this syn np-type) (CASE (this definite) OF

((N O COMMON)

(NOART PROPER))))

((this syn person) (this person))
((this syn number) (this number))
((this syn gender) (this gender))
((this syn sentence) NO)
((this syn definite) NOART)

Figure 7: Seman t i c Rules of the CONJUNCTION, NOUN-PHRASE, and PRONOUN templa te .

t empla t e has no inher i ted a t t r ibu te s , a single evalua-
t ion would be sufficient. The CONJUNCTION sub- t ree
is also t raversed twice because the s e n t e n c e fea ture
is re-ass igned once (from n i l to NO).

F igure 8 shows the t ree and dependencies , for the
f ragment , "his sister's dog". It shows how the deft-
ni teness of a noun phrase is dependen t on the ex-
is tence of a possessor. For example , if a posses-
sor (such as "his" or "Jack's") is specified, a noun
phrase will not need an art icle .

Note tha t this fea ture s t ruc tu re can be genera ted
different ly as "'Jack's sister's dog". "her dog". "the
dog o~ Jack ' s sister". "'the do q o/ h.is sister", and
"the dog o/ hens". \Vhile some of these var ia t ions

require fur ther inves t igat ion to de te rmine how to
t rans form a tree so tha t it reflects a new order ing
of cons t i tuents , some can be implemented using se-
mant ic rules. For e x a m p l e , - - t o - a v o i d - / a n a w k w a r d
cons t ruc t ion such as ",lack's sister's do q" in the sen-

oo<

~ f--nml~nal

PROPER 'Jack THIRD SINGULAR f',IASCU LIN E NIl%R1 YES

Figure 8: A Dependency G r a p h of the NOUN-PHRASE
- T e m p l a t e cor responding t o t h e text, "his sister's

dog ".

168

tence "Jack and I want Jack's sister's dog to swim. ",
in favor of "his sister's dog", without the application
having to request a pronoun explicitly, as in the ex-
ample shown above, we could add a rule to force
the p r o n o m i n a l feature of the inner most posses-
sor to be YES, whenever a (repeated) noun phrase is
a possessor of a possessor of the primary noun.

5 T h e Use of t h e Gehei-at ion Gap
Analysis to Resolve Conflicting
I n f o r m a t i o n

One side benefit of the use of attribute grammars
is that they can help resolve inconsistencies in the
input provided from an application. Previously, a
generation system might not be able to recognize
such conflicts, and therefore might generate a text
that is ungrammatical, or it might simply fail to
produce an output at all.

The following is an example input that has a
conflict; the values of the n u m b e r feature in the
NOUN-PHRASE and PRONOUN templates are inconsis-
tent.

((template NOUN-PHRASE)
(head "book")
(number PLURAL)
(determiner ((template PRONOUN)

(type DEMONSTRATIVE)
(distance NEAR)
(number SINGULAR)))

)

Executed literally, a generator would produce
the phrase "this books", rather than "this book" or
"these books". Figure 9 shows a dependency graph

corresponding to the above input.

/ -2>
number number error

number ~ number error

DEMONSTRATIVE NEAR SINGULAR

Figure 9: A Dependency Graph corresponding to
the text "this book" or "these books".

With the use of an appropriate attribute gram-
mar, an analysis of this structure would detect a con-
flict when the vahm SINGULAR o f t h e - n u m b e r fea-
ture propagates upward and conflicts with the value

PLURAL of the n u m b e r feature of the NOUN-PIIRASE
template. In this case, a generator can choose to
override one of the conflicting features and generate
a text from the revised input.

6 I m p l e m e n t a t i o n

,~Gy.ammars,.in_~a.:tem.plate-hased. system differ suf-
ficiently from phrase-based systems so that tradi-
tional attribute grammars specifications cannot be
used without changes. In particular, grammars in
a template-based system are not restricted to syn-
tactic text structure as they are in phrase-based
systems, but m w include either syntactic specifica-
tions, semantic specifications, or a mixture of both.
Therefore template-based grammars do not restrict
derivations on the right side of a production to some
specific non-terminals, as they would be in a phrase-
based grammar.

In our approach, a template is equivalent to the
non-terminal on the left side of a production. Tem-
plate slots are equivalent to terminals and non-
terminals on the right side depending on their value
at the time of generation. Slots that are bound to
a simple value are considered terminals, while those
that are bound to a feature structure are considered
non-terminals. The evaluation function of terminals
is actually a constant function whose return value is
the value to which the terminal has been bound.

We have defined a small language sufficient to
specify attribute grammars in a template as given
in Figure 10. Additional keywords are also defined.
The keyword t h i s refers to the current template.
The keywords inh and syn indicate an inherited at-
tribute and a synthesized attribute, respectively.

We have implemented an attribute grammar-
based propagation analysis program in Lisp as
an extension to YAG. Some templates have been
augmented with semantic propagation rules. It
was not necessary to define attributes for YAG's
template-based grammar because template slots al-
ready served as attributes. The program has been
able to identify missing information (using the de-
fined semantic propagation rules) and to reject in-
puts that have a conflict.

Other generation systems that intend to use an at-
tribute grammar approach to enrich their partially-
specified input will need to analyze the character-
istics of their grammar formalism. Basically, one
needs to identify the smallest unit of a grammar
(e.g., a category (cat) in FUF/SURGE), and then
define semantic rules similar to those presented in
this paper for each grammar unit. From a given
input, a generator should be able to pick semantic
rules associated with information provided in an ill-
put. .~n attr ibute evaluation is then executed as
described.

169

AttributeGrammar ::- EvalRules

EvalRules ::- "(" EvalRule EvalRules ")" I nil

EvalRule ::- "(" Attribute Stmt ")"

Stmt ::- Expr [CaseStmt [IfStmt

Expr ::- A t t r i b u t e [constant [
" (.... UNION" Stmt Stmt ") " I
,,(. ,,TNTEKSECTirSN,,.~Simrt.Stmt ,,).

Attribute ::- inherited [synthesized

CaseStmt ::- "(.... CASE" Expr "OF" Alters ")"
Alters ::- "(" Alter Alters ")" I nil

Alter ::- "(" value result ")"

result ::- Expr

I f S t m t : : - " (. . . . I F " Cond "THEN" Strut ") " [
" (. . . . I F " Cond "THEN" Strut

"ELSE" Strut ") "
Cond : : - " (. . . . NULL" E x p r ") " I

" (. . . . ECIUAL" E x p r Expr ") " I
"(" "NOT" Cond ")" [
"(" "AND" Cond Cond ")" l
" (" "OR" Cond Cond ") "

Figure 10: The Syntax of YAG's Attribute Gram-
mars Specification.

7 C o n c l u s i o n

We have presented a new approach to enriching
under-specified representations of content to be
realized as text using attribute grammars with
semantic propagation rules. Our approach is not
intended to replace defaulting mechanisms used in
the current generation systems. Instead it improves
the quality of input to the generator for better
realization. Defaults are still used if the analysis
fails to discover useful information.

A c k n o w l e d g e m e n t
The authors are indebted to John T. Boyland for

his helpful comments and suggestions.

R e f e r e n c e s

Henk Alblas. 1991. hltroduction to attribute gram-
mars. In Henk Alblas and Bo~ivoj Melichar, edi-
tors, Attribute Grammars, Applications and Sys-
tems, vohune 545 of Lecture Notes in Computer
Science, pages 1 15. Springer-Verlag, New York--
Heidelberg-Berlin. June. Prague.

Stephan Busemalm. 1996. Best-first surface realiza-
tion. In Donia Scott. editor. Proceedings of the
Eighth International Workshop o?~ Natural Lan-
guage Gencration. pages 101-110.

Songsak Channavnkul. i999. YAG: A Natural Lan-
guage Generator for Real-Time Systems. Mas-

ter's thesis, University of Wisconsin-Milwaukee,
December.

Michael Elhadad. 1992. Using argumentation to
control lexical choice: A functional unification-
based approach. Ph.D. thesis, Computer Science
Department, Columbia University.

Keven Knight and Vasileios Hatzivassiloglou. 1995.
T.wo~level, many-paths generation..In:Proceedings..

• of ACL.
Donald E. Knuth. 1968. Semantics of context-

free languages. Mathematical Systems Theory,
2(2):127-145, June. Correction: Mathematical
Systems Theory 5, 1, pp. 95-96 (March 1971).

Benoit Lavoie and Owen Rambow. 1997. A fast
and portable realizer for text generation systems.
In Proceedings o/ the Fifth Conference on Ap-
plied Natural Language Processing, pages 265-268,
Washington.

Michael Levison and Gregory Lessard. 1990. Ap-
plication of attribute grammars to natural lan-
guage sentence generation. In Pierre Deransart
and Martin Jourdan, editors, Attribute Gram-
mars and their Applications (WAGA), volume
461 of Lecture Notes in Computer Science, pages
298-312. Springer-Verlag, New York-Heidelberg-
Berlin, September. Paris.

William C. Mann. 1983. An overview of the
Penman text generation system. In Proceedings
of the Third National Conference on Artificial
Intelligence (AAA[-83), pages 261-265, Wash-
ington, DC, August 22-26,. Also appears as
USC/Information Sciences Institute Tech Report
RR-83-114.

Susan W. McRoy, Songsak Channarukul, and
Syed S. Ali. 1999. A Natural Language Gener-
ation Component for Dialog Systems. In Working
Notes of the A A A I Workshop on Mixed-Initiative
Intelligence, at the 1999 Meeting of the American
Association for Artificial Intelligence, Orlando,
FL.

Marie W. Meteer. 1990. The "Generation Gap" The
Problem of Exprcssibility in Text Planning. Ph.D.
thesis, University of Massachusetts.

170

