Enriching Partially-Specified Representations for Text Realization
Using an Attribute Grammar *

Songsak Channarukul

Susan W. McRoy

Syed S. Ali

{songsak, mecroy, syali} @cs.uwm.edu

Natural Language and-Knowledge Representation Research Group ..
http://tigger.cs.uum.edu/ nlkrrg
Electrical Engineering and Computer Science Department
University of Wisconsin-Milwaukee

Abstract

We present a new approach to enriching under-
specified representations of content to be realized
as text. OQur approach uses an attribute gram-
mar to propagate missing information where needed
in a tree that represents the text to be realized.
This declaratively-specified grammar mediates be-
tween application-produced output and the input to
a generation system and, as a consequence, can eas-
ily augment an existing generation system. FEnd-
applications that use this approach can produce high
quality text without a fine-grained specification of
the text to be realized, thereby reducing the bur-
den to the application. Additionally, representations
used by the generator are compact, because values
that can be constructed from the constraints en-
coded by the grammar will be propagated where nec-
essary. This approach is more flexible than default-
ing or making a statistically good choice because it
can deal with long-distance dependencies (such as
gaps and reflexive pronouns). Qur approach differs
from other approaches that use attribute grammars
in that we use the grammar to enrich the represen-
tations of the content to be realized, rather than
to generate the text itself. We illustrate the ap-
proach with examples from our template-based text-
realizer, YAG.

1 Introduction

Typically, a text realization system requires a great
deal of syntactic information from an application
in order to generate a high quality text; however,
an application might not have this information {un-
less it has been built with text generation in mind).
This problem has been referred to as the Genera-
tion Gap (Meteer, 1890). Meteer first identified the
generation gap problem as arising at the text plan-
ning stage. A text planner must decide what content
needs to be expressed and creates a corresponding
text plan for generating it. A sentenre plenner is
then used to select an appropriate syvntactic struc-

OThis work was supparted by a gift from Intel Corporation;
and by the National Science Foundation. under grants [RI-
9701617 and IRI-9523666.

163

ture for a given plan. Typically, neither a text plan-
ner nor a sentence planner is concerned with fine-
grained syntactic issues, such as whether the subject
of the sentence is a singular or plural noun. Thus,
it becomes the responsibility of a text realizer to in-
fer the missing information and to generate the best
possible text from a given input.

Most generation systems (such as FUF/SURGE
(Elhadad, 1992), Penman (Mann, 1983), Real-
Pro (Lavoie and Rambow, 1997), TG/2 (Busemann,
1996), and YAG (Channarukul, 1999; McRoy et al.,
1999)) alleviate this prablem by using defaulting,
in which a grammar writer specifies a default for
each syntactic constraint. This approach is inflexi-
ble and prone to errors, because there might not be
one default that suits all applications or situations.
Another approach that has been proposed is to fill
in the missing information on the basis of word co-
occurrence data collected from a large corpus of text
(see Nitrogen (Knight and Hatzivassiloglou, 1995)).
However, statistical approaches have difficulty when
there are long-distance dependencies among con-
stituents in a text.

In this paper, we present a new approach ta re-
solving the so-called generation gap that uses an At-
tribute Grammar (Knuth, 1968} to enrich partially-
gpecified inputs to a realization system to pro-
duce high quality texts. Attributc Grammars are a
declarative formalism for defining rules for attribute
propagation (see Section 3). They have been used
primarily for specifying the semantics of program-
ming languages, although a few researchers have also
used them to drive a text generator (see (Levison
and Lessard, 1990), for example). The main advan-
tage of our approach is that it allows a generator
to enjoy the computational efficiency of a template-
based realization system, while reducing the linguis-
tic burden on an application and increasing the qual-
ity of the generated texts.

Our worle differs from previous uses of attribute
grammars in natural language generation. which
are similar to Levison and Lessard (Levison and
Lessard, 1990) in that they apply attribute gram-
mars directly to text realization. For example, Lev-



((template CLAUSE)
(process-type MENTAL)
(process "want")
(processor ((template NOUN-PHRASE)
(head ({template CONJUNCTION)
(first ((template NOUN-PHRASE)
(head "Jack")
(np-type PROPER)
-.{gender MASCULINE)
(definite NOART}))
(second ((template PRAQNOUN)) )))
(person SECOND)
(number PLURAL)} )
(phenomenon ((template NOUN-PHRASE)
(head "dog")
(definite NOART)
(possessor ((template NOUN-PHRASE)
(head "sister")
(gender FEMININE)
{(definite NOART)

(possessor ({template NDUN-PHRASE)

(head "Jack")

(up-type PROPER)
(gender MASCULINE)
(pronominal YES)
(definite NCART)) )))))

(rear-circum ({template CLAUSE)
{mood TO-INFINITIVE)
{process-type MATERIAL)
(process "swim")) ) )

Figure 1: A Feature Structure for the Sentence “Jack end I want his sister’s dog to swim.".

ison and Lessard extend a context-free grammar
with attributes and semantic rules similar to classi-
cal attribute grammars presented by Knuth (Knuth,
1968). Attributes in their system assist the realiza-
tion by propagating information down a tree that
specifies the complete syntactic structure of the out-
put text. By contrast, our work employs attribute
grammars, not to realize a text, but to perform a
generation gap analysis prior to actual realization.
We use both inherited and synthesized attributes
(i.e., propagating information both down and up a
tree) to share information and to determine appro-
priate values for any missing features.

2 An Overview of YAG

YAG (Yet Another Generator) {Channarukul, 1999;
McRoy et al, 1899) is a template-based text-
realization system that generates text in real-time.
YAG uses templates to express text structures corre-
sponding to fragments of the target language. Tem-
plates in YAG are declarative and maodular, Com-
plex texts can be generated by embedding templates
inside other templates.

Values for the templates are provided by an appli-
cation; inputs can include either-a coneeptual repre-
sentation of content or a feature structure, When an

164

input is only partially specified, defaults defined in a
template will be applied. Figure 1 shows an example
of YAG's feature-structure based input; YAG would
realize this example as “Jock and [ want his sister’s
dog to swim.”. This input is partially specified, and
thus is more compact and easier for an application
to specify, than a complete specification. Figure 2
shows the features that have been omitted and the
defaults used by YAG to realize the sentence from
the input.

Although the input is already more compact than
a full specification, further simplification of the in-
put provided from an application would have been
possible, if certain inferences could be made. For ex-
ample, Figure 3 shows an input structure that could
replace the one given in Figure 1. In Figure 3, it was
not necessary for the application to specify that the
conjunction of two noun phrases is a plural noun
phrase, nor that component noun phrases (proper
nouns. pronouns, and possessives) should not con-
tain an article. In the case of conjunctions, there is
no default that would provide the correct outputs in
all cases. because the same conjunction template is
used 1o conjoin adjectives and clauses. Iustead, our
approach uses an attribute grammar to make the
appropriate inferences and enrich the feature strue-



| Template Name | Template Slot | Default | Allowed Values ]
CLAUSE sentence YES YES, NO

mood DECLARATIVE | DECLARATIVE, YES-NO, WH, IMPERATIVE,
TC-INFINITIVE

process-type | ASCRIPTIVE ASCRIPTIVE, MENTAL, MATERIAL,
COMPOSITE, POSSESSIVE, LOCATIVE,
TEMPORAL, VERBAL, EXISTENTIAL

node .nil .. -| ATIRIBUTIVE, EQUATIVE, CAUSATIVE
tense ‘| ‘PRESENT PRESENT, PAST
future NO YES, NO
pProgressive NO YES, NO
perfective NO YES, NO
voice ACTIVE ACTIVE, PASSIVE
quality POSITIVE POSITIVE, NEGATIVE
NOUN-PHRASE np-type COMMON COMMON, PROPER
person THIRD FIRST, SECOND, THIRD
number SINGULAR SINGULAR, PLURAL
gender NEUTRAL NEUTRAL, MASCULINE, FEMININE
definite NO YES, NGO, NOART
regular-noun | YES YES, NO
countable YES YES, NO
inflected YES YES, NO
pronominal NO YES, NO
POSSESSCR pronominal YES YES, NO
PRONOUN type PERSONAL PERSONAL, OBJECTIVE, REFLEXIVE,

POSSESSIVE-FRONQUN,
POSSESSIVE-DETERMINER,
RELATIVE, DEMONSTRATIVE

person FIRST FIRST, SECOND, THIRD

number SINGULAR SINGULAR, PLURAL

gender NEUTRAL NEUTRAL, MASCULINE, FEMININE
CONJUNCTION sentence NO YES, NO

Figure 2: Sume Defaults from YAG's Syuntactic Ternplates.

((template CLAUSE)
(process-type MENTAL)
(process "want")
(processor ({template CONJUNCTIGN)
{first ((template NOUN-PHRASE)
(head "Jack™)
(np-type PROPER)
(gender MASCULINE) )}
(second ((template PRONOUN)} )))
{phenomenon ({template NOUN-PHRASE)
(head "dog")
{possessor ((template NOUN-FHRASE)
(head "sister")
(gender FEMININE)
- {possessor- ({(template NOUN-PHRASE)
(head "Jack")
(np-type PROPER)
(gender MASCULINE)
(pronominal YES)) )))))
{rear-circum ((template CLAUSE)
(mood TCO-INFINITIVE)
(process-type MATERIAL)
(process "swim")) ) )

Figure 3: A {shorter) Feature Structure of the Sentence “Jack and I want his sister’s dog to swim.”.

165



ture input so that neither the application, nor the
templates need to be altered to handle dependencies,
like conjunctions, correctly.

3 Attribute Grammars

An attribute grammar consists of a context-free
grammar, a finite set of attributes, and a set of se-
mantic rules. The -Context-Free -Grammar-(CEG)
specifies the syntax of a language by expressing how
to construct a syntax tree from non-terminal and ter-
minal symbols defined in a language. The Attributes
and Semantic Rules specify the semantics. A finite
set of attributes is associated with each non-terminal
symbol. Each of these sets is divided into two dis-
joint subsets, namely Inherited Attribules and Syn-
thesized Attributes. Inherited attributes propagate
down a syntax tree whereas synthesized attributes
propagate upward. A semantic rule specifies how to
compute the value of an attribute from others. This
specification implicitly defines dependencies among
attributes in an attribute grammar, locally (within a
production) and globally (among productions). At
tribute Evaluation is the process of computing values
for every attribute instance in the tree according to
the semantic rules defined for each production.

An example of an attribute grammar and its com-
ponents is given in Figure 4 {adapted from (Alblas,
1991)). This attribute grammar consists of two non-
terminals, two terminals, and three production rules.
The inherited attributes of the non-terminal A are a
and b. Its synthesized attributes are x and y. No
attributes arc assigned to the non-terminal S.

nonterminals: 5, A.
terminals: s, t.
start symbol: S.

description of attributes:
a, b: integer, inh of A;
x, y: integer, syn of A;

productions and semantic rules:
1) § -> A.
Aa = Ax
2) A0 > Al s.
Al.a := AD.a; Al.b :
AD.x := Al1.x; AD.y :=
3y A > ot
Ay :=A.a; A.x 1= A®

Al .y,

|l
-

Figure 4: An Example Attribute Grammar.

As mentioned carlier, semantic rules define depen-
dencies among attributes.  Figure 5 shows depen-
dency graphs corresponding to the semantic rules of

Figure 4. In the graphs. a daotted line represents a

derivation of a production rule, while an arrow de-
notes an attribute dependency. Thus. A = B means

166

abAxy abf\xy s t
{1 (2) @)

- Figure 5: Dependency Graphs.

B is dependent on A, but not the other way around.
In other words, we cannot know B before we know

A.

4 Extending a Grammar to Enable
Generation Gap Analysis

To make a generation gap analysis possible, a gram-
mar writer must first extend the grammar of his
or her existing generator to capture the propaga-
tion semantics of a target language. This extension
involves defining attributes (synthesized and inher-
ited) and associated semantic rules. Next, a small
program must be built to construct a tree from
a given input and retrieve semantic rules and at-
tributes from associated grammar units.

Attribute evaluation begins by instantiating each
inherited attribute with values from the input and
then the remaining attributes are evaluated. This
process is incremental in the sense that new infor-
mation gained from previous evaluations might lead
to the discovery of additional information. When
all attributes remain unchanged, or there is a con-
flict detected in the input, the process terminates.
The generator then passes the enriched input to the
realization component.

Consider the following fragment of input from
Figure 3 that uses the CONJUNCTION template to
join a noun phrase aud a pronoun.

({template CONJUNCTION)
(first ({template NOUN-PHRASE)
{head "Jack")
(np-type PROPER)
(gender MASCULINE) ))
(second ((template PRONOUN)) ))

This fragment is the subject of the sentence, there-
fore features such as person and number would be
required to enforce the subject-vert agrecment of En-
glish. Figure 6 shows a dependency graph' for this

! The notation used in the dependency graph is the fol-
lowing:
The oval represents a ternplate slot that is bound to an atomic
value. The rectangle denotes a slot that is bound to anather
fearure structure. The top text in a rectangle specilies a slot
uame, and the bhottom text is the name of a template assigned

. to this slot. A value with an underline means a default of the

above slot. The bold font represents a value vielded from
attribute evaluations.



senlence

definite

“Jack* V_T_HIRD SINGULAR  MASCULINE

PROPER

COMJUNCTION

STr-.. person sumber

RfaRal ™ I -HOART
e Y

gender definite sentence  error

S T

second

PRONOUN

NO

NOART

PERSONAL FIRST SINGULAR  NEUTRAL

Figure 6: A Dependency Graph of the CONJUNCTION Template corresponding to the text “Jack ond I”.

fragment. The dependencies are based on the se-
mantic rules given in Figure 7 (Section 6 describes
syntax of these rules.).

The semantic rules in Figure 7 give constraint
information for the CONJUNCTION template, the
NOUN-PHRASE template, and the PRONOUN template.
For the CONJUNCTION template, the grammar will:

o Use the sentence feature of the current tem-
plate {which is NO by default).

-3

Pass up the person feature found by compar-
ing the person features associated with the two
conjuncts (Z.e., pass up sccond person whenever
the conjuncts combine either first persan and
second or third person, or they combine second
person and third person; pass up third person if
both conjuncts use third person; otherwise pass
up nil);

-]

Constrain the number feature to he PLURAL,
the gender feature to be NEUTRAL, the definite
feature to be NOUOART, and the sentence feature
to the same as the sentence feature of the con-
juncts.

For the NOUN-PHRASE template, the grammar will

e Require this template to enforce the inherited
values of the definite. number, and np-type
features.

o Require the {embedded) DETERMINER template
enforce the number feature of the current tem-
plate.

e Pass up four featurcs (definite, number, per-
son, and np-type) to any templates that use
this noun phrase. where the following con-
straints apply:

167

The definiteness feature that is passed is
YES whenever the current template has in-
herited YES for this value or there is a pos-
sessor or a determiner and one of them
passes up YES for this feature. (If there is
neither possessor nor determiner then the
grammar considers the np-type: if it is
COMMOY, it uses NO (for indefinite) and if it
is PROPER, it uses NOART

The number feature passed is the value
passed from the determiner, if there is one,
or the value from the current template.

The person feature passed is the one from
the current template.

The np-type feature passed is COMMON if the
value of definite is NO and PROPER if the
value is NOART.

For the PRONOUN template, the grammar will:

e Pass up the person, number, and gender val-
ues from the current template (possibly using
default values), along with the constraint that
the string realized for it not be a sentence and
not be preceded by an article.

Inthe example shown in Figure 6, inherited at-
tributes? have been initialized to the associated val-
ues given in an input. If the input does not specify a
value for an inherited attribute, then the value nil
is used.

The attribute evaluation is depth-first, and re-
quires multiple traversals. Here, the NOUN-PHRASE
sub-tree is evaluated twice, as we discover that the
definite feature must be NOART. Since the PRONOUN

? Inherited attributes are placed on the left side of each
node, Synthesized attributes are on the right.



[ Template Name | Semantic Rules

CONJUNCTION
({this

({this
({this
((tkis
({this

syn number) PLURAL)
syn gender) NEUTRAL)
syn definite) NOART)

((this sentence) (this inh sentance))

syn persoen) (CASE (UNION (first syn person)
(second syn person)) OF

((first nil)
(second nil)
({first second) second)
({first third) second)
{(second third) second)
(third third)) ))

syn sentence) (UNIDON (first syn sentence) (second syn sentence)))

NOUN-PHRASE {(this
((this

((this

ELSE

((this
((this
({this

syn
syn
syn

person) {this persomn})

definite) (this inh definite))
number) {this inh number))

np-type) (this inh np-type))
((determiner inh number} (this inh number))

((this syn definite) (IF (AND (NULL (this pessessor))
(NULL (this determiner))) THEN
(UNION (this definite)
(CASE (this np-type) OF

(UNIQN (this definite)
(possessor syn definite)
(determiner syn definite)) })
oumber) (UNION {determiner syn number) (this number)) )

np-type) (CASE {(this definite) OF
((NO COMMDN)
{NDART PROPER}) ))

((common NOD}
(proper NDART))} )

PRONOUN ((this
({this
({this
({this
({this

person} (this person))
number) (this nomber))
gender) (this gender))
sentence) NO)
definite) NDART)

syn
syn
syn
syn
syn

Figure 7:

template has no inherited attributes, a single evalua-
tion woiuld be sufficient. The CONJUNCTION sub-tree
is also traversed twice because the sentence feature
is re-assigned once {from nil to NO).

Figure 8 shows the tree and dependencies, for the
fragment, “his sister’s dog”. It shows how the defi-
niteness of a noun phrase is dependent on the ex-
istence of a possessar.  For example, if a posses-
sor (such as “his” or “Jack’s") is specified, a noun
phrase will not need an article.

Note that this feature structure can be generated
differently as “Jeck's sister’s dog”. “her dog”. “the
dog of Jack's sister”™. “the dog of his swster”. and
“the dog of hers”. \While some of these variations
require further investigation to determine how to
transform a tree so that it reflects a new ordering
of constituents, some can be implemented using se-
mantic rules. For example, to-aveid-an -awkward
construction such as “Jaek's sister’s dog ™ in the sen-

168

Semantic Rules of the CONJUNCTTION, NOUN-PHRASE, and PRONDUN template.

detnite .~ define

h

- delmta

\

T

possessar

> /T
a1

detinde

NOART

NP

-
dehnite ~— s

R A N
head asse: definte ) { gender pranamunal
T oz [/ Gy (i Geonaiy
‘wster NP NOART  FEMININE NO
delnne - delimte E—
P 3

PROPER THIRD SINGLILAR MASCULINE NOAKY YES

e T

“lack”

Figure 8: A Dependency Graph of the NOUN-PHRASE
- Template corresponding to the text “his sister’s
dog™.



tence “Jack and I want Jack’s sister’s dog to swim.”,
in favor of “his sister’s dog”, without the application
having to request a pronoun explicitly, as in the ex-
ample shown above, we could add a rule to force
the pronominal feature of the inner most posses-
sor to be YES, whenever a (repeated) noun phrase is
a possessor of a possessor of the primary noun.

5 The Use of the Géneration Gap ~
Analysis to Resolve Conflicting
Information

One side benefit of the use of attribute grammars
is that they can help resolve incousistencies in the
input provided from an application. Previously, a
generation system might not be able to recognize
such conflicts, and therefore might generate a text
that is ungrammatical, or it might simply fail to
produce an output at all.

The following is an example input that has a
conflict; the values of the number feature in the
NOUN-PHRASE and PRONQUN templates are inconsis-

tent.
((template NOUN-PHRASE)

(head "book")
(number PLURAL)
(determiner ((template PRONOUN)
{type DEMONSTRATIVE)
(distance NEAR)
(number SINGULAR)) )
)j

Executed literally, a generator would produce
the phrase “this books”, rather than “this book” or
“these books”. Figure 9 shows a dependency graph
corresponding to the above input.

-

number

’

P
number error

@ determiner / / @
“Dack" PRONOUN / PLURAL
number PR number  error

a7y
. .
.
'
: N

DEMONSTRATIVE NEAR

|

Gramber™

SINGULAR

Figure 90 A Dependency Graph corresponding to
the text “this book™ or “these books™.

With the use of an appropriate attribute gram-
mar, an analysis of this structure would detect a con-
flict when the value SINGULAR of the-number fea-
ture propagates upward and conflicts with the value

169

- tne

PLURAL of the number feature of the NOUN-PHRASE
template. In this case, 2 generator can choose to
override one of the conflicting features and generate
a text from the revised input.

6 Implementation

; Grammars. in .a -template-based. system .differ suf-

ficiently from phrase-based systems so that tradi-
tional attribute grammars specifications cannot be
used without changes. In particular, grammars in
a template-based system are not restricted to syn-
tactic text structure as they are in phrase-based
systems, but may include either syntactic specifica-
tions, semantic specifications, or a mixture of both.
Therefore template-based grammars do not restrict
derivations on the right side of a production to some
specific non-terminals, as they would be in a phrase-
based grammar.

In our approach, a template is equivalent to the
non-terminal on the left side of a production. Tem-
plate slots are equivalent to terminals and non-
terminals on the right side depending on their value
at the time of generation. Slots that are bound to
a simple value are considered terminals, while those
that are bound to a feature structure are considered
non-terminals. The evaluation function of terminals
is actually a constant function whose return value is
the value to which the terminal has been bound.

We have defined a small language sufficient to
specify attribute grammars in a template as given
in Figure 10. Additional keywords are also defined.
The keyword this refers to the current template.
The keywords inh and syn indicate an inherited at-
tribute and a synthesized attribute, respectively.

We have implemented an attribute grammar-
based propagation analysis program in Lisp as
an extension to YAG. Some templates have been
augmented with semantic propagation rules. It
was not necessary to define attributes for YAG's
template-based grammar because template slots als
ready served as attributes. The program has been
able to identify. missing information (using the de-
fined semantic propagation rules) and to reject in-
puts that have a conflict.

Other generation systems that intend to use an at-
tribute gramrar approach to enrich their partially-
specified input will need to analyze the character-
istics of their grammar formalism. Basically, one
needs to identify the smallest unit of a grammar
(e.g.. a category (cat) in FUF/SURGE), and then
define semantic rules similar to those presented in
this paper for each grammar unit. From a given
input, a generator should bhe able to pick semantic
rules associated with information provided in an in-
put. An attribute evaluation ‘is then executed as
described.



AttributeGrammar ::- EvalRules
EvalRules ::- "(" EvalRule EvalRules ")" | nil
EvalRule ::- "(" Attribute Stmt ")"
Stmt ::- Expr | CaseStmt | IfStmt
Expr ::- Attribute | constant |

ll(" I|U'NIDNII Stmt StlIlt lI)Il 1

(" "INTERSECTTBN™ Stmt -Stmt “)"
Attribute ::- inherited | synthesized
CaseStmt ::- "(" "CASE" Expr "OF" Alters ")"
Alters ::- "(" Alter Alters ")" | nil
Alter ::- "(" value resunit ")"
resulg ::- Expr
IfStmt ::- "(" "IF" Cond "THEN" Stmt “)" |

"(* "IF" Cond "THEN" Stmt
"ELSE" Stmt ")"
Cond ::- n(u "NULL" EXPI' u)u I'
“(" YEQUAL" Expr Expr ")" |
n(u "WOT" Cond |I)II t
v(" "AND" Cond Cond ")}" |
ll(rl “OR" Cond Cond n)rl

Figure 10: The Syntax of YAG’s Attribute Gram-
mars Specification.

7 Conclusion

We have presented a new approach to enriching
under-specified representations of content to be
realized as text using attribute grammars with
semantic propagation rules. Qur approach is not
intended to replace defaulting mechanisms used in
the current generation systems. Instead it improves
the quality of input to the generator for better
realization. Defaults are still used if the analysis
fails to discover useful information.

Acknowledgement
The authors are indebted to John T. Boyland for
his helpful comments and suggestions.

References

Henk Alblas. 1991. Introduction to attribute gram-
mars. In Henk Alblas and Borivej Melichar, edi-
tors, Attribute Grammars, Applications and Sys-

tems, volume 345 of Lecture Noites in Compuier

Science, pages 1-15. Springer-Verlag, New York-
Heidelberg-Berlin, June. Prague.
Stephan Busemann. 199G. Best-first surface realiza-

tion. In Donia Scott. editor. Proveedings of the

Eighth International Workshop on Netural Lan-
guage Generation. pages 101-110.

Songsak Channarukul. 1998, YAG: A-Natural Lan-
giage Generator for Real-Time Systems. \as-

170

ter's thesis, University of Wisconsin-Milwaukee,
December.

Michael Elhadad. 1992. Using argumentation to
control lezical choice: A functional unification-
based approach. Ph.D. thesis, Computer Science
Department, Columbia University.

Keven Knight and Vasileios Hatzivassiloglon. 1993.
Twe-level, many-paths generation. In Proceedings. .
of ACL.

Donald E. Knuth. 1968. Semantics of context-
free languages. Mathematicol Systems Theory,
2(2):127-145, June. Correction: Mathematical
Systems Theory 5, 1, pp- 95-96 (March 1971}.

Benoit Lavoie and Owen Rambow. 1997. A fast
and portable realizer for text generation systems.
In Proceedings of the Fifth Conference on Ap-
plied Natural Language Processing, pages 265-268,
Washington.

Michael Levison and Gregory Lessard. 1990. Ap-
plication of attribute grammars to natural lan-
guage sentence generation. In Pierre Deransart
and Martin Jourdan, editors, Attribute Gram-
mars and their Applications (WAGA), volume
461 of Lecture Notes in Computer Science, pages
298-312. Springer-Verlag, New York-Heidelberg—
Berlin, September. Paris.

William €. Mann. 1983. An overview of the
Penman text generation system. In Proceedings
of the Third National Conference on Artificial
Intelligence (AAAI-83), pages 261-265, Wash-
ington, DC, August 22-26,. Also appears as
USC/Information Sciences Institute Tech Report
RR-83-114.

Susan W. McRoy, Songsak Channarukul, and
Syed S. Ali. 1999. A Natural Language Gener-
ation Component for Dialog Systems. In Working
Notes of the AAAI Workshop on Mired-Initiative
Intelligence, at the 1999 Meeting of the Amertcan
Association for Artificial Intelligence, Orlando,
Fi.

Marie W. Meteer. 1990. The “Generation Gap™ The
Problemn of Expressibility in Text Planning. Ph.D.
thesis, University of Massachusetts.



