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Abstract 
We propose an empirical method for estimating 
term weights directly from relevance judgements, 
avoiding various standard but  potentially trouble- 
some assumptions. It is common to assume, for ex- 
ample, that  weights vary with term frequency (t f )  
and inverse document frequency (idf) in a particu- 
lar way, e.g., t f .  idf, but the fact tha t  there are so 
many variants of this formula in the literature sug- 
gests that  there remains considerable uncertainty 
about these assumptions. Our method is similar to 
the Berkeley regression method where labeled rel- 
evance judgements are fit as a linear combination 
of (transforms of) t f, idf, etc. Training meth- 
ods not only improve performance, but also ex- 
tend naturally to include additional factors such 
as burstiness and query expansion. The proposed 
histogram-based training method provides a sim- 
ple way to model complicated interactions among 
factors such as t f ,  idf, burstiness and expansion 
frequency (a generalization of query expansion). 
The correct handling of expanded term is realized 
based on statistical information. Expansion fre- 
quency dramatically improves performance from 
a level comparable to BKJJBIDS,  Berkeley's en- 
t ry  in the Japanese NACSIS NTCIR-1 evaluation 
for short queries, to the level of JCB1, the top 
system in the evaluation. JCB1 uses sophisti- 
cated (and proprietary) natural  language process- 
ing techniques developed by Just  System, a leader 
in the Japanese word-processing industry. We are 
encouraged that  the proposed method, which is 
simple to understand and replicate, can reach this 
level of performance. 

1 I n t r o d u c t i o n  

An empirical method for estimating term weights 
directly from relevance judgements is proposed. 
The method is designed to make as few assump- 
tions as possible. It is similar to  Berkeley's use 
of regression (Cooper et al., 1994) (Chen et al., 
1999) where labeled relevance judgements are fit 
as a linear combination of (transforms of) t f ,  idf,  
etc., but  avoids potentially troublesome assump- 
tions by introducing histogram methods. Terms 
are grouped into bins. Weights are computed 
based on the number of relevant and irrelevant 
documents associated with each bin. The result- 

• t: a term 

• d: a document 

• t f ( t ,  d): term freq = # of instances of t in d 

• df(t): doc freq = # of docs d with t f ( t ,  d) > 1 

• N: # of documents in collection 

• idf(t): inverse document freq: -log2 d~t) 

• d f ( t ,  tel ,  t f0): # of relevant documents d with 
t f ( t ,  d) = tfo 

• df(t,  rel, tfo): # of irrelevant documents d 
with t f ( t ,  d) = tfo 

• el(t):  expansion frequency = # docs d in 
query expansion with t f ( t ,  d) > 1 

• TF(t):  standard notion of frequency in 
corpus-based NLP: TF( t )  = ~ d  t f ( t ,  d) 

• B(t):  burstiness: B(t)  = 1 iff ~ is large. df(t) 

Table 1: Notation 

ing weights usually lie between 0 and idf,  which 
is a surprise; standard formulas like t f .  idf  would 
assign values well outside this range. 

The method extends naturally to include ad- 
ditional factors such as query expansion. Terms 
mentioned explicitly in the query receive much 
larger weights than terms brought in via query 
expansion. In addition, whether or not a term 
t is mentioned explicitly in the query, if t ap- 
pears in documents brought in by query expan- 
sion (el( t)  > 1) then t will receive a much larger 
weight than it would have otherwise (ef( t)  = 0). 
The interactions among these factors, however, are 
complicated and collection dependent. It  is safer 
to use histogram methods than to impose unnec- 
essary and potentially troublesome assumptions 
such as normality and independence. 

Under the vector space model, the score for a 
document d and a query q is computed by sum- 
ming a contribution for each term t over an ap- 
propriate set of terms, T. T is often limited to 
terms shared by both the document and the query 
(minus stop words), though not always (e.g, query 
expansion). 
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i#  
12.89 
10.87 
9.79 
8.96 
7.75 
6.82 
5.78 
4.74 
3.85 
2.85 
1.78 
0.88 

t / = O  t f = l  t / : = 2  t f = 3  t f > 4  
-0.37 9.73 11.69 12.45 13.59 
-0.49 8.00 9.95 11.47 12.06 
-0.86 7.36 9.38 10.63 10.88 
-0.60 6.26 7.99 8.99 9.41 
-0.34 4.62 5.82 6.62 7.98 
-1.26 3.94 6.05 7.59 8.98 
-0.83 3.16 5.17 5.77 7.00 
-0.84 2.46 3.91 4.54 5.58 
-0.60 1.58 2:.76 3.57 4.55 
-1.02 1.00 1.72 2.55 3.96 
-1.33 -0.06 1.05 2.46 4.50 
-0.16 0.17 0.19 -0.10 -0.37 

Table 2: Empirical estimates of A as a function of 
t f  and idf. Terms are assi._~ed to bins based on 
idf. The column labeled idf is the mean idf for 
the terms in each bin. A is estimated separately for 
each bin and each t f  value, based on the labeled 
relevance judgements. 

score~(d, q) = E t / ( t ,  d) . idf(t) 
tET  

Under the probabilistic retrieval model, docu- 
ments are scored by summing a similar contribu- 
tion for each term t. 

= ~ l P(tJrel) 

In this work, we use A to refer to term weights. 

q) = d, q) 
t E T  

This paper will start by showing how to estimate A 
from relevance judgements. Three parameteriza- 
tions will be considered: (1) fit-G, (2) fit-B, which 
introduces burstiness, and (3) fit-E, which intro- 
duces expansion frequency. The evaluation section 
shows that each model improves on the previous 
one. But in addition to performance, we are also 
interested in the interpretations of the parameters. 

2 S u p e r v i s e d  T r a i n i n g  

The statistical task is to compute A, our best esti- 
mate of A, based on a training set. This paper will 
use supervised methods where the training mate- 
rials not only include a large number of documents 
but also a few queries labeled with relevance judge- 
ments. 

To make the training task more manageable, it 
is common practice to map the space of all terms 
into a lower dimensional feature space. In other 
words, instead of estimating a different A for each 
term in the vocabulary, we can model A as a func- 
tion of tf and idf and various other features of 

Train 

/ ~ 4 . ~  / 1 ~ 

0 2 4 6 8 10 12 

IDF 

Test 

4 ~ s~- 
. 

~ 2  1 1  

0 2 4 6 8 10 12 

IDF 

Figure 1: Empirical weights, A. Top panel shows 
values in previous table. Most points fall between 
the dashed lines (lower limit of A = 0 and upper 
limit of A = idf). The plotting character denotes 
t f .  Note that the line with t f  = 4 is above the 
line with t f  = 3, which is above the line with 
t f  = 2, and so on. The higher lines have larger 
intercepts and larger slopes than the lower lines. 
That is, when we fit A ,~, a(t f )  + b( t f ) ,  idf, with 
separate regression coefficients, a(t f )  and b(tf), 
for each value of t f ,  we find that both a(t f )  and 
b(tf) increase with t]. 

terms. In this way, all of the terms in a bin are 
assigned the weight, A. The common practice, 
for example, of assigning t f  • idf weights can be 
interpreted as grouping all terms with the same 
idf  into a bin and assigning them all the same 
weight, namely t f .  idf. Cooper and his colleagues 
at Berkeley (Cooper et al., 1994) (Chen et al., 
1999) have been using regression methods to fit 

as a linear combination of idf , log(t f )  and var- 
ious other features. This method is also grouping 
terms into bins based on their features and assign- 
ing similar weights to terms with similar features. 
In general, term weighting methods that are fit 
to data are more flexible than weighting methods 
that are not fit to data. We believe this additional 
flexibility improves precision and recall (table 8). 

Instead of multiple regression, though, we 
choose a more empirical approach. Parametric as- 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
20 
21 

Description (function of term t) 
df(t, rel,O) _-- # tel  does d with t f ( t , d )  = 0 
dr(t, tel,  1) _= # rel does d with t f ( t ,  d) = 1 
dr(t, rel, 2) _= # rel does d with t f ( t ,  d) = 2 
df(t,  rel,3) ~ # rel does d with t f ( t , d )  = 3 
df(t,  rel ,4+) ~ # tel  does d with t f ( t , d )  _> 
dr(t, tel,  O) ~ # tel does d with t f ( t ,  d) = 0 
dr(t, rel, 1) ~_ # tel does d with t f ( t ,  d) = 1 
dr(t, tel,  2) ~ # rel does d with t f ( t ,  d) = 2 

where dr(bin, rel, t f )  is 

1 
dr(bin, tel, t f )  ~ Ib/=l ~ df(t, r e l , t f )  

tEbin 

Similarly, the denominator can be approximated 
a s :  

dr(bin, tel ,  t ]) P(bin, tfl~) ~ log2 
d f ( t , ~ , 3 )  -= #reml does d with t / ( t , d )  = 3 
df(t,  rel ,4+) ~ # tel does d with t f ( t , d )  _> 
# tel does d 
# tel does d 
freq of term in corpus: TF( t )  = ~ a  t f ( t ,  d) 
# does d in collection = N 
dff = # does d with t f ( t ,  d) _> 1 

where dr(bin, tel,  t f )  is 

1 
dff(bin, tel, t / )  ~ Ib/nl ~ dff(t, ~ ,  t f )  

tEbin 

e f  = # does d in query exp. with t f ( t ,  d) > 1 ~re t is an estimate of the total  number of relevant 
where: D (description), E (query expansion) documents. Since some queries have more rele- 

25 burstiness: B 

Table 3: Training file schema: a record of 25 fields 
is computed for each term (ngram) in each query 
in training set. 

sumptions, when appropriate, can be very pow- 
erful (better estimates from less training data),  
but errors resulting from inappropriate assump- 
tions can outweigh the benefits. In this empirical 
investigation of term weighting we decided to use 
conservative non-parametric histogram methods 
to hedge against the risk of inappropriate para- 
metric assumptions. 

Terms are assigned to bins based on features 
such as idf,  as illustrated in table 2. (Later we 
will also use B and/or  e f  in the binning process.) 

is computed separately for each bin, based on the 
use of terms in relevant and irrelevant documents, 
according to the labeled training material. 

The estimation method starts with a training 
file which indicates, among other things, the num- 
ber of relevant and irrelevant documents for each 
term t in each training query, q. Tha t  is, for 
each t and q, we are are given dr(t, rel, tfo) and 
dr(t, tel, tfo), where dr(t, tel,  tfo) is the number 
of relevant documents d with t f ( t ,  d) = tfo, and 
df(t, rel, tfo) is the number of irrelevant docu- 
ments d with t f ( t ,  d) = tfo. The schema for the 
training file is described in table 3. From these 
training observations we wish to obtain a mapping 
from bins to As that  can be applied to unseen test 
material. We interpret )~ as a log likelihood ratio: 

, P(bin, t f lrel)  ~(bin, t / )  = ~og2-z-::-- 
~'[bin, t / I N )  

where the numerator can be approximated as: 

,.~ _ dr(bin, rel, t f )  
P(bin, triter) ~ togs 

Nrel 

vant documents than others, N~t is computed by 
averaging: 

1 

tEbin 

To ensure that  Nr~l + ~ " ~ / =  N,  where N is the 
number of documents in the collection, we define 

This estimation procedure is implemented with 
the simple awk program in figure 2. The awk pro- 
gram reads each line of the training file, which con- 
tains a line for each term in each training query. 
As described in table 3, each training line contains 
25 fields. The first five fields contain dr(t, tel, t f )  
for five values of t f ,  and the next five fields con- 
tain df(t ,  rel, t f )  for the same five values of t f .  
The next two fields contain N , a  and N;-~. As the 
awk program reads each of these lines from the 
training file, it assigns each term in each train- 
ing query to a bin (based on [log2(df)], except 
when df < 100), and maintains running sums of 
the first dozen fields which are used for comput- 
ing dr(bin, rel, t f ) ,  df(bin, re'---l, t f ) ,  l~rret and I~--~ 
for five values of t f .  Finally, after reading all the 
training material, the program outputs  the table 
of ks shown in table 2. The table contains a col- 
umn for each of the five t f  values and a row for 
each of the dozen idf  bins. Later, we will consider 
more interesting binning rules that  make use of 
additional statistics such as burstiness and query 
expansion. 

2.1 Interpolating Between  Bins  

Recall that  the task is to apply the ks to new un- 
seen test data. One could simply use the ks in 
table 2 as is. Tha t  is, when we see a new term 
in the test material, we find the closest bin in ta- 
ble 2 and report the corresponding ~ value. But 
since the idf  of a te rm in the test set could easily 
fall between two bins, it seems preferable to find 
the two closest bins and interpolate between them. 
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awk ' f u n c t i o n  l og2 (x )  { 
r e t u r n  l o g ( x ) / l o g ( 2 )  } 

$21 - / ' D /  { N = $14; d f = $ 1 5 ;  

# b i n n i n g  r u l e  
if(df < I00) {bin = O} 
else {bin=int (log2 (dr)) } ; 

docfreq[bin] += df; 
Nbin [bin] ++; 
# average df(t,rel,tf), df(t,irrel,tf) 
for(i=l;i<=12;i++) n[i,bin]+=$i } 

END {for(bin in Nbin) { 
nbin = Nbin[bin] 
Nrel = n[ll,bin]/nbin 
Nirrel = N-Nrel 
idf = -log2 ( (docfreq [bin]/nbin)/N) 
printf("Y.6.2f ", idf) 
for (i=l ; i<=5 ; i++) { 
if(Nrel==O) prel = 0 
else prel = (n[i,bin]/nbin)/Nrel 
if(Nirrel == O) pirrel = 0 
else pirrel = (n[i+5,bin]/nbin)/Nirrel 
if(prel <= 0 ]} pirrel <= O) { 

printf "Y.6s ", "NA" } 
else { 
printf "Y.6.2f ", log2(prel/pirrel)} } 

print ""}}' 

Figure 2: awk program for computing ks. 

We use linear regression to interpolate along the 
idf  dimension, as illustrated in table 4. Table 4 is 
a smoothed version of table 2 where A ~ a + b.idf.  
There are five pairs of coefficients, a and b, one for 
each value of t f .  

Note that  interpolation is generally not neces- 
sary on the t f  dimension because t f  is highly 
quantized. As long as t f  < 4, which it usually 
is, the closest bin is an exact match. Even when 
tff > 4, there is very little room for adjustments if 
we accept the upper limit of A < idf.  

Although we interpolate along the idf dimen- 
sion, interpolation is not all tha t  important  along 
that  dimension either. Figure 1 shows that  the 
differences between the test  da ta  and the train- 
ing data dominate the issues that  interpolation is 
at tempting to deal with. The main advantage of 
regression is computational convenience; it is eas- 
ier to compute a + b. idf  than to perform a binary 
search to find the closest bin. 

Previous work (Cooper et al., 1994) used mul- 
tiple regression techniques. Although our perfor- 
mance is similar (until we include query expan- 
sion) we believe tha t  it is safer and easier to t reat  
each value of t f  as a separate regression for rea- 
sons discussed in table 5. In so doing, we are ba- 
sically restricting the regression analysis to such 
an extent that  it is unlikely to do much harm (or 
much good). Imposing the limits of 0 < A _< idf  
also serves the purpose of preventing the regres- 
sion from wandering too far astray. 

t f  a b 
0 -0.95 0.05 
1 -0.98 0.69 
2 -0.15 0.78 
3 0.53 0.81 
4+ 1.32 0.77 

Table 4: Regression coefficients for method fit-G. 
This table approximates the data  in table 1 with 

~ a ( t f )  + b ( t f ) ,  idf.  Note that  both the inter- 
cepts, a( t f ) ,  and the slopes, b(t f) ,  increase with 
t f  (with a minor exception for b(4+)). 

t f  
0 
1 
2 
3 
4 
5 

a(tf) bit/) 
-0.95 0.05 
-0.98 0.69 
-0.15 0.78 
0.53 0.81 
1.32 0.77 
1.32 0.77 

a2 + c2. log(1 + t f )  b2 
-4.1 0.66 
-1.4 0.66 
0.18 0.66 
1.3 0.66 
2.2 0.66 
2.9 0.66 

Table 5: A comparison of the regression coeffi- 
cients for method fit-G with comparable coeffi- 
cients from the multiple regression: A = a2 + b2 • 
idf + c2 • log(1 + t f )  where a2 ---- -4 .1 ,  b2 = 0.66 
and c2 = 3.9. The differences in the two fits are 
particularly large when t f  = 0; note tha t  b(0) is 
negligible (0.05) and b2 is quite large (0.66). Re- 
ducing the number of parameters from 10 to 3 in 
this way increases the sum of square errors, which 
may or may not result in a large degradation in 
precision and recall. Why take the chance? 

3 B u r s t i n e s s  

Table 6 is like tables 4 but  the binning rule not 
only uses idf, but  also burstiness (B). Burstiness 
(Church and Gale, 1995)(Katz, 1996)(Church, 
2000) is intended to account for the fact that  some 
very good keywords such as "Kennedy" tend to 
be mentioned quite a few times in a document 
or not at  all, whereas less good keywords such as 
"except" tend to be mentioned about  the same 
number of times no mat ter  what  the document 

t f  
0 
1 
2 
3 
4+ 

B=0  
a b 

-0.05 -0.00 -0.61 
-1.23 0.63 -0.80 
-0.76 0.71 -0.05 
0.00 0.69 0.23 
0.68 0.71 0.75 

B = i  
a b 

0.02 
0.79 
0.79 
0.82 
0.83 

Table 6: Regression coefficients for method fit-B. 
Note tha t  the slopes and intercepts are larger when 
B = 1 than when B = 0 (except when t f  = 0). 
Even though A usually lies between-0 and idf, we 
restrict A to 0 < A < idf,  just to make sure. 
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t f  ef 
1 0 
2 0 
3 0 
4+ 0 
1 
2 
3 
4+ 
1 
2 
3 
4+ 

2 
2 
2 
2 

1 3 
2 3 
3 3 
4+ 3 

where=D 
a b 

-1.57 0.37 
-3.41 0.82 
-1.30 0.11 
0.40 0.06 

-1.84 0.87 
-2.12 1.10 
-0.66 0.95 
0.84 0.98 

-1.87 0.92 
-1.77 1.12 
-1.72 1.10 
-3.06 1.71" 
-2.52 0.95 
-1.81 1.02 
0.45 0.85 
0.38 1.22 

where=E 
a b 

-2.64 
-2.70 
-2.98 
-3.35 
-3.00 
-2.78 
-3.07 
-3.25 

0.68 
0.71 
0.74 
0.78 
0.86 
0.85 
0.93 
0.79 

-2.71 0.91 
-2.28 0.88 
-2.63 0.97 
-3.66 1.14 

Table 7: Many of the regression coefficients for 
method fit-E. (The coefficients marked with an 
asterisk are worrisome because the bins are too 
small and/or  the slopes fall well outside the nor- 
mal range of 0 to 1.) The slopes rarely exceeded .8 
is previous models (fit-G and fit-B), whereas fit-E 
has more slopes closer to 1. The  larger slopes are 
associated with robust conditions, e.g., terms ap- 
pearing in the query (where = D), the document 
( t f  > 1) and the expansion (e l  > 1). If a term 
appears in several documents brought in by query 

• expansion (el  > 2), then the slope can be large 
even if the term is not explicitly mentioned in the 
query (where = E). The interactions among t f  , 
idf, ef  and where are complicated and not easily 
captured with a straightforward multiple regres- 
sion. 

is about. Since "Kennedy" and "except" have 
similar idf values, they would normally receive 
similar term weights, which doesn't  seem right. 
Kwok (1996) suggested average term frequency, 
avt f  = TF(t ) /d f ( t ) ,  be used as a tie-breaker for 
cases like this, where TF(t )  = ~ a  i f ( t ,  d) is the 
standard notion of frequency in the corpus-based 
NLP. Table 6 shows how Kwok's suggestion can 
be reformulated in our empirical framework. The 
table shows the slopes and intercepts for ten re- 
gressions, one for each combination of t f  and B 
(B = 1 iff avt f  is large. Tha t  is, B = 1 iff 
TF(t) /d f ( t )  > 1.83 - 0.048-idf) .  

4 Q u e r y  E x p a n s i o n  

We applied query expansion (Buckley et al., 1995) 
to generate an expanded par t  of the query. The 
original query is referred to as the description (D) 
and the new part  is referred to as the expansion 
(E). (Queries also contain a narrative (N) part tha t  
is not used in the experiments below so that our 
results could be compared to  previously published 
results.) 

The expansion is formed by applying a base- 
line query engine (fit-B model) to the description 
part  of the query. Terms that  appear in the top 
k = 10 retrieved documents are assigned to the E 
portion of the query (where(t) = E), unless they 
were previously assigned to some other portion of 
the query (e.g., where(t) = D). All terms, t, no 
matter  where they appear in the query, also re- 
ceive an expansion frequency el,  an integer from 
0 to k = 10 indicating how many of the top k 
documents contain t. 

The fit-E model is: A = a(tf,  where, ef)  + 
b( t f , where, el)  • i df , where the regression coeffi- 
cients, a and b, not only depend on t f  as in fit-G, 
but  also depend on where the term appears in the 
query and expansion frequency e l .  We consider 5 
values of t f ,  2 values of where (D and E) and 6 
values of e f  (0, 1, 2, 3, 4 or more). 32 of these 
60 pairs of coefficients are shown in table 7. As 
before, most of the slopes are between 0 and 1. 
is usually between 0 and idf, but we restrict A to 
0 < A < idf, just to make sure. 

In tables 4-7, the slopes usually lie between 0 
and 1. In the previous models, fit-B and fit-G, 
the largest slopes were about 0.8, whereas in fit- 
E, the slope can be much closer to 1. The larger 
slopes are associated with very robust conditions, 
e.g., terms mentioned explicitly in all three areas of 
interest: (1) the query (where = D), (2) the doc- 
ument ( t f  > 1) and (3) the expansion (el  > 1). 
Under such robust conditions, we would expect to 
find very little shrinking (downweighting to com- 
pensate for uncertainty). 

On the other hand, when the term is not men- 
tioned in one of these areas, there can be quite 
a bit of shrinking. Table 7 shows that  the slopes 
are generally much smaller when the term is not 
in the query (where = E) or when the term is 
not in the expansion (e l  = 0). However, there are 
some exceptions. The bottom right corner of ta- 
ble 7 contains some large slopes even though these 
terms are not  mentioned explicitly in the query 
(where = E). The mitigating factor in this case 
is the large el.  If a term is mentioned in several 
documents in the expansion (el  _> 2), then it is 
not as essential that  it be mentioned explicitly in 
the query. 

With this model, as with fit-G and fit-B, ~ tends 
to increase monotonically with t f  and idf, though 
there are some interesting exceptions. When the 
term appears in the query (where = D) but not 
in the expansion (e l  = 0), the slopes are quite 
small (e.g., b(3,D,0) = 0.11), and the slopes actu- 
ally decrease as t f  increases (b(2, D, 0) = 0.83 > 
b(3,D,0)  = 0.11). We normally expect  to see 
slopes of .7 or more when t.f > 3, but  in this case 
(b(3, D, 0) = 0.11), there is a considerable shrink- 
ing because we very much expected to see the term 
in the expansion and we d i d n ' t .  .... 

As we have seen, the interactions among t f, idf, 
e f  and where are complicated and probably de- 
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filter trained on sys. 
NA ? JCB1 
2+, El  tf, where,ef fit-E 
2 B,tf  fit-B 
2, K t f  + ... BKJJBIDS 
2, K B,tf  fit-B 
2, K t f  fit-G 
2, K none log(1 + t f ) .  idf 
2, K none t f .  idf  

11 
.360 
.354 
.283 
.272 
.264 
.257 
.249 
.112 

Table 8: Training helps: methods above the line 
use training (with the possible exception of JCB1); 
methods below the line do not. 

pend on many factors such as language, collection, 
typical query patterns and so on. To cope with 
such complications, we believe that  it is safer to 
use histogram methods than to t ry  to account for 
all of these interactions at once in a single multiple 
regression. The next section will show that  fit-E 
has very encouraging performance. 

5 Exper iments  
Two measures of performance are reported: (1) 11 
point average precision and (2) R, precision after 
retrieving Nrd  documents, where Nrd is the num- 
ber of relevant documents. We used the "short 
query" condition of the NACSIS NTCIR-1 Test 
Collection (Kando et al., 1999) which consists of 
about  300,000 documents in Japanese, plus about  
30 queries with labeled relevance judgement for 
training and 53 queries with relevance judgements 
for testing. The result of "short query" is shown in 
page 25 of(Kando et al., 1999), which shows that  
"short query" is hard for statistical methods. 

Two previously published systems are included 
in the tables below: JCB1 and BKJJBIDS. JCB1, 
submitted by Just System, a company with a com- 
mercially successful product  for Japanese word- 
processing, produced the best results using sophis- 
ticated (and proprietary) natural  language pro- 
cessing techniques.(Fujita, 1999) BKJJBIDS used 
Berkeley's logistic regression methods (with about  
half a dozen variables) to fit term weights to the 
labeled training material. 

Table 8 shows that  training often helps. The 
methods above the line (with the possible excep- 
tion of JCB1) use training; the methods below the 
line do not. Fit-E has very respectable perfor- 
mance, nearly up to  the level of JCB1, not bad for 
a purely statistical method. 

The performance of fit-B is close to tha t  of 
BKJJBIDS. For comparison sake, fit-B is shown 
both with and without the K filter. The K filter 
restricts terms to sequences of Katakana and Kanji 
characters. BKJJBIDS uses a similar heuristic to 
eliminate Japanese function words. Although the 
K filter does not change performance very much, 
the use of this filter changes the relative order of 
fit-B and BKJJBIDS.  These results suggest that  

R • 2: restrict terms to bigrams explicitly men- 
.351 tioned in query (where ~- D)  

.363 • 2+: restrict terms to bigrams, but include 

.293 where = E as well as where = D 

.282 

.282 * W: restrict terms to words, as identified by 

.267 Chasen (Matsumoto et al., 1997) 

.262 • K: restrict terms to sequences of Katakana 

.138 and/or  Kanji characters 

• B: restrict terms to bursty (B -- 1) terms 

• Ek: require terms to appear in more than k 
docs brought in by query expansion (el( t )  > 
k). 

Table 9: Filters: results vary somewhat depending 
on these choices, though not too much, which is 
fortunate,  since since we don' t  understand stop 
lists very well. 

filter trained on sys. 
2+, E1 tf, where,ef fit-E 
2+, E2 tf, where,ef fit-E 
2+,  E4 tf, where,ef fit-E 
2+ tf, where,ef fit-E 
NA NA JCB1 

11 R 
.354 .363 
.350 .359 
.333 .341 
.332 .366 
.360 .351 

Table 10: The best filters (Ek) improve the per- 
formance of the best method (fit-E) to nearly the 
level of JCB1. 

the K filter is slightly unhelpful. 
A number of filters have been considered (ta- 

ble 9). Results vary somewhat depending on these 
choices, though not too much, which is fortunate, 
since since we don ' t  understand stop lists very 
well. To the extent tha t  there is a pat tern,  we sus- 
pect tha t  words axe slightly bet ter  than bigrams, 
and that  the E filter is slightly bet ter  than the B 
filter which is slightly bet ter  than the K filter. Ta- 
ble 10 shows that  the best filters (Ek) improve the 
performance of the best method (fit-E) to nearly 
the level of JCB1. 

filter sys. UL 
2 fit-B + 
2 fit-B + 
2 fit-B - 
2 fit-B - 
2 fit-G + 
2 fit-G - 
2 fit-G + 
2 fit-G - 

LL I I  
+ .283 
- .280 
+ .280 
- .275 
+ .266 
÷ .251 
- .248 
- .232 

R 

.293 

.296 

.296 

.288 

.279 

.268 

.259 

.249 

Table 11: Limits do no harm: two limits are 
slightly bet ter  than one, and o n e i s  slightly bet-  
ter  than none. ( U L  = upper limit of ~ < idf; LL 
= lower limit of 0 _< ~) 
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The final experiment (table 11) shows that  re- 
stricting ~ to 0 < ~ < id] improves performance 
slightly. The combination of both  the upper limit 
and the lower limit is slightly better  than just one 
limit which is better than none. We view limits as 
a robustness device. Hopefully, they won't have 
to do much but  every once in a while they prevent 
the system from wandering far astray. 

6 Conclusions 

This paper introduced an empirical histogram- 
based supervised learning method for estimating 
term weights, ~. Terms are assigned to bins based 
on features such as inverse document frequency, 
burstiness and expansion frequency. A different 
is estimated for each bin and each t f  by counting 
the number of relevant and irrelevant documents 
associated with the bin and tff value. Regression 
techniques are used to interpolate between bins, 
but  care is taken so that  the regression cannot do 
too much harm (or too much good). Three varia- 
tions were considered: fit-G, fit-B and fit-E. The 
performance of query expansion (fit-E) is particu- 
larly encouraging. Using simple purely statistical 
methods, fit-E is nearly comparable to JCB1, a 
sophisticated natural language processing system 
developed by Just System, a leader in the Japanese 
word processing industry. 

.-: In addition to performance, we are also inter- 
ested in the interpretation of the weights. Empiri- 
cal weights tend to lie between 0 and idf. We find 
these limits to be a surprise given that  standard 
term weighting formulas such as t f .  idf generally 
do not conform to these limits. In addition, we 
find that  ~ generally grows linearly with idf, and 
tha t  the slope is between 0 and 1. We interpret the 
slope as a statistical shrink. The larger slopes are 
associated with very robust conditions, e.g., terms 
mentioned explicitly in all three areas of interest: 
(1) the query (where = D), (2) the document 
( t f  _> 1) and (3) the expansion (ef > 1). There 
is generally more shrinking for terms brought in 
by query expansion (where = E), but  if a term 
is mentioned in several documents in the expan- 
sion (el > 2), then it is not as essential that  the 
term be mentioned explicitly in the query. The 
interactions among t f, id], where, B, e l ,  etc., are 
complicated, and therefore, we have found it safer 
and easier to use histogram methods than to t ry  
to account fo r  all of the interactions at once in a 
single multiple regression. 
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