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Abstract 

This paper presents results for a maximum- 
entropy-based part of speech tagger, which 
achieves superior performance principally 
by enriching the information sources used 
for tagging. In particular, we get improved 
results by incorporating these features: 
(i) more extensive treatment of capitaliza- 
tion for unknown words; (ii) features for the 
disambiguation of the tense forms of verbs; 
(iii) features for disambiguating particles 
from prepositions and adverbs. The best 
resulting accuracy for the tagger on the 
Penn Treebank is 96.86% overall, and 
86.91% on previously unseen words. 

Introduction I 

There are now numerous systems for automatic 
assignment of parts of speech ("tagging"), 
employing many different machine learning 
methods. Among recent top performing methods 
are Hidden Markov Models (Brants 2000), 
maximum entropy approaches (Ratnaparkhi 
1996), and transformation-based learning (Brill 
1994). An overview of these and other 
approaches can be found in Manning and 
Schiitze (1999, ch. 10). However, all these 
methods use largely the same information 
sources for tagging, and often almost the same 
features as well, and as a consequence they also 
offer very similar levels of performance. This 
stands in contrast to the (manually-built) EngCG 
tagger, which achieves better performance by 
using lexical and contextual information sources 
and generalizations beyond those available to 
such statistical taggers, as Samuelsson and 
Voutilainen (1997) demonstrate. 

i We thank Dan Klein and Michael Saunders for 
useful discussions, and the anonymous reviewers for 
many helpful comments. 

This paper explores the notion that automat- 
ically built tagger performance can be further 
improved by expanding the knowledge sources 
available to the tagger. We pay special attention 
to unknown words, because the markedly lower 
accuracy on unknown word tagging means that 
this is an area where significant performance 
gains seem possible. 

We adopt a maximum entropy approach 
because it allows the inclusion of diverse 
sources of information without causing frag- 
mentation and without necessarily assuming 
independence between the predictors. A maxi- 
mum entropy approach has been applied to part- 
of-speech tagging before (Ratnaparkhi 1996), 
but the approach's ability to incorporate non- 
local and non-HMM-tagger-type evidence has 
not been fully explored. This paper describes the 
models that we developed and the experiments 
we performed to evaluate them. 

1 The Baseline Maximum Entropy Model 

We started with a maximum entropy based 
tagger that uses features very similar to the ones 
proposed in Ratnaparkhi (1996). The tagger 
learns a loglinear conditional probability model 
from tagged text, using a maximum entropy 
method. 

The model assigns a probability for every 
tag t in the set T of possible tags given a word 
and its context h, which is usually def'med as the 
sequence of several words and tags preceding 
the word. This model can be used for estimating 
the probability of a tag sequence h...tn given a 
sentence w ~ . . . w n :  

n n 

p(t , . . . t  n I wl . . .w,)  = I~I p(t, [t~.. 2,_,,w~...w,) = I I  p(ti I h~) 
iffil i = !  

As usual, tagging is the process of assigning the 
maximum likelihood tag sequence to a string of 
words. 

The idea of maximum entr?py modeling is 
to choose the probability distribution p that has 
the highest entropy out of those distributions 
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that satisfy a certain set of  constraints. The 
constraints restrict the model to behave in 
accordance with a set of  statistics collected from 
the training data. The statistics are expressed as 
the expected values of appropriate functions 
defined on the contexts h and tags t. In particu- 
lar, the constraints demand that the expectations 
of  the features for the model match the 
empirical expectations of the •features over the 
training data. 

For example, if we want to constrain the 
model to tag make as a verb or noun with the 
same frequency as the empirical model induced 
by the training data, we define the features: 

f l ( h , t ) = l  iff  w i = m a k e a n d t = N N  

f 2 ( h , t ) = l  iff  w i = m a k e a n d t = V B  

Some commonly used statistics for part of  
speech tagging are: how often a certain word 
was tagged in a certain way; how often two tags 
appeared in sequence or how often three tags 
appeared in sequence. These look a lot like the 
statistics a Markov Model would use. However, 
in the maximum entropy framework it is 
possible to easily define and incorporate much 
more complex statistics, not restricted to n-gram 
sequences. 

The constraints in our model are that the 
expectations of these features according to the 
joint distribution p are equal to the expectations 

of  the features in the empirical (training data) 

distribution ~ : Ep~h.,)fi (h, t) = E~h,,) ~ (h, t). 
Having defined a set of  constraints that our 
model should accord with, we proceed to find 
the model satisfying the constraints that maxi- 
mizes the conditional entropy of p .  The intu- 

ition is that such a model assumes nothing apart 
from that it should satisfy the given constraints. 

Following Berger et al. (1996), we approxi- 
mate p(h,t) ,  the joint distribution of  contexts 

and tags, by the product of  ~ ( h ) ,  the empirical 

distribution of histories h, and the conditional 
distribution p(t l h): p(h,t)  = ~(h).  p(t lh). 
Then for the example above, our constraints 

would be the following, for j E {1,2}: 

~(h, t ) f  i (h, t) = ~ ,~(h)p(t [ h ) f  i (h, t) 
hEH.tET hsH, t~T 

This approximation is used to enable 
efficient computation. The expectation for a fea- 
ture f is: 

E f =  ~ ( h ) p ( t l h ) f ( h , t  ) 
h~ H ,tE T 

where H is the space of possible contexts h 
when predicting a part of  speech tag t. Since the 
contexts contain sequences of  words and tags 
and other information, the space H is huge. But 
using this approximation, we can instead sum 
just over the smaller space of observed contexts 
X in the training sample, because the empirical 
prior ~ (h )  is zero for unseen contexts h: 

E f = 2 ~ ( h ) p ( t l h ) f ( h , t )  (1) 
h~ X,  t~T 

The model that is a solution to this 
constrained optimization task is an exponential 
(or equivalently, loglinear) model with the para- 
metric form: 

p(t[h) = j=L...K 

n ea//"h") 
t~T j=I...,K 

where the denominator is a normalizing term 
(sometimes referred to as the partition function). 
The parameters X: correspond to weights for the 
features 3T- 

We will not discuss in detail the characteris- 
tics of the model or the parameter estimation 
procedure used - Improved Iterative Scaling. 
For a more extensive discussion of maximum 
entropy methods, see Berger et al. (1996) and 
Jelinek (1997). However, we note that our pa- 
rameter estimation algorithm directly uses equa- 
tion (1). Ratnaparkhi (1996: 134) suggests use 
of an approximation summing over the training 
data, which does not sum over possible tags: 

" h E f j = 2 P( ~)p(ti l hi) f  j(hi,ti) 
i=1 

However, we believe this passage is in error: 
such an estimate is ineffective in the iterative 
scaling algorithm. Further, we note that expecta- 
tions of the form (1) appear in Ratnaparkhi 
(1998: 12). 

1.1 Features  in the Baseline Model 

In our baseline model, the context available 
when predicting the part of  speech tag of  a word 
wi in a sentence of words {wl... wn} with tags 
{tl... t~} is {ti.l tin wi wi+l}. The features that 
define the constraints on the model are obtained 
by instantiation of  feature templates as in 
Ratnaparkhi (1996). Special feature templates 
exist for rare words in the training data, to 
increase the model 's predictioff-capacity for 
unknown words. 
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The actual feature templates for this model 
are shown in the next table. They are a subset of 
the features used in Ratnaparkhi (1996). 

No. Feature Type Template 
1. General wi=X & ti =T 
2. General b.l=Tl & ti=T 
3. General tia=T] & ti.2=T2 & ti=T 
4. General Wi+I=X & ti =T 
5. Rare Suffix of wi =S, 

IS1<5 ,~ t,=T 
6. Rare Prefix of w~=P, l<IPI<5 

& ti=T 
7. Rare w~ contains a number 

& t~=T 
8. Rare wi contains an uppercase 

character & t~=T 
9. Rare w~ contains a hyphen 

& ti=T 

Table 1 Baseline Model Features 

General feature templates can be instantiated by 
arbitrary contexts, whereas rare feature tem- 
plates are instantiated only by histories where 
the current word wi is rare. Rare words are 
defined to be words that appear less than a 
certain number of times in the training data 
(here, the value 7 was used). 

In order to be able to throw out features that 
would give misleading statistics due to sparse- 
ness or noise in the data, we use two different 
cutoff values for general and rare feature 
templates (in this implementation, 5 and 45 
respectively). As seen in Table 1 the features are 
conjunctions of a boolean function on the 
history h and a boolean function on the tag t. 
Features whose first conjuncts are true for more 
than the corresponding threshold number of 
histories in the training data are included in the 
model. 

The feature templates in Ratnaparkhi (1996) 
that were left out were the ones that look at the 
previous word, the word two positions before 
the current, and the word two positions after the 
current. These features are of the same form as 
template 4 in Table 1, but they look at words in 
different positions. 

Our motivation for leaving these features 
out was the results from some experiments on 
successively adding feature templates. Adding 
template 4 to a model that incorporated the 
general feature templates 1 to 3 only and the 
rare feature templates 5-8 significantly 
increased the accuracy on the development set - 
from 96.0% to 96.52%. The addition of a 
feature template that looked at the preceding 

word and the current tag to the resulting model 
slightly reduced the accuracy. 

1.2 Testing and Performance 

The model was trained and tested on the part-of- 
speech tagged WSJ section of the Penn 
Treebank. The data was divided into contiguous 
parts: sections 0-20 were used for training, 
sections 21-22 as a development test set, and 
sections 23-24 as a final test set. The data set 
sizes are shown below together with numbers of 
unknown words. 

Data Set Tokens Unknown 
Training 1,061,768 

Development 116,206 3271 (2.81%) 

Test 111,221 2879 (2.59%) 

Table 2 Data Sizes 

The testing procedure uses a beam search to 
find the tag sequence with maximal probability 
given a sentence. In our experiments we used a 
beam of size 5. Increasing the beam size did not 
result in improved accuracy. 

The preceding tags for the word at the 
beginning of the sentence are regarded as 
having the pseudo-tag NA. In this way, the 
information that a word is the first word in a 
sentence is available to the tagger. We do not 
have a special end-of-sentence symbol. 

We used a tag dictionary for known words 
in testing. This was built from tags found in the 
training data but augmented so as to capture a 
few basic systematic tag ambiguities that are 
found in English. Namely, for regular verbs the 
-ed form can be either a VBD or a VBN and 
similarly the stem form can be either a VBP or 
VB. Hence for words that had occurred with 
only one of these tags in the training data the 
other was also included as possible for 
assignment. 

The results on the test set for the Baseline 
model are shown in Table 3. 

Model Overall Unknown Word 
Accuracy Accuracy 

Baseline , 96.72% 84.5% 
J 

Ratnaparkhi 96.63% 85.56% 
(1996) 

Table 3 Baseline model performance 

This table also shows the results reported in 
Ratnaparkhi (1996: 142)for COnvenience. The 
accuracy figure for our model is higher overall 
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but lower for unknown words. This may stem 
from the differences between the two models' 
feature templates, thresholds, and approxi- 
mations of the expected values for the features, 
as discussed in the beginning of  the section, or 
may just reflect differences in the choice of 
training and test sets (which are not precisely 
specified in Ratnaparkhi (1996)). 

The differences are not great enough to 
justify any definite statement about the different 
use of feature templates or other particularities 
of  the model estimation. One conclusion that we 
can draw is that at present the additional word 
features used in Ratnaparkhi (1996) - looking at 
words more than one position away from the 
current - do not appear to be helping the overall 
performance of the models. 

1.3 Discussion of Problematic  Cases 

A large number of words, including many of the 
most common words, can have more than one 
syntactic category. This introduces a lot of  
ambiguities that the tagger has to resolve. Some 
of the ambiguities are easier for taggers to 
resolve and others are harder. 

Some of the most significant confusions that 
the Baseline model made on the test set can be 
seen in Table 5. The row labels in Table 5 
signify the correct tags, and the column labels 
signify the assigned tags. For example, the num- 
ber 244 in the (NN, JJ) position is the number of 
words that were NNs but were incorrectly 
assigned the JJ category. These particular confu- 
sions, shown in the table, account for a large 
percentage of the total error (2652/3651 = 
72.64%). Table 6 shows part of  the Baseline 
model's confusion matrix for just unknown 
words. 

Table 4 shows the Baseline model 's overall 
assignment accuracies for different parts of  
speech. For example, the accuracy on nouns is 
greater than the accuracy on adjectives. The 
accuracy on NNPS (plural proper nouns) is a 
surprisingly low 41.1%. 

Tag Accuracy Tag 
IN 97.3% JJ 
NN 96.5% RB 
NNP 96.2% VBN 
VBD 95.2% RP 
VB 94.0% NNPS 
VBP 93.4% 

Accuracy 
93.0% 
92.2% 
90.4% 
41.5% 
41.1% 

Table 4 Accuracy of assignments for different parts 
of speech for the Baseline model. 

Tagger errors are of various types. Some are the 
result of  inconsistency in labeling in the training 
data (Ratnaparkhi 1996), which usually reflects 
a lack of linguistic clarity or determination of  
the correct part of  speech in context. For 
instance, the status of various noun premodifiers 
(whether chief or maximum is NN or JJ, or 
whether a word in -ing is acting as a JJ or VBG) 
is of  this type. Some, such as errors between 
NN/NNP/NNPS/NNS largely reflect difficulties 
with unknown words. But other cases, such as 
VBN/VBD and VB/VBP/NN, represent syste- 
matic tag ambiguity patterns in English, for 
which the fight answer is invariably clear in 
context, and for which there are in general good 
structural contextual clues that one should be 
able to use to disarnbiguate. Finally, in another 
class of cases, of  which the most prominent is 
probably the RP/IN/RB ambiguity of words like 
up, out, and on, the linguistic distinctions, while 
having a sound empirical basis (e.g., see Baker 
(1995: 198-201), are quite subtle, and often 
require semantic intuitions. There are not good 
syntactic cues for the correct tag (and further- 
more, human taggers not infrequently make 
errors). Within this classification, the greatest 
hopes for tagging improvement appear to come 
from minimizing errors in the second and third 
classes of this classification. 

In the following sections we discuss how we 
include additional knowledge sources to help in 
the assignment of tags to forms of verbs, 
capitalized unknown words, particle words, and 
in the overall accuracy of part of  speech 
assignments. 

2 Improving the Unknown Words Model 

The accuracy of  the baseline model is markedly 
lower for unknown words than for previously 
seen ones. This is also the case for all other 
taggers, and reflects the importance of  lexical 
information to taggers: in the best accuracy 
figures punished for corpus-based taggers, 
known word accuracy is around 97%, whereas 
unknown word accuracy is around 85%. 

In following experiments, we examined 
ways of using additional features to improve the 
accuracy of  tagging unknown words. As previ- 
ously discussed in Mikbeev (1999), it is possible 
to improve the accuracy on capitalized words 
that might be proper nouns or the first word in a 
sentence, etc. 

. r .  
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JJ NN NNP NNPS R.B RP IN VB VBD VBN VBP Total 
JJ 0 177 56 0 61 2 5 10 15 108 0 488 
NN 244 0 103 0 12 1 1 29 5 6 19 525 
NNP 107/ 106 0 132 5 0 7 5 I 2 0 427 
NNPS 1 0 110 0 0 0 0 0 0 0 0 142 
RB 72 21 7 0 0 16 138 1 0 0 0 295 
RP 0 0 0 0 39 0 65 0 0 0 0 104 
IN 11 0 1 0 169 103 0 1 0 0 0 323 
VB 17 64 9 0 2 0 1 0 4 7 85 189 
VBD 10 5 3 0 0 0 0 3 0 143 2 166 
VBN 101 3 3 0 0 0 0 3 108 0 1 221 
VBP 5 34 3 1 1 0 2 49 6 3 0 104 
Total 626 536 348 144 317 122 279 102 140 269 108 3651 

Table 5 Confusion matrix of the Baseline model showing top confusion pairs overall 

JJ NN NNP NNS NNPS VBN Total 
JJ 0 55 25 1 0 10 107 
NN 55 0 26 5 0 2 98 
NNP 20 41 0 5 4 0 87 
NNPS 0 0 10 11 0 0 23 
NNS 1 3 6 0 1 0 15 
VBN 12 1 1 0 0 0 20 
Total 109 121 98 33 7 19 448 

Table 6 Confusion matrix of  the Baseline model for unknown words showing top confusion pairs 

Accuracy Test Set 

Unknown Words Accuracy Test Set 

Accuracy Development Set 

Unknown Words Accuracy Development Set 

Baseline Model 1 Model 2 Model 3 
Capitalization Verb forms Particles 

96.72% 96.76% 96.83% 96.86% 

84.50% 86.76% 86.87% 86.91% 

96.53% 96.55% 96.58% 96.62% 

85.48% 86.03% 86.03% 86.06% 

Table 7 Accuracies of  all models on the test and development sets 

Baseline Model 1 Model 2 Model 3 
Capitalization Verb Forms Particles 

1. Current word 15,832 15,832 15,837 15,927 
2. Previous tag 1,424 1,424 1,424 1,424 
3. Previous two tags 16,124 16,124 16,124 16,124 
4. Next word 80,075 80,075 80,075 80,075 
5. Suffixes 3,361 3,361 3,361 3,387 
6. Prefixes 5,311 0 0 0 
7. Contains uppercase character 34 34 34 34 
8. Contains number 7 7 7 7 
9. Contains hyphen 20 20 20 20 
10. Capitalized and mid. sentence 0 33 33 33 
11. All letters uppercase 0 30 30 30 
12. VBPIVB feature 0 0 2 2 
13. VBDIVBN feature 0 0 3 3 
14. Particles, type 1 0 0 0 9 
15. Particles, type 2 0 0 0 2,178 
Total 122,188 116,940 116,960 118,944 

Table 8 Number of features of different types 
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For example, the error on the proper noun 
category (NNP) accounts :for a significantly 
larger percent of  the total error for unknown 
words than for known words. In the Baseline 
model, of the unknown word error 41.3% is due 
to words being NNP and assigned to some other 
category, or being of  other category and assigned 
NNP. The percentage of  the same type of  error 
for known words is 16.2%. 

The incorporation of  the following two 
feature schemas greatly improved NNP accuracy: 

(1) A feature that looks at whether all the letters 
of a word are uppercase. The feature that 
looked at capitalization before (cf. Table 1, 
feature No. 8) is activated when the word 
contains an uppercase character. This turns 
out to be a notable distinction because, for 
example, in titles in the WSJ data all words 
are in all uppercase, and the distribution of 
tags for these words is different from the 
overall distribution for words that contain an 
uppercase character. 

(2) A feature that is activated when the word 
contains an uppercase character and it is not 
at the start of a sentence. These word tokens 
also have a different tag distribution from the 
distribution for all tokens that contain an 
uppercase character. 

Conversely, empirically it was found that the 
prefix features for rare words were having a net 
negative effect on accuracy. We do not at present 
have a good explanation for this phenomenon. 

The addition of the features (1) and (2) and 
the removal of  the prefix features considerably 
improved the accuracy on unknown words and 
the overall accuracy. The results on the test set 
after adding these features are shown below: 

Overall Accuracy Unknown Word Accuracy [ 
96.76% 86.76% I 

Table 9 Accuracy when adding capitalization features 
and removing prefix features. 

Unknown word error is reduced by 15% as 
compared to the Baseline model. 

It is important to note that (2) is composed of  
information already 'known' to the tagger in 
some sense. This feature can be viewed as the 
conjunction of  two features, one of  which is 
already in the baseline model, and the other of  
which is the negation of a feature existing in the 
baseline model - since for words at the beginning 
of  a sentence, the preceding tag is the pseudo-tag 
NA, and there is a feature looking at the 

preceding tag. Even though-our  maximum 
entropy model does not require independence 
among the predictors, it provides for free only a 
simple combination of  feature weights, and 
additional 'interaction terms' are needed to model 
non-additive interactions (in log-space terms) 
between features. 

3 Features for Disambiguating Verb Forms 

Two of the most significant sources of  classifier 
errors are the VBN/VBD ambiguity and the 
VBP/VB ambiguity. As seen in Table 5, 
VBN/VBD confusions account for 6.9% of the 
total word error. The VBP/VB confusions are a 
smaller 3.7% of the errors. In many cases it is 
easy for people (and for taggers) to determine the 
correct form. For example, if there is a to 
infinitive or a modal directly preceding the 
VB/VBP ambiguous word, the form is certainly 
non-finite. But often the modal can be several 
positions away from the current position - still 
obvious to a human, but out of sight for the 
baseline model. 

To help resolve a VB/VBP ambiguity in such 
cases, we can add a feature that looks at the 
preceding several words (we have chosen 8 as a 
threshold), but not across another verb, and 
activates if there is a to there, a modal verb, or a 
form of  do, let, make, or help (verbs that 
frequently take a bare infinitive complement). 

Rather than having a separate feature look at 
each preceding position, we define one feature 
that looks at the chosen number of  positions to 
the left. This both increases the scope of  the 
available history for the tagger and provides a 
better statistic because it avoids fragmentation. 

We added a similar feature for resolving 
VBD/VBN confusions. It activates if  there is a 
have or be auxiliary form in the preceding several 
positions (again the value 8 is used in the 
implementation). 

The form of these two feature templates was 
motivated by the structural rules of  English and 
not induced from the training data, but it should 
be possible to look for "predictors" for certain 
parts of  speech in the preceding words in the 
sentence by, for example, computing association 
strengths. 

The addition of  the two feature schemas 
helped reduce the VB/VBP and VBD/VBN con- 
fusions. Below is the performance on the test set 
of  the resulting model when features for disam- 
biguating verb forms are added to the model of  
Section 2. The number of  VB/VBP confusions 
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was reduced by 23.1% as compared to the base- 
line. The number of  VBD/VBN confusions was 
reduced by 12.3%. 

Overall Accuracy Unknown Word Accuracy 
96.83% 86.87% 

Table 10 Accuracy of the extended model 

4 Features for Particle Disambiguation 

As discussed in section 1.3 above, the task of 
determining RB/RP/IN tags for words like down, 

out, up is difficult and in particular examples, 
there are often no good local syntactic indicators. 
For instance, in (2), we find the exact same 
sequence of parts of speech, but (2a) is a particle 
use of on, while (2b) is a prepositional use. 
Consequently, the accuracy on the rarer RP 
(particles) category is as low as 41.5% for the 
Baseline model (cf. Table 4). 

(2) a. Kim took on the monster. 
b. Kim sat on the monster. 

We tried to improve the tagger's capability to 
resolve these ambiguities through adding infor- 
mation on verbs' preferences to take specific 
words as particles, or adverbs, or prepositions. 
There are verbs that take particles more than 
others, and particular words like out are much 
more likely to be used as a particle in the context 
of some verb than other words ambiguous 
between these tags. 

We added two different feature templates to 
capture this information, consisting as usual of  a 
predicate on the history h, and a condition on the 
tag t. The first predicate is true if the current word 
is often used as a particle, and if there is a verb at 
most 3 positions to the left, which is "known" to 
have a good chance of taking the current word as 
a particle. The verb-particle pairs that are known 
by the system to be very common were collected 
through analysis of the training data in a 
preprocessing stage. 

The second feature template has the form: 
The last verb is v and the current word is w and w 
has been tagged as a particle and the current tag 
is t. The last verb is the pseudo-symbol NA if 
there is no verb in the previous three positions. 

These features were some help in reducing 
the RB/IN/RP confusions. The accuracy on the 
RP category rose to 44.3%. Although the overall 
confusions in this class were reduced, some of the 
errors were increased, for example, the number of 
INs classified as RBs rose slightly. There seems 

to be still considerable room to improve these 
results, though the attainable accuracy is limited 
by the accuracy with which these distinctions are 
marked in the Penn Treebank (on a quick 
informal study, this accuracy seems to be around 
85%). The next table shows the final performance 
on the test set. 

OverallAccuracy Unknown Word Accuracy [ 
96.86% 86.91% 

Table 11 Accuracy of the final model 

For ease of comparison, the accuracies of all 
models on the test and development sets are 
shown in Table 7. We note that accuracy is lower 
on the development set. This presumably corre- 
sponds with Charniak's (2000: 136) observation 
that Section 23 of the Penn Treebank is easier 
than some others. Table 8 shows the different 
number of feature templates of  each kind that 
have been instantiated for the different models as 
well as the total number of  features each model 
has. It can be seen that the features which help 
disambiguate verb forms, which look at capital- 
ization and the first of  the feature templates for 
particles are a very small number as compared to 
the features of the other kinds. The improvement 
in classification accuracy therefore comes at the 
price of adding very few parameters to the 
maximum entropy model and does not result in 
increased model complexity. 

Conclusion 

Even when the accuracy figures for corpus-based 
part-of-speech taggers start to look extremely 
similar, it is still possible to move performance 
levels up. The work presented in this paper 
explored just a few information sources in 
addition to the ones usually used for tagging. 
While progress is slow, because each new feature 
applies only to a limited range of  cases, 
nevertheless the improvement in accuracy as 
compared to previous results is noticeable, 
particularly for the individual decisions on which 
we focused. 

The potential of  maximum entropy methods 
has not previously been fully exploited for the 
task of  assignment of  parts of speech. We incor- 
porated into a maximum entropy-based tagger 
more linguistically sophisticated features, which 
are non-local and do not look just at particular 
positions in the text. We also added features that 
model the interactions of previously employed 
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predictors. All of  these changes led to modest 
increases in tagging accuracy. 

This paper has thus presented some initial 
experiments in improving tagger accuracy 
through using additional information sources. In 
the future we hope to explore automatically 
discovering information sources that can be 
profitably incorporated into maximum entropy 
part-of-speech prediction. 
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