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Abstract 

A wide range of natural language problems 
can be viewed as disambiguating between a 
small set of alternatives based upon the 
string context surrounding the ambiguity 
site. In this paper we demonstrate that 
classification accuracy can be improved by 
invoking a more descriptive feature set than 
what is typically used. We present a 
technique that disambiguates by learning 
regular expressions describing the stnng 
contexts in which the ambiguity sites 
appear. 

Introduction 

Many natural language tasks are essentially n- 
way classification problems, where classification 
decisions are made from a small set of choices, 
based upon the linguistic context in which the 
ambiguity site occurs. Examples of such tasks 
include: confusable word set disambiguation; 
word sense disambiguation; determining such 
lexical features as pronoun case and determiner 
number for machine translation; part of speech 
tagging; named entity labeling; spelling 
correction; and some formulations of skeletal 
parsing. Very similar feature sets have been 
used across machine learning algorithms and 
across classification problems. For example, in 
confusable word set disambiguation, systems 
typically use as features the occurrence of a 
particular word within a window of +/- n words 
of the target, and collocations based on the 
words and part of speech tags of up to two 
words to the left and two words to the fight of 
the target. 

Below we present a machine learning 
algorithm that learns from a much richer feature 
set than that typically used for classification in 

natural language. Our algorithm learns rule 
sequences for n-way classification, where the 
condition of a rule can be a restricted regular 
expression on the string context in which the 
ambiguity site appears. We demonstrate that 
using this more powerful feature space leads to 
an improvement in disambiguation performance 
on confusable words. 

1 Previous Work: Richer Features 

Most previous work applying machine learning 
to linguistic disambiguafion has used as features 
very local collocational information as well as 
the presence of a word within a fixed window of 
an ambiguity site. Indeed, one of the great 
insights in both speech recognition and natural 
language processing is the realization that fixed 
local cues provide a great deal of useful 
information. 

While the n-gram reins supreme in 
language modeling, there has been some 
interesting work done building language models 
based on linguistically richer features. Bahl, 
Brown et al. (1989) describe a language model 
that builds a decision tree that is allowed to ask 
questions about the history up to twenty words 
back. Saul and Pereira (1997) describe a 
language model that can in essence skip over 
uninformative words in the history. Della Pietra 
et al. (1994) discuss an approach to language 
modeling based on link grammars, where the 
model can look beyond the two previous words 
to condition on linguistically relevant words in 
the history. The language model described by 
Chelba and Jelinek (1998) similarly conditions 
on linguistically relevant words by assigning 
partial phrase structure to the history and 
percolating headwords. 

Samuellson, Tapanainen et al. (1996) 
describe a method for learning a particular 
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useful type of pattern, which they call a barrier. 
Given two symbols X and Y, and a set of 
symbols S, they learn conditions of the form: 
take an action if there is an X preceded by a Y, 
with no intervening symbols from S. In their 
paper they demonstrate how such patterns can be 
useful for part of speech tagging. Even-Zohar 
and Roth (2000) show that by including 
linguistic features based on relations such as 
subject and object, they can better disambiguate 
between verb pairs. 

2 Definitions 

Below we provide the standard definition for 
regular expressions, and then define a less 
expressive language formafism, which we will 
refer to as reduced regular expressions. The 
learning method we describe herein can learn 
rules conditioned on any reduced regular 
expression. 

Regular Expression (RE): 1 Given a finite 
alphabet E ,  the set of regular expressions over 
that alphabet is defined as (Hopcroft and Ullman 
1979): 
(1) V a ~  E,  a is a regular expression and 
denotes the set {a} 
(2) if r and s are regular expressions denoting the 
languages R and S, respectively, then (r+s), (rs), 
and (r*) are regular expressions that denote the 
sets R ~_~ S, RS and R* respectively. 

Reduced Regular Expression (R.RE): Given a 
finite alphabet ~ ,  the set of reduced regular 
expressions over that alphabet is defined as: 

(1) V a ~  E:  
a is an RRE and denotes the set {a} 
a+ is an RRE and denotes the positive 

closure of  the set {a} 
a* is an RRE and denotes the Kleene 

closure of  the set {a} 
- a  is an RRE and denotes the set ~ - a 
~a+ is an RRE and denotes the positive 

closure of  the set Z - a 
~a* is an RRE and denotes the Kleene 

closure of  the set E - a 

(2) . is an RRE denoting the set E 
(3) .+ is an RRE denoting the positive closure 
of the set E 
(4) .* is an RRE denoting the Kleene closure of 
the set 
(5) if r and s are RREs denoting the languages R 
and S, respectively, then rs is an RRE denoting 
the set RS. 

Some examples of strings that are 
regular expressions but not reduced regular 
expressions include: (ab)*, a(b]c)d, (a (bc)+)* 

Next, we need some definitions to allow 
us to make reference to particular positions in a 
collection of strings. 

Corpus: A corpus is an ordered set of strings. 
We will notate the jth String of a corpus C as 
C[j]. ]C] is the number of strings in the corpus. 
IqJ]l is the number of symbols in the jt~ string of 
the corpus. 

Corpus Position.'. A corpus position for a 
corpus C is a tuple (j,k), meaning the k th symbol 
in the jtb string in the corpus, with the 
restrictions: 1 _< j _<[ C [ a n d  0 _< k _<[ CU] [. 

A Corpus Position Set is a set of corpus 
positions. 

Next, we define an RRE-Tree, the data 
structure we will use in learning RREs. 

RRE-Tree: An RRE-Tree over E is a tree 
(V,E), where V is a set of tuples <v,S>, v being 
a unique vertex identifier and S being a Corpus 
Position Set, and E is a set of labeled directed 
edges <vi,vj,label>, where vi and vj are vertex 
identifiers, label ~ LABEL_SET and 
LABEL SET = {dot, dot+, dot*} U 
{a,a+,a*,~a,~a+,~a* I 'Va ~ E }.2 

3 Rule Sequence Learning 

Our implemented learner is based upon the 
transformation-based learning paradigm (Bnll 
1995). In this section we briefly review 
transformation-based learning. 

I In all of our formulations, we ignore expressions 
denoting the empty set O and the set {e}. 2 We use "dot" for "." 
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(1) A start-state annotator, which assigns an 
initial label to a string. 
(2) A sequence of rules of the form: Change the 
label of  a string from m to n i f  C(string), where 
C is a predicate over strings and m,n ~ L. 

A string is labelled by first applying the 
start-state annotator to it, and then applying each 
rule, in order. 

To learn a transformation sequence, the 
system begins with a properly labelled training 
set. It then removes the labels and applies the 
start-state annotator to each string. Then the 
learner iteratively does the following: 

(1) Find the best rule to apply to the training set. 
(2) Append that rule to the end of the learned 
transformation sequence. 
(3) Apply that rule to the training set. 

4.1 RRE-Tree Construction 

: until the stopping criterion is met. 

4 Learning RRE Rules 

Below we will demonstrate how to learn 
transformation sequences where the predicate 
C(stfing) is of the form "Does RRE R apply to 
the stnng?" We will show this for the binary 
classification case (where ILl = 2).  

In each learning iteration, we will 
construct an RRE-Tree in a particular way, find 
the best node in that RRE-Tree, and then return 
the edge labels on the path from root to best 
node as the learned RRE. The learner will learn 
a sequence of rules of the form: 

Change the label of  a string from li to lj i f  the 
string matches reduced regular expression R. 

Before proceeding, we need to specify 
two things: the start-state annotator and the 
goodness measure for determining what rule is 
best. The system will use a start-state annotator 
that initially labels all strings with the most 
frequent label in the training set, and the 
goodness measure will simply be the number of 
good label changes minus the number of bad 

label changes when a rule is applied to the 
training set. 

Take the following training set: 

String # String True Label Init. Guess 
1 a b c  0 1 
2 a b b  1 1 
3 b a a  1 1 

Since 1 is the most frequent label in the 
training set, the start-state annotator would 
initially assign all three training set strings the 
label 1, meaning stnng 1 would be incorrectly 
labelled and strings 2 and 3 would be correct. 
Now we want to learn a rule whose appfication 
will best improve our labelling of the training 
set. 

We will first present an algorithm for 
constructing an RRE-Tree for a training corpus, 
and then trace through the appficadon of this 
algorithm to our example training corpus above. 
To simplify the presentation, we will limit 
ourselves to learning rules for a weaker language 
type, which we call Very Reduced Regular 
Expressions (VRREs). The extension to RRE 
learning is straightforward. 

Very Reduced Regular Expression (VRRE): 
Given a finite alphabet E ,  the set of very 
reduced regular expressions over that alphabet is 
defined as: 

(1) 'v'a~ E:  a is a VRRE and denotes the set 
{a} 
(2) . is a VRRE denoting the set g 
(3) .* is a VRRE denoting the Kleene closure of 
the set E 
(4) if r and s are VRREs denoting the languages 
R and S, respectively, then rs is a VRRE 
denoting the set RS. 

Say we have a training corpus C. For 
every string C[j]~ C, Tmth[C[j]] ~ {0,1 } is the 
true label of C[j] and Guess[C[j]] is the current 
guess of the label of C[j]. The algorithm for one 
iteration of rule learning follows. 

Main() { 
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(1) Create root node with corpus position set S = 
{0 ,0)  [ j  = 1 .. ICI). Push  this node onto 
processing stack (STACK). 
(2) While (STACK not empty) { 

STATE = pop(STACK); 
Push(dotexpand(STATE),STACK); 
Push(dotstarexpand (STATE), STACK); 
Va~  Z 

Push(atomexpand(a, STATE),STACK) 
} 
(3) Find best state S in the RRE-tree. Let R be 
the RRE obtained by following the edges from 
the root to S, outputting each edge label as the 
edge is traversed. Return either the rule "0--~ 1 if 
R" or "1--)0 if R" depending on which is 
appropriate for state S. 
} 

dotexpand(STATE) { 
create new state STATE" 
let P be the corpus position set of  STATE 
P' = {0,k) I (j,k-1) E P and k-1 ~ ICorpusfj]l} 
If (P' not empty) { 

Make P' the corpus position set of 
STATE' 

Add (STATE,STATE' ,DOT) to tree 
edges 

return STATE' 
} 

Else return NULL 
} 

dotstarexpand(STATE) { 
create new state STATE' 
let P be the corpus position set of STATE 
P' = {(j,k) [ (j,m) ~ P, m_< k, and k _< 

ICorpusU]l} 
I f ( P ' ¢  P) { 

Make P' the corpus position set of  STATE' 
Add (STATE,STATE',DOT*) to tree edges 
return STATE' 

} 
Else return NULL 
} 

atomexpand(a, STATE) { 
create new state STATE' 
let P be the corpus position set of STATE 
P' = {(j ,k)  I (j ,k-1)  E P, k-1 ¢ Icorpusfj]l, and 

the k-1 st symbol in Corpus[j] is a} 
If (P' not empty) { 

Make P' the corpus position set of 
STATE 

Add (STATE,STATE',a) to tree edges 
return STATE' 

} 
Else return NULL 
} 

Each state S in the RRE-tree represents the RRE 
corresponding to the edge labels on the path 
from root to S. For a state S with corpus 
position set P and corresponding RRE R, the 
goodness of the rule: 0 ~ 1  if R, is computed asp 

Goodness_0_to_l (S)  = 

(J,*~v S c o r e _ 0 t o  1 ((j,k)) 

where 

S c o r e _ 0 _ t o _ l  (( j ,k))  = 

1 i f  k = Icfj]l 
^ G u e s s [ j ]  = 0 

^ T ru th [ j ]  = 1 

-1 i f  k = IC[j]l 

^ G u e s s [ j ]  = 0 

A Tru th [ j ]  = 0 

0 o t h e r w i s e  

Similarly, we can compute the score for the 
rule : 1@0 if R. We then define Goodness(S) = 
m a x ( G o o d n e s s 0 _ t o  l(S),Goodness_l_to_0(S)) 

Returning to our example, for the 3 
strings in this training corpus, the root node of 
the RRE-Tree would have the corpus position 
set: {(1,0),(2,0),(3,0)}. The root node 
corresponds to the null RRE, and so the position 
set consists of the beginning of  each string in the 
training set. In figure 1 (at the end of  the paper) 
we show a partial RRE-Tree. If we follow the 
edge labelled "dot" from the root node, we see it 
leads to a state with position set 
{(1,1),(2,1),(3,1)}, as a dot advances all 
positions by one. 

3 This assumes an RRE must match the entire string 
in order to accept it. 
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The square state in figure 1 represents 
the RRE: "dot* c" and the triangular state 
represents "a dot c". Both the square and 
triangular states have a corpus position set 
consisting of only one corpus position, namely 
the end of stnng 1, and both would have a 
goodness score of 1 for the corresponding l&0  
rule. If We prefer shorter rules, we will learn as 
our first rule in the rule list: l & 0  if dot* c. 
After applying this rule to the training corpus, all 
strings will be correctly labelled and training 
will terminate. If the stopping criterion were not 
met, we would apply the learned rule to change 
the values of our Guess array, then create a new 
RRE-tree, find the best state in that tree, and so 
o n .  

It is easy to extend the above algorithm 
to learn RREs instead of VRREs. Note, for 
instance, that the corpus position set for a state S 
with incoming edge labelled ~a can be found by 
taking the position set for the sibling of S with 
incoming edge labelled dot and deleting those 
corpus positions that are found in the position 
set for the sibling of S with incoming edge 
labelled a. 

..? 

5 Optimizations 

The algorithm above is exponential. There are 
some opfirnizations we can perform that make it 
feasible to apply the learning algorithm. 

Optimization 1: Pruning states we know 
cannot be on the path from root to the best state. 
Define GoodPotential 0 to I(S) as the number 
of sentences s in the training corpus for which 
Guess[s]=0, Truth[s]= 1 and 
3k : (s, k) ~ corpus_position_set(S). We can 

similarly define GoodPotential 1 to0(S),  and 
then define 

GoodPotential(S)= 
max(GoodPotential 0 to_l(S), 

GoodPotential 1 to O(S)) 

As we construct the RRE-tree, we keep 
track of the largest Goodness(S) we have 
encountered. If that value is X, then for a state 
S', if GoodPotential(S')_<X, it is impossible for 
any path through S' to reach a state with a better 
goodness score than the best found thus far. We 

can check this condition when pushing states 
onto the stack, and when popping off the stack 
to be processed, and if the pruning condition is 
met, the state is discarded. 

Optimization 2: Merging states with identical 
corpus position sets. If we are going to push a 
state onto the stack when a state already exists 
with an identical corpus position set, we do not 
need to retain both states. We may use 
heuristics to decide which of the states with 
identical corpus position sets we should keep 
(such as choosing the one with the shortest path 
to the root). 

6 Experiments 

To test whether learning RREs can improve 
disambiguafion accuracy, we explored the task 
of confusion set disambiguation (Golding and 
Roth 1999). We trained and applied two 
different rule sequence learners, one which used 
the standard feature set for this problem (e.g. the 
identical feature set to that used in (Golding and 
Roth 1999) and (Mangu and Brill 1997) and 
described in the introduction, and one which 
learned RR.Es. 4 Because we wanted to 
deterinine what could be gained by using RREs, 
we ran an ablation study where we kept 
everything else constant across the two runs, and 
did not use performance enhancing techniques 
such as parameter tuning on held out data or 
classifier combination. 

Both learners were given a window of 
+/- 5 words surrounding the ambiguity site. 
Context was not allowed to cross sentence 
boundaries. The training and test set were 
derived by finding all instances of the 
confusable words in the Brown Corpus, using 
the Penn Treebank parts of speech and 
tokenization (Marcus, Santorini et al. 1993), and 
then dividing this set into 80% for training and 
20% for testing. 

For the RRE-based system, we mapped 
the +/- 5 word window of context into a string as 
follows (where wi is a word and ti is a part of 
speech tag): 

4 The set of RREs is a superset of what can be 
learned using the standard feature set. 
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Wi. 5 ti. 5 Wi-4 ti. 4 Wi. 3 ti. 3 Wi. 2 ti.2. Wi. I ti. 1 M I D D L E  

Wi+l ti+l wi+2 ti+2 wi+3 ti+3 wi+4 ti+4 wi+5 ti+5 

where MIDDLE is the ambiguity site. 
Both for execution time and space 

considerations for the learner and for fear of  
overtraining, we put a bound on the length of  the 
RRE that could be learned, s We define an 
atomic RRE as any RRE derived without any 
concatenation operations. Then the length of  an 
RRE is defined as the number of  atomic RREs 
which that RRE is made up of. The atom 
"MIDDLE" is not counted in length. 

Below we give two examples of  rules 
that were learned for one confusion se t :  6 

(1) past ~ passed i f  .* ~DT MIDDLE D O T IN 
(2) past ~ passed if  (~to)* NN MIDDLE 

The first rule says to change the 
disambiguation guess to << passed >> if  the word 
before is not a determiner and the word after is a 
preposition. This matches contexts such as : << 
... they passed by ... >> while not matching 
contexts such as : << ... made in the past by ... >> 
T h e  second rule captures contexts such as : << ... 
the hike passed the campground ... >~ while not 
matching contexts such as : << ... want to take a 
hike past the campground.. .  >> 

In Table 1, we show test set results from 
running the rule sequence learner with both the 
standard set of  features and with RRE-based 
features. 7 The results are sorted by training 
corpus size, with the raise/rise training corpus 
being the smallest and the then/than training 
corpus being the largest. Baseline accuracy is 

5 Note that this does not imply a bound on the length 
of a string to which an RRE can apply. 
6 DT= determiner, IN = preposition, biN = singular 
noun. 

7 While these results look worse than those achieved 
by other systems, as reported in (Golding and Roth, 
1999), we used different data splits and tokenization. 
Our baseline accuracies are significantly lower than 
the baselines for their test sets. If we account for this 
by instead measuring percent error reduction 
compared to baseline accuracy, then our average 
reduction is better than that reported for the BaySpell 
system, but worse than that of WinSpell. If  we add 
voting to our system (WinSpell employs voting), then 
we attain results on par with WinSpell. 

the accuracy attained on the test set by always 
picking the word that appears more frequently in 
the training set. 

Conf. Pair Baseline Standard 
Raise/Rise 53.6 75.0 
Pnncipal/Pfinciple 
Accept/Except 
Affect/Effect 

64.5 80.6 
60.0 94.5 
86.8 94.3 

Lead/Led 53.6 89.3 
Piece/Peace 51.1 83.0 
Weather/Whether 79.7 84.6 
Quiet/Quite 83.1 100 
County/Country 75.6 78.2 
Past/Passed 63.7 88.1 
Amount/Number 74.1 83.3 

96.1 Begin/Being 
Among/Between 
Then/Than 

90.8 
69.2 76.8 
62.8 93.1 

RRE 
78.6 
83.9 
90.9 
94.3 
89.3 
83.0 
89.2 
98.5 
83.3 
89.3 
87.0 
96.7 
80.8 
93.4 

Table 1 Test Set Results: Standard vs RRE- 
Based Features 

In Table 2 we see that the RRE-based 
system outperforms the standard system on 9 o f  
the confusion sets, the standard system 
outperforms the RRE-based system on 2 and the 
two systems attain identical results on 3. We see 
that the relative performance of  the RRE-based 
learner is better overall on the larger training 
sets than on the smaller sets. This is to be 
expected, as more data is needed to support 
learning the more expressive RRE-based rules. 

RRE Standard IdenticM 
Be~er  Better  

All 9 2 3 
Confusables 

1 3 7 Smallest 
Sets 
7 Largest 
Sets 

1 0 

Table 2 Performance Analysis Across Different 
Sets 

Pooling all of  the test sets into one big 
set, the RRE-based system achieves an overall 
accuracy of  89.9%, compared to 88.5% for the 
standard learner. Weighting each confusion pair 
equally, the RRE-based system achieves an 
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overall accuracy of 88.4%, compared to 86.9% 
for the standard learner. 

Conclusions 

The RRE-based rule sequence learner presented 
above is able to learn rules using more 
expressive conditions than what is typically used 
for disambiguation tasks in natural language 
processing. These regular-expression based 
conditions lead to higher accuracy than what is 
achieved when using the same learning 
paradigm with the traditionally used feature set. 
We hope that other learning algorithms can 
benefit from the ideas presented here and that 
the idea of learning RREs can be generalized to 
allow other learners to incorporate more 
powerful features as well. 
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Figure I : A Partial RRE-Tree 
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