
Eric Brill
Microsoft Research
One Microsoft W a y

Redmond, Wa. 98052
brill@microsoft.com

'C

1

Abstract

A wide range of natural language problems
can be viewed as disambiguating between a
small set of alternatives based upon the
string context surrounding the ambiguity
site. In this paper we demonstrate that
classification accuracy can be improved by
invoking a more descriptive feature set than
what is typically used. We present a
technique that disambiguates by learning
regular expressions describing the stnng
contexts in which the ambiguity sites
appear.

Introduction

Many natural language tasks are essentially n-
way classification problems, where classification
decisions are made from a small set of choices,
based upon the linguistic context in which the
ambiguity site occurs. Examples of such tasks
include: confusable word set disambiguation;
word sense disambiguation; determining such
lexical features as pronoun case and determiner
number for machine translation; part of speech
tagging; named entity labeling; spelling
correction; and some formulations of skeletal
parsing. Very similar feature sets have been
used across machine learning algorithms and
across classification problems. For example, in
confusable word set disambiguation, systems
typically use as features the occurrence of a
particular word within a window of +/- n words
of the target, and collocations based on the
words and part of speech tags of up to two
words to the left and two words to the fight of
the target.

Below we present a machine learning
algorithm that learns from a much richer feature
set than that typically used for classification in

natural language. Our algorithm learns rule
sequences for n-way classification, where the
condition of a rule can be a restricted regular
expression on the string context in which the
ambiguity site appears. We demonstrate that
using this more powerful feature space leads to
an improvement in disambiguation performance
on confusable words.

1 Previous Work: Richer Features

Most previous work applying machine learning
to linguistic disambiguafion has used as features
very local collocational information as well as
the presence of a word within a fixed window of
an ambiguity site. Indeed, one of the great
insights in both speech recognition and natural
language processing is the realization that fixed
local cues provide a great deal of useful
information.

While the n-gram reins supreme in
language modeling, there has been some
interesting work done building language models
based on linguistically richer features. Bahl,
Brown et al. (1989) describe a language model
that builds a decision tree that is allowed to ask
questions about the history up to twenty words
back. Saul and Pereira (1997) describe a
language model that can in essence skip over
uninformative words in the history. Della Pietra
et al. (1994) discuss an approach to language
modeling based on link grammars, where the
model can look beyond the two previous words
to condition on linguistically relevant words in
the history. The language model described by
Chelba and Jelinek (1998) similarly conditions
on linguistically relevant words by assigning
partial phrase structure to the history and
percolating headwords.

Samuellson, Tapanainen et al. (1996)
describe a method for learning a particular

Pattern-Based Disambiguation for Natural Language Processing

useful type of pattern, which they call a barrier.
Given two symbols X and Y, and a set of
symbols S, they learn conditions of the form:
take an action if there is an X preceded by a Y,
with no intervening symbols from S. In their
paper they demonstrate how such patterns can be
useful for part of speech tagging. Even-Zohar
and Roth (2000) show that by including
linguistic features based on relations such as
subject and object, they can better disambiguate
between verb pairs.

2 Definitions

Below we provide the standard definition for
regular expressions, and then define a less
expressive language formafism, which we will
refer to as reduced regular expressions. The
learning method we describe herein can learn
rules conditioned on any reduced regular
expression.

Regular Expression (RE): 1 Given a finite
alphabet E , the set of regular expressions over
that alphabet is defined as (Hopcroft and Ullman
1979):
(1) V a ~ E, a is a regular expression and
denotes the set {a}
(2) if r and s are regular expressions denoting the
languages R and S, respectively, then (r+s), (rs),
and (r*) are regular expressions that denote the
sets R ~_~ S, RS and R* respectively.

Reduced Regular Expression (R.RE): Given a
finite alphabet ~ , the set of reduced regular
expressions over that alphabet is defined as:

(1) V a ~ E:
a is an RRE and denotes the set {a}
a+ is an RRE and denotes the positive

closure of the set {a}
a* is an RRE and denotes the Kleene

closure of the set {a}
- a is an RRE and denotes the set ~ - a
~a+ is an RRE and denotes the positive

closure of the set Z - a
~a* is an RRE and denotes the Kleene

closure of the set E - a

(2) . is an RRE denoting the set E
(3) .+ is an RRE denoting the positive closure
of the set E
(4) .* is an RRE denoting the Kleene closure of
the set
(5) if r and s are RREs denoting the languages R
and S, respectively, then rs is an RRE denoting
the set RS.

Some examples of strings that are
regular expressions but not reduced regular
expressions include: (ab)*, a(b]c)d, (a (bc)+)*

Next, we need some definitions to allow
us to make reference to particular positions in a
collection of strings.

Corpus: A corpus is an ordered set of strings.
We will notate the jth String of a corpus C as
C[j].]C] is the number of strings in the corpus.
IqJ]l is the number of symbols in the jt~ string of
the corpus.

Corpus Position.'. A corpus position for a
corpus C is a tuple (j,k), meaning the k th symbol
in the jtb string in the corpus, with the
restrictions: 1 _< j _<[C [a n d 0 _< k _<[CU] [.

A Corpus Position Set is a set of corpus
positions.

Next, we define an RRE-Tree, the data
structure we will use in learning RREs.

RRE-Tree: An RRE-Tree over E is a tree
(V,E), where V is a set of tuples <v,S>, v being
a unique vertex identifier and S being a Corpus
Position Set, and E is a set of labeled directed
edges <vi,vj,label>, where vi and vj are vertex
identifiers, label ~ LABEL_SET and
LABEL SET = {dot, dot+, dot*} U
{a,a+,a*,~a,~a+,~a* I 'Va ~ E }.2

3 Rule Sequence Learning

Our implemented learner is based upon the
transformation-based learning paradigm (Bnll
1995). In this section we briefly review
transformation-based learning.

I In all of our formulations, we ignore expressions
denoting the empty set O and the set {e}. 2 We use "dot" for "."

2

(1) A start-state annotator, which assigns an
initial label to a string.
(2) A sequence of rules of the form: Change the
label of a string from m to n i f C(string), where
C is a predicate over strings and m,n ~ L.

A string is labelled by first applying the
start-state annotator to it, and then applying each
rule, in order.

To learn a transformation sequence, the
system begins with a properly labelled training
set. It then removes the labels and applies the
start-state annotator to each string. Then the
learner iteratively does the following:

(1) Find the best rule to apply to the training set.
(2) Append that rule to the end of the learned
transformation sequence.
(3) Apply that rule to the training set.

4.1 RRE-Tree Construction

: until the stopping criterion is met.

4 Learning RRE Rules

Below we will demonstrate how to learn
transformation sequences where the predicate
C(stfing) is of the form "Does RRE R apply to
the stnng?" We will show this for the binary
classification case (where ILl = 2).

In each learning iteration, we will
construct an RRE-Tree in a particular way, find
the best node in that RRE-Tree, and then return
the edge labels on the path from root to best
node as the learned RRE. The learner will learn
a sequence of rules of the form:

Change the label of a string from li to lj i f the
string matches reduced regular expression R.

Before proceeding, we need to specify
two things: the start-state annotator and the
goodness measure for determining what rule is
best. The system will use a start-state annotator
that initially labels all strings with the most
frequent label in the training set, and the
goodness measure will simply be the number of
good label changes minus the number of bad

label changes when a rule is applied to the
training set.

Take the following training set:

String # String True Label Init. Guess
1 a b c 0 1
2 a b b 1 1
3 b a a 1 1

Since 1 is the most frequent label in the
training set, the start-state annotator would
initially assign all three training set strings the
label 1, meaning stnng 1 would be incorrectly
labelled and strings 2 and 3 would be correct.
Now we want to learn a rule whose appfication
will best improve our labelling of the training
set.

We will first present an algorithm for
constructing an RRE-Tree for a training corpus,
and then trace through the appficadon of this
algorithm to our example training corpus above.
To simplify the presentation, we will limit
ourselves to learning rules for a weaker language
type, which we call Very Reduced Regular
Expressions (VRREs). The extension to RRE
learning is straightforward.

Very Reduced Regular Expression (VRRE):
Given a finite alphabet E , the set of very
reduced regular expressions over that alphabet is
defined as:

(1) 'v'a~ E: a is a VRRE and denotes the set
{a}
(2) . is a VRRE denoting the set g
(3) .* is a VRRE denoting the Kleene closure of
the set E
(4) if r and s are VRREs denoting the languages
R and S, respectively, then rs is a VRRE
denoting the set RS.

Say we have a training corpus C. For
every string C[j]~ C, Tmth[C[j]] ~ {0,1 } is the
true label of C[j] and Guess[C[j]] is the current
guess of the label of C[j]. The algorithm for one
iteration of rule learning follows.

Main() {

3

In string classification, the goal is to
assign the proper label to a string, from a
prespecified set of labels L. A transformation-
based system consists of:

(1) Create root node with corpus position set S =
{0 ,0) [j = 1 .. ICI). Push this node onto
processing stack (STACK).
(2) While (STACK not empty) {

STATE = pop(STACK);
Push(dotexpand(STATE),STACK);
Push(dotstarexpand (STATE), STACK);
Va~ Z

Push(atomexpand(a, STATE),STACK)
}
(3) Find best state S in the RRE-tree. Let R be
the RRE obtained by following the edges from
the root to S, outputting each edge label as the
edge is traversed. Return either the rule "0--~ 1 if
R" or "1--)0 if R" depending on which is
appropriate for state S.
}

dotexpand(STATE) {
create new state STATE"
let P be the corpus position set of STATE
P' = {0,k) I (j,k-1) E P and k-1 ~ ICorpusfj]l}
If (P' not empty) {

Make P' the corpus position set of
STATE'

Add (STATE,STATE' ,DOT) to tree
edges

return STATE'
}

Else return NULL
}

dotstarexpand(STATE) {
create new state STATE'
let P be the corpus position set of STATE
P' = {(j,k) [(j,m) ~ P, m_< k, and k _<

ICorpusU]l}
I f (P ' ¢ P) {

Make P' the corpus position set of STATE'
Add (STATE,STATE',DOT*) to tree edges
return STATE'

}
Else return NULL
}

atomexpand(a, STATE) {
create new state STATE'
let P be the corpus position set of STATE
P' = {(j ,k) I (j ,k-1) E P, k-1 ¢ Icorpusfj]l, and

the k-1 st symbol in Corpus[j] is a}
If (P' not empty) {

Make P' the corpus position set of
STATE

Add (STATE,STATE',a) to tree edges
return STATE'

}
Else return NULL
}

Each state S in the RRE-tree represents the RRE
corresponding to the edge labels on the path
from root to S. For a state S with corpus
position set P and corresponding RRE R, the
goodness of the rule: 0 ~ 1 if R, is computed asp

Goodness_0_to_l (S) =

(J,*~v S c o r e _ 0 t o 1 ((j,k))

where

S c o r e _ 0 _ t o _ l ((j ,k)) =

1 i f k = Icfj]l
^ G u e s s [j] = 0

^ T ru th [j] = 1

-1 i f k = IC[j]l

^ G u e s s [j] = 0

A Tru th [j] = 0

0 o t h e r w i s e

Similarly, we can compute the score for the
rule : 1@0 if R. We then define Goodness(S) =
m a x (G o o d n e s s 0 _ t o l(S),Goodness_l_to_0(S))

Returning to our example, for the 3
strings in this training corpus, the root node of
the RRE-Tree would have the corpus position
set: {(1,0),(2,0),(3,0)}. The root node
corresponds to the null RRE, and so the position
set consists of the beginning of each string in the
training set. In figure 1 (at the end of the paper)
we show a partial RRE-Tree. If we follow the
edge labelled "dot" from the root node, we see it
leads to a state with position set
{(1,1),(2,1),(3,1)}, as a dot advances all
positions by one.

3 This assumes an RRE must match the entire string
in order to accept it.

4

The square state in figure 1 represents
the RRE: "dot* c" and the triangular state
represents "a dot c". Both the square and
triangular states have a corpus position set
consisting of only one corpus position, namely
the end of stnng 1, and both would have a
goodness score of 1 for the corresponding l&0
rule. If We prefer shorter rules, we will learn as
our first rule in the rule list: l & 0 if dot* c.
After applying this rule to the training corpus, all
strings will be correctly labelled and training
will terminate. If the stopping criterion were not
met, we would apply the learned rule to change
the values of our Guess array, then create a new
RRE-tree, find the best state in that tree, and so
o n .

It is easy to extend the above algorithm
to learn RREs instead of VRREs. Note, for
instance, that the corpus position set for a state S
with incoming edge labelled ~a can be found by
taking the position set for the sibling of S with
incoming edge labelled dot and deleting those
corpus positions that are found in the position
set for the sibling of S with incoming edge
labelled a.

..?

5 Optimizations

The algorithm above is exponential. There are
some opfirnizations we can perform that make it
feasible to apply the learning algorithm.

Optimization 1: Pruning states we know
cannot be on the path from root to the best state.
Define GoodPotential 0 to I(S) as the number
of sentences s in the training corpus for which
Guess[s]=0, Truth[s]= 1 and
3k : (s, k) ~ corpus_position_set(S). We can

similarly define GoodPotential 1 to0(S), and
then define

GoodPotential(S)=
max(GoodPotential 0 to_l(S),

GoodPotential 1 to O(S))

As we construct the RRE-tree, we keep
track of the largest Goodness(S) we have
encountered. If that value is X, then for a state
S', if GoodPotential(S')_<X, it is impossible for
any path through S' to reach a state with a better
goodness score than the best found thus far. We

can check this condition when pushing states
onto the stack, and when popping off the stack
to be processed, and if the pruning condition is
met, the state is discarded.

Optimization 2: Merging states with identical
corpus position sets. If we are going to push a
state onto the stack when a state already exists
with an identical corpus position set, we do not
need to retain both states. We may use
heuristics to decide which of the states with
identical corpus position sets we should keep
(such as choosing the one with the shortest path
to the root).

6 Experiments

To test whether learning RREs can improve
disambiguafion accuracy, we explored the task
of confusion set disambiguation (Golding and
Roth 1999). We trained and applied two
different rule sequence learners, one which used
the standard feature set for this problem (e.g. the
identical feature set to that used in (Golding and
Roth 1999) and (Mangu and Brill 1997) and
described in the introduction, and one which
learned RR.Es. 4 Because we wanted to
deterinine what could be gained by using RREs,
we ran an ablation study where we kept
everything else constant across the two runs, and
did not use performance enhancing techniques
such as parameter tuning on held out data or
classifier combination.

Both learners were given a window of
+/- 5 words surrounding the ambiguity site.
Context was not allowed to cross sentence
boundaries. The training and test set were
derived by finding all instances of the
confusable words in the Brown Corpus, using
the Penn Treebank parts of speech and
tokenization (Marcus, Santorini et al. 1993), and
then dividing this set into 80% for training and
20% for testing.

For the RRE-based system, we mapped
the +/- 5 word window of context into a string as
follows (where wi is a word and ti is a part of
speech tag):

4 The set of RREs is a superset of what can be
learned using the standard feature set.

5

Wi. 5 ti. 5 Wi-4 ti. 4 Wi. 3 ti. 3 Wi. 2 ti.2. Wi. I ti. 1 M I D D L E

Wi+l ti+l wi+2 ti+2 wi+3 ti+3 wi+4 ti+4 wi+5 ti+5

where MIDDLE is the ambiguity site.
Both for execution time and space

considerations for the learner and for fear of
overtraining, we put a bound on the length of the
RRE that could be learned, s We define an
atomic RRE as any RRE derived without any
concatenation operations. Then the length of an
RRE is defined as the number of atomic RREs
which that RRE is made up of. The atom
"MIDDLE" is not counted in length.

Below we give two examples of rules
that were learned for one confusion se t : 6

(1) past ~ passed i f .* ~DT MIDDLE D O T IN
(2) past ~ passed if (~to)* NN MIDDLE

The first rule says to change the
disambiguation guess to << passed >> if the word
before is not a determiner and the word after is a
preposition. This matches contexts such as : <<
... they passed by ... >> while not matching
contexts such as : << ... made in the past by ... >>
T h e second rule captures contexts such as : << ...
the hike passed the campground ... >~ while not
matching contexts such as : << ... want to take a
hike past the campground.. . >>

In Table 1, we show test set results from
running the rule sequence learner with both the
standard set of features and with RRE-based
features. 7 The results are sorted by training
corpus size, with the raise/rise training corpus
being the smallest and the then/than training
corpus being the largest. Baseline accuracy is

5 Note that this does not imply a bound on the length
of a string to which an RRE can apply.
6 DT= determiner, IN = preposition, biN = singular
noun.

7 While these results look worse than those achieved
by other systems, as reported in (Golding and Roth,
1999), we used different data splits and tokenization.
Our baseline accuracies are significantly lower than
the baselines for their test sets. If we account for this
by instead measuring percent error reduction
compared to baseline accuracy, then our average
reduction is better than that reported for the BaySpell
system, but worse than that of WinSpell. If we add
voting to our system (WinSpell employs voting), then
we attain results on par with WinSpell.

the accuracy attained on the test set by always
picking the word that appears more frequently in
the training set.

Conf. Pair Baseline Standard
Raise/Rise 53.6 75.0
Pnncipal/Pfinciple
Accept/Except
Affect/Effect

64.5 80.6
60.0 94.5
86.8 94.3

Lead/Led 53.6 89.3
Piece/Peace 51.1 83.0
Weather/Whether 79.7 84.6
Quiet/Quite 83.1 100
County/Country 75.6 78.2
Past/Passed 63.7 88.1
Amount/Number 74.1 83.3

96.1 Begin/Being
Among/Between
Then/Than

90.8
69.2 76.8
62.8 93.1

RRE
78.6
83.9
90.9
94.3
89.3
83.0
89.2
98.5
83.3
89.3
87.0
96.7
80.8
93.4

Table 1 Test Set Results: Standard vs RRE-
Based Features

In Table 2 we see that the RRE-based
system outperforms the standard system on 9 o f
the confusion sets, the standard system
outperforms the RRE-based system on 2 and the
two systems attain identical results on 3. We see
that the relative performance of the RRE-based
learner is better overall on the larger training
sets than on the smaller sets. This is to be
expected, as more data is needed to support
learning the more expressive RRE-based rules.

RRE Standard IdenticM
Be~er Better

All 9 2 3
Confusables

1 3 7 Smallest
Sets
7 Largest
Sets

1 0

Table 2 Performance Analysis Across Different
Sets

Pooling all of the test sets into one big
set, the RRE-based system achieves an overall
accuracy of 89.9%, compared to 88.5% for the
standard learner. Weighting each confusion pair
equally, the RRE-based system achieves an

6

overall accuracy of 88.4%, compared to 86.9%
for the standard learner.

Conclusions

The RRE-based rule sequence learner presented
above is able to learn rules using more
expressive conditions than what is typically used
for disambiguation tasks in natural language
processing. These regular-expression based
conditions lead to higher accuracy than what is
achieved when using the same learning
paradigm with the traditionally used feature set.
We hope that other learning algorithms can
benefit from the ideas presented here and that
the idea of learning RREs can be generalized to
allow other learners to incorporate more
powerful features as well.

References

Bahl, L., P. Brown, et al. (1989). "'A Tree-Based
Language Model for Natural Language Speech
Recognition." IEEE Transactions on Acoustics,
Speech and Signal Processing 37: 1001-1008.

Brill, E. (1995). "Transformation-Based error-
dnven learning and natural language processing:
a case study in part of speech tagging."
Computational Linguistics.

Chelba, C. and F. Jelinek (1998). Exploiting
Syntactic Structure for Language Modeling.
Proceedings of Coling/ACL, Montreal, Canada.

Even-Zohar, Y. and D. Roth (2000). A
Classification Approach to Word Prediction.
Proceedings of NAACL, Seattle, Wa.

Golding, A. and D. Roth (1999). "A Winnow-
Based Approach to Context-Sensitive Spelling
Correction." Machine Learning.

Hopcroft, J. and J. Ullman (1979). Introduction
to Automata Theory, Languages and
Computation, Addison-Wesley.

Mangu, L. and E. Brill (1997). Automatic Rule
Acquisition for Spelling Correction. Proceedings
of the International Conference on Machine
Learning, Nashville, Tn.

Marcus, M., B. Santofini, et al. (1993).
"Building a large annotated corpus of English:
the Penn Treebank." Computational Linguistics.

Pietra, S. D., V. D. Pietra, et al. (1994).
Inference and Estimation of a Long-Range
Trigram Model. Proceedings of the Second
International Colloquium on Grammatical
Inference, Alicante, Spain.

Samuellson, C., P. Tapanainen, et al. (1996).
Inducing Constraint Grammars. Grammatical
Inference: Learning Syntax from Sentences. L.
Miclet and C. D. 1. Huguera, Springer. 1147.

Saul, L. and F. Pereira (1997). Aggregate and
mixed-order Markov models for statistical
language processing. Proceedings of the Second
Conference on EMNLP.

7

(2,1)

(2,0)

(1,O),OA),
(1,2),(1,3),
(2,o),(2,1),
(2,2),(2,3),
(3,0),(3,1),
(3,2),(3,3)

C
D

a
~ ~ ~ (2,2)

b

-@
Figure I : A Partial RRE-Tree

8

