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A b s t r a c t  

This paper argues that  a finite-state 
language model with a ternary expres- 
sion representation is currently the most 
practical and suitable bridge between 
natural language processing and infor- 
mation retrieval. Despite the theoreti- 
cal computational inadequacies of finite- 
state grammars, they are very cost ef- 
fective (in time and space requirements) 
and adequate for practical purposes. 
The ternary expressions that  we use 
are not only linguistically-motivated, but  
also amenable to rapid large-scale index- 
ing. REXTOR (Relations EXtracTOR) is 
an implementation of this model; in one 
uniform framework, the system provides 
two separate grammars for extracting 
arbitrary patterns of text  and building 
ternary expressions from them. These 
content representational structures serve 
as the input to our ternary expressions 
indexer. This approach to natural lan- 
guage information retrieval promises to 
significantly raise the performance of 
current systems. 

1 I n t r o d u c t i o n  

Traditional information retrieval (IR) has been 
built on the "bag-of-words" assumption, which 
equates the weighted component keywords of a 
document with its semantic content. Obviously, 
a document is much more than the sum of its in- 
dividual keywords. Although keywords may offer 
some indication of "meaning," they alone cannot 
capture the richness and expressiveness of natu- 
ral language. Consider the following sets of sen- 
tences/phrases tha t  have similar word content, 
but (dramatically) different meanings: 1 

IExamples taken from (Loper, 2000) 

(1) The big man ate the dog. 
(1') The big dog ate the man. 
(2) The meaning of life 
(2') A me~ningfll] life 
(3) The bank of the river 
(3') The bank near the river 

Due to the inability of keywords to capture the 
"meaning" of documents, a traditional informa- 
tion retrieval system (i.e., one using the bag-of- 
words paradigm) will suffer from poor precision in 
response to a user query accurately and precisely 
formulated in natural  language. 

The application of natural  language process- 
ing (NLP) techniques to information retrieval 
promises to generate representational structures 
that  better  capture the semantic content of docu- 
ments. In particular, syntactic analysis can high- 
light the relationships between various terms and 
phrases in a sentence, which will allow us to distin- 
guish between the example pairs given above and 
answer queries with higher precision than tradi- 
tional IR systems. 

However, a syntactically-informed representa- 
tional structure faces the problem of Hnguistic 
variations, the phenomenon in which similar se- 
mantic content may be expressed in different sur- 
face forms. Consider the following sets of sen- 
tences that  express the same meaning using dif- 
ferent constructions: 

(4) What is Bill Gates' net worth? 
(4')What is the net worth of Bill Gates? 
(5) John gave the book to Mary. 
(5') John gave Mary the book. 
(5") Mary was given the book by John. 
(6) The president surprised the country with 
his actions. 
(6') The president's actions surprised the 
country. 
(7) Over 22 million people live in Taiwan. 
(7') The population of Taiwan is 22 million. 

An effective linguistically-motivated informa- 
tion retrieval system must not only handle rel- 
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atively simple syntactic variations (e.g., (4) and 
(5)), alternate realization of verb arguments (e.g., 
(6) and (6')), but also more complicated semantic 
variations (e.g., (7) and (7')). This can be ac- 
complished by linguistic normalization, a process 
by which linguistic variants that contain the same 
semantic content are mapped onto the same rep- 
resentational structure. 

The precision of information retrieval systems 
can be dramatically improved if they index not 
only single terms, but normelized representational 
structures derived from language. However, the 
optimal structure of this representation and the 
efficient generation of these structures remains an 
open research problem. 

This paper argues that, for the purposes of 
information retrieval systems, the most suitable 
representational structure of document content is 
ternary expressions (compared to, for example, 
keywords, trees or case frames). Ternary (three- 
place) expressions may be thought of as typed 
binary relations (e.g., subject-relation-object) or 
two-place predicates (e.g., transitive verbs like 
'hit'); they are linguistically-motivated and effi- 
cient to index. Also, for information retrieval, a 
finite-state grammar is the most practical and cost 
effective method by which to extract these ternary 
expressions from documents. Combined together, 
a finite-state language model and ternary expres- 
sion representation provide a convenient and pow- 
erful framework for integrating natural language 
processing with information retrieval. 

REXTOR (Relations EXtracTOR) is a docu- 
ment content analysis system designed to unify 
and generalize many previous natural language 
information retrieval techniques into one single 
framework. The system provides two separate 
grammars: one for extracting arbitrary entities 
from documents, and the other for building re- 
lations from the extracted items. REXTOI~ also 
provides a playground and testbed for future ex- 
perimentation in linguistically-motivated indexing 
schemes. 

2 M o t i v a t i o n  

We believe that, for humans, natural language is 
the best mechanism for information access. It is 
intuitive, easy to use, rapidly deployable, and re- 
quires no specialized training, 

The REXTOR System builds on the experi- 
ence of START (SynTactic Analysis using Re- 
versible Transformations), a natural language sys- 
tem available for question answering on the World 
Wide Web. 2 Since December, 1993, when it first 

2hZZp :/[~ww. ai .mit. edu/projects/infolab 

came online, START has engaged in millions of ex- 
changes with hundreds of thousands of people all 
over the world, supplying users with knowledge 
regarding geography, weather, movies, and many 
many other areas. Despite the successes of START 
in serving actual users, its domain of knowledge is 
relatively small and expanding its knowledge base 
is a time-consuming task. The goal of REXTOR is 
to overcome this bottleneck and to provide a gen- 
eral framework for natural-language information 
retrieval. REXTOR not only draws its inspiration 
from START (in providing question answering ca- 
pabilities), but also borrows a simplified form of 
its representational structures (Katz, 1980; Katz, 
1990). 

The START System (Katz, 1990; Katz, 1997) 
analyzes English text and builds a knowledge base 
from information found in the text. The knowl- 
edge is expressed in the form of embedded ternary 
expressions (T-expressions) - -  subject-relation- 
object triples where the subject and object can 
themselves be ternary expressions. For exam- 
ple, "The population of Zimbabwe is 11,044,147" 
would be represented as two ternary expressions: 

[POPULATION-1 IS 11044147] 
[POPULATION-1 RELATED-T0 ZIMBABWE] 

Experience from START has shown that a robust 
full-text natural language question-answering sys- 
tem cannot be realistically expected any time 
soon. Numerous problems such as intersenten- 
tial reference, paraphrasing, summarization, com- 
mon sense implication, and many more, will take 
a long time to solve satisfactorily. In order to by- 
pass intractable complexities of language, START 
uses computer-analyzable natural language anno- 
tations, which consist of simplified English sen- 
tences and phrases, to describe various informa- 
tion segments (which may be text, images, or even 
video and other multimedia content). These nat- 
ural language annotations serve as metadata and 
inform START regarding the type of questions that 
a particular information segment is capable of an- 
swering (Katz, 1997). By performing retrieval on 
natural language annotations, the system is able 
to provide knowledge that it may not be able to 
analyze itself (either language that is too com- 
plex or non-textual segments). Because these an- 
notations must be manually generated, expand- 
ing START'S knowledge base is relatively time- 
intensive. 

REXTOR attempts to eliminate the need for hu- 
man involvement during content analysis, and also 
aims to serve as the foundation of a natural lan- 
guage information retrieval system. Ultimately, 
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we hope that REXTOR will serve as a stepping 
stone towards a comprehensive system capable of 
providing users with "just the right information" 
to queries posed in natural language. 

3 P r e v i o u s  W o r k  

The concept of indexing more than simple key- 
words is not new; the idea of indexing (parts 
of) phrases, for example, is more than a decade 
old (Fagan, 1987). Arampatzis (1998) introduced 
the phrase retrieval hypothesis, which asserted 
that phrases are a better indication of document 
content than keywords. Several researchers have 
also explored different techniques of linguistic nor- 
realization for information retrieval (Strzalkowski 
et al., 1996; Zhai et al., 1996; Arampatzis et 
al., 2000). The performance improvements were 
neither negligible nor dramatic, but despite the 
lack of any significant breakthroughs, the au- 
thors affirmed the potential value of linguistically- 
motivated indexing schemes and the advantages 
they offer over traditional IR. 

Previous research in linguistically motivated 
information retrieval concentrated primarily on 
noun phrases and their attached prepositional 
phrases. Techniques that involve head/modifier 
relations have been tried, e.g., indexing adjec- 
tive/noun and noun/right adjunct pairs (which 
normalizes variants such as "information re- 
trievai" and "retrieval of information"). How- 
ever, there has been little experimentation with 
other types of linguistic relations, e.g., apposi- 
tives, predicate nominatives (i.e., the i s - a  rela- 
tion), predicate adjectives (i.e., the has-proper ty  
relation), etc. Furthermore, indexing of word 
pairs and phrases in many previous systems was 
accomplished by converting those representations 
into lexical items and atomic terms, indexed in 
the same manner as single words. The treat- 
ment of these representational structures using a 
restrictive bag-of-words paradigm limits the type 
of queries that may be formulated. For example, 
treating adjective/noun pairs ([adj., noun]) as lex- 
ical atoms renders it impossible to find the equiv- 
alent of "all big things," corresponding to the pair 
[big, *]. 

The extraction of these relations from docu- 
ments has been relatively inefficient and unsys- 
tematic. One approach is to first parse the 
document using a full-text parser, and then ex- 
tract interesting relations from the resulting parse 
tree (Fagan, 1987; Grishman and Sterling, 1993; 
Loper, 2000). This approach is slow and inefficient 
because full-text parsing is very time-intensive. 
Due to current limitations of computational tech- 

nology, only a small fraction of the information 
gathered by a full parser can be efficiently indexed. 
For the most part, relations that can be effec- 
tively utilized for information retrieval purposes 
only occupy a few nodes of a (possibly dense) 
parse tree; thus, most of the knowledge gathered 
by the parser is thrown away. Also, extracting 
non-linguistic relations from parse trees is very 
difficult; many interesting relations (from an IR 
point of view) have no linguistic foundation, e.g., 
adjacent word pairs. The other approach to ex- 
tracting relations from text is to build simple fil- 
ters for every new relation. This approach is un- 
systematic, and does not allow for rapid addition 
of new relations to a system. 

The REXTOR System utilizes an integrated 
model to systematically extract arbitrary textual 
patterns and relations (ternary expressions) from 
documents. The concept of coupling structure- 
building actions with parsing originated with aug- 
mented transition networks (ATNs)(Thorne et al., 
1968; Woods, 1970). Similarly, PLNLP (Heidorn, 
1972; Jensen et al., 1993) is a programming lan- 
guage for writing phrase structure rules that in- 
clude specific conditions under which the rule can 
be applied. These rules may also be augmented 
by structure-building actions that are to be taken 
when the rule is applied. However, these sys- 
tems that attempt full-text parsing are less effi- 
cient for information retrieval applications due to 
the long time necessary to generate full linguistic 
parse trees. REXTOR was designed with a simple 
language model and an equally simple, yet expres- 
sive, representation of "meaning." 

4 B r i d g i n g  N a t u r a l  L a n g u a g e  a n d  
I n f o r m a t i o n  R e t r i e v a l  

In order to bridge the gap between natural lan- 
guage and information retrieval, natural language 
text must be distilled into a representational 
structure that is amenable to fast, large-scale in- 
dexing. We argue that a finite-state model of nat- 
ural language with ternary expressions is currently 
the most suitable combination for this task. 

4.1 F in i te -Sta te  Language  Mode l  

Despite its limitations, a finite-state grammar 
seems to provide the best natural language model 
for information retrieval purposes. One of the 
most notable computational inadequacies of the 
finite-state model is the absence of a pushdown 
mechanism to suspend the processing of a con- 
stituent at a given level while using the same 
grammar to process an embedded constituent 
(Woods, 1970). Due to this inadequacy, certain 
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English constructions, such as center embedding, 
cannot be described by any finite-state gram- 
mar (Chomsky, 1959a; Chomsky, 1959b). How- 
ever, Church (1980) demonstrated that the finite- 
state language model is adequate to describe a 
performance model of language (i.e., constrained 
by memory, attention, and other realistic limi- 
tations) that approximates competence (i.e., lan- 
guage ability under optimal conditions without re- 
source constraints). Many phenomena that can- 
not be handled by fiuite-state grammars are awk- 
ward from a psycholinguistic point of view, and 
hence rarely seen. More recently, Pereira and 
Wright (1991) developed formal methods of ap- 
proximating context-free grammars with finite- 
state grammars, s Thus, for practical purposes, 
computationally simple finite-state grammars can 
be utilized to adequately model natural language. 

Empirically, the effectiveness of the finite- 
state language model has been demonstrated in 
the Message Understanding Conferences (MUCs), 
which evaluated information extraction (IE) sys- 
terns on a variety of domain-specific tasks. The 
conferences have shown that superficial parsing 
using finite-state grammars performs better than 
deep parsing using context-free grammars (at least 
under the current constraints of technology). The 
NYU team switched over from a system that per- 
formed full parsing (PROTEUS) in MUC-5 (Gr- 
ishman and Sterling, 1993) to a regular expres- 
sion matching parser in MUC-6 (Grishman, 1995). 
Full parsing was slow and error-prone, and the 
process of building a full syntactic analysis in- 
volved relatively unconstrained search which con- 
sumed large amounts of both time and space. The 
longer debug-cycles that resulted from this trans- 
lated into fewer iterations with which to tune the 
system within a given amount of time. Further- 
more, the complexity of a full context-free gram- 
mar contributed to maintenance problems; com- 
plex interactions within the grammar prevented 
rapid updating of the system to handle new con- 
structions. 

Finite-state grammars have been used to ex- 
tract entities such as proper nouns, names, lo- 
cations, etc., with relatively high precision. To 
a lesser extent, these grammars have proven to 
be effective in identifying syntactic constructions 
such as noun phrases and verb phrases. FASTUS 
(Hobbs et al., 1996), the most notable of these sys- 
tems, is modeled after cascaded, nondeterrninistic 
finite-state automata. The finite-state transduc- 
ers are "cascaded" in that they are arranged in 

SHowever, these approximations overgenerate, al- 
though in predictable, systematic ways. 

series; each one maps the output structures from 
the previous transducer into structures that com- 
prise the input to the next transducer. 

There are many similarities between informa- 
tion extraction and building effective representa- 
tional structures for information retrieval. Both 
tasks involve identifying entities (e.g., phrases) 
and the relationships between those entities. 
Thus, the application of proven information ex- 
traction techniques (i.e., finite-state technology) 
to information retrieval offers promise in raising 
the performance of IR systems. 

4.2 Ternary  Express ions  

Ternary (three-place) expressions currently ap- 
pear to be the most suitable representational 
structure for meaning extracted from text. They 
may be intuitively viewed as subject-relation- 
object triples, and can easily express many types 
of relations, e.g., subject-verb-object relations, 
possession relations, etc. From a syntactic point of 
view, ternary expressions may be viewed as typed 
binary relations. Given the binary branching hy- 
pothesis of linguistic theory, ternary expressions 
are theoretically capable of expressing any arbi- 
trary tree - -  thus, ternary expressions are com- 
patible with linguistic theory. From a semantic 
point of view, ternary expressions may be viewed 
as two-place predicates, and can be manipulated 
using predicate logic. Finally, ternary expressions 
are highly amenable to rapid large-scale indexing, 
which is a necessary prerequisite of information re- 
trieval systems. Although other representational 
structures (e.g., trees or case frames) may be bet- 
ter adapted for some purposes, they are much 
more difficult to index and retrieve efficiently due 
to their size and complexity. 

In fact, indexing linguistic tree structures has 
been attempted (Smeaton et al., 1994), with very 
disappointing results: precision actually decreased 
due to the inability to handle variations in tree 
structure (i.e., the same semantic content could 
be expressed using different syntactic structures), 
and to the poor quality of the full-text natural lan- 
guage parser, which was also rather slow. Despite 
recent advances, full-text natural language parsers 
are still relatively error-prone; indexing incorrect 
parse trees is a source of performance degrada- 
tion. Furthermore, matching trees and sub-trees is 
a computationally intensive task, especially since 
full linguistic parse trees may be relatively deep. 
Relations are easier to match because they are 
typically much simpler than parse trees. For ex- 
ample, the tree 

[[shiny happy people ] [of [Wonderland]]] 
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may be "flattened" into three relations: 

< shiny describes people > 

< happy describes people > 

< people related-to Wonderland > 

Indexing chse frames has also been attempted 
(Croft and Lewis, 1987; Loper, 2000), but with 
limited success. Full semantic analysis is still 
an open research problem, especially in the gen- 
eral domain. Since full semantic analysis can- 
not be performed without full-text parsing, case 
frame analysis inherits the unreliability of current 
parsers. Furthermore, semantic analysis requires 
extensive knowledge in the lexicon, which is ex- 
tremely time-intensive to construct. Finally, due 
to the complex structure of case frames, they are 
more difficult to store and index than ternary ex- 
pressions. 

Since ternary expressions are merely three-place 
relations, they may be indexed and retrieved much 
in the same way as rows within the table of a rela- 
tional database; 4 hence, well-known optimizations 
for databases may be applied for extremely high 
performance. 

Previous linguistically-motivated indexing 
schemes may easily be reformulated using ternary 
expressions. For example, indexing adjacent 
word pairs consists of indexing adjacent words 
with the adjacent  relation. In fact, all pairs 
(e.g., adjective-noun, head-modifier) can be 
reformulated as ternary expressions by assigning 
a type to the pair. This finer granulaxity allows 
the capture of more intricate relations between 
words in a document. 

5 T h e  R E X T O R  S y s t e m  

Using its finite-state language model, the REXTOR 
System generates a set of ternary expressions 
that correspond to content of a part-of-speech- 
tagged input document. Currently, the Brill Tag- 
ger (Brill, 1992) (with minor postprocessing) is 
used for the part-of-speech (POS) tagging. The 
relations construction process consists of two dis- 
tinct processes, each guided by its own externally 
specified grammar file. Extraction rules are ap- 
plied to match arbitrary patterns of text, based 
either on one of thirty-nine POS tags or on exact 
words. Whenever an item is extracted, a corre- 
sponding relation rule is triggered, which handles 
the actual generation of the ternary expressions 
(relations). 

4In fact, our first implementation of a ternary ex- 
pressions indexer used a SQL database. 

5.1 E x t r a c t i o n  R u l e s  

Extraction rules are used to extract arbitrary pat- 
terns of text according to a grammar specification. 
The REXTOR grammar is written as regular ex- 
pression rules, which are computationally equiv- 
alent to finite-state automata, s Writing gram- 
mar rules in this fashion allows for perspicuity, 
the property whereby permitted types of construc- 
tions are readily apparent from the rules. Such 
a human-readable formulation simplifies mainte- 
nance of the grammar. 

The extraction stage of the REXTOR System 
performs a no-lookahead left-to-right scan of ev- 
ery input sentence, identifies the longest match- 
ing pattern (from any grammar rule), reduces the 
input sequence based on the matched rule, and 
continues with the next unmatched word. If a 
word cannot be included in any grammar rule, it 
is skipped. 

An extraction rule takes the following form: 

En¢ityType := template; 

The rule can be read as Ent±tyType is defined 
as template. A successful match of the pattern in 
template signifies a successfully extracted entity. 
The template  consists of a series of legal tokens, 
which are shown in Table 1. In addition, token 
modifiers (also in Table 1) can alter the meaning 
of the immediately preceding token. Tokens sur- 
rounded by curly braces ({}) are saved as bound 
variables, which can be later utilized to build re- 
lations (ternary expressions). These variables are 
referenced numerically starting at zero (e.g., the 
0th bound variable). 

5.2 Rela t ion  Rules  

A relation rule is triggered by the successful ex- 
traction of a particular entity (Ent£tyType). The 
relations grammar directs the construction of the 
actual ternary expression. A relation rule takes 
the following form: 

EntityType :=> <atoml atom2 acorn3>; 

The EntityType is the trigger for the relation, 
i.e., the rule is applied whenever a string of that 
type is extracted. The right hand side of the re- 
lation rule is the ternary expression to be gener- 
ated, which is a triple composed of three atoms. 
Valid atoms are shown in Table 2. They are either 
string literals or they manipulate the bound vari- 
ables saved from the extraction process in some 
manner. 

5For an algorithm converting regular expressions 
to nondeterministic finite-state automata, please refer 
to (Aho et al., 1988), Chapter 3. 
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POS 
POS [string] 
Enl;il~yType 
(tokeno I tokenx I . .  • ) 

Descr ip t ion  
This matches any word tagged as the part-of-speech POS. 
This matches a specific word (string) of a specific part-of-speech (POS). 
This matches any extracted string of type  Ent i tyType.  
This expression matches any one of the  al ternative tokens given within 
the parentheses. Matches are a t t empted  in the  order in which they are 
written, e.g., the first token is tr ied first. 

T o k e n  M o d i f i e r  Descr ip t ion  
This modifier matches zero or more occurrences of the  previous token. 
This modifier matches zero or one occurrence of the previous token. 
This modifier matches one or more occurrences of the previous token. 

Table  1: Val id  tokens  a n d  token  modif ie rs  for e x t r a c t i o n  rules .  

M o d i f i e r  
I n ]  

{~ 

[Q ,En t i tyType l  [3] . . . .  

( al ternativex l alternative21 • • • ) 

' s t r ing '  

Descr ip t ion  
Evaluates to the n th  bound variable of the trigger Ent i tyType,  
interpreted as a string. 
Evaluates to the n th  bound variable of the  trigger Ent i tyType,  
interpreted as a list of strings. The extract ion rule token inside 
the bound variable is s t r ipped of its outermost  * or +, and the 
bound variable is broken into a list according to this pat tern.  For 
example, {JJX*} is interpreted as a list of JJX, or adjectives. 
This expression extracts  a bound variable nested inside other 
bound variables. The  i th  bound variable of trigger FaxtityType 
is extracted; if this  i tem is of type  FEntityTypel, then the j t h  
bound variable is extracted (the expression returns f a l s e  if the 
entity types do not  match); each comma separated unit  is inter- 
preted in this manner,  up to an arb i t ra ry  depth.  
This compound expression evaluates to the disjunction of an 
arbi trary number of valid a toms (as defined in this table).  Each 
alternative is evaluated in a left to right order; the disjunction 
evaluates to the first al ternative tha t  returns a non-empty string. 
A literal string. 

Tab le  2: Val id a toms  for t h e  r e l a t ion  rules .  

E z t r a c t i o n  Rules :  

R e l a t i o n  Rules:  

NounGroup := (Pi~.PZIDT)? {JJX*} {(IflfPXINI~IXIINlfPSII~INS)+}; 
PrepositionalPhrase : = IN {NounGroup} ; 
ComplexNounGroup := {NounGroup} {PrepositionalPhrase}; 
NounGroup :=> <{0} 'describes ~ [I]>; 
ComplexNounGroup : ffi> 

< [0] ,Nou~Group [1] 
related-to ~ 
[I], PrepositionalPhrase [0] ,NounGroup [1] >; 

Figu re  1: F .xample  of  r e l a t ion  a n d  ex t r a c t i on  rules.  (PRPZ is the part-of-speech tag for possessive pronouns, 
DT for determiners, JJX for adjectives, J JR for comparative adjectives, JJS for superlative adjectives, NNX for 
singular or mass nouns, NNS for plural nouns, NNPX for singular proper nouns, NNPS for plural proper  nouns, IN 
for prepositions.) 
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5.3 Examples 

A few extraction and relation rules are given 
in Figure 1. The first extraction rule defines 
a NounGroup as a sequence consisting of: an 
optional possessive pronoun or determiner, any 
number of adjectives, one or more nouns (of 
any type). Also, the sequence of adjectives is 
saved as the 0th bound variable, and the se- 
quence of nouns is saved as the 1st bound vari- 
able. The rules for PrepositionalPhrase and 
ComplexNounGroup can be interpreted similarly. 

Consider the following noun phrase: 

the big, bad wolf of the dark forest 

REXTOR recognizes two NounGroups in the 
above phrase: the big, bad wolf and the dark for- 
est. The corresponding relation rule triggers, and 
generates the following relations: 

< (big, bad) describes wolf > 
< (dark) describes forest > 

Note that the first bound variable in NounGroup 
is interpreted as a list; thus, the above two re- 
lations expand into three distinct relations when 
completely enumerated: 

< big describes wolf > 
< bad describes wolf > 

< dark describes forest > 

The ability to interpret bound variables as a list 
of strings allows for easy manipulation of repeated 
structure, like textual lists or enumerations. 

In addition, the entire noun phrase the big, bad 
wolf of the dark/forest will be recognized as a 
ComplexNounGroup. This will result in the fop 
lowing relation: 

< wolf related-to forest > 

The relation rule associated with 
ComplexNounGroup involves extracting nested 
bound variables. The first atom evaluates to 
the l th  bound variable (a NounGroup) inside 
the 0th bound variable inside the trigger item 
ComplexNounGroup. The third atom is similarly 
evaluated. 

6 Discussion 

Informal analysis of documents using REXTOR re- 
veals that it can potentially serve as an effective 
framework for extracting "meaning" from docu- 
ments. In particular, the system is capable of 
identifying the following types of linguistic con- 
structions and generating relations from them: 

• Simple sentences can be extracted by 
noting a simple NounGroup VerbGroup 

NounGroup pattern. From this, subject-verl>- 
object (SVO) relations can be derived. 

• Predicative nominatives can be recog- 
nized by identifying the "be" verb and the 
NounGroup directly following it. These con- 
structions may be useful in establishing onto- 
logical hierarchies, i.e., is-a trees. 

• Predicative adjectives can be recognized 
by the "be" verb and a succession of one or 
more adjectives (or adjectival phrase). They 
may provide addition information regarding 
the attributes of entities, e.g., has-property. 

• Appositives are characteristically offset by 
commas and usually contain a single noun 
phrase; thus, they can be recognized rela- 
tively easily. Common in prose, appositives 
offer a wealth of additional information re- 
garding various entities, e.g., location of sites, 
age or position of people, etc. 

• Prepositional phrases are relatively easy 
to extract, and may supply valuable relations 
that increase the precision of information re- 
trieval systems. Ternary expressions allow 
for a better representation of prepositional 
phrases (compared to pairs) because they al- 
low the preposition to more specifically de- 
termine the type of relation (thus, examples 
like "boat by the water" and "boat under 
the water," which have completely different 
meanings, may be indexed separately and dis- 
tinctly). 

However, the prepositional phrase attach- 
ment problem (in the general-domain case) 
is still an open research topic, and thus poses 
some problems to content analysis. Regard- 
less, for the purposes of information retrieval, 
it may be acceptable to err on the side of over- 
generation in considering attachment, i.e., 
enumerate all possible relations. This will 
no doubt generate a large number of (pos- 
sibly incorrect) relations, and more research 
is required to determine effective methods of 
controlling this explosion. 

• Relative clauses of some types can be iden- 
tiffed by a finite-state language model. They 
may supply additional useful SVO relations 
for indexing purposes. 

We believe that future breakthroughs in natu- 
ral language information retrieval will occur in the 
generation of meaningful relations. Although the 
finite-state language model of REXTOR is powerful 
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enough to extract many linguistically interesting 
constructions, the approach is not fundamentally 
new. What  differentiates our system from pre- 
vious work such as FASTUS (Hobbs et al., 1996) 
is that  REXTOR not only provides a mechanism 
for extraction, but also introduces the paradigm 
of ternary expressions to capture document con- 
tent  for information retrieval. The relations view 
of natural language documents is highly amenable 
to integration with information retrieval systems. 

Through a relations representation, REXTOR is 
able to distinguish the subtle differences in mean- 
ing between the pairs of sentences and phrases 
given in the introduction: 

(1) The man ate the dog. 
< man is-subject-of eat > 
< dog is-object-of eat > 

(I') The dog ate the man. 
< man is-object-of eat > 
< dog is-subject-of eat > 

(2) The meaning of life 
< meaning possessive-relation life > 

(2') A meaningful life 
< meaningful describes life > 

(3) The bank of the river 
< bank possessive-relation river > 

(3') The bank near the river 
< bank near-relation river > 

The ability to extract subject-verb-object re- 
lations, e.g., (1) and (1'), allows an IR system 
to distinguish between two very different state- 
ments. Similarly, REXTOR can differentiate be- 
tween prepositional phrases (2) and adjectival 
modification (2'). Although the system does not 
have any notion of semantics (e.g., word sense), 
syntax may offer crucial clues to meaning in cases 
such as (3) and (3'). 

Similarly, REXTOR is capable of performing lin- 
guistic normalization at the syntactic and mor- 
phological levels. Consider these sets of examples 
originally presented in the introduction: 

(4) What is Bill Gates' net worth? 
(4') What is the net worth of Bill Gates? 
< "net worth" related-to "Bill Gates" > 

(5) John gave the book to Mary. 
(5') John gave Mary the book. 
(5") Mary was given the book by John. 
< John is-subject-of give > 
< book is-direct-object-of give > 
< Mary is-indirect-object-of give > 

(6) The president surprised the country with 
his actions. 
< president i s - sub jec t -of  surprise > 
< country i s -objec t -of  surprise > 
< surprise with actions > 

(6') The president's actions surprised his 
country. 
< act ions  r e l a t e d - t o  pres ident  > 
< actions is-subject-of surprise > 
< country is-object-of surprise > 

(7) Over 22 million people live in Waiwan. 
< "22 million" is-quantity-of people > 
< people is-subject-of live > 
< live in Taiwan > 

(7') The population of Taiwan is 22 million. 
< population is  "22 million" > 
< population re la ted- to  Taiwan > 

With relations, different surface forms of ex- 
pressing the "possession relation" may be nor- 
malized into the same structure, e.g., (4) and 
(4'). Similarly, alternative surface realization of 
the same verb-headed relation can be recognized 
and equated with each other by writing different 
extraction rules that  generate the same relations, 
e.g., (5), (5'), and (5"). The process of normal- 
ization will hopefully lead to greater recall in in- 
formation retrieval systems. Note that  (6) and 
(6') demonstrate a limitation of REXTOR, namely 
its inability to deal with alternative realizations of 
verb arguments. Also, the system does not have 
any notion of semantics, and thus is unable to 
equate two sentences that  have the same meaning, 
e.g., (7) and (7'). Although it is certainly possible 
to manually encode such semantic knowledge as 
extraction and relation rules, this solution is far 
from elegant. 

A potential solution to this semantic variations 
problem is to borrow the solution employed by 
START. A ternary expression representation of 
natural language mimics its syntactic organiza- 
tion, and hence sentences that  differ in surface 
form but are close in meaning will not map into 
the same structure. In order to solve this problem, 
START deploys "S-rules" (Katz and Levin, 1988), 
which are reversible syntactic/semantic transfor- 
mational rules that  render explicit the relationship 
between alternate realizations of the same mean- 
ing. For example, a buy expression is semantically 
equivalent to a sell expression, except the subject 
and indirect objects are exchanged. Because many 
verbs can undergo the same alternations, they can 
in fact be grouped into verb classes, and hence 
governed by the same S-rules. Thus, S-rules can 
be viewed as metarules applied over ternary ex- 
pressions. A similar technique for handling both 
syntactic and semantic variations can be found in 
(Grishman, 1995; Jacquemin et al., 1997). Both 
utilize metarules (e.g., for passive/active transfor- 
mation) applied over textual patterns in order to 
generate and handle variations. 
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Below we present a concrete example of how 
REXTOR could potentially improve the perfor- 
mance of existing keyword search engines dramat- 
ically. We indexed an electronic version of the 
Worldbook Encyclopedia at the sentence level us- 
ing the following two techniques: 

1. A simple inverted keyword index. All stop- 
words are thrown out, and all content words 
are stemmed. Retrieval was performed by 
matching content words in the query with 
content words in the encyclopedia articles. 

2. A ternary expressions index using the rela- 
tions generated by REXTOR. The grammar 
was written to extract possessive relations, 
description relations (adjective-noun modifi- 
cation), prepositional relations, subject-verb 
relations, and verb-object relations. Re- 
trieval was performed by matching ternary 
expressions from the query (extracted using a 
separate grammar) with ternary expressions 
extracted from the encyclopedia articles. 

The following shows the results of the keyword 
search engine: 

Question: What do frogs eat? 
Ans wer :  

(R1) Adult frogs eat mainly insects and 
other small animals, including earthworms, 
minnows, and spiders. 

(R2) Bow'fms eat mainly other fish, frogs, 
and crayfish. 

(R3) Most cobras eat many kinds of ani- 
mals, such as frogs, fishes, birds, and various 
small mammals. 

(R4) One group of South American frogs 
feeds mainly on other frogs. 

(RS) Cranes eat a variety of foods, including 
frogs, fishes, birds, and various small mam- 
mals. 

(R6) Frogs eat many other animals, includ- 
ing spiders, flies, and worms. 

(R7) ... 

After removing stopwords from the query, our 
simple keyword search engine returned 33 results 
that contain the keywords frog and eat. How- 
ever, only (R1), (R4), and (R6) correctly answer 
the user query; the other results answer the ques- 
tion "What eats frogs?" or otherwise coinciden- 
tally contain those two terms. (Apparently, our 
poor frog has more predators than prey.) A bag- 
of-words approach fundamentally cannot differen- 
tiate between a query in which the frog is in the 
subject position and a query in which the frog is in 

the object position. However, by parsing subject- 
verb-object relations using REXTOR, a ternary ex- 
pressions indexer can effectively filter out irrele- 
vant results, returning the three correct responses. 
While indexing relations may potentially lower re- 
call, due to unanticipated constructions, it has a 
tremendous potential in increasing precision. 

Furthermore, consider the following queries, in 
which REXTOR would outperform traditional key- 
word engines: 

(8) How many South Koreans were recently 
allowed to visit their North Korean rela- 
tives? 

(9) Where did John see Mary? 

(10) Regarding what issue did the president 
of Russia criticize China? 

(11) Are electronics the biggest export from 
Japan to the United States? 

A traditional search engine using the bag-of- 
words approach would suffer from poor precision 
when faced with the above queries. Many verbs 
take arguments of the same semantic type, and in 
most of these sentences, reordering the verb argu- 
ments drastically alters their meaning. For exam- 
ple, a keyword search engine would not be able to 
distinguish between a question regarding South 
Koreans visiting North Korea and North Kore- 
ans visiting South Korea (8) because both queries 
have the same keyword content. Similarly, the 
keyword approach would be unable to determine 
who did the seeing (9), or who did the criticiz- 
ing (I0). Modification relations also pose difllcul- 
ties to the bag-of-words paradigm, e.g., was it the 
North Korean or South Korean relatives (8)? Was 
it the president of Russia or the president of China 
(10)? Furthermore, there are some constructions 
whose meaning critically depends on relations be- 
tween the entities, e.g., (11), because "from X to 
Y" and "from Y to X" usually differ in meaning. 

The current version of REXTOR is merely a pro- 
totype; thus, we have made minimal attempts 
to optimize its processing speed. On a Pentium 
Ill 933 MHz Linux system with 512 megabytes 
of RAM, s analyzing a sentence in the Worldbook 
Encyclopedia required 0.0378 seconds on average. 
This translates into a content analysis rate of 
roughly 340 words a second, or approximately 11.4 
megabytes of text per hour. Although the system 
composed of REXTOR and the ternary expressions 
indexer is slower than the simple keyword indexer, 
we believe that the potential to dramatically in- 
crease precision offsets the longer processing time. 

SHowever, REXTOR is not a memory-intensive sys- 
tem; RAM utilization during trial runs was rather low. 

75 



This paper presents only the first stage of an 
linguistically-motivated information retrieval sys- 
tem. Although we have presented the results of 
a preliminary investigation into the effectiveness 
of this approach, we cannot draw any conclu- 
sions until more comprehensive tests have been 
conducted. However, many prior techniques used 
in natural language information retrieval (e.g., 
head/modifier pairs) can be expressed within the 
ItEXTOR framework, and furthermore the system 
provides a playground for experimenting with new 
techniques. Thus, we believe that our approach 
shows great promise in moving towards higher 
performance information retrieval systems. 

7 C o n c l u s i o n  

This paper presented a scheme for integrating nat- 
ural language processing and information retrieval 
by adopting a finite-state model of language and 
a ternary expression representation of document 
content. We provided justification for our lan- 
guage model and representational structures in 
both linguistic and empirical terms. ItEXTOR is 
an implementation of our ideas - -  it not only in- 
tegrates many previous natural language indexing 
techniques, but also provides a sufficiently gen- 
eral framework for much future experimentation. 
Although we have not yet conducted comprehen- 
sive tests, the extraction of "meaning" from doc- 
uments using ItEXTOR promises to better fulfill 
users' information needs. 
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