
Some N o t e s on t h e C o m p l e x i t y of Dia logues *

J a n A l e x a n d e r s s o n P a u l H e i s t e r k a m p
D F K I GmbH, Stuhlsatzenhausweg 3, DaimlerChrysler AG

D-66123 Saarbrficken, Wilhelm-Runge-Str . 11
Germany D-89081 Ulm, Germany

j anal@dfki, de paul. heisterkamp©DaimlerChrysler, com

A b s t r a c t

The purpose of this paper is twofold.
First, we describe some complexity
aspects of spoken dialogue. It is
shown that, given the internal set-
ting of our dialogue system, it is im-
possible to test even a small percent-
age of the theoretically possible ut-
terances in a reasonable amount of
time. An even smaller part of pos-
sible dialogues can thus be tested.
Second, an approach for early test-
ing of the dialogue manager of a dia-
logue system, without the complete
system being put together, is de-
scribed.

' C

1 I n t r o d u c t i o n

On the one hand, it is important for the de-
velopers of a dialogue system that the system
is robust (i.e., it does not fail or loop), easy
to use and is efficient. On the other hand, the
testing of a dialogue system is cumbersome
and expensive. Factors like the effectiveness
and naturalness of the system, as well as ro-
bustness are problematic to evaluate. While
test suites for analysis components have been
around for a while, their counterparts for di-
alogue managers (henceforth DM) are (to our
knowledge) non existent. Evaluation as such
has been target for a lot of rm3earch. Recently
more or less automatic testing and evaluation

The authors wishes to thank Raft Engel for help
with the ~plementa t ion and Norbert Reithinger,
Tilmau Becket, Christer Samuelsson and Thorsten
Brantz for comments on earlier drafts and fruitful dis-
cussions.

methods has been proposed (e.g. (Eckert et
al., 1998; Scheffier and Young, 2000; Lin and
Lee, 2000)).

A special problem for the development and
testing of a DM is that one often has to
wait until the whole system (including speech
recognizer(s) and synthesis, parser/generator
etc.) has been integrated. Moreover, to test
the complete system one usually has to put
people (e.g. the system developers or beta
testers) in front of the system, feeding it with
"appropriate input." Using the developers of
the system as testers has the potential dis-
advantage that the system will just be tested
with the type of phenomena or dialogues the
developer has in mind. (S)he also has knowl-
edge about the internals of the system and
this can influence the testing in unpredictable
ways (Araki and Doshita, 1997). Another im-
portant factor for the testing of DMs con-
cerned with spoken input is speech recogni-
tion errors and their effects on the input.

As we started this project, the following
goals and experiences guided us:

• It is c u m b e r s o m e to test the DM with
the complete system at hand. Although
this testing is necessary, we would like to
m i n i m i z e the test effort necessary.

• We must reach a status of the DM where
it is as e r ro r f ree as possible. There
must not be any technical bugs in the
program itseff as well as logical bugs, or
put in other words: The DM must not
fail on any input.

• P e o p l e b e h a v e w e i r d (Eckert e t a l . ,
1995). To us there is no hard border-
line between legal moves and non legal

160

moves in a dialogue. Some moves make
more sense than others, but can the user
be obliged to say only certain things at
a certain point in a conversation? We
think not! A dialogue system should be
able to react on any input, how weird it
might be.

• Speech Recognizers makes errors .
For our dialogue system with a large vo-
cabnlary, the recognition rate drops to
between 70 and 80% for certain problem-
atic speakers. Consequently every fourth
or fifth word can be wrong. An average
user contribution contains 5 words in the
application we refer to here (Ehrlich et
al., 1997), not including single-word ut-
terances in the calculation.

Thus, every utterance may contain a
falsely recognized word that may or may
not be important for parsing or semantic
construction.

To overcome some of the problems stated
above and to find errors as early as possi-
ble during the course of developing a dialogue
system, we have developed a validation tool
- VALDIA - for the automatic testing of the
DM. The overall goal we had in mind was to
be able to obtain a status of the DM such that
it at least does not contain any loops or other
fatal (trivial) dialogue strategy errors. To be-
come independent of the completion status
of the overall system, we decided to peel the
interfacing components (parser, generator,...)
away from the DM. We now view the DM as
a black box. This black box is then fed with
random generated input in some interface lan-
guage and we observe how the DM reacts on
the given input. An important prerequisite is
of course that the interface between the anal-
ysis component and the DM is defined.

At this point we would like to emphasize
that our dialogue system is not modeled with
"finite state dialogue structure" and "allow-
able syntax" for each state as described in
(Scheffier and Young, 2000). In our view such
a system is simple to test, since the system
will just recognize those utterances it is de-
signed to process. In such a scenario one can

use the dialogue model for, e.g., enumerating
every possible dialogue or generate "coher-
ent" dialogues. On the other hand, our sys-
tem puts no limits on what is allowed to say at
a certain point in the dialogue, which makes
the task of automatic testing non-trivial.

Ideally one would want to perform an ex-
haustive testing the DM with, say, all possible
dialogues, i.e., sequences of user contributions
and the respective system reactions. User
contributions are supposed to have a maxi-
mum length in terms of semantic items. An
investigation of the complexity of the number
of possible utterances (in terms of combina-
tions of semantic expressions) and resulting
possible dialogues showed that for our DM,
the testing task is so complex that the uni-
verse of possible semantic expressions cannot
be tested in a reasonable amount of time (see
Section ??).

Looking at the complexity of the task one
is tempted to ask - "is it possible to exhaus-
tively produce all possible dialogues of a cer-
tain length?" Or maybe more interesting:
"can we feed the DM with all the generated
dialogues?" In (Levin and Pieracciui, 1997)
a sketch of a method to find good dialogue
strategies was put forward. The authors ar-
gue that a dialogue system can be modeled
in terms of a s tate space, an ac t ion se t and

a strategy. They show how one could auto-
matically find an optimal strategy by feeding
the system with all possible dialogues, or in
our terminology sequences of user contribu-
tions. We took the natural continuation of
this: to automatically generate user contribu-
tions or dialogues and feed them to the sys-
tem, and then let the system find the optimal
strategy itself. In this paper we explore some
aspects and limitations of such an approach
by analyzing the complexity of dialogues. We
will, for instance, show that even if a dialogue
manager can process one or ten or even one
hundred user contribution(s) per second we
cannot find an optimal strategy based on ex-
haustive search - the search space is simply
too large!

The paper starts with a brief description of
the architecture of the DM and the test envi-

161

I Speaker ~I
Aucllo ~ independent I wora

l -
xn Speech Lattice

Recognition

I -I Audlo Syn.t,h
: Synthesis -

Parsing

 enotion I f
Dialog

Manager

Figure 1: Schematic architecture for our dialogue system.

ronment for VALDIA, and a description of its
input format. We then discuss the complexity
of an utterance, continuing with the complex-
ity of dialogues. Finally, VALDIA is described
in more detail and then the paper is closed by
a discussion of relevant results and papers.

2 A r c h i t e c t u r e

The dialogue system to which we first applied
VALDIA (Heister~mp and McGlashan, 1996;
Ehrlich et al., 1997) was designed for answer-
ing questions about and/or selling insurances
in the domain of car insurances. In case of

.failure or problems with the dialogue, the sys-
tem passes the customer to a human opera-
tor. The architecture of the system includes
an HMM-based speaker independent speech
recognizer, an island parser, DM, generator
and synthesizer as depicted in figure 1. The
system also includes a data base which is ac-
cessed for the retrieval of domain specific in-
formation. It is important for this paper that
the speech recognizer is not limited to "al-
lowed user contributions" but outputs a word
hypotheses lattice or the best; chain which is
processed by an island parser. Thus, the in-
put to the DM might, depending on recogni-
tion quality, consist of arbitrary sequences of
semantic expressions. A basic requirement is
that the DM is not allowed to fail on any of
these inputs.

For testing, we peel the interfacing compo-
nents away from the DM and regard the DM
as a black box. It is assumed that we send

a piece of input to the DM which then re-
acts in a way we can observe (for instance by
returnlng/generating some output). We as-
sume that the DM has no notion of time. This
mean.q that to test the DM, we simply have to
feed it with input and wait for it to acknowl-
edge this by sending a responsive output re-
quest. In looking at the response, however,
we have to be sensitive to effects like timeout
(e.g., the DM is "thinking" too long) and/or
loops (e.g., the DM outputs the same item all
the time). Although in (Levin and Pieraccini,
1997) the utterances triggering the actions are
not mentioned at all, this is very important.
In general we don't know which utterance will
trigger a certz.in action when the DM is in a
certain state, or if the DM needs an utter-
ante at all to perform another action. As the
exhaustive validation criteria for the DM do
not allow us to assume any insight into the
DM itself, we have to simply feed it with all
possible sequences of utterances.

Our test architecture is shown in figure 2.
We connect to the DM at the same place as
the analysis. We also watch the output sent
to the generator. Additionally we watch the
process status of the DM, that is we notice if
the DM fails or breaks. In that case we can
restart the DM and continue the testing.

3 C o m p l e x i t y

This section puts forward some notes on the
complexity of dialogue. We are aware that the
discussion and the results are not necessar-

162

ValDia s,~,~,mtic i " ~

l= !

l
|

!

|

s •

|

Black Box
I

I

I

I

i

Dialog @)
Manager

|

!

!

|

m
|

i
|

m i

Figure 2: Schematic architecture for ValDia.

ily generalizable because they depend on the
representation of the input formalism to the
DM. However, we were certainly surprised by
the results ourselves and it has consequences
for the degree of coverage and testing one can
achieve. For our dialogue system the seman-
tic representation formalism is simple. It con-
sists of propositional content represented as
sequences of semantic objects the SIL 1 repre-
sentation language (McGlashan et al., 1994).
Here is one example: "Ein Audi 80 Avant
Quattro mit ber 100 PS" "An Audi 80 Sta-
tion Wagon Jx4 with over 100 hp"

[[type : car_type,
[l;hemake : manu£ a c t u r e r ,
va lue : aud£] ,

[thetype: type_name,
value: achtzig],

[theversion: version_name,
value: avant],

[thespecial£eature :feature_name,
value : quattro],

def : indef],
[type: power,
themeasuretype : ps,
thevalue: [type: number,

cvalue : 125,
modus: [rel : above]],

modus : Ire1: with]]]

This representation is motivated by the fact
that the analysis component is an island

1 Semantic Interface Language

parser (Hanrieder, 1996), and can thus find
islands or sequences of semantic objects.

3.1 The c o m p l e x i t y o f an u t t e r a n c e

The basic entity is a semantic object (S)
which is an atomic item treated by the DM.
The DM knows about (and thus can treat or
react on) M different semantic objects. Ex-
amples of a semantic object are cmc_type,
power, g r e e t i n g , bye, i n t e g e r , and year .
We will not pay attention to the fact that a se-
mantic item could be instantiated with, e.g., a
street name - in the navigation domain there
exist about 42,000 different names of cities
in Germany, and Berlin has 11,500 different
street names - but we could of course extend
the discussion below (on the cost of complex-
ity).

We call a user contribution an utterance.
We assume that an utterance U is a (possi-
bly empty) sequence of semantic objects. This
can of course be relaxed to sequences or trees
in some algebra, but for this discussion it suf-
rices to deal with sequences - as we will see,
the complexity is "complex enough" with this
assumption. A sentence can consist of max O
number of semantic objects. An utterance is
a multi-set in the real system, but for this dis-
cussion we assume an utterance is not. Each
semantic object can therefore appear at most
one time. Given the definitions above we can
now compute the number of possible utter-
ances [U [: All sequences of a certain length

163

l are

We therefore have

Ivl

For one of our dialogue models, concerned
wi th car insurance, we have M = 25 and
O = 9. T h a t is, 25 different semantic ob-
jects and we allow for a max imum of 9 se-
mant ic i tems (arbitrari ly chosen by estimate
of brea th length) in one ut terance:

{ U I = 1 .9 .109

Now, if we would like to test whether our
DM can t rea t all u t terances or not, we will
have to wait quite a while: Suppose our DM
can process 10 ut terances per second, then
we can process 1 0 - 6 0 - 6 0 = 36000 utter-
ances per hour, 36000 - 24 = 864000 utter-
ances per day, 7. 864000 = 6048000 per week,
or 864000. 365 = 315360000 ut terances per
year. To process all possible ut terances we
would need more than six years!

..:, Obviously, the current parameters of the
system make the complexi ty of the number
of ut terances intractable in realistic settings.
Figure 3 shows how different parameter set-
t ing affects the cardinal i ty of ut terances for
different values of M. T h e (logarithmic) y-
axis represents the cardinal i ty of utterances,
and the (linear) x-axis the maximal number
of semantic i tems in one ut terance. As can be
seen, for our DM, we will have to limit, e.g.,
the number of semantic i tems to 6 per utter-
ance if we want to test all u t terances in one
week.

3 .2 T h e c o m p l e x i t y o f d i a l o g u e

A dialogue can - a t least theoret ical ly - con-
sist of a sequence of the same ut terance.
Many of the dialogues will of course be non-
cooperat ive and very lmna tura l or, put in
o ther words, not legal. But , as indicated
above, it is impor tan t to us tlhat the DM does

not fail on any input . To generate all possi-
ble dialogues I D I of a certain length L, we
therefore have:

IDl=lvl.lul.....Iv!=
L t imes

IuJ L

For our scenario 15 user contr ibut ions are
not unnatural , so for L = 15 and the fig-
ures above, we have I D I ~ 1014° which will
take quite a while to process 2. Even ff we re-
strict the length of the dialogues to 2, we get
1.9 • 109 • 1.9 • 109 = 3.6 • l018 theoret ical ly
possible dialogues and can thus process jus t
an infinitely small par t of them.

3.3 C o n s e q u e n c e s

Now, suppose we randomly select some dia-
logues out of the set of possible ones. While
testing the DIALOGUE MANAGER with them
we thereby encounter a certain number of (or
even zero) errors, it is interest ing to be able to
say something abou t how error-free the DM
is. For this discussion, it is impor tan t t ha t
by viewing the DM as a black box, we can
not do anything more than assuming the er-
rors to be dis t r ibuted according to the nor-
real distribution. Moreover, we can only ap-
ply this reasoning if we do a large number
of observations. Th e figures below may -
depending on the theoret ical number of di-
alogues - not be valid. By using the approx-
hnat ion of the normal dis t r ibut ion we know
tha t if we tes ted N = 10000 dialogues and
received errors in DM in, say, 250 of the di-
alogues (-,z f = 2so = 0.025), we can say Y ~ 6
tha t the DM contains (with a degree of con-
fidence of 95%)

= = s * 1.96 × =

0.025 . 1 . 9 6 ×
0.025 :t: 0.003

percent errors.
In case no errors were found we get

E = 0 : t = l - 9 6 × v ioo0o =0=t=0.

2The exact number is 2184671458940261530062771
49050004422653349789248729589853552333475097?4
1304997726070386514948280700225687715652634437
7571018487670988739143 :-)

164

le+09

le+08

le+07

le+06

100000

10000
Z

1000

100

10

1

complexity utterances

4 6 8 10
Sem Objects/Utterance

Figure 3: Ut terance Complexity.

Here we have to use a trick: Ins tead we sup-
pose we found one error, and thus

/ = 1/10000 = O.O001

yielding

,/o.b0o~×(1-o.oool)
E = 0.0001 :i: 1.96 x v 10000 =

1.96 • 10 -4 ~ 1.0- 10 -6

we can at least say tha t we are 95% confident
tha t the DM will in less t han

1 .96 .10 -4 + 1 .0 .10 -6 = 1.97- 10-4%

cases raise an error.

4 VALDIA - T h e I m p l e m e n t a t i o n

To allow for intelligent testing, we decided to
implement our test tool in using the following
three par ts :

• the core test engine,

• the interface to the DM (implemented in
O Z / M O Z A R T a) , and

aThe reason for using OZ is manifold: OZ fea-
tures threads, multiple platforms (UNIX/LINUX and
Windows), nniRcation, a Td/Tk library, and finally it
comes for fzee. See hl;tp://www .mozart -oz . org

• a graphical editor for the definition
of stochastic a u t o m a t a (implemented in
T c l / T k) ,

The core test engine uses the definition of
s tochast ic a u t o m a t a to create sequences of se-
mant ic expressions to be sent to the DM. I t
records b o t h the input and the ou tpu t to and
f rom the DM and checks for special messages
(e.g. end of dialogue), crashes, if the DM is
emit t ing the same response all the time, or
o ther events events tha t indicate erroneous
behaviour of the DM. I t also creates test pro-
files and checkpoint files to enable in terrup-
t ion and res tar t of test runs.

T h e interface handles the connection be-
tween VALDIA and the DM. I t realizes a
T C P / I P connection to and f rom the DM. In
case parallel test runs are made, it can also
handle different processes.

T h e mot ivat ion for the s tochast ic au toma-
ton editor and, a t the same t ime, the main
feature of VALDLA (see F igure 4) is tha t it
allows for the design of u t te rances or even di-
alogues or u t te rance sequences, and thus tes t
specific areas in the space of theoret ical ly pos-
sible dialogues. T h e dialogue sys tem devel-

165

Figure 4: Screen shot of the automata editor

oper can interactively define the automata,
using the pointing device to draw the states
an the transitions. In each state, it is possi-
ble to change the constraints for the defini-
tion of a SIL expression. More precisely we
change the probalrility of the alternatives of
(a part of) an expression. The arcs between
the states are augmented with probabilities
which guide state transitions in a stochastic
m~uner, thus creating certain sequences by
preference, without completely excluding oth-
ers. In Figure 5 the left row contaius the basic
semantic entities, the middle the probability,
and the right one the number of occurrences

for that particular semantic item in each ut-
terance. For the semantic items the variable
parts are linked to another window where the
their instantiations are described. The con-
straints are semi-automatically derived from
the definition of the interface specification for
the DM. The reason for "semi-automatically"
and not automatically is that we have had
no time to write a generic function for this.
But, basically the derivation is straightfor-
ward. Consequently we can design interesting
utterance sequences, according to, e.g., expe-
riences gained during WOZ-experhnents-

166

Figure 5: Part of the constraints of an utterance

Finally, by using just one state and no
constraints, we can, of course, produce com-
pletely arbitrary utterance sequences.

During the testing of the dialogue manager
we can run the system in two modes. The
first - exhaustive mode - generates all se-
quences of dialogues by enumerating all di-
alogues. This is based on the enumeration
of all possible utterances in each state. The
exhaustive mode can be used when we know
that the complexity of the automaton (and
utterances) is testable - VALDIA can com-
pute the number of dialogues and compute
an upper time limit based on the computa-
tional power of the DM. In the second mode -

Monte Carlo mode - the utterance generation
in each state as well as the change of state is
random. In this way we randomly wa.lk~ the
automaton and randomly generate utterance
profiles. This has been proven useful in the
cases where we number of possible dialogues
to large is for exhaustive testing.

Notice that we can not pay any attention
to legal moves. VALDIA has (i) no knowledge
about what a legal move is, and (ii) no possi-
bility to react on the response from the DM.
Therefore the "legal moves" and "coopera-
tiveness" is non existent concepts here. But,
this is what we want: People behave weird!
Our speech recognizer produces errors! And

167

most important: We have to live with this,
and must not fail on any input!

5 F i r s t R e s u l t s

During the development of VALDIA we have
detected several errors in the implementation
of our DM. Most of the errors where logical er-
rors of the kind "Now that 's a combination of
things we didn't cover." e.g., the co-occurence
of good_bye and r e q u e s t _ r e p e t i t i o n in a
user utterance led to a goal conflict in the
DM that caused it to hang, as did the non-
exclusive handling of disjunction in "It's older
(or) younger than 5 years", etc.

Additionally we discovered that the DM in
some of the test runs crashed ~ffter about 500
(l) dialogues due to erroneous memory han-
dling. This is something one would never de-
tect during normal testing with a full system,
but immediately after delivering the system.

VALDIA produces huge amounts of (huge)
trace files. Analyzing these is at present a
pain as big as testing the complete dialogue
system. Consequently, we will have to de-
velop functionality for condensing the trace
information.

6 C o n c l u s i o n

-The project VALDIA has produced useful in-
sights into the complexity of dialogue: Spoken
dialogue is very complex! Exhaustive testing
of a DM is for some scenarios/dialogue models
impossible. The results were obtained during
the development of a test program for a DM.
Purpose of the testing was to be able to in-
tegrate a DM into the dialogue system which
contained as few errors as possible. We would
like to highlight the following points:

• VALDIA has proven its usefulness in that
it is able to detect errors in the imple-
mentation of DMs before', it is integrated
into the complete dialogue system. Dur-
ing the testing we encountered, in addi-
tion to logical bugs, errors which would
never be detected during normal testing
with the complete dialogue system.

• By including the automata into Vm.,-
DIA it is possible to concentrate the test-

ing on "interesting utterance sequences"
and, despite the huge universe of theoret-
ically possible dialogues, obtain a status
of the DM which for certain tasks is well
tested.

It is simple to adapt for the testing
of a new DM. Technically the only
thing that has to changed is the def-
inition/constraints of the definition ut-
terances. This is at present a semi-
automatic process. Conceptually the au-
tomata has to be defined, unless one
wants to test in Monte Carlo mode.

In the current implementation VALDIA
uses about 10% of the processing time
compared to the DM. Thus VALDIA can
control between 5 and 10 instances of the
DM depending on available resources in
the net.

VALDIA is platform independent. At our
site, we are using a mixture of differ-
ent types of computers, both PCs run-
ning under Windows/Linux and UNIX
machines. Depending on load, we are
flexible to utilize any of the free resources
for the testing.

We are currently in the process of adapting
VALDIA for a new scenario. For this DM in-
put consists of grammatical structures, rather
than sets of semantic objects. Since the VAL-
DIA project started, interesting research re-
sults have emerged and there are lot of things
that remain to be done. Amongst those, we
will pay attention to at least the following top-
ics:

The current implementation of VALDIA
has no means of react on the output from
the DM. For intelligent testing this has to
be incorporated into the system. Possible
future directions are described in (Eckert
et al., 1998), (Schefiler and Young, 2000)
and (Lin and Lee, 2000). In, e.g., (Eck-
eft et al., 1998) VALDIA is replaced by an
simulated user, and the authors describe
a statistical method for reacting on sys-
tem responses.

168

* We have to develop a tool for semi-
automatical ly anaJyzing the trace files
produced by VALDIA. Possible future
features are jus t saving the files of those
dia logues/ut terances which resulted in
an error.

R e f e r e n c e s

Masabiro Araki and Shuji Doshita. 1997. Au-
tomatic evaluation environment for spoken di-
alogue systems. In Elisabeth Maler, Marion
Mast, and Susann LuperFoy, editors, Re-
vised papers from the ECAL96 Workshop in
Budapest, Hungary on Dialogue Processing in
Spoken Language Systems, Heidelberg, Au-
gust. Lecture Notes in Artificial InteUigence,
Springer-Verlag.

Wieland Eckert, Elmar N5th, Heinrich Niemann,
and Ernst-G/inter Schukat-Talamazzini. 1995.
Real users behave weird - experiences made col-
lecting large human-machine-dialog corpora. In
Paul Dalsgaard, Lars Bo Larsen, Louis Boves,
and Ib Thomsen, editors, Proceedings oS ESCA
Tutorial and Research Workshop on Spoken Di-
alogue Systems '95, VigsS, Denmark.

Wieland Eckert, Esther Levin, and Roberto Pier-
accini. 1998. Automatic Evaluation of Spo-
ken Dialogue System. Technical report, AT&T.
Technical Report Nr. TR98.9.1.

Ute Ehrlich, Gerhard Hanrieder, Ludwig Hitzen-
berger, Paul Heisterkarnp, Klaus Mecklenburg,
and Peter Regel-Brietzmann. 1997. Access -
automated call center through speech under-
standing system. In Proceedings of Eurospeech
'97, Rhodes.

Gerhard Hanrieder. 1996. Inkrementelles
Parsing gesproehener Sprache mit einer
linksassoziativen Unifikationsgrammatik~
Ph.D. thesis, Universit~it Erlangen-N~u'nberg.
http://www.infix.com - ISBN 3.-89838-140-4.

Paul Heisterkamp and Scott McGlashan. 1996.
Units of Dialogue Management: An Example.
In Proceedings of ICSLP-96, Philadelphia, PA,
October.

Esther Levin and Roberto Pieraccini. 1997. A
stochastic model of computer-human interac-
tion for learning dialogue strategies. In Pro-
ceedings of EuroSpeech-gZ Rhodes.

Bor-schen Lin and Lin-shan Lee. 2000. Fun-
damental performance analysis for spoken di-
alogue system based on a quantitative simula-
tion approach. In Proceedings of ICASSP-2OO0,
Istanbul, Turkey, June 5-9.

Scott McGlashan, Francois Andry, and Gerhard
Niedermalr. 1994. A Proposal for SIL. Tech-
nical report, University of Surrey, CAP SOGETI,
and Siemens AG, March. SUNDIAL report.

Konrad Scheffier and Steve Young. 2000.
Probablistic simulation of human-machine di-
alogues. In Proceedings o] ICASSP-2000, Is-
tanbul, Turkey, June 5--9.

169

