
WIT: A Toolkit for Building Robust and Real-Time Spoken Dialogue
Systems

Mikio Nakano* Noboru Miyazaki, Norihito Yasuda, Akira Sugiyama,
Jun-ichi Hirasawa, Kohji Dohsaka, Kiyoaki Aikawa

N T T Corporation
3-1 Morinosato-Wakamiya

Atsugi, Kanagawa 243-0198, Japan
E-mail: nakano@atom.brl .nt t .co. jp

Abstract

This paper describes WI'I; a toolkit
for building spoken dialogue systems.
WIT features an incremental under-
standing mechanism that enables ro-
bust utterance understanding and real-
time responses. WIT's ability to com-
pile domain-dependent system specifi-
cations into internal knowledge sources
makes building spoken dialogue sys-
tems much easier than :it is from
scratch.

1 Introduction

The recent great advances in speech and language
technologies have made it possible to build fully
implemented spoken dialogue systems (Aust et
al., 1995; Allen et al., 1996; Zue et al., 2000;
Walker et al., 2000). One of the next research
goals is to make these systems task-portable, that
is, to simplify the process of porting to another
task domain.

To this end, several toolkits for building spo-
ken dialogue systems have been developed (Bar-
nett and Singh, 1997; Sasajima et al., 1999).
One is the CSLU Toolkit (Sutton et al., 1998),
which enables rapid prototyping of a spoken di-
alogue system that incorporates a finite-state dia-
logue model. It decreases the amount of the ef-
fort required in building a spoken dialogue sys-
tem in a user-defined task domain. However, it
limits system functions; it is not easy to employ
the advanced language processing techniques de-
veloped in the realm of computational linguis-
tics. Another is GALAXY-II (Seneffet al., 1998),

*Mikio Nakano is currently a visiting scientist at MIT
Laboratory for Computer Science.

which enables modules in a dialogue system to
communicate with each other. It consists of the
hub and several servers, such as the speech recog-
nition server and the natural language server, and
the hub communicates with these servers. Al-
though it requires more specifications than finite-
state-model-based toolkits, it places less limita-
tions on system functions.

Our objective is to build robust and real-time
spoken dialogue systems in different task do-
mains. By robust we mean utterance understand-
ing is robust enough to capture not only utter-
ances including grammatical errors or self-repairs
but also utterances that are not clearly segmented
into sentences by pauses. Real time means the
system can respond to the user in real time. The
reason we focus on these features is that they are
crucial to the usability of spoken dialogue sys-
tems as well as to the accuracy of understand-
ing and appropriateness of the content of the sys-
tem utterance. Robust understanding allows the
user to speak to the system in an unrestricted
way. Responding in real time is important be-
cause if a system response is delayed, the user
might think that his/her utterance was not recog-
nized by the system and make another utterance,
making the dialogue disorderly. Systems having
these features should have several modules that
work in parallel, and each module needs some
domain-dependent knowledge sources. Creat-
ing and maintaining these knowledge sources re-
quire much effort, thus a toolkit would be help-
ful. Previous toolkits, however, do not allow us to
achieve these features, or do not provide mecha-
nisms that achieve these features without requir-
ing excessive efforts by the developers.

This paper presents WIT 1, which is a toolkit

IWIT is an acronym of Workable spoken dialogue lnter-

150

for building spoken dialogue systems that inte-
grate speech recognition, language understanding
and generation, and speech output. WIT features
an incremental understanding method (Nakano et
al., 1999b) that makes it possible to build a robust
and real-time system. In addition, WIT compiles
domain-dependent system specifications into in-
ternal knowledge sources so that building systems
is easier. Although WIT requires more domain-
dependent specifications than finite-state-model-
based toolkits, WIT-based systems are capable
of taking full advantage of language processing
technology. WIT has been implemented and used
to build several spoken dialogue systems.

In what follows, we overview WIT, explain its
architecture, domain-dependent system specifica-
tions, and implementation, and then discuss its
advantages and problems.

2 Overview

A WIT-based spoken dialogue system has four
main modules: the speech recognition module,
the language understanding module, the lan-
guage generation module, and the speech out-
put module. These modules exploit domain-
dependent knowledge sources, which are auto-
matically generated from the domain-dependent
system specifications. The relationship among
the modules, knowledge sources, and specifica-
tions are depicted in Figure 1.

WIT can also display and move a human-face-
like animated agent, which is controlled by the
speech output module, although this paper does
not go into details because it focuses only on spo-
ken dialogue. We also omit the GUI facilities pro-
vided by WIT.

3 Arch i t ec tu re o f WIT-Based Spoken
Dialogue Systems

Here we explain how the modules in WIT work
by exploiting domain-dependent knowledge and
how they interact with each other.

3.1 Speech Recognition

The speech recognition module is a phoneme-
HMM-based speaker-independent continuous
speech recognizer that incrementally outputs

face Toolldt.

word hypotheses. As the recogn/fion engine,
either VoiceRex, developed by NTI" (Noda et
al., 1998), or HTK from Entropic Research can
be used. Acoustic models for HTK is trained
with the continuous speech database of the
Acoustical Society of Japan (Kobayashi et al.,
1992). This recognizer incrementally outputs
word hypotheses as soon as they are found in the
best-scored path in the forward search (Hirasawa
et al., 1998) using the ISTAR (Incremental
Structure Transmitter And Receiver) protocol,
which conveys word graph information as well as
word hypotheses. This incremental output allows
the language understanding module to process
recognition results before the speech interval
ends, and thus real-time responses are possible.
This module continuously runs and outputs
recognition results when it detects a speech
interval. This enables the language generation
module to react immediately to user interruptions
while the system is speaking.

The language model for speech recognition
is a network (regular) grammar, and it allows
each speech interval to be an arbitrary number
of phrases. A phrase is a sequence of words,
which is to be defined in a domain-dependent
way. Sentences can be decomposed into a cou-
ple of phrases. The reason we use a repeti-
tion of phrases instead of a sentence grammar
for the language model is that the speech recog-
nition module of a robust spoken dialogue sys-
tem sometimes has to recognize spontaneously
spoken utterances, which include self-repairs and
repetition. In Japanese, bunsetsu is appropriate
for defining phrases. A bunsetsu consists of one
content word and a number (possibly zero) of
function words. In the meeting room reservation
system we have developed, examples of defined
phrases are bunsetsu to specify the room to be re-
served and the time of the reservation and bun-
setsu to express affirmation and negation.

When the speech recognition module finds a
phrase boundary, it sends the category of the
phrase to the language understanding module,
and this information is used in the parsing pro-
cess.

It is possible to hold multiple language mod-
els and use any one of them when recogniz-
ing a speech interval. The language models are

151

Semantic [
I ~ e I
/ specifications [r 1

I R~ae I /L. .___. . - - - ' - ' - ~ ' - / Ph~e l
/de~;,i~ions I /" "-. I de~i*~._l

I Fea tu re I L._.___..~.. -~-'-'-'~ , ("~ "'.

L____i----',.,'-... ~ ~ "-..

• Surface- I d e . ~ o n s [:- ,, l ; ~ : : - - ° Y \ l Language II L a n g u a g e I ~ G e n e r a f i o ~ n _ / . I , ~ , "., "~"----~__Z_--.--" M . -. i i .) i l,,_J generaraon I
~ \ ,, ~ ~ unae r s t and ing I I genera t ion I O t p rocedures I TM / ~ I

\ I I I J
I defini t ions I ' \ \ I word I strings I hypothesea +
I . - - I _ _ _ ~ ' ~ s e t o f - " - L _ _ ~ I Speech i I ~ , ~ L i T - s t o f - - / L / i . , i s t o f
I ~ " t I ~angu.~ge I- -I ~ t i o . I I ou~u, r ' - - '] pre-r~o.dedr'--] pre-r~o~ed I
I d~f~i~23~_l t.models~1 I module I I ~oam~ I~Peech m~._J , I L _ j

user utterance system utterance

domain-dependent:
specif icat ion knowledge source module

Figure 1: Architecture of WIT

switched according to the requests from the lan-
guage understanding module. In this way, the
speech recognition success rate is increased by
using the context of the dialogue.

Although the current version of WIT does not
exploit probabilistic language models, such mod-
els can be incorporated without changing the ba-
sic WIT architecture.

3.2 Language Understanding

The language understanding :module receives
word hypotheses from the speech recognition
module and incrementally understands the se-
quence of the word hypotheses to update the di-
alogue state, in which the resnlt of understand-
ing and discourse information are represented
by a frame (i.e., attribute-value pairs). The un-
derstanding module utilizes ISSS (Incremental
Significant-utterance Sequence Search) (Nakano
et al., 1999b), which is an integrated parsing and
discourse processing method. ISSS enables the
incremental understanding of user utterances that
are not segmented into sentences prior to pars-

ing by incrementally finding the most plausible
sequence of sentences (or significant utterances
in the ISSS terms) out of the possible sentence
sequences for the input word sequence. ISSS
also makes it possible for the language generation
module to respond in real time because it can out-
put a partial result of understanding at any point
in time.

The domain-dependent knowledge used in this
module consists of a unification-based lexicon
and phrase structure rules. Disjunctive feature
descriptions are also possible; WIT incorporates
an efficient method for handling disjunctions
(Nakano, 1991). When a phrase boundary is de-
tected, the feature structure for a phrase is com-
puted using some built-in rules from the feature
structure rules for the words in the phrase. The
phrase structure rules specify what kind of phrase
sequences can be considered as sentences, and
they also enable computing the semantic repre-
sentation for found sentences. Two kinds of sen-
tenees can be considered; domain-related ones
that express the user's intention about the reser-

152

vafion and dialogue-related ones that express the
user's attitude with respect to the progress of the
dialogue, such as confirmation and denial. Con-
sidering the meeting room reservation system, ex-
amples of domain-related sentences are "I need to
book Room 2 on Wednesday", "I need to book
Room 2", and "Room 2" and dialogue-related
ones are "yes", "no", and "Okay".

The semantic representation for a sentence is
a command for updatingthe dialogue state. The
dialogue state is represented by a list of attribute-
value pairs. For example, attributes used in the
meeting room reservation system include task-
related attributes, such as the date and time of
the reservation, as well as attributes that represent
discourse-related information, such as confirma-
tion and grounding.

3.3 Language Generation

How the language generation module works
varies depending on whether the user or system
has the initiative of turn taking in the dialogue 2.
Precisely speaking, the participant having the ini-
tiative is the one the system assumes has it in the
dialogue.

The domain-dependent knowledge used by the
language generation module is generation proce-
dures, which consist of a set of dialogue-phase
definitions. For each dialogue phase, an initial
function, an action function, a time-out function,
and a language model are assigned. In addition,
phase definitions designate whether the user or
the system has the initiative. In the phases in
which the system has the initiative, only the ini-
tial function and the language model are assigned.
The meeting room reservation system, for exam-
ple, has three phases: the phase in which the
user tells the system his/her request, the phase in
which the system confirms it, and the phase in
which the system tells the user the result of the
database access. In the first two phases, the user
holds the initiative, and in the last phase, the sys-
tern holds the initiative.

Functions defined here decide what string
should be spoken and send that string to the
speech output module based on the current di-
alogue state. They can also shift the dialogue

2The notion of the initiative in this paper is different from
that of the dialogue initiative of Chu-Carroll (2000).

phase and change the holder of the initiative as
well as change the dialogue state. When the dia-
logue phase shifts, the language model foi" speech
recognition is changed to get better speech recog-
nition performance. Typically, the language gen-
eration module is responsible for database access.

The language generation module works as fol-
lows. It first checks which dialogue participant
has the initiative. If the initiative is held by the
user, it waits until the user's speech interval ends
or a duration of silence after the end of a system
utterance is detected. The action function in the
dialogue phase at that point in time is executed in
the former case; the time-out function is executed
in the latter case. Then it goes back to the initial
stage. If the system holds the initiative, the mod-
ule executes the initial function of the phase. In
typical question-answer systems, the user has the
initiative when asking questions and the system
has it when answering.

Since the language generation module works in
parallel with the language understanding module,
utterance generation is possible even while the
system is listening to user utterances and that ut-
terance understanding is possible even while it is
speaking (Nakano et al., 1999a). Thus the system
can respond immediately after user pauses when
the user has the initiative. When the system holds
the initiative, it can immediately react to an in-
terruption by the user because user utterances are
understood in an incremental way (Dohsaka and
Shimazu, 1997).

The time-out function is effective in moving
the dialogue forward when the dialogue gets
stuck for some reason. For example, the system
may be able to repeat the same question with an-
other expression and may also be able to ask the
user a more specific question.

3.4 Speech Output

The speech output module produces speech ac-
cording to the requests from the language gener-
ation module by using the correspondence table
between strings and pre-recorded speech data. It
also notifies the language generation module that
speech output has finished so that the language
generation module can take into account the tim-
ing of the end of system utterance. The meeting
room reservation system uses speech files of short

153

phrases.

4 Building Spoken Dialo~te Systems
wi th W I T

4.1 Domain-Dependent System
Specifications

Spoken dialogue systems can be built with WIT
by preparing several domain-dependent specifica-
tions. Below we explain the specifications.

Feature Definitions: Feature definitions spec-
ify the set of features used in the grammar for lan-
guage understanding. They also specify whether
each feature is a head feature or a foot feature
(Pollard and Sag, 1994). This information is used
when constructing feature structures for phrases
in a built-in process.

The following is an example of a feature defini-
tion. Here we use examples from the specification
of the meeting room reservation system.

(case head)

It means that the case feature is used and it is a
head feature 3.

Lexieal Descriptions: Lexical descriptions
specify both pronunciations and grammatical
features for words. Below is an example lexical
item for the word 1-gatsu (January).

(l-gatsu ichigatsu month nil i)

The first three elements are the identifier, the pro-
nunciation, and the grammatical category of the
word. The remaining two elements are the case
and semantic feature values.

Phrase Definitions: Phrase definitions specify
what kind of word sequence can be recognized
as a phrase. Each definition is a pair compris-
ing a phrase category name and a network of
word categories. In the example below, m o n t h -
phrase is the phrase category name and the re-
maining part is the network of word categories.
o p t means an option and o r means a disjunc-
tion. For instance, a word sequence that con-
sists of a word in the m o n t h category, such as 1-
gatsu (January), and a word in the a d r a o n i n a l -
p a r t i c l e category, such as no (of), forms a
phrase in the m o n t h - p h r a s e category.

3In this section, we use examples of different description
from the actual ones for simplicity. Actual specifications are
written in part in Japanese.

(month-phrase
(month
(opt
(or
expression-following-subject
(admoninal-particle
(opt
sentence-final-particle))))))

Network Definitions: Network definitions
specify what kind of phrases can be included in
each language model. Each definition is a pair
comprising a network name and a set of phrase
category names.

Semantic-Frame Specifications: The result of
understanding and dialogue history can be stored
in the dialogue state, which is represented by a
flat frame structure, i.e., a set of attribute-value
pairs. Semantic-frame specifications define the
attributes used in the frame. The meeting room
reservation system uses task-related attributes.
Two are s t a r t and end, which represent the
user's intention about the start and end times of
the reservation for some meeting room. It also
has attributes that represent discourse informa-
tion. One is c o n f i r m e d , whose value indicates
whether if the system has already made an utter-
ance to confirm the content of the task-related at-
tributes.

Rule Definitions: Each rule has one of the fol-
lowing two forms.

((rule name)
(child feature structure)

• . . (child feature structure)
=> (mother feature structu_e)

(priority increase))
((role name)
(child feature structure)

• . . (child feature structure)
=> (flame operation command)

(priority increase))

These roles are similar to DCG (Pereira and War-
ren, 1980) rules; they can include logical vari-
ables and these variables can be bound when
these rules are applied. It is possible to add to the
rules constraints that stipulate relationships that
must hold among variables (Nakano, 199 I), but
we do not explain these constraints in detail in this

154

paper. The priorities are used for disambiguat-
ing interpretation in the incremental understand-
ing method (Nakano et al., 1999b).

When the command on the right-hand side of
the arrow is a frame operation command, phrases
to which this rule can be applied can be consid-
ered a sentence, and the sentence's semantic rep-
resentation is the command for updating the dia-
logue state. The command is one of the follow-
ing:

• A command to set the value of an attribute
of the frame,

• A command to increase the priority,

Conditional commands (If-then-else type
command, the condition being whether the
value of an attribute of the flame is or is not
equal to a specified value, or a conjunction
or disjunction of the above condition), or

• A list of commands to be sequentially exe-
cuted.

Thanks to conditional commands, it is possible
to represent the semantics of sentences context-
dependently.

The following rule is an example.

(start-end-times-command
(time-phrase :from *start)

(time-phrase (:or :to nil) *end)
=> (command (set :start *start)

(set :end *end)))

The name of this rule is start-end-times-

command. The second and third elements

are child feature structures. In these elements,
time-phrase is a phrase category, : from and
(: or : to nil) are case feature values, and

*start and *end are semantic feature val-

ues. Here :or means a disjunction, and sym-

bols starting with an asterisk are variables. The
right-hand side of the arrow is a command to up-
date the frame. The second element of the com-
mand, (set :start *start), changes the
: s t a r t atttribute value of the frame to the in-
stance of * s t a r t , which should be bound when
applying this rule to the child feature structures.

Phase Definitions: Each phase definition con-
sists of a phase name, a network name, an ini-
tiative holder specification, an initial function, an
action function, a maximum silence duration, and
a time-out function. The network name is the
identifier of the language model for the speech
recognition. The maximum silence duration spec-
ifies how long the generation module should wait
until the time-out function is invoked.

Below is an example of a phase definition.
The first element request is the name of this
phase, " f r a r _ r e q u e s t " is the name of the
network, and move-to-reques t-phase and

request-phase-action are the names of

the initial and action functions. In this phase,
the maximum silence duration is ten seconds and
the name of the time-out function is r e q u e s t -
phas e- t imeou t.

(request "fmr_request"

move- to-reques t -phase

request-phase-action

10.0

request-phase- t imeout)

For the definitions of these functions, WIT pro-
vides functions for accessing the dialogue state,
sending a request to speak to the speech out-
put module, generating strings to be spoken us-
ing surface generation templates, shifting the di-
alogue phase, taking and releasing the initiative,
and so on. Functions are defined in terms of the
Common Lisp program.

Surface-generation Templates: Surface-
generation templates are used by the surface
generation library function, which converts
a list-structured semantic representation to a
sequence of strings. Each string can be spoken,
i.e., it is in the list of pre-recorded speech files.

For example, let us consider the conversion
of the semantic representation (d a t e (d a t e -
e x p r e s s i o n 3 15)) to strings using the fol-
lowing template.

((date
(date-expression *month *day))

((*month gatsu) (*day nichi)))

The surface generation library function matches
the input semantic representation with the first el-
ement of the template and checks if a sequences

155

of strings appear in the speech file list. It re-
turns (' ' 3 g a g s u l 5 n i c h i ' ') (March 15th)
if the string "3gatsul5nichi" is in the list of
pre-recorded speech files, and otherwise, returns
(' ' 3gatsu 15nichi' ') when these
strings are in the list.

List of Pre-recorded Speech Files: The list of
pre-recorded speech files should show the corre-
spondence between strings and speech files to be
played by the speech output module.

4.2 Compiling System Specifications

From the specifications explained above, domain-
dependent knowledge sources are created as indi-
cated by the dashed arrows in Figure 1. When cre-
ating the knowledge sources, WIT checks for sev-
eral kinds of consistency. For example, the set of
word categories appearing in the lexicon and the
set of word categories appearing in phrase deft-
nifions are compared. This makes it easy to find
errors in the domain specifications.

5 Implementation

WIT has been implemented in Common Lisp and
C on UNIX, and we have built several experi-
mental and demonstration dialogue systems using
it, including a meeting room reservation system
(Nakano et al., 1999b), a video-recording pro-
gramming system, a schedule management sys-
tem (Nakano et al., 1999a), and a weather in-
formation system (Dohsaka et al., 2000). The
meeting room reservation system has vocabulary
of about 140 words, around 40 phrase structure
rules, nine attributes in the semantic frame, and
around 100 speech files. A sample dialogue be-
tween this system and a naive user is shown
in Figure 2. This system employs HTK as the
speech recognition engine. The weather informa-
tion system can answer the user's questions about
weather forecasts in Japan. The vocabulary size
is around 500, and the number of phrase structure
rules is 31. The number of attributes in the se-
mantic flame is 11, and the number of the files of
the pre-recorded speech is about 13,000.

6 Discussion

As explained above, the architecture of WIT al-
lows us to develop a system that can use utter-

ances that are not clearly segmented into sen-
tences by pauses and respond in real time. Below
we discuss other advantages and remaining prob-
lems.

6.1 Descriptive Power

Whereas previous finite-state-model-based tool-
kits place many severe restrictions on domain de-
scriptions, WIT has enough descriptive power to
build a variety of dialogue systems. Although the
dialogue state is represented by a simple attribute-
value matrix, since there is no limitation on the
number of attributes, it can hold more compli-
cated information. For example, it is possible to
represent a discourse stack whose depth is lim-
ited. Recording some dialogue history is also
possible. Since the language understanding mod-
ule utilizes unification, a wide variety of lin-
guistic phenomena can be covered. For exam-
ple, speech repairs, particle omission, and fillers
can be dealt with in the framework of unifica-
tion grammar (Nakano et al., 1994; Nakano and
Shimazu, 1999). The language generation mod-
ule features Common Lisp functions, so there is
no limitation on the description. Some of the
systems we have developed feature a generation
method based on hierarchical planning (Dohsaka
and Shirnazu, 1997). It is also possible to build a
simple finite-state-model-based dialogue system
using WIT. States can be represented by dialogue
phases in WIT.

6.2 Consistency

In an agglutinative language such as Japanese,
there is no established definition of words, so dia-
logue system developers must define words. This
sometimes causes a problem in that the defini-
tion of word, that is, the word boundaries, in the
speech recognition module are different from that
in the language understanding module. In WIT,
however, since the common lexicon is used in
both the speech recognition module and language
understanding module, the consistency between
them is maintained.

6-3 Avoiding Information Loss

In ordinary spoken language systems, the speech
recognition module sends just a word hypoth-
esis to the language processing module, which

156

speaker start end utterance
time (s) time (s)

system: 614.53 615.93
user: 616.38 618.29

system: 619.97 620.13
user: 622.65 624.08
system: 625.68 625.91
user: 626.65 627.78
system: 629.25 629.55
user: 629.91 631.67
system: 633.29 633.57
user: 634.95 636.00
system: 637.50 645.43

user: 645.74 646.04
system: 647.05 648.20

Figure 2:

donoy6na goy6ken desh6 ka (how may I help you?)
kaigishitsu o yoyaku shitai ndesu ga (I'd like to make a reserva-
tion for a meeting room)
hai (uh-huh)
san-gatsujfini-nichi (on March 12th)
hal (uh-huh)
jayo-ji kara (from 14:00)
hai (uh-huh)
jashichi-ji sanjup-pun made (to 17:30)
hai (uh-huh)
dai-kaigishitsu (the large meeting room)
san-gatsu jani-nichi, j~yo-ji kara, jashichi-ji sanjup-pun made,
dai-kaigishitsu toyfi koto de yoroshf deshrka (on March 12th,
from 14:00 to 17:30, the large meeting room, is that right?) "
hai (yes)
kashikomarimashitd (all right)

An example dialogue of an example system

must disambiguate word meaning and find phrase
boundaries by parsing. In contrast, the speech
recognition module in WIT sends not only words
but also word categories, phrase boundaries, and
phrase categories. This leads to less expensive
and better language understanding.

6.4 Problems and Limitations

Several problems remain with WIT. One of the
most significant is that the system developer must
write language generation functions. If the gen-
eration functions employ sophisticated dialogue
strategies, the system can perform complicated
dialogues that are not just question answering.
WIT, however, does not provide task-independent
facilities that make it easier to employ such dia-
logue strategies.

There have been several efforts aimed at de-
veloping a domain-independent method for gen-
erating responses from a frame representation of
user requests (Bobrow et al., 1977; Chu-CarroU,
1999). Incorporating such techniques would deo
crease the system developer workload. However,
there has been no work on domain-independent
response generation for robust spoken dialogue
systems that can deal with utterances that might
include pauses in the middle of a sentence, which
WIT handles well. Therefore incorporating those

techniques remains as a future work.
Another limitation is that WIT cannot deal with

multiple speech recognition candidates such as
those in an N-best list. Extending WIT to deal
with multiple recognition results would improve
the performance of the whole system. The ISSS
preference mechanism is expected to play a role
in choosing the best recognition result.

7 Conclusion

This paper described WIT, a toolkit for build-
ing spoken dialogue systems. Although it re-
quires more system specifications than previous
finite-state-model-based toolkits, it enables one
to easily construct real-time, robust spoken dia-
logue systems that incorporates advanced compu-
tational linguistics technologies.

Acknowledgements

The authors thank Drs. Ken'ichiro Ishii, Nori-
hiro Hagita, and Takeshi Kawabata for their sup-
port of this research. Thanks also go to Tetsuya
Kubota, Ryoko Kima, and the members of the
Dialogue Understanding Research Group. We
used the speech recognition engine VoiceRex de-
veloped by NTT Cyber Space Laboratories and
thank those who helped us use it. Comments by

157

the anonymous reviewers were of' great help.

References

James F. Allen, Bradford W. Miller, Eric K. Ringger,
and Teresa Sikorski. 1996. A robust system for nat-
ural spoken dialogue. In Proceedings of the 34th
Annual Meeting of the Association for Computa-
tional Linguistics (A CL-96), pages 62-70.

Harald Aust, Martin Oerder, Frank Seide, and Volker
Steinbiss. 1995. The Philips automatic train
timetable information system. Speech Communi-
cation, 17:249--262.

James Barnett and Mona Singh. 1997. Designing
a portable spoken language system. In Elisabeth
Maier, Marion Mast, and Susann LuperFoy, editors,
Dialogue Processing in Spoken Language Systems,
pages 156--170. Springer-Vedag.

Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay,
Dona!d A. Norman, Henry Thompson, and Terry
Winograd. 1977. GUS, a frame driven dialog sys-
tem. Arnficial Intelligence, 8:155-173.

Jennifer Chu-Carroll. 1999. Fo:rrn-based reason-
ing for mixed-initiative dialogue management in
information-query systems. In Proceedings of the
Sixth European Conference on Speech Communica-
tion and Technology (Eurospeech-99) , pages 1519-
1522.

Junnifer Chu-Carroll. 2000. MIMIC: An adaptive
mixed initiative spoken dialogue system for infor-
mation queries. In Proceedings of the 6th Con-
f~rence on Applied Natural Language Processing
(ANLP-O0), pages 97-104.

Kohji Dohsaka and Akira Shimazu. 1997. System ar-
chitecture for spoken utterance production in col-
laborative dialogue. In Working Notes of IJCAI
1997 Workshop on Collaboration, Cooperation and
Conflict in Dialogue Systems.

Kohji Dohsaka, Norihito Yasuda, Noboru Miyazaki,
Mikio Nakano, and Kiyoaki AJkawa. 2000. An ef-
ficient dialogue control method under system's lim-
ited knowledge. In Proceedings of the Sixth Inter-
national Conference on Spoken Language Process-
ing (ICSLP-O0).

Jun-ichi Hirasawa, Noboru Miyazaki, Mikio Nakano,
and Takeshi Kawabata. 1998. Implementation
of coordinative nodding behavior on spoken dia-
logue systems. In Proceedings of the Fgth Interna-
tional Conference on Spoken Language Processing
(1CSLP-98), pages 2347-2350.

Tetsunod Kobayashi, Shuichi Itahashi, Satoru
Hayamizu, and Toshiyuki Takezawa. 1992. Asj

continuous speech corpus for research. The journal
of th e Acoustical Society o f Japan, 48(12): 888-893.

Mikio Nakano and Akira Shimazu. 1999. Pars-
ing utterances including self-repairs. In Yorick
Wilks, editor, Machine Conversations, pages 99-
112. Kluwer Academic Publishers.

Mikio Nakano, Aldra Shimazu, and Kiyoshi Kogure.
1994. A grammar and a parser for spontaneous
speech. In Proceedings of the 15th Interna-
tional Conference on Computational Linguistics
(COLING-94), pages 1014-1020.

Mildo Nakano, Kohji Dohsaka, Noboru Miyazald,
Inn ichi Hirasawa, Masafiami Tamoto, Masahito
Kawarnon, Akira Sugiyama, and Takeshi Kawa-
bata. 1999a. Handling rich turn-taking in spoken
dialogue systems. In Proceedings of the Sixth Eu-
ropean Conference on Speech Communication and
Technology (Eurospeech-99), pages 1167-1170.

Mikio Nakano, Noboru Miyazaki, Jun-ichi Hirasawa,
Kohji Dohsaka, and Takeshi Kawabata. 1999b.
Understanding unsegmented user utterances in real-
time spoken dialogue systems. In Proceedings of
the 37th Annual Meeting of the Association for
Computational Linguistics (ACL-99), pages 200--
207.

Mikio Nakano. 1991. Constraint projection: An ef-
ficient treatment of disjunctive feature descriptions.
In Proceedings of the 29th Annual Meeting of the
Association for Computational Linguistics (ACL-
90, pages 307-314.

Yoshiaki Noda, Yoshikazu Yamaguchi, Tomokazu
Yamada, Akihiro Imamura, Satoshi Takahashi,
Tomoko Matsui, and Kiyoaki Aikawa. 1998. The
development of speech recognition engine REX. In
Proceedings of the 1998 1EICE General Confer-
ence D-14-9, page 220. (in Japanese).

Fernando C. N. Pereira and David H. D. Warren.
1980. Definite clause grammars for language
analysis--a survey of the formalism and a compar-
ison with augmented transition networks. Artificial
Intelligence, 13:231-278.

Carl J. Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. CSLI, Stanford.

Munehiko Sasajima, Yakehide Yano, and Yasuyuki
Kono. 1999. EUROPA: A genetic framework for
developing spoken dialogue systems. In Proceed-
ings of the Sixth European Conference on Speech
Communication and Technology (Eurospeech-99),
pages 1163--1166.

Stephanie Seneff, Ed Hurley, Raymond Lau, Chris-
fine Pao, Philipp Sehmid, and Victor Zue. 1998.
GALAXY-H: A reference architecture for conver-
sational system development. In Proceedings of

158

the Fifth International Con l~rence on Spoken Lan-
guage Processing (ICSLP-98).

Stephen Sutton, Ronaid A. Cole, Jacques de Villiers,
Johan SchMkwyk, Pieter Vermeulen, Michael W.
Macon, Yonghong Yah, Edward Kaiser, Brian Run-
die, K.haldoun Shobaki, Paul Hosom, Alex Kain,
Johan Wouters, Dominic W. Massaro, and Michael
Cohen. 1998. Universal speech tools: The
CSLU toolkit. In Proceedings of the Fifth Interna-
tional Conference on Spoken Language Processing
(1CSLP-98), pages 3221-3224.

Marilyn Walker, Irene Langkilde, Jerry Wright, Allen
Gorin, and Diane Litman. 2000. Learning to pre-
dict problematic situations in a spoken dialogue
system: Experiments with how may I help you? In
Proceedings of the First Meeting of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAA CL-O0), pages 210--217.

Victor Zue, Stephanie Seneff, James Glass, Joseph Po-
lifroni, Christine Pao, Timothy J. Hazen, and Lee
He~erington. 2000. Jupiter: A telephone-based
conversational interface for weather information.
1EEE Transactions on Speech and Audio Process-
ing, 8(1):85-96.

159

