
Flexible Speech Act Based Dialogue Management

El i H a g e n and F r e d P o p o w i c h
School of C o m p u t i n g Science

Simon Fraser Universi ty
Ca n a d a V5A 1S6

{hagen, popowich}@cs, sfu. ca

Abstract

We present an application independent dialogue
engine that reasons on application dependent
knowledge sources to calculate predictions about
how a dialogue might continue. Predictions are
language independent and are translated into lan-
guage dependent structures for recognition and
synthesis. Further, we discuss how the predic-
tions account for different kinds of dialogue, e.g.,
question-answer or mixed initiative.

1 I n t r o d u c t i o n

The computerized spoken information systems (or
Spoken Dialogue System--SDS) that we will con-
sider in this paper are systems where a computer
acts as the operator of some service and inter-
acts with a user in natural language, e.g., switch
board, directory assistance, or ticket service. Be-
fore an SDS can provide its information, it needs
to acquire data from the user, e.g., customer name
and number, birth date, service location, or ser-
vice date. We call these parameter values. In an
SDS they are acquired orally and speech recogni-
tion is used to decode the speech signal into words.

A dialogue manager facilitates the negotiation
of parameter values between a user and an SDS.
We emphasize keeping our dialogue manager ap-
plication and language independent, thus we fac-
tored out the independent information into two
components. A dialogue engine calculates pre-
dictions for how to continue a dialogue from de-
pendent knowledge sources (e.g., dialogue gram-
mar and history, application description). A prag-
matic interpreter maps syntactic/semantic inter-
pretation results onto predictions.

Our predictions are called dialogue primitives;
GEN-primitives predict system utterances and
REC-primitives predict user utterances. They are
language independent and on both the recogni-
tion and the generation side, other modules trans-
late them into language dependent structures. In
this paper, we will discuss the kinds of primi-
tives our dialogue manager calculates and how

REC-primitives
REC- ~,

SIDE I speech 1 [syntac./sem.]
recognizer ~ interpreter

/ \
'telephone] primitives pragm, int.

microphone I ~ o ~ e
GEN I engine
p r i m i t i v ~

~ [response i applicati°n
I generator description+ dialogue

strategies

GEN-
SIDE

Figure 1: System architecture of our SDS. The
arcs indicate information flow.

they account for different kinds of dialogue, e.g.,
question-answer or mixed initiative.

2 B a c k g r o u n d

First, we discuss our system architecture and data
flow between modules. Second, we present the ap-
plication description of a movie service, which we
will use for the examples in later sections. Third,
we present some of our current primitives, and fi-
naUy, we describe the dialogue engine and how it
uses the application description and other sources
to calculate dialogue primitives.

2.1 Sys tem Archi tec ture

Our system architecture is presented in Figure 1.
The dialogue manager takes an application de-
scription (Section 2.2) and a set of dialogue strate-
gies (Sections 3 and 4) as input--both provided by
the service designer. The application description
describes the parameters needed by the service
and is necessarily application dependent. The di-
alogue strategies contain directions for how the di-
alogue shall proceed in certain situations. For ex-
ample, whether to ask for confirmation or spelling
of a badly recognized parameter value or whether

131

to generate system or user directed dialogue.
The output of our dialogue manager is a bag

of abstract, language independent primitives. On
the generation side they encode the next sys-
tem utterance and a response generator trans-
lates the GEN-primitives into text, which is then
synthesized. On the recognition side, the REC-
primitives represent the dialogue manager's pre-
dictions about the next user utterance. REC-
primitives are translated into (recognition) con-
texts and grammars for speech recognition and
they may activate sub-components of a synsem
grammar. After speech recognition has taken
place, the dialogue engine must be told which pre-
dictions came true, thus the pragmatic interpreter
maps the output of synsem interpreter onto a sub-
bag of REC-primitives, which is then returned to
the dialogue engine for further processing (Sec-
tion 2.4).

2.2 A p p l i c a t i o n D e s c r i p t i o n

The application description (AD) specifies the
tasks that a service can solve and the parame-
ter values needed to solve them. The AD for a
movie service is presented in Figure 2. Our repre-
sentation is an extended version of and-or trees 1
and in Figure 2, the U-shaped symbols represent
and-relations, while the V-shaped symbols repre-
sent or-relations. Thus, this movie service can
perform three tasks: selling tickets or providing
movie or theatre information. If the user wants
to buy tickets, the system needs to acquire six pa-
rarneter values, e.g., the show time, the date, and
the name of the film. Date and show time can
be acquired in several ways. For example, a date
can be a simple date (e.g., "November 17th ~) or
a combination of day of the week and week (e.g.,
"Wednesday this week.").

The nodes keep state information. Open nodes
have not yet been negotiated, topic nodes are be-
ing negotiated, and closed nodes have been negoti-
ated. The currently active task has status active.
Parameters can be retrieved through the func-
tions activeTask(AD), openParams(AD), closed-
Params(AD), and topicParams(AD). Status(p)
returns the status of parameter p. tasks(AD) and
params(AD) return the task and parameter nodes.

Similar hierarchical domain descriptions have
been suggested in (Young et al., 1990) for a naval
domain and in (Caminero-Gil et al., 1996) for an
e-mall assistance domain. A tree-like organiza-
tion of the domain is sufficent for the information
retrieval domains, which we are currently consid-
ering. We expect, however, that in future work we

1Extensions include has-a relations.

movie service

movieInfot buyTicketst theatreInfot

Ticketsp

Timep timep dat% k~_~we e

wee k p D a y P

F igu re 2: A description of a movie service. No-
tation: U and v represent and/or-relations. Sub-
scripts t and p denote tasks and parameters.

will need to switch to a semantic network struc-
ture or since our future research includes auto-
matic generation of system utterances from our
dialogue primitives, we hope to be able to uti-
lize the ontology and domain organization work,
which has proven so useful for text generation
(Bateman et al., 1994; Bateman et al., 1995), for
both dialogue management and text generation.

2.3 Dia logue P r i m i t i v e s

Following the procedure outlined in Section 2.4,
the dialogue manager calculates a bag of primi-
tives for each turn and speaker. Our current col-
lection is motivated through our experience with
several domains, e.g., movie service, horoscope
service, and directory assistance. The collection
is not exhaustive and we will add primitives as
wider dialogue coverage is required.

N o t a t i o n : A primitive is written prim-
Name(p=v,n), where primName is its name; p E
params(AD) U {aTask}; aTask is a special param-
eter whose values E tasks(AD); v is the value of p;
and n is an integer denoting the number of times
a primitive has been uttered. If v is uninstanti-
ated, it is left out for readability. Unless otherwise
stated, p E params(AD).

2.3.1 G E N - P r i m i t i v e s

Our current GEN-primitives:

salutation(p=v): system opens or closes the inter-
action, p E {hello, goodbye}, v E {morning, day,
evening}.

requestValue(p): system requests a value for the
paramter p. p E params(AD) U {aTask}.

requestValue(p=v): system asks whether the value
v of parameter p is correct. If this form is used, the
system has a list of alternative values for p, and

132

v is not a recognit ion result (e.g., Frankfurt am
Main or Frankfurt an der Oder where Frankfurt
is the recognition result .)

requestValue(aTask=v), v E tasks(AD) U {repeat-
PreServiceTask, useService, repeatService}: system
requests a value for aTask. I f v E {repeatPre-
ServiceTask, useService, repeatService}, the system
requests whether the user wants the pre-service
task repeated, the service s tar ted (first task after
pre-service task), or a new task star ted.

requestConfirm(p=v): system asks whether the
value v of pa ramete r p is correct, v is a recog-
nit ion result, p E params(AD) U {aTask}. Am-
bignous results not resulting from speech recog-
nition, e.g., Frankfurt am Main vs. ~zauldurt an
der Oder, would yield multiple requestValue(p=v)
primitives.

requestValueABC(p): system requests the spelling
of the value of pa ramete r p.

requestParam(p=v): system asks whether the
value v is a value for parameter p.

evaluate(p=v) : system acknowledges value v of
pa rame te r p.

promise(p=v): system promises to a t t empt to
answer the user 's request, p E params(AD) U
{aTask}. v E {pleaseWait}. Only used after nav-
igate(), requestParam 0 or requestAIternative 0 i f
the user has to wait long for a reply.

inform(aTask=v): system informs about the ac-
quired da tabase results, v E aetiveTask(AD) U
{tooMany, zero}. If v = activeTask(AD), there
are several answers, if v = tooMany/zero , there
are ei ther too many answers to be enumerated or
zero answers.

inform(aTask=n): sys tem presents the n'th answer
to the query t. n > 0

inforrnAIternative(p): system informs that there
are several possible values for p. p E params(AD)
U {aTask}. v E {tooMany, null}. If v = tooMany,
there are too many al ternatives to be enumerated.
v = null, means tha t v is uninstantiated, not tha t
there are zero al ternatives.

inforrnAIternative(p=v): system informs tha t a
possible value of p is v. p E params(AD) U
{aTask}.

informNegative(p): system infolds that the user
misrecognized something, p E params(AD) U

{aTask}.

informPositive(p): system informs tha t the user
recognized something correctly, p E params(AD)
U {aTask}.

withdraw(p): system withdraws from dialogue for
reason p E {error} before it has s tar ted negotia-
tions.

withdrawOffer(aTask=v): system withdraws an of-
fer for reason v E {error}.

withdrawPrornise(aTask=v): system withdraws a
promise for reason v E {error}.

In Section 3, we present several sample instan-
t iat ions of the primitives.

2.3.2 REC-Pr imi t ives

Our current REC-primit ives:

requestParam(p): user requests which parameter
the system requested, p E params(AD) U {null}.

requestAIternatives(p): user requests possible val-
ues for pa ramete r p.

requestConffirm(aTask=n): user asks system to
confirm an answer tha t it has given, e.g., "Was
the first answer $30?" 0 < n < no of query results.

informValue(p=v): user provides value v for pa-
rameter p. p was requested. 2

informExtraValue(p=v): user provides value v for
parameter p. p was not requested in the preceeding
system utterance.

informValueABC(p=v): user spells the value v of
parameter p. The spelling is expanded by synsem
and expansions are presented to the dialogue man-
ager. 2

inforrnPositive(p=v): user confirms tha t the value
of parameter p is v. p E params(AD) U {aTask}.

informNegative(p=v): user disconfirms tha t the
value of paramete r p is v. p E params(AD) U
{aTask}.

correctValue(p=v): user corrects a misrecognized
value. Often used together with informNegative.
For example, "Hamburg, not Homburg. "2

informGarbage(p): user says something but recog-
nizer and /o r synsem could not make sense out of
it.

changeValue(p=v): user changes the value of pa-
rameter p to v ins tead of v'. 2

repeatValue(p=v): user repeats the value v of pa-
rameter p.2

correctPararn(p=v): user corrects t ha t v is the
value of p, not p'.

disambiguate(p=v): user chooses v as the value of
p when presented with a choice between several
values for p. p E params(AD) U {aTask}.

2The pragmatic interpreter instantiates v.

133

rejectValue(p=v): the user has been given a se-
ries of alternatives and chooses p=:v'. Primitive is
combined with disambiguate(p=v').

navigate(aTask=v): user navigates in the query re-
sults, v E {forward, backward, repeat, n} where 0
n < no of query results. 2

rejectRequest(p=v): user ignores or does not hear
the system request, v E {null, didNotHear}.

rejectOffer(aTask=v): user ignores or does not
hear the system offer, v E tasks(AD) U {null, did-
NotHear}.

evaluate(t=v): user evaluates an answer she has
received, v E {positive, neutral, negative, cancel}.
cancel is used to end the current dialogue after at
least one answer has been given ~md start a new
one without calling again.

promise(p): user promises to find a value for p.

withdrawAccept(aTask=v): user ,mthdraws from
the conversation for reason v E {cancel, hangup}.
With cancel, the user ends the current dialogue
before an answer has been given and starts a new
task Without calling again. 2

withdrawPromise(p=v): user withd.raws a promise
to provide a value for reason v E {cancel,
hangup}. 2

withdrawRequest(p=v): user wi thdraws a request.
p E params(AD) U {forward, backward, repeat, and
n}. 2

null(): returned to the dialogue manager if the
,user does not say anything and is not ezpected to
say anything, e.g., after a greeting or promise.

In Section 3, we present several sample instan-
tiations of the primitives.

2.4 D i a l o g u e E n g i n e

The dialogue engine (Hagen, 1999) consists of a
reasoning engine and several knowledge sources:
An AD defines an application's data-needs, a di-
alogue grammar defines how a dialogue may pro-
ceed at the level of speech acts, and a dialogue
history is a dynamically growing parse tree of an
on-going dialogue with respect to the dialogue
grammar. Other knowledge sources may be re-
quired, for instance, recognition confidence or dis-
ambiguation of city names.

The dialogue engine calculates the next turn by
consulting and combining information from the
knowledge sources. I t consults with the dialogue
history and the dialogue grammar in order to cal-
culate which speech acts may continue a dialogue.
Speech acts have no propositional content, thus
in the context of the current dialogue history and

the state of the application description, they are
translated into dialogue primitives, which have
content, for example, the name of a parameter
and a potential value for this parameter. Here we
will walk through an example of how some prim-
itives are calculated in a simple question-answer
dialogue.

E x a m p l e : For our example we will use the A D
in Figure 2. Assume that the task has already
been negotiated and set to theatre information
(i.e., activeTask(AD) = theatrelnfo), i.e., the sys-
tem needs to acquire the name of the theatre and
the name of the city. All other nodes in the AD
are closed since they are not relevant to this task.

The s p e e c h a c t g r a m m a r used in our system
is presented in Appendix A but we will use a
trivial grammar for the example. It can account
for simple question-answer dialogues where a
request from the system (sys) is followed by an
inform from the user (usr). The system can
respond to the inform with a sub-dialogue: s

Dialogue(sys)--~(request(sys) + Inform(usr))*
Inform(usr)--+inform(usr) + [Dialogue(sys)]

The d i a l o g u e h i s t o r y reflects all previous ne-
gotiations (here: task theatreinfo).

Dialogue(sys)

request(sys) . . Inform(usr)
requestValue(task)

intprm.(usr) . . ,
informValue(task=theatrelnto)

The next tu rn can be rooted in either the
Inform(usr) after the inform(usr) or in the Dia-
Iogue(sys) after Inform(usr).

With all the above knowledge sources in place,
the calculation of the next dialogue turn can start:

1. The last speech act in the dialogue history
gives us a start ing point in the grammar, thus
moving forward from inform(usr), the next atomic
speech act is request(sys)--either as a flat struc-
ture (i.e., request(sys) off Dialogue(sys)) or in a
sub-dialogue (i.e., Dialogue(sys)-I-request(sys) off
Inform(usr)).

2. Knowing tha t the system can request some-
thing, the dialogue engine consults with the AD
for what the system can ask about. The flat
strucutre (request(us)) represents negotiation of
the task but since we assume tha t negotiation of
the task is complete (i.e., Status(theatrelnfo) = ac-
t ive), this speech act is not interpreted into a prim-

SThe star (') means that a dialogue may contain
several request(sys) -I- Inform(usr) sequences. Lower-
case speech acts are atomic, while others are complex.
The dialogue in square brackets ([]) is optional.

134

itive. Next we consider the sub-diaJogue struc-
ture. Both children of theatrelnfo are open (i.e.,
they have not been negotiatied yet) thus the sys-
tem randomly chooses to pursue city whose state
is changed to topic. The speech act and the pa-
rameter are combined into the primitive request-
Value(city)--request a value for the parameter city
(e.g., "In which city is the theatre?"). We chose
to use the sub-dialogue structure instead of the
flat strucutre to represent negotiation of parame-
ter values since they are subordinate to the task
in the sense that the task dictates which parame-
ter values are needed. This is also the case for the
real gammar (Appendix A).

3. The primitive requestValue(city) is added to
the dialogue history:

Dialogue(sys)
J

request(sys) I nform(usr)
requestValue(task) j

intorm(usr) Dialogue(sys)
inform Value(task=theatrelnfo)

request(sys) .
requestValue(city)

4. Starting from request(sys), the grammar
states that inform(usr) (i.e., Inform(usr) + in-
form(usr)) is the next speech act in the dialogue.
requestValue(city) was the last primitive spoken.
Reasoning that a user-inform in response to a sys-
tem requestValue should involve the same parame-
ter as the system's requestValue, the information is
combined to form the primitive informValue(city),
i.e., the user should respond to the system request
with a value for the parameter city. Let's assume
that the user replied "Hong Kong", thus the dia-
logue history is expanded:

Dialogue(sys)

request (sys) . , Inform(usr)
req uestVa lue (task),...-.

intorm(u.sr) . . o .Dialogue(sys)
in formValue(task=theat re ln to) /

request(sys) . Inform(usr)
requestValue(city)

intorm(usr~
informValue(city& Hohg Kong)

5. Starting ~om inform(usr), the grammar re-
turns reques't(sys) and Dialogue(sys)-t-request(sys).
Since a recogniton result is available from the pre-
vious turn, the engine checks its recogution con-
fidence. If it is high, it would consider the nego-
tiation of city finished, change its state to closed,
and discard Dialogue(sys)+request(sys) since there
is nothing to be requested about a closed param-
eter. I t would translate request(sys) into request-
Value(theatre) since theatre is the only remaining

open parameter.
If confidence is low, the dialogue engine

may decide to ask the user to confirm
the recognized value. In which case, Dia-
Iogue(sys)+request(sys) would be interpreted into
requestConfirm(city=Hong Kong). Whether re-
quest(sys) would be interpreted or not depends
on the dialogue strategies chosen by the service
designer (see Sections 3 and 4).

If confidence is extremely low, the dialogue en-
gine may decide to repeat the question. In which
case, request(sys) would be interpreted into re-
questValue(city, 2), while the sub-dialogue struc-
ture would be discarded.

6. Any interpretation of the flat strucutre would
result in the following addition to the last Dia-
Iogue(sys) in the dialogue history.

I
Dialogue(sys)

request(sys) . Inform(usr) recluest(sys)
requestValue(city) i

infgrm(u.sr) . •
informValue(city= Hong I~.ong)

Our example shows how a speech act can result
in several primitives depending on the context and
thus how the dialogue manager dynamically reacts
to external events. Although this brief description
may not show it, our dialogue manager can handle
mixed initiative dialogue (Hagen, 1999). In (Ha-
gen, 1999), we also present our theory of taking,
keeping, and relinquishing the initiative.

Heisterkamp and McGlashan (1996) presented
an approach that uses a similar division of func-
tionality as we do: task (=application), contex-
tual (=synsem + pragmatic), and pragmatic in-
terpretation (=dialogue engine). They also use
abstract parameterized units similar to ours, but
they do not use a speech act grammar to cal-
culate the units. Rather, they map contex-
tual functions onto dialogue goals, e.g., the func-
tion new_for_system(gaalcity:munich) introduces
the dialogue goal confirm(goalcity:munich). In
terms of our primitievs this could be expressed as
requestConfirm 0 follows informValue 0. We choose
not to start our modelling at this level since we
want to be able to vary what follows informValue0,
e.g., requestConfirmO, requestValueABCO, or eval-
uate() .

3 P r i m i t i v e s i n U s e

Conceptually, GEN-primitives are calculated first
and then a bag of possible responses (REC-
primitives). One dialogue primitive corresponds
to one information unit or communicative goal,

1 3 5

GEN-Primitive
requestValue(film)

requestConfi rm
(theatre=Ridge)

REC-Pr imi t ives
informValue(filrn)
rejectRequest(film)
withd rawAccept (aTask=hangup)
withd rawAccept(aTask=cancel)
inform Positive(theatre=Ridge)
inform Negative(theatre=Ridge)
rejectReq uest(theatre=Ridge)
withdrawAccept(aTask=ha ngup)
withdrawAccept(aTask=cancel)

Table 1: REC-primitives calculated in response
to two GEN-primitives in Dialogue 1.

e.g., in an information retrieval setting: provid-
ing or requesting one piece of infi)rmation. Prim-
itives can be used individually or combined to ac-
count for more complex dialogue. Whether and
how they are combined depends on the dialogue
strategies specified by the service designer. In this
and the following section, we will examine several
such strategies and show how the primitives are
combined to achieve them.

3.1 Ques t i on -Answer Dia logue

In the simplest case, the service designer wants a
strickt question-answer dialogue: 4
D i a l o g u e 1: Question-Answer

Sys: "Which film do you want to see?"
req uest:Value(film)

Usr: "The Matrix. At the Ridge."
Int: informValue(film= Matrix)
Sys: "Which theatre?"

requestValue(theatre)
Usr: "Ridge. R I D G E."
Int: "mformValue(theatre=Ridge). ,,
Sys: "Did you say The Ridge?

requestConfi rm(theatre= Ridge)
Usr: ~Yes. R I D G E."
Int: inform Positive(theatre= Ridge.)

For this type of dialogue, only the REC-
primitives representing direct answers, rejects,
and withdraws are calculated. In Table 1, we
present those calculated in response to the
first and the third system turn. We see that,
after requestValue(film), only iinformValue(film)
is calculated and the pragmatic', interpreter has
no chance to detect "At the Ridge" (even if
synsem parsed it correctly) since there is no in-
formExtraValue(theatre) available to map it onto.
Similarly, after requescConfirm(theatre=Ridge)
only informPositive(theatre=Ridge) and in-
formNegative(theatre=Ridge) are available and
"R I D G E" cannot be detected since there is no
informValueABC(city) primitive present.

41n the sample dialogues, 'Sys' means system turn,
'Usr' means user turn, and 'Int' means primitives rec-
ognized and sent back to the dialogue engine from the
pragmatic interpreter.

GEN-Pr imi t ive
requestValue(film)

requestConfirm
(theatre=Ridge)

PdgC-Primit ives
inforrnValue(film)
rejectReq uest(film)
inform ExtraValueValue(time)
informExtraValue(theatre)
inforrn Ext raVal ue(city)
inform ExtraValue(noOfTickets)
inforrnExtraValue(date)
withd rawAccept(aTask=v) =
inform Positive(theatre= Ridge)
inform Negative(theatre=Ridge)
rejectReq uest(theatre=Ridge)
inform Ext raVal ue(ti m e)
inform ExtraValue(city)
informExtraValue(noOfTickets)
inform ExtraValue(date)
withdrawAccept(aTask=v) a

=Vv E {cancel, hangup}

Tab le 2: REC-primitives calculated in response
to two GEN-primitives in Dialogue 2.

3.2 O v e r - A n s w e r i n g

In our experience, users frequently provide more
information than explicitly asked for, thus a more
flexible dialogue strategy would be to allow over-
answering and Dialogue 1 could have developed as
follows:
D i a l o g u e 2: Over-Answering

Sys: "Which film do you want to see?"
requestValue(film)

Usr: =Matrix. At the Ridge. R I D G E."
Int: informValue(film= Matrix)

+ informExtraValue(theatre=The Ridge)
Sys: "Did you say The Ridge?"

req uestConfi rrn (theatre= Ridge)
Usr: "Yes, and I want the late show."
Int: informPositive(theatre=Ridge)

+ informExtraValue(time=9P M)

In Table 2, we present the REC-primitives cal-
culated in response to the same system turns as
in Dialogue 1. In Dialogue 2, only over-answering
of requestValue 0 primitives were allowed, thus
"R I D G E" could still not be accounted for.

3.3 Complex Mixed Ini t ia t ive

Here we consider the most complex dialogue strat-
egy that we can currently offer: The system is able
to account for complex mixed initiative dialogue
(at least from a dialogue point of view), i.e., the
user can requst clarifications, over-answer, change
values, repeat values, correct values, spell values,
and reject requests as she pleases.
D i a l o g u e 3: Complex Mixed Initiative

Sys: "Which ~Irn do you want to see?"
requestValue(film)

Usr: =Sorry, did you ask for the time?"
Int: requestParam(time)
Sys: =No. Which film do you want to see?"

informNegative(time) + requestValue(film, 2)

136

D i a l o g u e 3 c o n t ' d .
Usr: "Matrix. At the Ridge."
Int: informValue(film= M atrix)

+ informExtraValue(theatre=The Ridge)
Sys: "Did you say The Ridge?"

requestConfirm (theatre=Ridge, 1)
Usr: "Sorry, I didn't hear that."
Int: rejectReq uest(theatre=didNotHear)
Sys: "Did you say The Ridge?"

requestConfirm(theatre= Ridge, 2)
Usr: "Yes, The Ridge. R I D G E."
Int: inform Positive(theatre= Ridge)

+ repeatValue(theatre= Ridge)
+ informValueABC(theatre=Ridge)

Sys: "Ok. What time?"
evaluate(theatre=Ridge)
+ requestValue(time)

Usr: "I don't know. What are the alternatives?"
Int: req uestAIternatives(time)
Sys: "18:30 or 21:00."

informAlternative(time=18:30)
+ informAIternative(time=21:00)

Usr: "Ok, two tickets for the late show tomorrow."
Int: evaluate(time=neutral)

-l.- inform ExtraValue(noOfTickets=2)
+ informValue(time=21:00)
+ informExtraValue(date=July 4)

Sys: "Did you say two tickets?"
req uestConfirm(noOfTickets=2)

• Usr: "Yes, but I change to the early show."
Int: inform Positive(noOfTickets=2)

+ changeValue(time=18:30)

In Table 3, we present the REC-primitives cal-
culated in response to two system utterances.

3.4 M u l t i - F u n c t i o n a l T u r n s

It has been argued that speech act grammars can-
not be used to describe dialogue since utterances
can be multi-functional or encode more than one
speech act; Speech act grammars can typically be
in only one state at a time, thus they cannot cap-
ture this phenomenon (Levinson, 1981). In an
information retrieval setting such situations oc-
cur, for example, when users disregard the system
utterance and provide unrelated information or
when a recogniton mistake occured and the sytem
asks for confirmation. Instead of answering yes or
no, users frequently answer with the correct value,
which implicitly disconfirms the previous value:
D i a l o g u e 4: Multi-Functional Utterances

Sys: "How many tickets?"
req uestVal ue(noOfTickets)

Usr: "I want tickets for July 4."
I.ut: reject Request (noOf'l'ickets)

+ informExtraValue(date-~July 3)
Sys: "Did you say July 3?"

requestConfirm (date=July 3)
Usr: "Tomorrow!"
Int: informNegative(date=July 3)

-t- correctValue(date=July 4)

In the first utterance, the user both ignores the
system utterance and provides some information.
In the second one, she negated and correctd the
system suggestion with a single word.

GEN-Pr imi t ive
requestValue(film)

requestConfirm
(theatre=Ridge)

REC-Pr imi t ives
informValue(film)
informValueABC(film)
requestAIternatives(film)
promise(film)
rejectRequest(film=v) =
informGarbage(film)
requestParam(p) b
informExtraValue(p) b
informValueABC(p) b
repeatValue(p) ~
changeValue(p) c
withdrawAccept(aTask=v) d
inform Positive(theatre---- Ridge)
repeatValue(theatre=Ridge)
informNegative(theatre----Ridge)
correctValue(theatre)
informValueABC (theatre)
rejectRequest(theatre=v) a
inform Garbage(theatre)
informExtraValue(p) b
informValueABC(p) b
repeatValue(p) ¢
changeValue(p) c
withd rawAccept(aTask=v) 'd

=Vv E {null, didNotHear}
~VpE openParams(AD)

VpE closedParams(AD)
~Vv E {cancel, hangup}

Table 3: REC-primitives calculated in response
to two GEN-primitives in Dialogue 3.

Since we are not using the speech act grammar
directly and instead interpret the speech acts into
a bag of primitives, we can assign as many prim-
itives to an utterance as necessary and are not
bound by the states dictated by a grammar. This
aspect of our approach becomes even more inter-
esting when the system combines several primi-
tives in its utterance (Section 4).

4 D i a l o g u e S t r a t e g i e s

Although, the procedure outlined in Section 2.4,
only shows how to calculate one primitive per sys-
tem turn, the approach is, of course, not limited
to this. The service designer can decide to em-
ploy mixed initiative dialogue strategies for the
system utterances as well, for example, requesting
or confirming several values at once or implicitly
confirming values. The dialogue strategies for sys-
tem utterances include choosing nodes in the ap-
plication description, dealing with speech recogni-
tion results, or dealing with ambiguous data from
other knowledge sources. Here we present a few
examples of how the dialogue manager would com-
bine hypotheses (for more information see (Hagen,
2001)).

137

4.1 Conf i rma t ion Stra tegies

We illustrate implicit and multiple confirmation,
i.e., the system realizes requestValue and request-
Confirm or multiple requestConfirm primitives in
one utterance:
Dialogue 5: Confirmation Strategies

Sys: "Which showing of The Mal;rix do you want?"
requestValue(time)
-I- requestConfi rm (film= Matrix)

Usr: "(No.) Buena Vista!"
Int: informNegative(film=The Mzttrix)

+ correct:Value(film=Buena Vista)
+ reject:Request(time)

Sys: "Which showing of Buena Vista do you want?"
requestConfirm(film=Buena 'Vista)
+ requestValue(time)

Usr: =The late show. Tomorrow. :~
Int: inforrnPositive(film=Buena Vista)

informValue(time=21:00)
+ infformExtraValue(date=8 October)

Sys: "Did you say 21:00 today?"
requestConflrm (time=21:00) =
requestConfirm(date=October 7)

Usr: "No. Tomorrow."
Int: inform Positive(time=21:00)

-I- informNegative(date= October 7)
+ correctValue(date=October 8)

For the first two utterances, the system has a
recognition result for the parameter film with a
low recognition score. Consequently, it calculates
requestConfirm(film=Matrix/Buena Vista). Addi-
tionally, there are still open parameter nodes in
the AD, thus the dialogue engine picks one (ei-
ther at random or if the service designer has
ordered them, the next one) and calculates a
requestValue primitive, here requestValue(time).
If the service designer allows implicit confirma-
tion, the two primitives are combined and ut-
tered together in one turn. If the service de.
signer does not allow implicit confirmation, the
dialogue engine continues the dialogue with the
topic that has alread been introduced, i.e., re.
questConfirm (f i lm= Matrix/Buena Vista). 5

For its last utterance, the system has two recog-
nition results with a low recognition score, thus
for each one of them it calculates a requestConfirm
primitive. If the service designer, allows multiple
confirmations, they are combined and realized as
one utterance. If not, the dialogue engine chooses
requestConfirm(time=21:00), since this topic was
introduces first. If topics are introduced in the
same utterance, it pickes one at random.

4.2 AD Based Strategies

When requesting parameter values from the user,
the system consults the application description for

SThis is a conceptual account. In the implemen-
tation, the requestValue primitive would not be cal-
cualted at all, if the service designer does not allow
implicit confirmation.

open nodes. If there are several open nodes, the
dialogue manager can decide to keep the initiative
and produce several primitives, which can be com-
bined into one turn. If the nodes are joined with
an or-relation, the text generator would trans-
late the primitives into an utterance offering al-
ternative ways of entering the same information.
For example, "Please tell me the show time or
early or late show." (requestValue(time) + re-
questValue(namedTime)). If the nodes are joined
with an and- or a has-a relation, the text gen-
erator would translate the primitives into an ut-
terances requesting several different pieces of in-
formation. For example, "What is the name of
the city and the theatre?" (requestValue(city) +
requestValue(theatre)).

As seen in the application descriptions there
may be several ways of acquiring a particular value
e.g., date and time in Figure 2. If a parameter
value is recognized with a low score, the service
designer can decide whether the system shall con-
tinue processing the original parameter or whether
it shall switch to one of the alternative ones. Thus
after a bad recognition of date, the system can
switch strategy and request weekDay and week in-
stead.

Which strategies to follow is decided by the ser-
vice designer through a set of switches in the dia-
logue strategies specification file (Figure 1).

5 P r a g m a t i c I n t e r p r e t e r

After synsem interpretation, the user utterance
must be mapped onto dialogue primitives. A bag
of REC-primitives is calculated for each user ut-
terance and the pragmatic interpreter must assure
that the utterance is mapped onto primitives in
this bag. There is always a mapping. The reject
and withdraw primitives are always part of the bag
thus in the worst case, the user utterance would
be mapped onto one of these.

Since primitives in their uninstantiated form are
application independent, we can develop generic
rules for this mapping. In other words, the rules
define how the dialogue strategies presented in
Section 3 are mapped onto primitives and how we
account for several primitives per utterance.

A rule has the form: GEN-Primitives A user ut-
terance =~- REC-primitives. In Table 4, we present
two rules for implicit confirmation. The first one
corresponds to the first sys/usr pair in Dialogue 5.
The user responds with a new value vs (Buena
Vista) for P2 (film) in requestConfirm(p2=v2)
and thereby disconfirms v2 (Matr ix) and re-
jects the request for a value for Pl (time) in
requestValue(pl). The second rule corresponds to

138

GEN-Primit ives
requestValue(p~)
V1 < i _< maxi
req uestConf.(pj =vj)
Vl < j < max#

requestValue(pi)
V1 < i < maxi
requestConf.(p# =vj)
V1 _< j < max#

I n p u t
(no)
pj~v t~
vz ~ vj,
Vj
l < j _ <
k ~ ma.xj

Vi
l_<i_<
k _< =axi

l~EC-Pr imi t ives
informNeg.(pj =v./)
Y j l < j < k
correctVal.(pj =vl)
Y j l < j < k
informPos. (pj =v#)
W k < j < max j
rejectRequest(pi)
V1 < i _< maxl
informVal.(pi=vi)
V i l < i < k
informPos.(pj =vj)
Vl _< j < maxj
rejectRequest(pi)
Vi k < i < maxi

Table 4: Mapping of user
primitives, p=v means tha t
value v for param p.

input onto REC-
the user provided

the second sys/usr pair in Dialogue 5. The user
provides value vx (the late show) for Pl (time)
in requestValue(pl) and thus confirms v2 (Buena
Vista) in requestConfirm(p2=v2). For instanti-
afion of the primitives, see Dialogue 5. Here,
we only presented two examples. Similar rules
were developed for all our primitives and dialogue
strategies (see (Hagen, 2001)).

One reviewer asked whether we can modify the
approach such that expectations can be overrid-
den if there is sufficently good information from
the synsem module. The short answer is that we
could (re-)calcnlate the primitives pretending that
the service designer allowed mixed initiative re-
gardless of the dialogue strategies actually chosen.
W~, however, think it is important to give her the
right to decide. For example, if she has decided
that over-answering is allowed, informExtraValue0
primitives for all parameters whose status is still
open would be calculated and thus there is noth-
ing to override. If, however, the service designer
has decided that over-answering is not allowed, we
assume that she had good reasons for doing that
and the dialogue manager will not try to overrule
this decision.

6 Conclusion

We have presented some results from our research
on spoken dialogue management. We concen-
trated on how to dynamically calculate a collec-
tion of predictions for how to continue a dialogue
(dialogue primitives), how to account for differ-
ent dialogue strategies and utterances with sev-
eral communicative goals through combinations of
primitives, and how to map the user utterances
onto primitives. The approach has been imple-
mented and tested in several prototype systems,

e.g., horoscope, movie, and telephone rate service
(Feldes et al., 1998).
Dialogue grammars have previously been used

to manage dialogue (Bunt, 1989; Bilange, 1991;
Traum and Hinkelman, 1992; JSnsson, 1993; Mast
et al., 1994; Novick and Sutton, 1994; Chino and
Tsuboi, 1996), but we are not aware of an ap-
proach where speech acts are translated into a
collection of primitives with propositional content.
Previous grammar approaches use the speech acts
directly or assume a one-to-one correspondence
between utterance and speech act.

Through the natural division of the knowledge
into type and content, we have achieved a flex-
ible dialogue manager that adapts to users' be-
haviour. We can take advantage of the predictive
capabilites of speech act grammars and still be
able to account for multi-functional utterances.

We have also demonstrated that our approach
is flexible: 1. the dialogue engine, the pragmatic
interpreter, the primitives and the algorithm for
mapping user utterances onto predictions are ap-
plication and language independent, which makes
it easy to reuse our dialogue manager in new ap-
plications, and 2. the dialogue manager can easily
account for several types of dialogue, e.g., strict
question-answer or mixed initiative. We give the
service designer the freedom to decide which kind
of dialogue she wants---on a high level--and the
dialogue manager combines the basic primitives
accordingly.

Future work includes empirical testing to ver-
ify whether we are calculating appropriate predic-
tions. Also, several aspects of our dialogue gram-
mar have not yet been translated into primitives,
for example, the frequent use of assert in natu-
ral dialogue. As a wider dialogue coverage is re-
quired, we will add primitives accordingly. We are
also working on using the primities as input to a
multi-lingual automatic text generation system.

Acknowledgements

The author thanks the three anonymous reviewers
for their helpful comments on the first draft of
this paper. Financial support from the Norwegian
Research Council, project number 116578/410 is
greatly appreciated.

References

J.A. Bateman, B. Magnini, and F. Rinaldi. 1994.
The generalized {Italian, German, English} up-
per model. In Proe. of the ECAI9J Workshop:
Comparison of Implemented Ontologies, Ams-
terdam, The Netherlands.

139

J.A. Bateman, B. Maguini, and G. Fabris.
1995. The generalized upper model knowledge
base: Organization and use. In Proc. of the
Conf. on Knowledge Representation and Shar-
ing, Twente, The Netherlands.

E- Bilange. 1991. A task independent oral dia-
logue model. In Proc. of the Euro. Conf. of the
ACL, pages 83-87.

H.C. Bunt. 1989. Information dialogues as com-
municative action in relation to. partner model-
ing and information processing. In M.M. Tay-
lor, F. Neel, and D.G. BouwhLfis, editors, The
Structure of Multimodal Dialogue, pages 47-73.
North-Holland, Amsterdam.

J. Caminero-Gil, J. Alvarez-Cercadillo, C. Crespo-
Casas, and D. Tapias-Merino. 1996. Data-
driven discourse modeling for semantic in-
terpretation. In Proe. of 1996 Intl. Conf.
on Acoustics, Speech, and Signal Processing
(ICASSP'96), pages 401-404.

T. Chino and H. Tsuboi. 1996. A new discourse
model for spontaneous spoken dialogue. In
1021-1024, editor, Proc. of the 1996 Intl. Conf.
on Spoken Language Processing {ICSLP'96).

S. Feldes, G. Fries, E. Hagen, and A. Wirth. 1998.
A novel service creation enviromnent for speech
enabled database access. In Proc. ~th IEEE
Workshop on Interactive Voice Technology for
Telecommunications Applications (IVTTA '98),
29-30 Sept. 1998, Torino, Italy.

E. Hagen. 1999. An approach to mixed ini-
: tiative spoken information retrieval dialogue.

User Modeling and User-Adapted Interaction,
9(1/2):167-213.

E. Hagen. 2001. Mixed Initiative Spoken Dialogue
Management in Information Systems. Ph.D.
thesis, School of Computing Science, Simon
Fraser University, Burnaby, BC, Canada. Jan.
2001 expected.

P. Heisterkamp and S. McGlashan. 1996. Units
of dialogue management. In Proc. of the 1996
Intl. Conf. on Spoken Language Processing (IC-
SLP'96).

A. JSnsson. 1993. A dialogue manager using
initiative-response units and distributed con-
trol. In Proc. of 6th Euro. Conf. of the A CL,
pages 233-238.

S.C. Levinson. 1981. Some pre-observations on
the modelling of dialogue. Discourse Processes,
4:93-116.

M. Mast, F. Kummert, U. Ehrlich, G.A. Fink,
T. Kuhn, H. Niemann, and G. Sagerer. 1994.
Prosody takes over: Towards a prosodically

guided dialog system. Speech Communication,
15(1-2):155-167.

D.G. Novick and S. Sutton. 1994. An empirical
model of acknowledgement for spoken-language
systems. In Proc. of the 32nd Annual Meeting
of the ACL, pages 96-101.

S. Sitter and A. Stein. 1992. Modelling the il-
locutionary aspects of information-seeking di-
alogues. Information Processing and Manage-
ment, 8(2):165-180.

D. 'I~aum and E. Hinkelman. 1992. Conversation
acts in task-oriented spoken dialogue. Compu-
tational Intelligence, 8(3):575-599.

S. Young, A. Hauptmann, W. Ward, E. Smith,
and P. Werner. 1990. High-level knowledge
sources in usable speech recognition systems.
In A. Walbel and K. Lee, editors, Readings
in Speech Recognition, pages 538-549. Morgan
Kaufman, San Mateo, CA.

A . T h e C o m p l e t e D i a l o g u e G r a m m a r

The complete grammar is a slightly modified
version of the grammar presented in (Sitter and
Stein, 1992). No ta t ion : Complex dialogue
moves begin with an upper case (e.g., Request);
atom/c dialogue acts are all lower case (e.g., re-
quest). S and K mean seeker and knower. Square
brackets ([]) mean optional. X + means one or
more instances of X. All moves except Inform and
Assert are representated by the abstraction Move.
Subscript i means that move and act must be of
the same type, e.g., Request and request.

Dialogue(S) --+ (Cycle(S)) +
Cycle(S) -). Request(S), Promise(K), Inform(K),

Evaluate(S).
Cycle(S) ~ Request(S), [Promise(K)],

WithdrawRequest(S).
Cycle(S) ~ Request(S), Promise(K),

WithdrawPromise(K).
Cycle(S) ~ Request(S), RejectRequest(K).
Cycle(S) ~ Offer(K), Accept(S), Inform(K), Evaluate(S),
Cycle(S) ~ Offer(K), [Accept(S)], WithdrawOffer(K).
Cycle(S) ---y Offer(K), Accept(S), WithdrawAccept(S).
Cycle(S) -+ Offer(K), RejectOffer(S).
Cycle(S) -+ Withdraw(usr).
Cycle(S) ~ Withdraw(system).

inform(K) .-.). inform(K), [Dialogue(S)].
Assert(S/K) ,-.), assert(S/K), [Dialogue(K/S)].

Movei(S/K).
Movei(S/K) ~ act~(S/K), [Dialogue(K/S)].
Movei(S/K) ~ acti(S/K), [Assert(S/K)].
Mov~ (S/K) -+ Dialogue(K/S).
Moves(S/K) ~ Assert(S/K), [acti(S/K)].
Move~(S/K) --~. Assert(S/K), [Dialogue(K/S)].

140

