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Abstract 

The learning and self-adaptive capability in 
dialog systems has become increasingly 
important with the advances in a wide range of 
applications. For any application, particularly 
the one dealing with a technical domain, the 
system should pay attention to not only the user 
experience level and dialog goals, but more 
importantly, the mechanism to adapt the system 
behavior to the evolving state of  the user. This 
paper describes a methodology that first 
identifies the user experience level and utility 
metrics of the goal and sub-goals, then 
automatically adjusts those parameters based on 
discourse history and thus directs adaptive 
dialog management. 

Introduction 

A new generation of dialog systems should be 
viewed as learning systems rather than static 
models (Jokinen, 2000). Close-world and 
static approaches have tremendous limitations 
and often fail when the task becomes complex 
and the application environment and 
knowledge changes. Thus, the learning 
capability of  a dialog system has become an 
important issue. It has been addressed in many 
different aspects including dynamic 
construction of  mutual knowledge (Andersen 
et al, 1999), learning of speech acts (Stolcker 
et al, 1998), learning optimal strategies 
(Litman et al, 1998; Litman et al, 1999; 
Walker et al, 1998), collaborative agent in plan 
recognition (Lesh et al, 1999), etc. This paper 
addresses the dynamic user modeling and 
dialog-goal utility measurement to facilitate 
adaptive dialog behavior. 

For any dialog system dealing with a technical 
domain, such as repair support (Weis, 1997), 
help-desk support, etc, it is crucial for the 
system not only to pay attention to the user 
knowledge and experience level and dialog 
goals, but more important, to have certain 
mechanisms that adapt the system behavior in 
terms of action planning, content selection, 
and content realization to user cognitive 
limitations. Dialog strategies and management 
should be adjusted to the evolving state of the 
user. Thus a better understanding and 
modeling of user cognitive process and human 
perception is desirable. 

In this paper, we propose a methodology that 
automatically learns user experience levels 
based on sub-goal utilities and characteristics 
observed during the interaction. Those user 
levels will further feedback to update utility 
metrics and direct different dialog strategies at 
each level of dialog management: action 
planning, content selection and content 
realization. The Help-Desk is our application 
domain. This is a work in progress. We have 
built a prototype system and are currently in 
the process of  evaluation of our methodology 
and hypotheses. 

1 System Overview 

The system components, shown in figure 1, 
consist of  a problem space representation and 
a set of modules and agents that utilize this 
representation. The architecture supports a 
dynamic updating process for user level and 
sub-goal utility measurement, and thus allows 
the system to adapt its dialog behavior to the 
updated environment. 
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Figure 1. System Components 

The problem space is modeled by an Acyclic 
Problem Graph structure, which represents the 
dialog goal (i.e., final goal) and different paths 
(solutions) to the final goal. The Level 
Adjusting Agent controls the initial detection 
and dynamic shifting of  user expertise level 
based on the interactions with the user. The 
Action Planner identifies the problem node 
(i.e., dialog goal) in the Acyclic Problem 
Graph and locates the optimal path to it. The 
Content Selection component uses the Level 
Adjusting Agent and the Action Planner to 
select the content for the dialog. The Content 
Realization module deals with the final 
presentation of the dialog content to the user. 
The Utility Updating Agent automatically 
updates the utility metrics of the sub-goals in 
the Acyclic Problem Graph based on the single 
and group user models that are created during 
interactions. Different strategies are applied in 
different modules, which will be described 
later. 

2 Problem Space Modeling 

The problem space is modeled by an aeyclic 
graph named Acyclic Problem Graph. It can 
also be considered as a forest containing joint 
trees that have overlapped root nodes and 
internal nodes. Internal nodes correspond to 
sub-goals. A path traversed from a root to a 
particular node contains a potential solution to 
a goal or sub-goal related to that node. Given a 
root node, the ffurffier away from the root, the 
greater is the complexity of the goal (or sub- 
goal) represented by a node. Since multiple 

paths can lead to a node, there could be 
multiple solutions to a goal. 

Figure 2 is a fragment of  an acyclic graph for 
solving problems pertaining to a Windows 
based PC. In this example, three paths 
correspond to three potential solutions to the 
problem about how to set the display 
resolution of  a monitor. 

A C 

Concept:. Desklop Set t ings 
Remedy: (set of remedies for 
generation purpose)  
Reward: +15 
Plmishment: -45 
Timeout: 
Best.case: 10 sees (reward:  +10)  
Worst-ease: 30 sees (pua i s lma~t :  
-2O) 

Figure 2. Acyclie Problem Graph 

Each node in the graph has the following 
fields: Concept Name, Remedy, and Utility 
Metrics that include Reward, Punishment, 
Best-case timeout and Worst-case firneout. 

Concept Name represents an instruction 
corresponding to a particular goal or sub-goal 
during the problem solving. For example, the 
concept of  "Display Properties" node deals 
with manipulating the display of the monitor. 

Remedy is the template that is used to generate 
natural language responses and explanations 
corresponding to a particular goal. It also 
contains phrases and key terms used for 
language generation. 

Reward and Punishment are the utility metrics 
corresponding to each sub-goal (Winlder, 
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1972) depending upon the ]hypothesis of 
uncertainty of understanding and the level of 
importance. Uncertainty of understanding 
implies the difficulty in following certain 
instructions or understanding certain concepts. 
For example, some technical terms require 
users to possess greater expertise in order to 
comprehend them. Some potential ways of 
initializing uncertainty of unders.tanding are by 
observation, analysis of previously logged 
data, or surveys. The level of importance 
indicates the importance of the sub-goal for 
understanding an instruction or a concept 
towards the realization of the overall goal of 
solving the problem. One good indication of 
such importance, for example, in the Acyclic 
Problem Graph, is the branch factor of each 
node. A more difficult concept has a greater 
level of uncertainty and hence would lead to 
less punishment if the user does not 
understand it. On the other hand, if a user 
correctly understands a concept that has a high 
degree of uncertainty, he would be rewarded 
highly. Reward and punishment can be pre- 
determined and then re-adjusted later when the 
user and the group modeling progresses. 

Timeout metrics are used to indicate whether 
the user understands the instruction or the 
concept associated With the sub-goal within 
the expected period of time. The hypothesis is 
that when a user has no problem of 
understanding a system instruction, the user is 
very likely to respond to the system rapidly. 
However, when the user has difficulties, 
he/she tends to spend more time on thinking 
and asking for help. There are two timeouts: 
best-case and worst-case. Each timeout has a 

reward and a punishment. Best-case time is the 
time expected by the system, in the best ease, 
that a user would take to understaud the 
instruction. The user is rewarded when actual 
time spent is less than the best-case time. 
Similarly, the worst-case time is the system 
expectation for the worst ease. If  the user still 
doesn't get the instruction after the worst-ease 
time period, he is punished for it. Again, these 
values are pre-set and will be dynamically ree- 
adjusted. 

3 Dialog Management 

The Dialog Manager can be broadly classified 
into two main modules: Content Selection and 
Content Realization. 

3.1 Content Selection Module 

The Content Selection Module consists of four 
components: Level-Adjusting Agent, Utility- 
Updating Agent, Action Planner and Content 
Selector. 

& L1 The Level-Adjusting Agent 

There are three levels of user expertise that the 
dialog manager takes into consideration: 
Expert, Moderate and Novice. The agent 
controls the initial detection and dynamic 
shifting of user expertise level based on 
interactions with the user. 

If a user is using the system for the first time, a 
good indication of the initial user expertise 
level is the level of detail and technical 
complexity of  the initial query. As user's 
interaction with the system continues, a profile 
of the user is constructed gradually. This 
profile could be re-used to set the initial user 
expertise when the user uses the system again. 

The dynamic shifting of user expertise level is 
of two kinds: local (i.e., temporary) shifting 
between local expertise levels and 
accumulated (i.e., long term) shifting between 
accumulated expertise levels. Local shifting 
adjusts the expertise level temporarily - by 
observing the user confirmation (currently an 
explicit user confirmation is expected) which 
indicates whether he/she understands a certain 
instruction. The reason for temporary 
adjustment is because we assume that the user 
is having trouble understanding only this 
particular instruction and not the overall 
solution. 

The accumulated shifting permauently adjusts 
the user expertise level depending upon two 
threshold values: EXPERTLEVEL and 
NOVICELEVEL. The user is considered an 
expert when his accumulated expertise level is 
above the EXPERTLEVEL and is considered 
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novice when that is below the 
NOVICE_LEVEL. The user is assumed to 
have moderate expertise if he lies between 
these two thresholds. An accumulated value 
(ACCUM_VALUE) is calculated based on the 
whole dialog history. If  the ACCUiVLVALUE 
of a user crosses a threshold, the accumulated 
user expertise level changes long term as it is 
assumed that there is a change in the user's 
overall understanding of the solution. 

At any point of the interaction, the system 
maintains ACCUM VALUE for the user. This 
value is used to adjust the user expertise level. 
The ACCUM V A L U E  is calculated based on 
the following set of features associated with 
utility metrics in each node in the discourse 
history (Wies, 1997; Jameson et al, 1999): 

Sub-goal Complexity: More complex sub- 
goals have a greater level of importance and 
uncertainty of understanding, and thus have a 
high reward and a low punishment. Similarly, 
comparably simple sub-goals have a low 
reward and a high punishment. 

Accomplishing Time: this is perhaps the 
trickiest parameter as the chance of making an 
incorrect assumption is much higher. The user 
response time could be a good indication of 
user understanding. The longer the resolving 
of the user's problems lasts, the more 
unfavorable the evaluation is. Also if the user 
responds quickly, he is rewarded for it. To 
detect whether the user is distracted or not, if a 
series of timeouts occur continuously, the user 
is not paying attention to the system. 

Response Complexity: There is a reward and a 
punishment associated with each system 
response that reflects the complexity of the 
content and realization of the system 
responses. First of  all, the content for response 
generation varies with different expertise 
levels. For novice users, all the content on the 
solution path will be generated as several turns 
of responses based on the number of sub-goals 
in the path. For expert users, only 40% content 
on the solution path (toward the final goal) is 
used for the generation as one response. 
Furthermore, for users with different expertise 
level, the Content Realization Module will 

generate system responses (in the prototype 
system, the system responses are mainly 
instructions that guide users to solve a help- 
desk problem) with different levels of 
syntactic complexity and technical details. For 
example, for novice users, the system tends to 
generate responses with single instruction 
corresponding to one sub-goal, while for 
expert users, the system tends to generate 
responses with single instruction 
corresponding to multiple sub-goals on the 
solution path. The response with multiple 
instructions will have higher reward and lower 
punishment than those are associated with 
single instruction. Thus the user who gives a 
positive confirmation to a more complex 
system response will be rewarded higher than 
those who understand a simple system 
response. 

Based on the above factors, the 
ACCUM VALUE can be calculated 
depending upon the conditions using the 
following formulae: 

ACCUM VALUE = ACCUlvLVALUE + 
f/response -complexity (reward, punishment), sub-goal(reward, 
punishmen0, timeout(reward, punishment)] 

In the prototype system, we have used the 
following: 

If a goal is accomplished by the user(indicated 
by positive user confirmation), 
ACCUM_VALUE = ACCUM...VALUE + [response- 
complexity(reward) * sub-goal(reward)] 

If  a goal is not accomplished(indicated by 
negative user confirmation), 
ACCUM_VALUE = ACCUM. VALUE [response- 
complexity(punishment) * sub-goal(punishment)] 
If a goal is accomplished before best-time 
timeout value, 
ACCUM_VALUE = ACCUM_VALUE + [response- 

complexity(reward) * sub-goal(best-case timeout reward)]. 

If  a goal is not accomplished before worst-time 
timeout value, 
ACCUMVALUE = ACCUM.VALUE - [response- 
complexity(punishment) * sub-goal(worst-ease timeout punis- 
lament)]. 

Other variations of the formula are expected to 
be explored in the future. 
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3.L 2 Action Planner and Content Selector 

The Action Planner identifies the final 
goal node in the Acyclic Problem Graph 
and finds the optimal path to it. The 
optimal path is selected based on the path 
utility function. The utility of  a path in the 
graph is the summation of  the 
reward/punishment ratio of  all the nodes (sub- 
goals) in that path. 

Path utility (start-node, goal) = E (r i / Pi)  

n 

where i is a concept node in the path from the 
start node to the goal node, ri is the reward and 
pl is the punishment of  the corresponding node 
i. The number of  nodes n in the path acts as 
the normalizing factor. 

Thusfor  a given path, higher its path utility, 
greater is the difficulty to understand the 
concepts it contains and thus higher is the 
level of expertise required. 

The following co-operative strategies are used: 
for an expert user, select the path that has the 
maximum path utility. For a novice, select the 
one with the minimum path utility since this is 
the one containing concepts easiest to 
understand and with more steps of 
instructions. For a moderate-experience user, 
select a path in between. (We are currently 
more focused on the experienced and novice 
users.) Content Selector is applied to select the 
appropriate nodes on the path to form the 
content of  dialog. 

3.L3 Utility Updating Agent 

A set of users having very similar expertise 
levels can be classified as a group. A Utility 
Updating Agent dynamically updates utility 
metrics of sub-goals in the Acyclic Problem 
Graph based on the group interactions with the 
system. For example, Group A has a reward of  
+50 and a punishment o f - 1 0  assigned to the 
sub-goal with associated concept of Display 
Properties. However the agent notices that the 
majority of the group understand the 
corresponding instruction very quickly without 
going into the sub-goal resolution, then the 
agent decreases the reward to +35 and 
increases the punishment to -25. This 
dynamic re-training of  utility metrics in sub- 
goals would reflect the evolving user 
experience level as a whole and would 
improve the robustness of the dialog manager. 

3.2 Content Realization Module 

This module deals with the final presentation 
of the dialog content to the user. The dialog 
manager adopts different response strategies 
for each of  the three expertise levels. It has 
been observed that an expert user appreciates a 
response, which is precise, to the point, and 
short. For a novice user, it has been observed 
that such a user likes system instructions that 
are step-wise, higher level of  detail and 
minimum technical jargon. For a moderate- 
experience user, the strategy lies somewhere in 
between which we haven't given a full 
consideration. The response strategy followed 
for each type of user is given in the table 1. 

Response [ I.~ve~ of d ~ l  of  system Teclmical t~'ms in system SyntacTic Conccisencss of the 
[ inKa'uctions and e:(planation in.~ru~ows and ~planation explanation Expertise i 

Expert / Low High High 
Moderate I Moderate Moderate Moderate 
Novice High Low Low 

Table 1. User expertise level and corresponding dialog strategies 
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3.3 Algorithm 

The proposed algorithm for action planning, 
content selection and content realization is 
given in Figure 3. This algorithm recursively 
applies a divide and conquer mechanism to 
accomplish the final goal by resolving sub- 
goals. Two variables (i,e., local expertise level 
and accumulated expertise level) are 
maintained by the Level-Adjusting Agent for 
the automated level updating. The Action 
Planner identifies the goal node and the 
solution path to it depending on the expertise 
level of the user. Based on this level, the 
Content Realization Module will first select 
the content on the path to be presented and 
then use various response strategies to 

generate and display system instructions to the 
user. For novice users, all the content on 
solution path will be used; for moderate and 
expert users, only partial content on the path 
(toward the goal) will be used. In terms of 
generation, for novice and moderate expertise 
users, the system generates responses with 
single instruction corresponding to one sub- 
goal, while for expert users, the system tends 
to generate responses with single instruction 
corresponding to multiple sub-goals on the 
solution path. The syntax of  the response 
becomes more complex as the expertise level 
increases. Depending on the response of the 
user, the Level-Adjusting Agent updates the 
user expertise level and adapts the response 
strategies accordingly. 

1) Level-Adjnsting Agent detects the initial expertise level and assigns it to both local expertise level and accumulated 
expertise level. 

2) Action Planner identifies the start node and goal node in the Acyclic Problem Graph and locates the appropriate path 
between the start node and the goal node. 

a~ For novice user, the path with minimum path utility is selected 
b. For expert user, the path with maximum path utility is selected 
c. For moderate user, a path in between is selected 

3) Content Realization Module generates system instructions based on the selected path by using the following response 
SU'~tegles" 

a. For an expert, the instruction is generated by using the nodes that fall within a distance of X% from the goal 
node to the root node. 

b. For a moderate-experienced user, nodes within a distance of Y% (where Y > X) are used, 
e. For a novice, all nodes from the root to the goal are used to generate the instruction 

(X and Y could be experimentally determined later) 
4) Content Realization Module displays generated insmactions to the user. 
5) Level-Adjusting Agent receives the user confirmation and updates user expertise level. 

a. If the confirmation is positive, the Level Adjusting Agent does the following: 
i. Update ACCUM_VALUE=ACCUM VALUE + [response--complexity(reward) * sub-goal(reward)] 

i i .  If ACCUM VALUE crosses above an expertise level threshold, upgrade accumulated expertise 
level 

iii. If the goal node is the final node, exit. Otherwise, continue to the next node. 
b. If the confirmation is negative 

i. If current local expertise level is greater than novice, temporarily reduce local expertise level; else 
suspend system at current state (so that the user can take his own time in understand/rig the 
instruction or seek outside help). 

i i .  Update ACCUM_VALUE= ACCUM VALUE - [response.complexity(punishment) * sub- 
goal(punishmen0]. 

iii. If ACCCUIvLVALUE crosses below a level threshold, reduce accumulated experience level. 
iv. Record the current node and the current path 
v. Make current node as the goal node; Go to step 2. Repeat until all sub-goal nodes of this goal node 

are understood. 
6) Re-initialize local expertise level to current value of accumulated expertise level. Restore path to value stored in step 

5.b.iv. Go to step 2. Reset the start node. Continue till the final goal is reached. 

(A timer that is running on a separate thread also modifies the ACCUM_VALUE variable. On occurrence ofa tirneout, the 
following steps are followed: 
If the time spent is less than the best-case time 

ACCUM._VALUE=ACCUM_.VALUE + [response-complexity(reward) * sub-goal(best-case timeout reward)]. 
Go to step 5.a.ii. 

If the time spent is more than the worst-case time 
ACCUM_VALUE=ACCUM_VALUE - [response-complexity(punishment) * sub-goal(worst.ease timeout 
punishrnent)l. 
Go to step 5.b.iii. ) 

Figure 3. Algorithm 
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4 A n  e x a m p l e  o f  interact ion 

A scenar io  appl ica t ion  for the sys tem us ing  the 

p r o b l e m  tree o f  F i g u r e  2 is g iven  in  F igure  4. 

This  set o f  in terac t ions  is b e t w e e n  the  sys t em 
and  a u se r  w h o  is t ry ing  to adjust  the d i sp lay  
set t ings o f  his moni tor .  

1. System: Hi, how may I help you? 
2. User: I need to adjust the desktop resolution of my monitor 

> Initial accumulated expertise level detected - Expert 
Goal node-Desktop Setting (as it deals with adjusting the resolution) 
Shortest part is nodes 1-2-6.7 (assuming that it has the maximum path utility value). 
Nodes 6,7 (40% rounded to nearest whole number) are selected to generate response. 

> Response generated with instruction corresponding to multiple sub-goals on the solution path. 
3. System: Yon can do that by adjusting the desktop area in the desktop settings section of  the display 
properties window. 
4. User: Where is desktop setting window? 

Temporarily decreasing local expertise level to Moderate. 
ACCUM VALUE=ACCUlVLVALUE- [response-complexity (punishment) * Desktop- 

Setting(punishment)] 
} Shortest path to Desktop Setting recalculated as 8-5-6-7 (assuming that it has the average path 

utility value). 
Nodes 5,6,7 (70% rounded to nearest whole number) are selected to generate response. 
Response generated with single instruction corresponding to one sub-goal. 

5. System: First, go to the Control Panel window. 
...worst-case timeout occurred .... 
> Temporarily decrease local expertise level to Novice. 
> ACCUIVLVALUE=AC CU/VLVALUE [response-complexity(punishment) * control- 

panel(worst-case timeout punishment)] 
> ACCUM_VALUE falls below EXPERTLEVEL Make accumulated experience level moderate. 
> Shortest path to Control Panel recalculated as nodes 3-.4-5 (assuming it has the minimum path 

utility value). 
> All nodes used to generate response. 

Response generated with single instruction corresponding to one sub-goal. 
6. System: 1. Click on "Start" icon on lower left corner of  your screen. 
7. User: Ok 

> ACCUM VALUE = ACCUM LEVEL + [response-eomplexity (reward), Start(reward)] 
8. System: 2. Click on "Settings" label. 
9. User: Ok 

> ACCUM_VALUE=ACCUM_LEVEL + [response-complexity(reward), Settings(reward)] 
10. System: 3. Click on "Control Panel" label. 

> No change in ACCUM VALUE as user has been punished earlier at this step. 
local experience level goes back to moderate. Path reset to 8-5-6-7 selected in step 4. 

11. System: Now click on the DLsplay Properties window. 
12. User: OK 

No change in ACCUlVLVALUE as user has been punished earlier at this step. 
13. System: Select "Desktop settings" in this window. 
14. User: Ok 

No change in ACCUM_VALUE as user has been punished earlier at this step. 
15. System: Finally, adjust "display area" by moving the slide-bar. 
16. User: Ok. Thank yon 

No change in ACC"UM_VALUE as user has been punished earlier at this step. 
Profile of user stored. 

Figure 4. An example 
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Notice that after step 9, the user level remains 
at moderate and does not return to expert. 
This is because a decrease in accumulated user 
expertise level has taken place in step 5. Also, 
the style of  the dialog is different at each level 
according to the expertise level of the user at 
that time. 

Conclusion 

This paper describes hypotheses, strategies 
and a methodology in building a dialog system 
that adapts itself to the evolving level of  user 
expertise. Furthermore, the system allows 
automated sub-goal utility adjusmaent based 
on history of  interactions with groups of users. 
We have implemented the algorithm described 
in this paper on a prototype system where the 
utility metrics have been initialized manually 
by a help-desk expert, based on his 
experiences of  interaction with users. We are 
currently working on evaluation of  hypotheses 
and the system. 

This work is still in its early stage. Our future 
work includes conducting evaluation of  the 
hypotheses and the system and investigating 
machine learning techniques for improving 
utility adjustments. 
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