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A b s t r a c t  

The purpose of this work is to investigate the 
process of grammatical acquisition from data. 
We are using a computational  learning sys- 
tern that  is composed of a Universal Grammar 
with associated parameters, and a learning al- 
gorithm, following the Principles and Parame- 
ters Theory. The Universal Grammar is imple- 
mented as a Unification-Based Generalised Cat- 
egorial Grammar,  embedded in a default inher- 
itance network of lexical types. The learning al- 
gorithm receives input from a corpus annotated 
with logical forms and sets the parameters based 
on this input. This framework is used as basis 
to investigate several aspects of language acqui- 
sition. In this paper we are concentrating on the 
acquisition of word order for different learners. 
The results obtained show the different learners 
having a similar performance and converging to- 
wards the target grammar given the input data 
available, regardless of their starting points. It 
also shows how the amount of noise present in 
the input data affects the speed of convergence 
of the learners towards the target. 

1 I n t r o d u c t i o n  

In trying to solve the question of how to get a 
machine to automatically learn linguistic infor- 
mation from data, we can look at the way people 
do it. Gold (1967) when investigating language 
identification in the limit, obtained results that  
implied that  natural languages could not be 
learned only on the basis of positive evidence. 
These results were used as a confirmation for the 
proposal that  children must have some innate 
knowledge about language, the Universal Gram- 
mar (UG), to help them overcome the prob- 
lem of the poverty of the stimulus and acquire 

a grammar on the basis of positive evidence 
only. According to Chomsky's Principles and 
Parameters Theory (Chomsky 1981), the UG 
is composed of principles and parameters, and 
the process of learning a language is regarded 
as the setting of values of a number of parame- 
ters, given exposure to this particular language. 
We employ this idea in the learning framework 
implemented. 

In this work we are interested in investigating 
the acquisition of grammatical knowledge from 
data, focusing on the acquisition of word or- 
der, that  reflects the underlying order in which 
constituents occur in different languages (e.g. 
SVO and SOV languages). The learning sys- 
tem is equipped with a UG and associated pa- 
rameters, encoded as a Unification-Based Gen- 
eralised Categorial Grammar,  and a learning al- 
gorithm that  fixes the values of the parameters 
to a particular language. The learning algo- 
r i thm follows the Bayesian Incremental Param- 
eter Setting (BIPS) algorithm (Briscoe 1999), 
and when setting the parameters it uses a Mini- 
mum Description Length (MDL) style bias to 
choose the most probable grammar that  de- 
scribes the data well, given the goal of converg- 
ing to the target grammar. In section 2 we de- 
scribe the components of the learning system. 
In section 3, we investigate the acquisition of 
word order within this framework and discuss 
the results obtained by different learners. Fi- 
nally we present some conclusions and future 
work. 

2 The Learning System 
The learning system is composed of a language 
learner equipped with a UG and a learning al- 
gorithm that  updates the initial parameter set- 
tings, based on exposure to a corpus of utter- 
ances. Each of these components is discussed in 
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more detail in the following sections. 

2.1 T h e  U n i v e r s a l  G r a m m a r  

The UG consists of p r i n c i p l e s  a n d  p a r a m e -  

t e r s ,  and the latter are set according to the 
linguistic environment (Chomsky 1981). This 
proposal suggests that  human languages follow 
a common set of principles and differ among 
one another only in finitely many respects, rep- 
resented by a finite number of parameters that  
can vary according to a finite number of val- 
ues (which makes them learnable in Gold's 
paradigm). In this section, we discuss the 
UG and associated parameters, which are for- 
malised in terms of a Unification-Based Gen- 
eralised Categorial Grammar (UB-GCG), em- 
bedded in a default inheritance network of lex- 
ical types. We concentrate on the description 
of word order parameters, which reiiect the ba- 
sic order in which constituents occur in different 
languages. 

UB-GCGs extend the basic Categorial Gram- 
mars ((Bar Hillel, 1964)) by including the use of 
attribute-value pairs associated with each cate- 
gory and by using a larger set of rules and op- 
erators. Words, categories and rules are repre- 
sented in terms of typed default feature struc- 
tures (TDFSS), that  encode orthographic, syn- 
tactic and semantic information. There are 
two types of categories: atomic categories (s 
- s e n t e n c e - ,  n p  - n o u n  p h r a s e - ,  a n d  n - 

n o u n ) ,  that  are saturated, and complex cat- 
egories, that  are unsaturated. Complex cate- 
gories have a functor category (defined in RE- 
SUET), and a list of subcategorised elements (de- 
fined in ACTIVE), with each element in the list 
defined in terms of two features: SIGN, encoding 
the category, and DIRECTION, encoding the di- 
rection in which the category is to be combined 
(where VALUE can be either f o r w a r d  or back-  
ward) .  As an example, in English an intransi- 
t ire verb (s\np) is encoded as shown in figure 
1, where only the relevant attributes are shown. 
In this work, we employ the rules of (forward 
and backward) application, (forward and back- 
ward) composition and generalised weak permu- 
ration. A more detailed description of the UB- 
GCG used can be found in (Villavicencio 2000). 

The UG is implemented as a UB-GCG, era- 
bedded in a default inheritance network of lex- 
ical types (Villavicencio 1999), implemented in 
the YADU framework (Lascarides and Copes- 

take 1999). The categories and rules in the 
grammar are defined as types in the hierarchy, 
represented in terms of TDFSS and the feature- 
structures associated with any given category 
or rule are defined by the inheritance chain. 
With different sub-networks used to encode dif- 
ferent kinds of linguistic knowledge, linguistic 
regularities are encoded near the top of a net- 
work, while types further down the network are 
used to represent sub-regularities or exceptions. 
Thus, types are concisely defined, with only 
specific information being described, since more 
general information is inherited from the super- 
types. The resulting UB-GCG is compact, since 
it avoids redundant  specifications and the infor- 
mation is s tructured in a clear and concise way 
through the specification of linguistic regulari- 
ties and sub-regularities and exceptions. 

Regarding the categories o f  the UB-GCG, 
word order parameters are those that  specify 
the direction of each element in the subcate- 
gorisation list of a complex category. In figure 
1, s u b j d i r  is a parameter  specifying that  the 
np subject is to be combined backwards. As the 
categories are defined in terms of an inheritance 
hierarchy, the parameters (and their values) in 
these categories are propagated throughout  the 
hierarchy, from supertypes to subtypes, which 
inherit this information by default. There are 28 
parameters defined, and they are also in a hier- 
archical relationship, with the supertype being 
gend i r ,  which specifies, by default, the general 
direction for a language, and from which all the 
other parameters inherit. Among the subtypes, 
we have s u b j d i r ,  which specifies the direction 
of the subject, va rgd i r ,  which specifies the di- 
rection of the other verbal arguments and ndi r ,  
which specifies the direction of nominal care- 
gories. A fragment of the parameters hierarchy 
can be seen in figure 2. With these 28 binary- 
valued parameters the UG defines a space of 
almost 800 grammars. 

The parameters are set based on exposure to 
a particular language, and while they are un- 
set, they inherit their value by default, from 
their supertypes. Then, when they are set, they 
can either continue to inherit by default, in case 
they have the same value as the supertype, or 
they can override this default and specify their 
own value, breaking the inheritance chain. For 
instance, in the case of English, the value of 
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intransitive 
RESULT : SIGN : s / 

J 

ACTIVE : SIGN : n p  
[ subjdir DIRECTION : [VALUE backw d]] 

Figure 1: Intransitive Verb type 

gendir 

subjdir  vargdir ndir 

/ \  
nmdir  detdir  

Figure 2: Fragment of The Parameters Hierar- 
chy 

a default inheritance schema reduces the pieces 
of information to be acquired by the learner, 
since the information is structured and what it 
learns is not a single isolated category, but a 
structure that represents this information in a 
general manner. This is a clear and concise way 
of defining the UG with the parameters being 
straightforwardly defined in the categories, in 
a way that takes advantage of the default in- 
heritance mechanism, to propagate information 
about parameters, throughout the lexical inher- 
itance network. 

gend i r  is defined, by default, as forward ,  cap- 
turing the fact that it is a predominantly right- 
branching language, and all its subtypes, like 
sub jd i r  and va rgd i r  inherit this default in- 
formation. Then an intransitive verb, which 
has the direction of the subject specified by 
subjd i r ,  will be defined as S/NP, with sub- 
jd i r  having default value forward .  However, 
as in English, the subject NP occurs to the left 
of the verb, utterances with the subject to the 
left will trigger a change in sub j d i r  to back- 
ward,  which overrides the default value, break- 
ing the inheritance chain, figure 3. As a re- 
sult, intransitive verbs are defined as S\NP, fig- 
ure  1, for the grammar to account for these 
sentences. In the syntactic dimension of this 
network, intransitive verbs can be considered 
the general case of verbs, and the information 
defined in this node is propagated through the 
hierarchy to its subtypes, such as the transitive 
verbs, figure 3. For the learner, the information 
about subjects ( sub jd i r  = backward)  has al- 
ready been acquired while learning intransitive 
verbs, and the learner does not need to learn 
it again for transitive verbs, which not only in- 
herit this information, but also have the direc- 
tion for the object defined by va rgd i r  (vargdir  
= forward) ,  as shown in figure 3. The use of 

2.2 The Corpus 

The UG has to be general enough to capture 
the grammar for any language, and the param- 
eters have to be set to account for a particular 
language, based on exposure to that language. 
This can be obtained by means of a corpus of 
utterances, annotated with logical forms, which 
is described in this section. Among these sen- 
tences, some will be triggers for certain param- 
eters, in the sense that, to parse that sentence, 
some of the parameters will have to be set to 
a given value. We are using the Sachs cor- 
pus (Sachs 1983) from the CHILDES project 
(MacWhinney 1995), that contains interactions 
between only one child and her parents, from 
the age of 1 year and 1 month to 5 years and 1 
month. From the resulting corpus, we extracted 
material for generating two different corpora: 
one containing only the child's sentences and 
the other containing the caretakers' sentences. 
The caretakers' corpus is given as input to the 
learner to mirror the input to which a child 
learning a language is exposed. And the child's 
corpus is used for comparative purposes. 

In order to annotate the caretakers' corpus 
with the associated logical forms, a UB-GCG 
for English was built, that covers all the con- 
structions in the corpus: several verbal con- 
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Figure 3: A Fragment of the Network of Types 

structions (intransitives, transitives, ditransi- 
tives, obliques, control verbs, verbs with senten- 
tim complements, etc), declarative, imperative 
and interrogative sentences, and unbounded de- 
pendencies (wh-questions and relative clauses), 
among others. Thus the caretakers' corpus con- 
tains sentences annotated with logical forms, 
and an example can be seen in figure 4, for the 
sentence I wi l l  take h im,  where a simplified ver- 
sion of the relevant attributes is shown, for rea- 
sons of clarity. Each predicate in the semantics 
list is associated with a word in the sentence, 
and, among other things, it contains informa- 
tion about the identifier of the predicate (SIT), 
the required arguments (e.g. ACTOR and UN- 
DERGOER for the verb take) ,  as well as about 
the interaction with other predicates, specified 
by the boxed indices (e.g. t ake :ACTOR = [] = 
/:SIT). This grammar is not only used for anno- 
tating the corpus, but is also the target to which 
the learner has to converge. At the moment 
around 1,300 utterances were annotated with 
corresponding logical forms, with data ranging 
from when the child is 14 months old to 20 
months old. 

2.3 T h e  L e a r n i n g  A l g o r i t h m  

The learning algorithm implernents the 
Bayesian Incremental Parameter Setting 
(BIPS) algorithm defined by Briscoe (1999). 
The parameters are binary-valued, where each 
possible value in a parameter is associated with 
a prior and a posterior probability. The value 
with highest posterior probability is used as 
the current value. Initially, in the learning 
process, the posterior probability associated 
with each parameter is initialised to the prior 
probability, and these values are going to define 

the parameter settings used. Then, as trigger 
sentences are successfully parsed, the posterior 
probabilities of the parameter  settings that  al- 
lowed the sentence to be parsed are reinforced. 
Otherwise, when a sentence cannot be parsed 
(with the correct logical form) the learning 
algorithm checks if a successful parse can be 
achieved by changing the values of some of the 
parameters, in constrained ways. If that  is the 
case, the posterior probability of the values 
used are reinforced in each of the parameters, 
and if they achieve a certain threshold, they 
are retained as the current values, otherwise 
the previous values are kept. This constraint 
on the setting of the parameters ensures that  a 
trigger does not cause an immediate change to 
a different grammar. The learner, instead, has 
to wait for enough evidence in the data before 
it can change the value of any parameter. As 
a consequence, the learner behaves in a more 
conservative way, being robust to noise present 
in the input  data. 

Following Briscoe (1999) the probabilities as- 
sociated with the parameter  values correspond 
to weights represented in terms of fractions, 
with the denominator storing the total evidence 
for a parameter and the numerator  storing the 
evidence for a particular value of that  param- 
eter. For instance, if the value b a c k w a r d  of 
the s u b j d i r  parameter has a weight of 9/10, 
it means that  from 10 times that  evidence was 
provided for s u b j d i r ,  9 times it was for the 
value b a c k w a r d ,  and only once for the other 
value, fo rward .  Table 1 shows a possible ini- 
tialisation for the s u b j d i r  parameter,  where the 
prior has a weight of 1/10 for fo rward ,  corre- 
sponding to a probability of 0.1, and a weight of 
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s i g n  
ORTH : <i, will, take, h im> 
CAT : s 

SEM [ will ] 
: S I T :  [5] 

ARGU~IENT : [] 

• take ] 
SIT: [] 
ACTOR: [] 
UNDERGOER : [] 

L S I T  : [] ] 

Figure 4: Sentence: I will take him 

9/10 for backward ,  corresponding to a proba- 
bility of 0.9. The posterior is initialised with the 
same values as the prior, and as b a c k w a r d  has 
a higher posterior probability it is used as the 
current value for the parameter. These initial 
parameter values determine the initial gram- 
mar for the learner. As triggers are processed, 
they provide evidence for certain parameters 
and these are represented as additions to the 
denominator and/or numerator of each of the 
posterior weights of the parameter values. Ta- 
ble 2 shows the status of the parameter after 
5 triggers that provided evidence for the value 
backward .  Initially, the learner uses the evi- 
dence provided by the triggers to choose certain 
parameter values, in order to be able to parse 
these triggers successfully while generating the 
appropriate logical form. After that, the trig- 
gers are used to reinforce these values, or to 
negate them. 

Table 1: Initialisation of a Parameter 

Value Prior Posterior 
Prob. [Weight Prob. [Weight 

1 0.1 1 Forward O. 1 1-o 1o 

Backward 0.9 ~ 0.9 10 10 

and specifies its own value, breaking the inheri- 
tance chain. For instance, in figure 3, sub jd i r  
overrides the default value specified by gendir ,  
breaking the inheritance chain. Unset subtype 
parameters inherit, by default, the current value 
of their supertypes, and while they are unset 
they do not influence the values of their super- 
types. 

As the parameters are defined in a default 
inheritance hierarchy, each time the posterior 
probability of a given parameter is updated, it 
is necessary to update the posterior probabili- 
ties of its supertypes and examine the current 
parameter settings to determine what the most 
appropriate hierarchy for these settings is, given 
the goal of converging to the target. The learner 
has a preference for grammars (and thus hi- 
erarchies) that not only model the data (rep- 
resented by the current settings) well, but are 
also compact, following the Minimum Descrip- 
tion Length (MDL) Principle. In this case, the 
most probable grammar in the grammar space, 
among the ones consistent with the parameter 
settings, is the one where the default inheritance 
hierarchy is the more concise, having the min- 
imum number of non-default parameter values 
specified, as described in (Villavicencio 2000). 

Table 2: Status of the Parameter 

The 28 word order parameters are defined in 
a hierarchical relation, with the supertype pa- 
rameters being set in accordance with the sub- 
types, to reflect the value of the majority of the 
subtypes. In this way, as the values of the sub- 
types are being set, they influence the value of 
the supertypes. If the value of a given sub- 
type differs from the value of the supertype, 
the subtype overrides the inherited default value 

Value 

Forward 

I Prior Posterior 
Prob. I Weight Prob. I Weight 

1 0.07 1 O. 1 1-o 1-5 

Backward 0.9 0 . 9 3  1j I0 15 
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3 The Acquisition of  W o r d  O r d e r  

We are investigating the acquisition of word 
order, which reflects the underlying order in 
which constituents occur in different languages. 
In this section we describe one experiment, 
where we compare the performance, of differ- 
ent learners under four conditions. Each learner 
is given as input the annotated corpus of sen- 
tences paired with logical forms, and they have 
to change the values of the parameters corre- 
sponding to the relevant constituents to account 
for the order in which these constituents ap- 
pear in the input sentences. We defined five 
different learners corresponding to five differ- 
ent initialisations of the parameter settings of 
the UG, to investigate how the init~alisations, 
or starting points, of the learners influence con- 
vergence to the target grammar. The first one, 
the unset learner, is initialised with all param- 
eters unset, and the others, the default learn- 
ers, are each initialised with default parameter 
values corresponding to one of four basic word 
orders, defined in terms of the canonical order 
of the verb (V), subject (S) and objects (O): 
SVO, SOV, VSO and OVS. We initialised the 
parameters subjdir, vargdir and gendir of the 
default learners according to each of the basic 
orders, with gendir having the same direction 
as vargdir, and all the other parameters hav- 
ing unset values. These parameters have the 
prior and posterior probabilities initialised with 
0.1 for one value and 0.9 for the other. In this 
way, an SVO learner, for example, is initialised 
with sub jd i r  having as current value backward 
(0.9), va rgd i r  forward (0.9) and gend i r  for- 
ward (0.9). 

The sentences in the input corpus are pre- 
sented to a learner only once, sequentially, in 
the original order. The input to a learner is 
pre-processed by a system [Waldron, 2000] that 
assigns categories to each word in a sentence. 
The sentences with their putative category as- 
signments are given as input to the learner. The 
learner then evaluates the category assignments 
for each sentence and only uses those that are 
valid according to the UG to set the parame- 
ters; the others are discarded. The corpus con- 
tains 1,041 English sentences (which follow the 
SVO order), but from these only a small propor- 
tion are triggers for the parameters, in the sense 
that, for the learner to process them, it has to 

select certain parameter values. As each trigger- 
ing sentence is processed, the learner changes or 
reinforces its parameter values to reflect the or- 
der of constituents in these sentences. 

We wanted to check how the different learners 
performed in a normal noisy environment, with 
a limited corpus as input, and also to check if 
there is an interaction between the different ini- 
tialisations and the noise in the input data. To 
do that we tested how the learners performed 
under four conditions. Each condition was run 
10 times for each learner, and we report here 
the average results obtained. 

3.1 C o n d i t i o n  1 : L e a r n e r s - 1 0  in a 
Noisy Environment 

In the first condition, we initialised the param- 
eters sub jd i r ,  v a rgd i r  and g e n d i r  of the de- 
fault learners with the prior and posterior prob- 
abilities of 0.1 corresponding to a weight of 
1/10, and probabilities of 0.9 to a weight of 
9/10. Results from the first experiment can be 
seen in table 3, where the learners are specified 
in the first column, the number of input triggers 
in the second, the number of correct parameters 
in relation to the target is in the third, and the 
number of parameters that are set with these 
triggers is in the fourth column. 

Table 3: Convergence of the different learners - 
Learners-10 

Learners Triggers Parameters Parameters 
Correct Set 

-Unset 179 22.3 10.5 
SVO-10 211.4 22.5 11 

-SOV-10 205.4 22.2 10.2 
OVS-10 271.5 22.5 11 
VSO-10 198.7 22.1 10.2 

The results show no significant variation in 
the performance of the different Learners. This 
is the case with the number of parameters that 
are correct in relation to the target, with an av- 
erage of 22.3 parameters out of 28, and also with 
the number of parameters that are set given the 
triggers available, with an average of 10.5 pa- 
rameters out of 28. 

The only difference between the learners was 
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S u b j d i r  - N o i s y  E n v i r o n m e n t  

1 

= 0.9 [- - - Unset 

svo- o 

~" I s o v - l o  
a 

'~ 0.6 [ VSO-IO 

0.5 

Triggers 

Figure 5: Convergence of Subjdir-  Learners-10 - Noisy Environment 

the time needed for each learner to converge: 
the closer the starting point of the learner was 
to the target, the faster it converged, as can 
be seen in figure 5, for the sub j d i r  parame- 
ter. This figure shows all the learners converg- 
ing to the target value, with high probability, 
and with a convergence pattern very similar to 
the one presented by the unset learner. Even 
those default learners that were initialised with 
values incompatible with the target soon over- 
came this initial bias and converged to the tar- 
get. The same thing happens for va rgd i r  and 
gendir. This figure also shows some sharp falls 
in the convergence to the target value, for these 
learners. For example, the unset learner had a 
sharp drop in probability, which fell from 0.94 
to 0.85, around trigger 16. These declines were 
caused by noise in the category assignments of 
the input triggers, which provided incorrect ev- 
idence for the parameter values. 

3.2 Condition 2:Learners-10 in a 
Noise-free Environment 

In order to test if and how much of the learn- 
ers' performance was affected by the presence 
of noisy triggers, using the same initialisations 
as the ones in condition 1, we tested how the 
learners performed in a noise-free environment. 
To obtain such an environment, as each trigger 
was processed, a module was used for correcting 
the category assignment, if noise was detected. 
The results are shown in table 4. 

These learners have performances similar to 

Table 4: Convergence of the different learners - 
Learners-10 - Noise-free 

Learners Triggers Parameters Parameters 
Correct Set 

Unset 235.1 22.3 10.6 
SVO-10 227.9 22.3 10.6 
SOV-10 213.9 22.6 11.2 
OVS-10 212.2 22.3 10.6 
VSO-10 172.4 22 10 

those in condition 1 (section 3.1), with an av- 
erage of 22.3 of the 28 parameters correct in 
relation to the target, and an average of 10.6 pa- 
rameters that can be set with the triggers avail- 
able. But, in this condition the convergence was 
slightly faster for all learners, as can be seen in 
figure 6. These results show that, indeed, the 
presence of noise slows down the convergence of 
the learners, because they need more triggers to 
compensate for the effect produced by the noisy 
triggers. 

3.3 Condition 3:Learners-50  in a 
Noisy Environment 

We then tested if the use of stronger weights 
to initialise the learners would affect the learn- 
ers performance. The parameters subjd i r ,  
vargdir and gendir were initialised with a 
weight of 5/50 for the probability of 0.1 and a 
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Figure 6: Convergence of Subjdir-  Learners-10 - Noise-free Environment 

weight of 45/50 for the probability ot70.9. These 
weights provide an extreme bias for each of the 
learners. In this condition, the learners were 
tested again in a normal noisy environment. 

Figure 7 shows the convergence patterns pre- 
sented by these learners for the sub j d i r  param- 
eter. The effect produced by the noise was in- 
creased with these stronger weights, such that 
all the learners had a slower convergence to the 
target. Even those default leaxners initialised 
with values compatible with the target had a 
slightly slower convergence when compared to 
those in condition 1, with weaker weights, be- 
cause they had to overcome the stronger initial 
bias before converging to the target values. But, 
in spite of that, the performance of the learners 
is only slightly affected by the stronger weights, 
as shown in table 5. They had a performance 
similar to the ones obtained by the learners in 
the previous conditions, as shown in figure 8, 
comparing these learners with those in condi- 
tion 1. 

3.4 C o n d i t i o n  4 : L e a r n e r s - 5 0  in a 
Noise - free  E n v i r o n m e n t  

When the noise-free environment was used with 
these stronger weights, the convergence pattern 
was slightly faster for all learners, when com- 
pared to condition 3 (which used a noisy envi- 
ronment), but still slower than conditions 1 and 
2, as shown in figure 9. These learners had a 
similar performance to those obtained in all the 
previous conditions, as can be seen in table 6, 

Noisy Environment 

28 

i 20 [ ]  Set 16 
12 I [ ]  Correct 
8 
4 
0 J i ~ -  

" ~  y j  ~ y J  : J  ; J  

Learners 

Figure 8: Learners in Noisy Environment 

and in figure 10, which also shows the results 
obtained by the learners in condition 2, which 

Table 5: Convergence of the different learners - 
Learners-50 - Noise 

Learners Triggers Parameters Parameters 
Correct Set 

SVO-50 230.3 22.9 11.8 
SOV-50 168.1 22.4 10.4 
OVS-50 221.4 22.1 10.1 
VSO-50 154.6 21.9 9.7 
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Figure 9: Convergence of Subjdir - Learners-50 - Noise-free Environment 

used weaker weights. 

Table 6: Convergence of the different learners - 
Learners-50 - Noise Free 

Learners Triggers Parameters Parameters 
Correct Set 

SVO-50 221.7 23.2 11.5 
SOV-50 195.4 23.2 11.8 
OVS-50 223.2 22.1 9.9 
VSO-50 223.4 21.8 9.8 

3.5 D i s c u s s i o n  

As confirmed by these results, there is a strong 
interaction between the different start ing points 
and the presence of noise. The noise has a 
strong influence on the convergence of the learn- 
ers, slowing down the learning process, since the 
learners need more triggers to compensate  for 
the effect caused by the noisy ones. The dif- 
ferent initialisations caused little impact in the 
learners' performance, in spite of noticeably de- 
laying the convergence to the target of those 
learners tha t  have values incompatible with the 
target. Thus, when combining the presence of 
noise with the use of stronger weights , there was 
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a significant delay in convergence, w]~ere the fi- 
nal posterior probability was up to 10% lower 
than in the noise-free case (e.g. for the OVS 
learner), as can be seen in figures 7 and 9. 
Nonetheless, these learners were robust to the 
presence of noise in the input data, only select- 
ing or changing a value for a given parameter 
when there was enough evidence for that. As 
a consequence, all the learners were converging 
towards the target, even with the small amount 
of available triggers, regardless of the initialisa- 
tions and the presence of noise. This is the case 
even with an extreme bias in the initial values. 
Moreover, the learners make effective use of the 
inheritance mechanism to propagate default val- 
ues, with an average of around 4.2 non-default 
specifications for these learners. 

4 C o n c l u s i o n  a n d  F u t u r e  W o r k  

The purpose of this work is to investigate the 
process of grammatical acquisition from a com- 
putational perspective, focusing on the acqui- 
sition of word order from data. Five different 
learners were implemented in this framework 
and we investigated how the starting point for 
the learners affects their performance in con- 
verging to the target and its interaction with 
noise. The learners were all converging towards 
the target grammar, where the different start- 
ing points and the presence of noise affected 
only convergence times, with learners more far 
away from the target having a slower conver- 
gence pattern. Future works include annotat- 
ing more data to have a bigger corpus, and run- 
ning more experiments with this corpus, testing 
how much data is required for all the triggers 

Noise-Free Environment 

o4 ,,__.,  . . . . . . .  

Learners 

to converge, with high probability to the tar- 
get grammar. After that, we will concentrate 
on investigating the acquisition of subcategori- 
sation frames and argument structure, using the 
same framework for learning. Although this is 
primarily a cognitive computational model, it is 
potentially relevant to the development of more 
adaptive NLP technology. 
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