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A b s t r a c t  

This paper addresses the issue of the automatic 
induction of syntactic categories from unanno- 
tared corpora. Previous techniques give good 
results, but fail to cope well with ambiguity or 
rare words. An algorithm, context distribution 
clustering (CDC), is presented which can be 
naturally extended to handle these problems. 

1 I n t r o d u c t i o n  

In this paper I present a novel program that in- 
duces syntactic categories from comparatively 
small corpora of unlabelled text, using only dis- 
tributional information. There are various mo- 
tivations for this task, which affect the algo- 
rithms employed. Many NLP systems use a 
set of tags, largely syntactic in motivation, that 
have been selected according to various criteria. 
In many circumstances it would be desirable for 
engineering reasons to generate a larger set of 
tags, or a set of domain-specific tags for a par- 
ticular corpus. Furthermore, the construction 
of cognitive models of language acquis i t ion-  
that will almost certainly involve some notion 
of syntactic category - requires an explanation 
of the acquisition of that set of syntactic cate- 
gories. The amount of data used in this study 
is 12 million words, which is consistent with a 
pessimistic lower bound on the linguistic experi- 
ence of the infant language learner in the period 
from 2 to 5 years of age, and has had capitalisa- 
tion removed as being information not available 
in that circumstance. 

2 P r e v i o u s  W o r k  

Previous work falls into two categories. A num- 
ber of researchers have obtained good results 
using pattern recognition techniques. Finch 

and Chater (1992), (1995) and Schfitze (1993), 
(1997) use a set of features derived from the 
co-occurrence statistics of common words to- 
gether with standard clustering and information 
extraction techniques. For sufficiently frequent 
words this method produces satisfactory results. 
Brown et al. (1992) use a very large amount 
of data, and a well-founded information theo- 
retic model to induce large numbers of plausi- 
ble semantic and syntactic clusters. Both ap- 
proaches have two flaws: they cannot deal well 
with ambiguity, though Schfitze addresses this 
issue partially, and they do not cope well with 
rare words. Since rare and ambiguous words are 
very common in natural language, these limita- 
tions are serious. 

3 C o n t e x t  D i s t r i b u t i o n s  

Whereas earlier methods all share the same ba- 
sic intuition, i.e. that similar words occur in 
similar contexts, I formalise this in a slightly 
different way: each word defines a probability 
distribution over all contexts, namely the prob- 
ability of the context given the word. If the 
context is restricted to the word on either side, 
I can define the context distribution to be a dis- 
tribution over all ordered pairs of words: the 
word before and the word after. The context 
distribution of a word can be estimated from 
the observed contexts in a corpus. We can then 
measure the similarity of words by the simi- 
larity of their context distributions, using the 
Kullback-Leibler (KL) divergence as a distance 
function. 

Unfortunately it is not possible to cluster 
based directly on the context distributions for 
two reasons: first the data is too sparse to es- 
timate the context distributions adequately for 
any but the most frequent words, and secondly 
some words which intuitively are very similar 
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(Schfitze's example is 'a' and 'an') have rad- 
ically different context distributions. Both of 
these problems can be overcome in the normal 
way by using clusters: approximate the context 
distribution as being a probability distribution 
over ordered pairs of clusters multiplied by the 
conditional distributions of the words given the 
clusters : 

p(< Wl, W2 >) -= p(< Cl, C2 >)p(wlICl)p(w2[c2) 

I use an iterative algorithm, start ing with a 
trivial clustering, with each of the K clusters 
filled with the kth most frequent word in the 
corpus. At each iteration, I calculate the con- 
text distribution of each cluster, which is the 
weighted average of the context distributions of 
each word in the cluster. The distribution is cal- 
culated with respect to the K current clusters 
and a further  ground cluster of all unclassified 
words: each distr ibution therefore has (K + 1) 2 
parameters.  For every word that  occurs more 
than 50 times in the corpus, I calculate the con- 
text distribution, and then find the cluster with 
the lowest KL divergence from that  distribution. 
I then sort the words by the divergence from 
the cluster that  is closest to them, and select 
the best as being the members  of the cluster 
for the next iteration. This is repeated, grad- 
ually increasing the number  of words included 
at each iteration, until a high enough propor- 
tion has been clustered, for example 80%. Af- 
ter each iteration, if the distance between two 
clusters falls below a threshhold value, the clus- 
ters are merged, and a new cluster is formed 
from the most frequent unclustered word. Since 
there will be zeroes in the context distributions, 
they are smoothed using Good-Turing smooth- 
ing(Good, 1953) to avoid singularities in the KL 
divergence. At this point we have a preliminary 
clustering - no very rare words will be included, 
and some common words will also not be as- 
signed, because they are ambiguous or have id- 
iosyncratic distributional properties. 

4 Ambigu i ty  and Sparseness 
Ambiguity can be handled natural ly within 
this framework. The context distribution p(W) 
of a particular ambiguous word w can be 
modelled as a linear combination of the con- 
text distributions of the various clusters. We 
can find the mixing coefficients by minimising 

D(p(W)ll (w) a~w) oLi qi) where the are some co- 
efficients that  sum to unity and the qi are the 
context distributions of the clusters. A mini- 
mum of this function can be found using the 
EM algori thm(Dempster  et al., 1977). There 
are often several local minima - in practice this 
does not seem to be a major  problem. 

Note that  with rare words, the KL divergence 
reduces to the log likelihood of the word's con- 
text distribution plus a constant factor. How- 
ever, the observed context distributions of rare 
words may be insufficient to make a definite de- 
terminat ion of its cluster membership.  In this 
case, under the assumption that  the word is 
unambiguous, which is only valid for compar- 
atively rare words, we can use Bayes's rule to 
calculate the posterior probabili ty that  it is in 
each class, using as a prior probability the dis- 
tr ibution of rare words in each class. This in- 
corporates the fact that  rare words are much 
more likely to be adjectives or nouns than, for 
example, pronouns. 

5 Resul t s  

I used 12 million words of the British Na- 
tional Corpus as training data, and ran this al- 
gori thm with various numbers of clusters (77, 
100 and 150). All of the results in this paper 
are produced with 77 clusters corresponding to 
the number  of tags in the CLAWS tagset used 
to tag the BNC, plus a distinguished sentence 
boundary  token. In each case, the clusters in- 
duced contained accurate classes corresponding 
to the major  syntactic categories, and various 
subgroups of them such as prepositional verbs, 
first names, last names and so on. Appendix A 
shows the five most frequent words in a cluster- 
ing with 77 clusters. In general, as can be seen, 
the clusters correspond to tradit ional syntactic 
classes. There  are a few errors - notably, the 
right bracket is classified with adverbial parti- 
cles like "UP". 

For each word w, I then  calculated the opti- 

mal coefficents c~ w). Table 1 shows some sam- 
ple ambiguous words, together with the clusters 
with largest values of c~ i. Each cluster is repre- 
sented by the most frequent member  of the clus- 
ter. Note that  "US" is a proper noun cluster. 
As there is more than  one common noun clus- 
ter, for many unambiguous nouns the opt imum 
is a mixture of the various classes. 
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Word Clusters 
ROSE 
VAN 
MAY 
US 
HER 
THIS 

CAME CHARLES GROUP 
JOHN TIME GROUP 
WILL US JOHN 
YOU US NEW 
THE YOU 
THE IT LAST 

Table 1: Ambiguous words. For each word, the 
clusters that have the highest a are shown, if 
a > 0.01. 

Model 
Freq 
1 0.66 0.21 
2 0.64 0.27 
3 0.68 0.36 
5 0.69 0.40 
10 0.72 0.50 
20 0 .73  0.61 

CDC Brown CDC Brown 
NN1 NN1 A J0 A J0 

0.77 0.41 
0.77 0.58 
0.82 0.73 
0.83 0.81 
0.92 0.94 
0.91 0.94 

Table 2: Accuracy of classification of rare words 
with tags NN1 (common noun) and A J0 (adjec- 
tive). 

Table 2 shows the accuracy of cluster assign- 
ment for rare words. For two CLAWS tags, A J0 
(adjective) and NNl(singular common noun) 
that occur frequently among rare words in the 
corpus, I selected all of the words that oc- 
curred n times in the corpus, and at least half 
the time had that CLAWS tag. I then tested 
the accuracy of my assignment algorithm by 
marking it as correct if it assigned the word 
to a 'plausible' cluster - for A J0, either of the 
clusters "NEW" or "IMPORTANT", and for 
NN1, one of the clusters "TIME", "PEOPLE", 
"WORLD", "GROUP" or "FACT". I did this 
for n in {1, 2, 3, 5, 10, 20}. I proceeded similarly 
for the Brown clustering algorithm, selecting 
two clusters for NN1 and four for A J0. This can 
only be approximate, since the choice of accept- 
able clusters is rather arbitrary, and the BNC 
tags are not perfectly accurate, but the results 
are quite clear; for words that occur 5 times or 
less the CDC algorithm is clearly more accurate. 

Evaluation is in general difficult with unsu- 
pervised learning algorithms. Previous authors 
have relied on both informal evaluations of the 
plausibility of the classes produced, and more 
formal statistical methods. Comparison against 
existing tag-sets is not meaningful - one set of 

Test set 1 2 3 4 
CLAWS 411 301 478 413 
Brown et al. 380 252 444 369 
CDC 372 255 427 354 

Mean 
395 
354 
346 

Table 3: Perplexities of class tri-gram models 
on 4 test sets of 100,000 words, together with 
geometric mean. 

tags chosen by linguists would score very badly 
against another without this implying any fault 
as there is no 'gold standard'. I therefore chose 
to use an objective statistical measure, the per- 
plexity of a very simple finite state model, to 
compare the tags generated with this cluster- 
ing technique against the BNC tags, which uses 
the CLAWS-4 tag set (Leech et al., 1994) which 
had 76 tags. I tagged 12 million words of BNC 
text with the 77 tags, assigning each word to 
the cluster with the highest a posteriori proba- 
bility given its prior cluster distribution and its 
context. 

I then trained 2nd-order Markov models 
(equivalently class trigram models) on the orig- 
inal BNC tags, on the outputs from my algo- 
rithm (CDC), and for comparision on the out- 
put from the Brown algorithm. The perplexities 
on held-out data are shown in table 3. As can 
be seen, the perplexity is lower with the model 
trained on data tagged with the new algorithm. 
This does not imply that the new tagset is bet- 
ter; it merely shows that it is capturing statisti- 
cal significant generalisations. In absolute terms 
the perplexities are rather high; I deliberately 
chose a rather crude model without backing off 
and only the minimum amount of smoothing, 
which I felt might sharpen the contrast. 

6 C o n c l u s i o n  

The work of Chater and Finch can be seen as 
similar to the work presented here given an in- 
dependence assumption. We can model the con- 
text distribution as being the product of inde- 
pendent distributions for each relative position; 
in this case the KL divergence is the sum of 
the divergences for each independent distribu- 
tion. This independence assumption is most 
clearly false when the word is ambiguous; this 
perhaps explains the poor performance of these 
algorithms with ambiguous words. The new 
algorithm currently does not use information 
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about  the or thography of the word, an impor- 
tant source of information. In future work, I will 
integrate this with a morphology-learning pro- 
gram. I am currently applying this approach 
to the induction of phrase s tructure rules, and 
preliminary experiments have shown encourag- 
ing results. 

In summary, the new method avoids the limi- 
tations of other approaches, and is bet ter  suited 
to integration into a complete unsupervised lan- 
guage acquisition system. 
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A C l u s t e r s  

Here are the five most ~equent words in each of the 
77 clusters, one cluster per line except where indi- 
cated with a double slash \ \  
THE A HIS THIS AN 

PEOPLE WORK LIFE RIGHT END 
OF IN FOR 0N WITH \\ , ~MDASH ( : ; 
NEW OTHER FIRST OWN G00D 
~SENTENCE \\ . ? ! 

AND AS 0R UNTIL SUCHuAS 
NOT BEEN N'T $0 0NLY 
IS WAS HAD HAS DID 
MADE USED FOUND LEFT PUT 
0NE ALL MORE S0ME TWO 
TIME WAY YEAR DAY MAN \\ T0 

WORLD GOVERNMENT PARTY FAMILY WEST 
BE HAVE D0 MAKE GET 
HE I THEY SHE WE 

US BRITAIN LONDON GOD LABOUR 
BUT WHEN IF WHERE BECAUSE 
) UP 0UTBACK DOWN 
WILL WOULD CAN C0ULD MAY 
USE HELP FORM CHANGE SUPPORT 
THAT BEFOREABOVE 0UTSIDE BEL0W 
IT EVERYBODY GINA 

GROUP NUMBER SYSTEM 0FFICE CENTRE 
Y0U THEM HIM ME THEMSELVES 

~BQU0 \\ ~EQU0 \\ ARE WERE \\ 'S ' 
CHARLES MARK PHILIP HENRY MARY 

WHAT HOW WHY HAVING MAKING 
IMPORTANT POSSIBLE CLEAR HARD CLOSE 
WHICH WH0 
CAME WENT LOOKED SEEMED BEGAN 
JOHN SIR DAVID ST DE 
YEARS PERuCENT DAYS TIMES MONTHS 
GOING ABLE LOOKING TRYING COMING 
THOUGHT FELT KNEW DECIDED HOPE 
SEE SAY FEEL MEAN REMEMBER 
SAID SAYS WROTE EXPLAINED REPLIED 

GO COME TRY CONTINUE APPEAR \\ THERE 
L00K RUN LIVE MOVE TALK 
SUCH USING PROVIDING DEVELOPING WINNING 
T00K TOLD SAW GAVE MAKES 
HOWEVER 0FuCOURSE FORuEXAMPLE INDEED 
PART S0RT THINKING LACK NONE 
SOMETHING ANYTHING SOMEONE EVERYTHING 
MR MRS DR HONG MR. 

NEED NEEDS SEEM ATTEMPT OPPORTUNITY 
WANT WANTED TRIED WISH WANTS 
BASED RESPONSIBLE COMPARED INTERESTED 
THAN \\ LAST NEXT GOLDEN FT-SE \\ THOSE 
THINK BELIEVE SUPPOSE INSIST RECKON 
KNOWUNDERSTAND REALISE 
LATER AG0 EARLIER THEREAFTER 

BETTER WORSE LONGER BIGGER STRONGER 
aHELLIP .. 

ASKED LIKED WATCHED SMILED INVITED 
'M AM \\ 'D 

FACT IMPRESSION ASSUMPTION IMPLICATION 
NOTHING NOWHERE RISEN 
BEC0ME \\ ENOUGH \\ FAR INFINITELY 
'LL \\ 'RE \\ 'VE \\ CA W0 AI 
COPE DEPEND C0NCENTRATE SUCCEED C0MPETE 
RO HVK AMEN 
KLERK CLOWES HOWE C0LI GAULLE 
NEZ KHMER 
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