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A b s t r a c t  

A computational framework is presented which 
is used to model the process by which human 
language learners acquire the syntactic compo- 
nent of their native language. The focus is fea- 
sibility - -  is acquisition possible within a rea- 
sonable amount of time and/or with a reason- 
able amount of work? The approach abstracts 
away from specific linguistic descriptions in or- 
der to make a 'broad-stroke' prediction of an 
acquisition model's behavior by formalizing fac- 
tors that  contribute to cross-linguistic ambigu- 
ity. Discussion centers around an application 
to Fodor's Structural Trigger's Learner (STL) 
(1998) 1 and concludes with the proposal that  
successful computational modeling requires a 
parallel psycholinguistic investigation of the dis- 
tribution of ambiguity across the domain of hu- 
man languages. 

1 Principles  and P a r a m e t e r s  

Chomsky (1981) (and elsewhere) has proposed 
that  all natural  languages share the same in- 
nate universal principles (Universal Grammar 
- -  UG) and differ only with respect to the set- 
tings of a finite number of parameters. The syn- 
tactic component of a grammar in the principles 
and parameters (henceforth P&P) framework, 
is simply a collection of parameter values - -  one 
value per parameter. (Standardly, two values 
are available per parameter.) The set of human 

1The STL is an acquisition model in the principles 
and parameters paradigm. The results presented here 
are not intended to forward an argument for or against 
the model, or for tha t  matter ,  for or against the prin- 
ciples and parameters  paradigm. Rather,  the results 
axe presented to point out (the possibly not-so- earth- 
shattering observation) tha t  the acquisition mechanism 
c a n  be extremely sensitive to ambiguity. 

grammars is the set of all possible combinations 
of parameter values (and lexicon). 

The P&P framework was motivated to a large 
degree by psycholinguistic data demonstrating 
the extreme efficiency of human language acqui- 
sition. Children acquire the grammar of their 
native language at an early age - -  generally ac- 
cepted to be in the neighborhood of five years 
old. In the P&P framework, even if the lin- 
guistic theory delineates over a billion possible 
grammars, a learner need only determine the 
correct 30 values that  correspond to the gram- 
mar that  generates the sentences of the tar- 
get language. 2 given that  a successful syntac- 
tic theory must provide for an efficient acquisi- 
tion mechanism, and since, prima facie, param- 
eter values seem transparently learnable, it is 
not surprising that  parameters have been incor- 
porated into current generative syntactic the- 
ories. However, the exact process of parame- 
ter setting has been studied only recently (e.g. 
Clark (1992), Gibson and Wexler (1994), Yang 
(1999), Briscoe (2000), among others) and al- 
though it has proved linguistically fruitful to 
construct parametric analyses, it turns out to 
be surprisingly difficult to construct a workable 
model of parameter-value acquisition. 

1.1 P a r a m e t r i c  A m b i g u i t y  

A sentence is parametrically ambiguous if it is 
licensed by two or more distinct combinations 
of parameter values. Ambiguity is a natural en- 
emy of efficient language acquisition. The prob- 
lem is that,  due to ambiguity, there does not 
exist a one-to-one correspondence between the 
linear 'word-order' surface strings of the input 
sample and the correct parameter values that 
generate the target language. Clearly, if ev- 

230 binary parameters  entails approximately a billion 
grammars (230 = 1,073,741,824.) 
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ery sentence of the target language triggers one 
and only one set of parameter  values (i.e. ev- 
ery sentence is completely unambiguous) and 
the learner, upon encountering an input, can 
determine what  those values are, the parameter  
setting process is t ruly transparent.  Unfortu- 
nately, not all natural  languages sentences are 
so distinctively earmarked by their parametric  
signatures. However, if there exists some degree 
of parametric  unambigui ty  in a learner's input 
sample, a learner can set parameters  by: 1) de- 
coding the parametr ic  signature of an input sen- 
tence, 2) determining if ambiguity exists, and 3) 
using the input to guide parameter  setting only 
in the case that  the sentence is parametrically 
unambiguous.  The mot to  of such a learner is: 
Don't learn .from ambiguous input and learning 
efficiency can be measured by the number of 
sentences the learner has to wait for usable, un- 
ambiguous inputs to occur in the input stream. 3 

2 T h e  S t r u c t u r a l  T r i g g e r s  L e a r n e r  

One recent model  of human syntax acquisi- 
tion, The Structural Triggers £earner 
(ST£)  (Fodor, 1998), employs the human 
parsing mechanism to determine if an input is 
parametrically ambiguous. Parameter  values 
are viewed as bits of tree s tructure (treelets). 
When  the learner's current grammar is insuffi- 
cient to parse the current input sentence, the 
treelets may be utilized during the parsing pro- 
cess in the same way as any natural  language 
grammar would be applied; no unusual parsing 
activity is necessary. The treelets are adopted 
as part  of the learner's current grammar hy- 
pothesis when: 1) they are required for a suc- 
cessful parse of the current input sentence and 
2) the sentence is unambiguous.  The STL thus 
learns only from fully unambiguous sentences. 4 

3Of course, the extent to which such unambiguous 
sentences exist in the domain of human languages is an 
empirical issue. This is an important open research ques- 
tion which is the focus of a recent research endeavor here 
at CUNY. Our approach involves tagging a large, cross- 
linguistic set of child-directed sentences, drawn from the 
CHILDES database, with each sentence's parametric sig- 
nature. By cross-tabulating the shared parameter values 
against different languages, the study should shed some 
light as to the shape of ambiguity in input samples typ- 
ically encountered by children. 

4This is actually the strategy employed by just one 
of several different STL variants, some of which are de- 
signed to manage domains in which unambiguous sen- 
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Figure 1: An example of how the STL acquires 
new parameter  values. 

See Figure 1. 

3 T h e  F e a s i b i l i t y  o f  t h e  S T L  

The number  of input  sentences consumed by the 
STL before convergence on the target grammar 
can be derived from a relatively straightforward 
Markov analysis. Importantly,  the formulation 
most useful to analyze performance does not re- 
quire states which represent the grammars of 
the parameter  space (contra Niyogi and Berwick 
(1996)). Instead, each state of the system de- 
picts the number  of parameters  that  have been 
set, t, and the state transitions represent the 
probability that the STL will adopt some num- 
ber of new parameter values, w, on the basis of 
the current state and whatever usable paramet- 
ric information is revealed by the current input 
sentence. See Figure 2. 

The following factors (described in detail be- 
low) determine the transition probabilities: 

• the number of parameters that have been 
set (t) 

• the number  of relevant parameters  (r) 

• the expression rate (e) 

• the effective expression rate (e I) 

Not all parameters  are relevant parameters.  
Irrelevant parameters  control properties of phe- 
nomena not present in the target  language, such 
as clitic order in a language without  clitics. For 

tences are rare or nonexistent. 
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Figffre 2: A transit ion diagram for the STL per- 
forming in a parameter  space of three parame- 
ters. Nodes represent the current number of 
parameters that  have been correctly set. Arcs 
indicate a change in the number that  are cor- 
rectly set. In this diagram, after each input is 
consumed, 0, 1 or 2 new parameters  may be set. 
Once the learner enters state 3, it has converged 
on the target. 

our purposes, the number of relevant parame- 
ters, r, is the total number of parameters  that  
need to be set in order to license all and only 
the sentences of the target language. 

Of the parameters  relevant to the target lan- 
guage as a whole, only some will be relevant t o  
any given sentence. A sentence expresses those 
parameters for which a specific value is required 
in order to build a parse tree, i.e. those pa- 
rameters which are essential to the sentence's 
s tructural  description. For instance, if a sen- 
tence does not have a relative clause, it will not 
express parameters  that  concern only relative 
clauses; if it is a declarative sentence, it won't  
express the properties peculiar to questions; and 
so on. The expression rate, e, for a language, 
is the average number of parameters  expressed 
by its input sentences. Suppose that  each sen- 
tence, on average, is ambiguous with respect to 
a of the parameters  it expresses. The effective 
expression rate, e ~, is the mean proportion of 
expressed parameters  that  are expressed unam- 
biguously (i.e. e' = (e - a)/e). It will also be 
useful to consider a' = (1 - e~). 

3.1 D e r i v a t i o n  o f  a Transition 
Probability Function 

To present the derivation of the probability that  
the system will change from an arbitrary state 
St to state St+w, (0 < w < e) it is useful to set 
ambiguity aside for a moment.  In order to set all 
r parameters,  the STL has to encounter enough 
batches of e parameter  values, possibly overlap- 
ping with each other, to make up the full set of 
r parameter  values that  have to be established. 

Let H(wlt,  r,e) be the probability that  an ar- 
bi trary input sentence expresses w new (i.e. as 
yet unset) parameters,  out of the e parameters 
expressed, given that  the learner has already set 
t parameters  (correctly), for a domain in which 
there are r total parameters  that  need to be set. 

This is a specification of the hypergeometric 
distribution and is given in Equation 1. 

H(wlt,r,e)= (~t)(~-t~°) ( i)  (:) 
Now, to deal with ambiguity, the effective 

rate of expression, e t, is brought into play. Re- 
call that  e ~ is the proport ion of expressed pa- 
rameters that  are expressed unambiguously. It 
follows that  the probability that  any single pa- 
rameter  is expressed unambiguously is also e ~ 
and the probability tha t  all of the expressed, 
but as yet unset parameters  are expressed un- 
ambiguously is e ~w. That  is, the probability that  
an input is effectively unambiguous and hence 
usable for learning is equal to e ~w. 

f H(w[t,r,e) e w, O<w<e 

t H(O[t'r'e)+ i_~l H(ilt'r'e)(1-e'i)'w=O 
(2) 

Equation (2) can be used to calculate the prob- 
ability of any possible transit ion of the Markov 
system that  models STL performance. One 
method to determine the number of sentences 
expected to be consumed by the STL is to sum 
the number  of sentences consumed in each state. 
Let E(Si) represent the expected number of sen- 
tences that  will be consumed in state Si. E is 
given by the following recurrence relation: 5 

E(So)  = 1/e'¢ 

E(Zn) = II(1-P(Sn----~Sn)) ~ P(Si-'-~Sn)(Si) 
i ~ r t ~ e  

(5) 

The expected total  is simply: 

r - - 1  

Etot=E(So)+ ~ E(Si) (4) 
i=e  

which is equal to the expected number to be 
consumed before any parameters  have been set 

5The functional E is derived from basic properties 
of Markov Chains. See Taylor and Karlin (1994) for a 
general derivation. 
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e a ~ ( % )  r = 1 5  r = 2 0  r = 2 5  r = 3 0  

1 20  62  90  119  150  
40  83  1 2 0  159  200  
60  124  180  238  3 0 0  
80  2 4 9  3 6 0  4 7 7  599  

5 20  15 22  29  36  
40  34  4 6  59  73  
60  144  176  2 1 0  245  
80  3 , 3 0 0  3 , 4 6 6  3 , 6 6 6  3 , 8 9 1  

10 20  14 18 23  28  
40  174  187  2 0 3  221 
60  9 , 5 6 0  9 , 6 2 1  9 , 7 2 7  9 , 8 7 8  
80  9 , 7 6 5 , 7 3 1  9 , 7 6 6 , 3 7 5  9 , 7 6 8 , 3 7 6  9 , 7 7 2 , 7 4 0  

15 20  28  32  3 7  41 
40  2 , 1 2 7  2 , 1 3 6  2 , 1 5 3  2 , 1 8 0  
60  9 3 1 , 3 2 3  9 3 1 , 3 5 2  9 3 1 , 4 7 9  9 3 1 , 8 2 2  
80  . . . o v e r  l 0  b i l l i o n  . . .  

20  20  8 7  91 95  
40  2 7 , 3 5 1  2 7 , 3 6 1  2 7 , 3 8 3  
60  9 0 , 9 4 9 , 4 7 0  9 0 , 9 4 9 , 5 0 4  9 0 , 9 4 9 , 7 2 8  
80  . . . i n  t h e  t r i l l i o n s  . . .  

Table 1: Average number  of inputs consumed 
by the waiting-STL before convergence. Fixed 
rate of expression. 

(= E(So)) plus the number  expected to be con- 
sumed after the first successful learning event 
(at which point the learner will be in state Se) 
summed with the number  of sentences expected 
to be consumed in every other state up to the 
state just  before the target is a t ta ined (S t - l ) .  
Etot can be t ractably calculated using dynamic 
programming. 

3.2 S o m e  Resul ts  

Table 1 presents numerical results derived by 
fixing different values of r, e, and e ~. In order 
to make assessments of performance across dif- 
ferent situations in terms of increasing rates of 
ambiguity, a percentage measure of ambiguity, 
a ~, is employed which is directly derived from 
er: a ~ = 1 - e ~, and is presented in Table 1 as a 
percent (the proport ion is multiplied by 100). 

Notice that  the number  of parameters  to be 
set (r) has relatively little effect on convergence 
time. What  dominates learning speed is am- 
biguity and expression rates. When a ~ and e 
are both high, the STL is consuming an unrea- 
sonable number  of input sentences. However, 
the problem is not intrinsic to the STL model 
of acquisition. Rather,  the problem is due to 
a too rigid restriction present in the current 
formulation of the input sample. By relaxing 
the restriction, the expected performance of the 
STL improves dramatically. But first, it is in- 
formative to discuss why the framework, as pre- 
sented so far, leads to the prediction that  the 
STL will consume an extremely large number 
of sentences at rates of ambiguity and expres- 

sion approaching natural  language. 
By far the greatest amount  of damage in- 

flicted by ambiguity occurs at the very earliest 
stages of learning. This is because before any 
learning takes place, the STL must wait for the 
occurrence of a sentence that  is fully unambigu- 
ous. Such sentences are bound to be extremely 
rare if the expression rate and the degree of am- 
biguity is high. For instance, a sentence with 20 
out of 20 parameters  unambiguous will virtually 
never occur if parameters  are ambiguous on av- 
erage 99% of the t ime (the probabili ty would be 
(1/100)2°). 

After learning gets underway, STL perfor- 
mance improves tremendously;  the generally 
damaging effect of ambiguity is mitigated. Ev- 
ery successful learning event decreases the num- 
ber of parameters  still to be set. Hence, the 
expression rate of unset parameters  decreases 
as learning proceeds. And to be usable by the 
STL, the only parameters  that  need to be ex- 
pressed unambiguously are those that  have not 
yet been set. For example, if 19 parameters 
have already been set and e = r = 20 as in the 
example above, the probabili ty of encountering 
a usable sentence in the case that  parameters  
are ambiguous on average 99% of the t ime and 
the input sample consists of sentences express- 
ing 20 parameters,  is only (1/100) 1 = 1/100. 
This can be derived by plugging into Equation 
(2): w = 1, t = 19, e ---- 20, and r = 20 which is 
equal to: H(1119, 20, 20)(1/100) 1 = (1)(1/100). 

Clearly~ the probabili ty of seeing usable in- 
puts increases rapidly as the number  of param- 
eters that  are set increases. All that  is needed, 
therefore, is to get parameter  setting started, so 
that  the learner can be quickly be pulled down 
into more comfortable regions of parametric  ex- 
pression. Once parameter  setting is underway, 
the STL is extremely efficient. 

3.3 Dis tr ibuted  Express ion  Rate  

So far e has been conveniently taken to be fixed 
across all sentences of the target language. In 
which case, when e = 10, the learner will have 
to wait for a sentence with exactly 10 unam- 
biguously expressed parameters  in order to get 
s tar ted on learning, and as discussed above, it 
can be expected that  this will be a very long 
wait. However, if one takes the value of e to be 
uniformly distr ibuted (rather than  fixed) then 
the learner will encounter  some sentences which 
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express fewer than 10 parameters, and which 
are correspondingly more likely to be fully un- 
ambiguous and hence usable for learning. 

In fact, any distribution of e can be incorpo- 
rated into the framework presented so far. Let 
Di(x) denote the probability distribution of ex- 
pression of the input sample. That is, the prob- 
ability that an arbitrarily chosen sentence from 
the input sample I expresses x parameters. For 
example, if Di imposes a uniform distribution, 
then DI(x) = 1/emax where every sentence ex- 
presses at least 1 parameter and emax is the 
maximum number of parameters expressed by 
any sentence. Given Di, a new transition prob- 
ability P'(St '+ St+w) = P'(wlt, r, emax, e') can 
be formulated as: 

¢ m a z  

P'(w[t,r,e . . . .  et)-- - ~ Di(i)P(wlt,r, i ,e '  ) (5) 

where P is defined in (2) above and emaz repre- 
sents the maximum number of parameters that 
a sentence may express instead of a fixed num- 
ber for all sentences. 

To see why Equation (5) is valid, consider 
that to set w new parameters at least w must 
be expressed in the current input sentence. Also 
usable, are sentences that express more param- 
eters (w + I, w + 2, w + 3,..., emax). Thus, the 
probability of setting w new parameters is sim- 
ply the sum of the probabilities that a sentence 
expressing a number of parameters, i, from w 
to emax, is encountered by the STL (= Di(i)), 
times the probability that the STL can set w ad- 
ditional parameters given that i are expressed. 
By replacing P with P '  in Equation 3 and mod- 
ifying the derivation of the base case, 6 the to- 
tal expected number of sentences that will be 
consumed by the STL given a distribution of 
expression Di(x) can be calculated. 

Table 2 presents numerical results derived by 
fixing r and a' and allowing e to vary uniformly 
from 0 to emax .  As in Table 1, a percentage 
measure of ambiguity, a', is employed. 

The results displayed in the table indicate 
a striking decrease in the number of sentences 
that the that the STL can be expected to con- 
sume compared to those obtained with a fixed 
expression rate in place. As a rough compari- 
son, with the ambiguity rate (a') at 80%: when 

6E(So) = 1/(1 - -  P'(So  --+ So)) 

e m a z  a ' ( % )  r = 15 r = 20 r = 25 r = 30 

1 20 124 180 238  3 0 0  
40  166 2 4 0  318  399  
60  249  3 6 0  477  599 
80  4 9 8  720  954  1198  
20 28  40  53 67 
40 46  65 86 107 
60  89  124 161 199 
80  235 324  417  511 

10 20 17 24 32 40 
40  40  55 70 86 
60  102 137 173 209  
80  323  4 3 0  538  648  

15 20 
40 
60 
80  

20 20 
40  
60  
80  

15 21 27 33 
46 62 77 93 

134 176 219 262 
447 586 726 868 

20 26 32 
74 91 109 

223  275 327  
755  931 1108  

Table 2: Average number of inputs consumed 
by the STL before convergence. Uniformly dis- 
tributed rate of expression. 

e varies uniformly from 0 to 10, the STL re- 
quires 430 sentences (from Table 2); when e is 
fixed at 5, the number of sentences required is 
3,466 (from Table 1). 

4 D i s c u s s i o n  

Although presented as a feasibility analysis of 
parameter-setting - -  specifically of STL perfor- 
mance, it should be clear that the relevant fac- 
tors e', e, r, etc. can be applied to shape an 
abstract input domain for almost any learning 
strategy. This is important because questions of 
a model's feasibility have proved difficult to an- 
swer in spaces of a linguistically plausible size. 
Recent attempts necessarily rely on severely 
small, highly circumscribed language domains 
(e.g. Gibson and Wexler (1994), among others). 

These studies frequently involve the construc- 
tion of an idealized language sample which is 
(at best) an accurate subset of sentences that 
a child might hear. A simulated learner is let 
loose on the input space and results consist of 
either the structure of the grammar(s) acquired 
or the specific circumstances under which the 
learner succeeds or fails to attain the target. 
Without question, this research agenda is valu- 
able and can bring to light interesting charac- 
teristics of the acquisition process. (cf. Gibson 
and Wexler's (1994) argument for certain de- 
fault parameter values based on the potential 
success or failure of verb-second acquisition in 
a three-parameter domain. And, for a different 
perspective, Elman et al.'s (1996) discussions of 
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English part-of-speech and past-tense morphol- 
ogy acquisition in a connectionist framework.) 

I stress that  my point here is not to give a 
full accounting of STL performance. Substan- 
tim work has been completed towards this end 
(Sakas (2000), Sakas and Fodor (In press.)), 
as well as development of a similar frame- 
work to other models (See Sakas and Demner- 
Fushman (In prep.) for an application to Gib- 
son and Wexler's Triggering Learning Algo- 
rithm). Rather, I intend to put  forth the conjec- 
ture that  syntax acquisition is extremely sensi- 
rive to the distribution of ambiguity, and, given 
this extreme sensitivity, suggest that  simulation 
studies need to be conducted in conjunction 
with a broader analysis which abstracts away 
from whatever linguistic particulars are neces- 
sary to bring about the sentences required to 
build the input sample that  feeds the simulated 
learner. 

Ultimately, whether a particular acquisition 
model is successful is an empirical issue and de- 
pends on the exact conditions under which the 
model performs well and the extent to which 
those favorable conditions are in line with the 
facts of human language. Thus, I believe a 
three-fold approach to validate a computational 
model of acquisition is warranted. First, an 
abstract analysis (similar to the one presented 
here) should be constructed that  can be used 
to uncover a model's sweet spots - -  where the 
shape of ambiguity is favorable to learning per- 
formance. Second, a computational  psycholin- 
guistic study should be undertaken to see if the 
model's sweet spots are in line with the distri- 
bution of ambiguity in natural  language. And 
finally, a simulation should be carried out. 

Obviously, this a huge proposal requiring 
years of person-hours and coordinated planning 
among researchers with diverse skills. But if 
computational modeling is going to eventually 
lay claim to a model which accurately mir- 
rors the human process of language acquisition, 
years of fine grinding are necessary. 
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