
Pre-processing Closed Captions for Machine Translation
D a v i d e T u r c a t o F r e d P o p o w i c h P a u l M c F e t r i d g e

D e v l a n N i c h o l s o n J a n i n e T o o l e
Natural Language Laboratory, School of Comput ing Science, Simon Fraser University

8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
and

gavagai Technology Inc.
P.O. 374, 3495 Cambie Street, Vancouver, British Columbia, V5Z 4R3, Canada

{turk, popowich, mcfet, devl an, toole}©cs, sfu. ca

A b s t r a c t

We describe an approach to Machine Transla-
tion of transcribed speech, as found in closed
captions. We discuss how the colloquial nature
and input format peculiarities of closed captions
are dealt with in a pre-processing pipeline that
prepares the input for effective processing by
a core MT system. In particular, we describe
components for proper name recognition and
input segmentation. We evaluate the contribu-
tion of such modules to the system performance.
The described methods have been implemented
on an MT system for translating English closed
captions to Spanish and Portuguese.

1 I n t r o d u c t i o n

Machine Translation (MT) technology can be
embedded in a device to perform real time
translation of closed captions included in TV
signals. While speed is one factor associated
with the construction of such a device, another
factor is the language type and format. The
challenges posed by closed captions to MT can
be attributed to three distinct characteristics:

Firstly, closed captions are transcribed
speech. Although closed captions are not a com-
pletely faithful transcription of TV programs,
they render spoken language and therefore the
language used is typically colloquial (Nyberg
and Mitamura, 1997). They contain many of
the phenomena which characterize spoken lan-
guage: interjections, repetitions, stuttering, el-
lipsis, interruptions, hesitations. Linguistically
and stylistically they differ from written lan-
guage: sentences are shorter and poorly struc-
tured, and contain idiomatic expressions, un-
grammaticality, etc. The associated difficulties
stem from the inherently colloquial nature of
closed captions, and, to different degrees, of
all forms of transcribed speech (Hindle, 1983).

Such difficulties require a different approach
than is taken for written documents.

Secondly, closed captions come in a specific
format, which poses problems for their optimal
processing. Closed-captioners may often split
a single utterance between two screens, if the
character limit for a screen has been exceeded.
The split is based on consideration about string
length, rather than linguistic considerations,
hence it can happen at non-constituent bound-
aries (see Table 1), thus making the real time
processing of the separate segments problem-
atic. Another problem is that captions have no
upper/lower case distinction. This poses chal-
lenges for proper name recognition since names
cannot be identified by an initial capital. Addi-
tionally, we cannot rely on the initial uppercase
letter to identify a sentence initial word. This
problematic aspect sets the domain of closed
captions apart from most text-to-text MT do-
mains, making it more akin, in this respect, to
speech translation systems. Although, from a
technical point of view, such input format char-
acteristics could be amended, most likely they
are not under a developer's control, hence they
have to be presumed.

Thirdly, closed captions are used under oper-
ational constraints. Users have no control over
the speed of the image or caption flow so (s)he
must comprehend the caption in the limited
time that the caption appears on the screen.
Accordingly, the translation of closed captions
is a "time-constrained" application, where the
user has limited time to comprehend the system
output. Hence, an MT system should produce
translations comprehensible within the limited
time available to the viewer.

In this paper we focus on the first two fac-
tors, as the third has been discussed in (Toole
et al., 1998). We discuss how such domain-

3 8

good evening, i'm jim lehrer.
on the "newshour" tonight, four members of congress debate the
u.n. deal with iraq; paul solman tells the troubled story of
indonesia's currency; mark
shields and paul gigot analyze the political week;
and elizabeth farnsworth explains how the universe is getting
larger.

Table 1: Closed caption script fragment.

dependent, problematic factors are dealt with
in a pre-processing pipeline that prepares the
input for processing by a core MT system. The
described methods have been implemented for
an MT system that translates English closed
captions to Spanish and Portuguese. All the
examples here refer to the Spanish module.

2 P r e - p r o c e s s i n g d e s i g n

Input pre-processing is essential in an embedded
real time system, in order to simplify the core
processing and make it both time- and memory-
effective. In addition to this, we followed the
guideline of separating domain-dependent pro-
cesses and resources from general purpose ones.
On the one hand, grammars and lexicons are
costly resources. It would be desirable for them
to be domain-independent and portable across
different domains, as well as declarative and
bidirectional. On the other hand, a domain with
distinctive characteristics requires some specific
t reatment, if a system aims at robustness. We
decided to have a domain independent core MT
system, locating the domain dependent process-
ing in a pipeline of low-level components, e a s y
to implement, aiming at fast and robust pro-
cessing and using limited linguistic knowledge.

We use declarative and bidirectional gram-
mars and lexicons. The lexicMist approach is
indeed suitable to the closed caption domain,
e.g. in terms of its capability of handling loosely
structured or incomplete sentences. Also, the
linguistic resources are geared towards this do-
main in terms of grammatical and lexical cover-
age. However, our system architecture and for-
malism make them equally usable in any other
domain and translation direction, as the linguis-
tic knowledge therein contained is valid in any
domain. For the architecture we refer the reader
to (Popowich et al., 1997). In the rest of this
paper we focus on the pre-processing module

39

and how it deals with the issues discussed in
the introduction.

The task of the pre-processing pipeline is to
make the input amenable to a linguistically-
principled, domain independent treatment.
This task is accomplished in two ways:

1. By normalizing the input, i.e. removing
noise, reducing the input to standard typo-
graphical conventions, and also restructur-
ing and simplifying it, whenever this can be
done in a reliable, meaning-preserving way.

2. By annotating the input with linguistic in-
formation, whenever this can be reliably
done with a shallow linguistic analysis, to
reduce input ambiguity and make a full lin-
guistic analysis more manageable.

Figure (1) shows the system architecture,
with a particular emphasis on the pre-
processing pipeline. The next section describes
the pipeline up to tagging. Proper name
recognition and segmentation, which deal more
specifically with the problems described in the
introduction, are discussed in further sections.

3 N o r m a l i z a t i o n a n d t a g g i n g

The label normalization groups three compo-
nents, which clean up and tokenize the input.

The text-level normalization module performs
operations at the string level, such as remov-
ing extraneous text and punctuation (e.g. curly
brackets , used to mark off sound effects), or re-
moving periods from abbreviations. E.g.:

(I) "I went to high school in the u.s."

"I went to high school in the usa."

The tokenizer breaks a line into words. The
token-level normalization recognizes and an-
notates tokens belonging to special categories

Pre-processing

Normalization

[Text-level normalization]

[Tokenization)

[Token-level normalization I

+
[Proper name recognition]

[Segmentation "')

C o r e M T
sys t em

Anal' ,sis]

+

i
I Oo.o a, on I

,1
] P o s t - p r o c e s s i n g)

Figure 1: System architecture.

(times, numbers, etc.), expands contractions,
recognizes, normalizes and annotates stutters
(e.g. b-b-b-bright), identifies compound words
and converts number words into digits. E.g.:

(2) "I" "went" "to" "high" "school"

"in" "the" "usa" " "

"I" "went" "to" "high school" "in"

"the" "usa" " "

(3) "W-wh-wha~'s" "that" "?"0
"what"/stutter "is" "that" "?"

Note that annotations associated with tokens

are carried along the entire translation process,
so as to be used in producing the output (e.g.
stutters are re-inserted in the output).

The tagger assigns parts of speech to tokens.
Part of speech information is used by the subse-
quent pre-processing modules, and also in pars-
ing, to prioritize the most likely lexical assign-
ments of ambiguous items.

4 P r o p e r n a m e r e c o g n i t i o n

Proper names are ubiquitous in closed captions
(see Table 1). Their recognition is important
for effective comprehension of closed captions,
particularly in consideration of two facts: (i)
users have little time to mentally rectify a mis-
translation; (ii) a name can occur repeatedly
in a program (e.g. a movie), with an annoy-
ing effect if it is systematically mistranslated
(e.g. a golf tournament where the golfer named
Tiger Woods is systematically referred to as los
bosques del tigre, lit. 'the woods of the tiger').
Name recognition is made harder in the closed
caption domain by the fact that no capitaliza-
tion information is given, thus making unusable
all methods that rely on capitalization as the
main way to identify candidates (Wolinski et al.,
1995) (Wacholder et al., 1997). For instance, an
expression like 'mark s h i e l d s ' , as occurs in Ta-
ble (1), is problematic in the absence of capital-
ization, as both 'mark' and ' s h i e l d s ' are three-
way ambiguous (proper name, common noun
and verb). Note that this identical problem may
be encountered if an MT system is embedded
in a speech-to-speech translation as well. This
situation forced us to explore different ways of
identifying proper names.

The goal of our recognizer is to identify
proper names in a tagged line and annotate
them accordingly, in order to override any
other possiblelexical assignment in the follow-
ing modules. The recognizer also overrides pre-
vious tokenization, by possibly compounding
two or more tokens into a single one, which
will be treated as such thereafter. Besides part
of speech, the only other information used by
the recognizer is the lexical status of words, i.e.
their ambiguity class (i.e. the range of possible
syntactic categories it can be assigned) or their
status as an unknown word (i.e. a word that
is not in the lexicon). The recognizer scans an
input line from left to right, and tries to match

40

each item against a sequences of patterns. Each
pat tern expresses constraints (in terms of word,
part of speech tag and lexical status) on the
item under inspection and its left and right con-
texts. Any number of items can be inspected to
the left and right of the current item. Such pat-
terns also make use of regular expression bpera-
tors (conjunction, disjunction, negation, Kleene
star). For instance (a simplified version of) a
pat tern might look like the following:

(4) /the/DEW (NOUNIADJ)*] X' ['NOUN]

where we adopt the convention of representing
words by lowercase strings, part of speech tags
by uppercase strings and variables by primed
Xs. The left and right context are enclosed
in square brackets, respectively to the left and
right of the current item. They can also con-
tain special markers for the beginning and end
of a line, and for the left or right boundary of
the proper name being identified. This way to-
kenization can be overridden and separate to-
kens joined into a single name. Constraints on
the lexical s tatus of items are expressed as pred-
icates associated with pat tern elements, e.g.:

(5) proper_and_common (X')

A pat tern like the one above (4-5) would
match a lexically ambiguous proper /common
noun preceded by a determiner (with any num-
ber of nouns or adjectives in between), and not
followed by a noun (e.g. ' t h e b i l l i s . . . ') . Be-
sides identifying proper names, some pat terns
may establish tha t a given item is not a name
(as in the case above). A return value is as-
sociated with each pattern, specifying whether
the current match is or is not a proper name.
Once a successful match occurs, no further pat-
terns are tried. Pa t te rns are ordered from more
to less specific. At the bot tom of the pat tern
sequence are the simplest patterns, e.g.:

(6) ([] X' []), proper_and_common(X')
yes

which is the default assignment for words like
' b i l l ' if no other pat tern matched. However
(6) is overridden by more specific pat terns like:

(7) ([x''] x' []) ,
proper_and_common (X'), common(X")

no

41

(s) ([x '] x' []) ,
proper_and_common(X'), p rope r (X")

yes

The former pat tern covers cases like
' t e l e c o m m u n i c a t i o n s b i l l ' , preventing
' b i l l ' from being interpreted as a proper
name, the lat ter covers cases like 'damian
b i l l ' , where ' b i l l ' is more likely to be a name.

In general, the recognizer tries to disam-
biguate lexically ambiguous nouns or to as-
sign a category to unknown words on the ba-
sis of the available context. However, in prin-
ciple any word could be turned into a proper
name. For instance, verbs or adjectives can
be turned into proper names, when the con-
text contains strong cues, like a title. Increas-
ingly larger contexts provide evidence for more
informed guesses, which override guesses based
on narrower contexts. Consider the following
examples tha t show how a word or expression
is t reated differently depending on the available
context. Recognized names are in italics.

(9) biZ~ ~

(i0) the bill is ...

(11) the b i l l clinton is . . .

(12) t h e b i l l c l i n t o n a d m i n i s t r a t i o n i s

The lexically ambiguous bill, interpreted as
a proper name in isolation, becomes a common
noun if preceded by a determiner. However,
the interpretat ion reverts to proper name if an-
other noun follows. Likewise the unknown word
clinton is (incorrectly) interpreted as a com-
mon noun in (11), as it is the last i tem of a
noun phrase introduced by a determiner, but it
becomes a proper name if another noun follows.

We also use a n a m e m e m o r y , which pat terns
have access to. As proper names are found in an
input s t ream, they are added to the name mem-
ory. A previous occurrence of a proper name is
used as evidence in making decisions about fur-
ther occurrences. The idea is to cache names
occurred in an 'easy' context (e.g. a name pre-
ceded by a title, which provides strong evidence
for its s ta tus as a proper name), to use them
later to make decisions in 'difficult' contexts,
where the internal evidence would not be suffi-
cient to support a proper name interpretat ion.

Hence, what typically happens is tha t the same
name in the same context is interpreted differ-
ently at different times, if previously the name
has occurred in an 'easy' context and has been
memorized. E.g.:

(13) the individual title went to tiger
woods.

mr. tiger woods struggled today
with a final round 80.

name-memory

the short well publicized
professional life of t i g e r woods
has been an open book.

The name memory was designed to suit the
peculiarity of closed captions. Typically, in this
domain proper names have a low dispersion.
They are concentrated in sections of an input
s tream (e.g. the name of the main characters
in a movie), then disappear for long sections
(e.g. after the movie is over). Therefore, a
name memory needs to be reset to reflect such
changes. However, it is problematic to decide
when to reset the name memory. Even if it was
possible to detect when a new program starts,
one should take into account the possible sce-
nario of an MT system embedded in a consumer
product, in which case the user might unpre-
dictably change channel at any time. In or-
der to keep a name memory aligned with the
current program, without any detection of pro-
gram changes, we s t ructured the name memory
as a relatively short queue (first in, first out).
Every t ime a new item is added to the end of
the queue, the first i tem is removed and all the
other items are shifted. Moreover, we do not
check whether a name is already in the mem-
ory. Every t ime a suitable item is found, we
add it to the memory, regardless of whether it
is already there. Hence, the same item could
be present twice or more in the memory at any
given time. The result of this ar rangement is
tha t a name only remains in the memory :for a
relatively short time. It can only remain :[or a
longer t ime if it keeps reappearing frequently in
the input s t ream (as typically happens), other-
wise it is removed shortly after it stopped ap-
pearing. In this way, the name memory is kept

42

of items
Proper names correctly identified
False positives
False negatives

152
8

57

Table 2: Name recognition evaluation results.

aligned with the current program, with only a
short transition period, during which names no
longer pert inent are still present in the memory,
before gett ing replaced by pert inent ones.

The recognizer currently contains 63 pat-
terns. We tested the recognizer on a sample of
1000 lines (5 randomly chosen continuous frag-
ments of 200 lines each). The results, shown in
table (2), illustrate a recall of 72.7% and a pre-
cision of 95.0%. These results reflect our cau-
tious approach to name recognition. Since the
core MT system has its own means of identify-
ing some proper names (either in the lexicon or
via default assignments to unknown words) we
aimed at recognizing names in pre-processing
only when this could be done reliably. Note
also tha t 6 out of the 8 false positives were iso-
lated interjections tha t would be bet ter left un-
t ranslated (e.g. p f f o o , e l smacko), or closed
captioner 's typos (e.g. yo4swear) .

5 Segmentat ion

Segmentation breaks a line into one or more
segments, which are passed separately to sub-
sequent modules (Ejerhed, 1996) (Beeferman et
al., 1997). In translation, segmentat ion is ap-
plied to split a line into a sequence of transla-
tionally self-contained units (Lavie et al., 1996).
In our system, the translation units we iden-
tify are syntactic units, motivated by cross-
linguistic considerations. Each unit is a con-
s t i tuent tha t dan be translated independently.
Its translation is insensitive to the context in
which the unit occurs, and the order of the units
is preserved by translation.

One motivation for segmenting is tha t pro-
cessing is faster: syntactic ambiguity is reduced,
and backtracking from a module to a previ-
ous one does not involve re-processing an en-
tire line, but only the segment tha t failed. A
second motivation is robustness: a failure in
one segment does not involve a failure in the
entire line, and error-recovery can be limited

only to a segment. Further motivations are pro-
vided by the colloquial nature of closed cap-
tions. A line often contains fragments with a
loose syntactic relation to each other and to the
main clause: vocatives, false starts, tag ques-
tions, etc. These are most easily translated as
individual segments. Parenthetical expressions
are often also found in the middle of a main
clause, thus making complete parses problem-
atic. However, the solution involves a heavier
intervention than just segmenting. Dealing with
parentheticals requires restructuring a line, and
reducing it to a 'normal' form which ideally al-
ways has parenthetical expressions at one end of
a sentence (under the empirical assumption that
the overall meaning is not affected). We will
see how this kind of problem is handled in seg-
mentation. A third motivation is given by the
format of closed captions, with input lines split
across non-constituent boundaries. One solu-
tion would be delaying translation until a sen-
tence boundary is found, and restructuring the
stored lines in a linguistically principled way.
However, the requirements of real time transla-
tion (either because of real time captioning at
the source, or because the MT system is embed-
ded in a consumer product), together with the
requirement that translations be aligned with
the source text and, above all, with the images,
makes this solution problematic. The solution
we are left with, if we want lines to be bro-
ken along constituent boundaries, is to further
segment a sentence, even at the cost of some-
times separating elements that should go to-
gether for an optimal translation. We also ar-
gued elsewhere (Toole et al., 1998) that in a
time-constrained application the output gram-
maticality is of paramount importance, even at
the cost of a complete meaning equivalence with
the source. For this reason, we also simplify
likely problematic input, when a simplification
is possible without affecting the core meaning.

To sum up, the task at hand is broader than
just segmentation: re-ordering of constituents
and removal of words are also required, to syn-
tactically 'normalize' the input. As with name
recognition, we aim at using efficient and easy
to implement techniques, relying on limited lin-
guistic information. The segmenter works by
matching input lines against a set of templates
represented by pushdown transducers. Each

transducer is specified in a fairly standard way
(Gazdar and Mellish, 1989, 82), by defining an
initial state, a final state, and a set of transitions
of the following form:

(14) (State I, State2, Label, Transducer>

Such a transition specifies that Transducer
can move from Statel to State2 when the in-
put specified by Label is found. Label can be
either a pair (InputSymbol, OutputSymbol) or
the name of another transducer, which needs
to be entirely traversed for the transition from
S t a t e l to S t a t e 2 to take place. An input sym-
bol is a <Word, Tag> pair. An output symbol
is an integer ranging from 0 to 3, specifying to
which of two output segments an input sym-
bol is assigned (0 = neither segment, 3 = both
segments, 1 and 2 to be interpreted in the ob-
vious way). The output codes are then used to
perform the actual split of a line. A successful
match splits a line into two segments at most.
However, on a successful split, the resulting seg-
ments are recursively fed to the segmenter, until
no match is found. Therefore, there is no limit
to the number of segments obtained from an
input line. The segmenter currently contains
37 top-level transducers, i.e. segmenting pat-
terns. Not all of them are used at the same time.
The implementation of patterns is straightfor-
ward and the segmenter can be easily adapted
to different domains, by implementing specific
patterns and excluding others. For instance, a
very simple patterns split a line at every comma,
a slightly more sophisticated one, splits a line at
every comma, unless tagged as a coordination;
other patterns split a final adverb, interjection,
prepositional phrase, etc.

Note that a segment can be a discontinuous
part of a line, as the same output code can be
assigned to non-contiguous elements. This fea-
ture is used, e.g., in restructuring a sentence, as
when a parenthetical expression is encountered.
Thefollowing example shows an input sentence,
an assignment, and a resulting segmentation.

(15) this, however, is a political
science course.

(16) this/2 ,/0 however/l ,/i is/2 a/2
political/2 science/2 course/2.

(17) I. however ,

4 3

2. this is a political science

course

We sometimes use the segmenter 's ability to
simplify the input, e.g. with adverbs like just,
which are polysemous and difficult to translate,
but seldom contribute to the core meaning of a
sentence.

6 P e r f o r m a n c e

We ran a test to evaluate how the recognizer
and segmenter affected the quality of transla-
tions. We selected a sample of 200 lines of closed
captioning, comprising four continuous sections
of 50 lines each. The sample was run through
the MT system twice, once with the recognizer
and segmenter activated and once without. The
results were evaluated by two native Spanish
speakers. We adopted a very simple evalua-
tion measure, asking the subjects to tell whether
one translation was better than the other. The
translations differed for 32 input lines out of 200
(16%). Table (3) shows the evaluation results,
with input lines as the unit of measurement.
The third column shows the intersection of the
two evaluations, i.e. the evaluations on which
the two subjects agreed. The three rows show
how often the translation was better (i) with
pre-processing, (ii) without pre-processing, or
(iii) no difference could be appreciated.

The results show a discrepancy in the evalu-
ations. One evaluator also pointed out tha t it
is hard to make sense of transcribed closed cap-
tions, without the audio-visual context. These
two facts seem to point out that an appropri-
ate evaluation should be done in the operational
context in which closed captions are normally
used. Still, the intersection of the subjects ' eval-
uations shows that pre-processing improves the
output quality. In three of the four cases where
the two evaluators agreed that pre-processing
yielded a worse result, the worse performance
was due to an incorrect name recognition oi" seg-
mentation. However, in two of the three cases,
the original problem was an incorrect tagging.

Note tha t even when the name recognizer
and segmenter are off, the system can identify
some names, and recover from translation fail-
ures by piecing together translations of frag-
ments. Therefore, what was being tested was
not so much name recognition and segmenting

4 4

per se, but the idea of having separate modules
for such tasks in the system front end.

Finally, the test did not take into account
speed, as we set higher time thresholds than
an embedded application would require. Since
segmentation reduces processing time, it is also
expected to reduce the impact of tighter t ime
thresholds, all other things being equal.

We are planning to conduct an operational
evaluation of the system. The goal is to evalu-
ate the system ou tpu t in its proper visual con-
text, and compare the results with parallel re-
sults for human translated closed captions. Dif-
ferent groups of participants will watch a video
With either human- or machine-translated sub-
titles, and complete a questionnaire based on
the subtitles in the video. The questionnaire
will contain a set of questions to elicit the sub-
ject 's assessment on the translation quality, and
a set of questions to assess the subject 's level of
comprehension of the program.

7 C o n c l u s i o n

It is apparent that the peculiarity of closed
captions, both in terms of transcribed speech
characteristic and constraints due to the input
format, require an ad hoc t reatment , consider-
ably different from the approaches suitable for
writ ten documents. Yet the knowledge about
a language (or the bilingual knowledge about
a language-pair) is largely invariant across dif-
ferent applications domains and should there-
fore be portable from one application domain
to another. The architecture we have proposed
strives to combine the need for domain indepen-
dent linguistic resources and linguistically prin-
cipled methods with the need for robust MT
systems tuned to real world, noisy and idiosyn-
cratic input, as encountered when embedding
MT in real woi:ld devices.

In terms of adequacy, a s tandard evaluation
and a comparison among different MT systems
frtom different domains is hard, as the ade-
quacy of a system depends on its application
(Church and Hovy, 1993). This is even truer
with-closed captions, where the use of transla-
tion ou tpu t is heavily influenced by operational
constraints (time constraints, the presence of
images, sound, etc.). In some cases such con-
straints may place a heavier burden on a system
(e.g. the time constraint), in some other cases

Judge 1 Judge 2 Both agreed
Better with pre~processing
Better without pre-processing
No difference

21 16 15
4 12 4
7 4 3

Table 3: Evaluation results.

they can make an imperfect translation accept-
able (e.g. the presence of images and sounds).
We did not attempt an assessment in absolute
terms, which we believe should take into ac-
count the operational environment and involve
real-world users. More modestly, we aimed at
showing that our pre-processing techniques pro-
vide an improvement in performance.

Our work on closed captions also shows that
the challenges coming from this domain, even
in terms on low-level issues of input format, can
lead to interesting developments of new linguis-
tic techniques. We believe that our solutions to
specific problems (namely, proper name recog-
nition and segmentation) in the closed caption
domain bear relevance to a wider context, and
offer techniques that can be usefully employed
in a wider range of applications.

R e f e r e n c e s

Doug Beeferman, Adam Berger, and John Laf-
ferty. 1997. Text segmentation using expo-
nential models. In Proceedings of the Second
Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP-2), Prov-
idence, USA.

Kenneth W. Church and Eduard H. Hovy.
1993. Good applications for crummy machine
translation. Machine Translation, 8:239-258.

Eva Ejerhed. 1996. Finite state segmentation
of discourse into clauses. In A. Kornai, ed-
itor, Proceedings of the ECAI-96 Workshop
Extended Finite State Models of Language,
Budapest,Hungary.

Gerald Gazdar and Christopher S. Mellish.
1989. Natural Language Processing in PRO-
LOG: an Introduction to Computational Lin-
guistics. Addison-Wesley Publishing Com-
pany, Wokingham, England.

Donald Hindle. 1983. Deterministic parsing of
syntactic non-fluencies. In Proceedings of the
21st Annual Meeting of the Association for

Computational Linguistics (ACL-83), pages
123-128, Cambridge, Massachusetts, USA.

Alon Lavie, Donna Gates, Noah Coccaro, and
Lori Levin. 1996. Input segmentation of
spontaneous speech in janus: a speech-
to-speech translation system. In Proceed-
ings of ECAI-96 Workshop on Dialogue Pro-
cessing in Spoken Language Systems, Bu-
dapest,Hungary.

Eric Nyberg and Teruko Mitamura. 1997. A
real-time MT system for translating broad-
cast captions. In Proceedings of the Sixth Ma-
chine Translation Summit, pages 51-57, San
Diego, California, USA.

Fred Popowich, Davide Turcato, Olivier Lau-
rens, Paul McFetridge, J. Devlan Nicholson,
Patrick McGivern, Maricela Corzo-Pena, Lisa
Pidruchney, and Scott MacDonald. 1997. A
lexicalist approach to the translation of collo-
quial text. In Proceedings of the 7th Interna-
tional Conference on Theoretical and Method-
ological Issues in Machine Translation, pages
76-86, Santa Fe, New Mexico, USA.

Janine Toole, Davide Turcato, Fred Popowich,
Dan Fass, and Paul McFetridge. 1998. Time-
constrained Machine Translation. In Proceed-
ings of the Third Conference of the Associa-
tion for Machine Translation in the Ameri-
cas (AMTA-98), pages 103-112, Langhorne,
Pennsylvania, USA.

Nina Wacholder, Yael Ravin, and Misook Choi.
• 1997. Disambiguation of proper names in

texts. In Proceedings of the Fifth Confer-
ence on Applied Natural Language Processing
(ANLP-97), pages 202-208, Washington, DC,
USA. Association for Computational Linguis-
tics.

Francis Wolinski, Frantz Vichot, and Bruno Dil-
let. 1995. Automatic processing of proper
names in texts. In Proceedings of the 7th
Conference of the European Chapter of the
Asscociation for Computational Linguistics
(EACL-95), pages 23-30, Dublin, Ireland.

45

