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A b s t r a c t  

We describe an approach to Machine Transla- 
tion of transcribed speech, as found in closed 
captions. We discuss how the colloquial nature 
and input format peculiarities of closed captions 
are dealt with in a pre-processing pipeline that  
prepares the input for effective processing by 
a core MT system. In particular, we describe 
components for proper name recognition and 
input segmentation. We evaluate the contribu- 
tion of such modules to the system performance. 
The described methods have been implemented 
on an MT system for translating English closed 
captions to Spanish and Portuguese. 

1 I n t r o d u c t i o n  

Machine Translation (MT) technology can be 
embedded in a device to perform real time 
translation of closed captions included in TV 
signals. While speed is one factor associated 
with the construction of such a device, another 
factor is the language type and format. The 
challenges posed by closed captions to MT can 
be attributed to three distinct characteristics: 

Firstly, closed captions are transcribed 
speech. Although closed captions are not a com- 
pletely faithful transcription of TV programs, 
they render spoken language and therefore the 
language used is typically colloquial (Nyberg 
and Mitamura, 1997). They contain many of 
the phenomena which characterize spoken lan- 
guage: interjections, repetitions, stuttering, el- 
lipsis, interruptions, hesitations. Linguistically 
and stylistically they differ from written lan- 
guage: sentences are shorter and poorly struc- 
tured, and contain idiomatic expressions, un- 
grammaticality, etc. The associated difficulties 
stem from the inherently colloquial nature of 
closed captions, and, to different degrees, of 
all forms of transcribed speech (Hindle, 1983). 

Such difficulties require a different approach 
than is taken for written documents. 

Secondly, closed captions come in a specific 
format, which poses problems for their optimal 
processing. Closed-captioners may often split 
a single utterance between two screens, if the 
character limit for a screen has been exceeded. 
The split is based on consideration about string 
length, rather than linguistic considerations, 
hence it can happen at non-constituent bound- 
aries (see Table 1), thus making the real time 
processing of the separate segments problem- 
atic. Another problem is that captions have no 
upper/lower case distinction. This poses chal- 
lenges for proper name recognition since names 
cannot be identified by an initial capital. Addi- 
tionally, we cannot rely on the initial uppercase 
letter to identify a sentence initial word. This 
problematic aspect sets the domain of closed 
captions apart from most text-to-text MT do- 
mains, making it more akin, in this respect, to 
speech translation systems. Although, from a 
technical point of view, such input format char- 
acteristics could be amended, most likely they 
are not under a developer's control, hence they 
have to be presumed. 

Thirdly, closed captions are used under oper- 
ational constraints. Users have no control over 
the speed of the image or caption flow so (s)he 
must comprehend the caption in the limited 
time that  the caption appears on the screen. 
Accordingly, the translation of closed captions 
is a "time-constrained" application, where the 
user has limited time to comprehend the system 
output. Hence, an MT system should produce 
translations comprehensible within the limited 
time available to the viewer. 

In this paper we focus on the first two fac- 
tors, as the third has been discussed in (Toole 
et al., 1998). We discuss how such domain- 
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good evening, i'm jim lehrer. 
on the "newshour" tonight, four members of congress debate the 
u.n. deal with iraq; paul solman tells the troubled story of 
indonesia's currency; mark 
shields and paul gigot analyze the political week; 
and elizabeth farnsworth explains how the universe is getting 
larger. 

Table 1: Closed caption script fragment. 

dependent, problematic factors are dealt with 
in a pre-processing pipeline that  prepares the 
input for processing by a core MT system. The 
described methods have been implemented for 
an MT system that  translates English closed 
captions to Spanish and Portuguese. All the 
examples here refer to the Spanish module. 

2 P r e - p r o c e s s i n g  d e s i g n  

Input  pre-processing is essential in an embedded 
real time system, in order to simplify the core 
processing and make it both time- and memory- 
effective. In addition to this, we followed the 
guideline of separating domain-dependent pro- 
cesses and resources from general purpose ones. 
On the one hand, grammars and lexicons are 
costly resources. It would be desirable for them 
to be domain-independent and portable across 
different domains, as well as declarative and 
bidirectional. On the other hand, a domain with 
distinctive characteristics requires some specific 
t reatment,  if a system aims at robustness. We 
decided to have a domain independent core MT 
system, locating the domain dependent process- 
ing in a pipeline of low-level components,  e a s y  
to implement, aiming at fast and robust pro- 
cessing and using limited linguistic knowledge. 

We use declarative and bidirectional gram- 
mars and lexicons. The lexicMist approach is 
indeed suitable to the closed caption domain, 
e.g. in terms of its capability of handling loosely 
structured or incomplete sentences. Also, the 
linguistic resources are geared towards this do- 
main in terms of grammatical and lexical cover- 
age. However, our system architecture and for- 
malism make them equally usable in any other 
domain and translation direction, as the linguis- 
tic knowledge therein contained is valid in any 
domain. For the architecture we refer the reader 
to (Popowich et al., 1997). In the rest of this 
paper we focus on the pre-processing module 
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and how it deals with the issues discussed in 
the introduction. 

The task of the pre-processing pipeline is to 
make the input amenable to a linguistically- 
principled, domain independent treatment.  
This task is accomplished in two ways: 

1. By normalizing the input, i.e. removing 
noise, reducing the input to standard typo- 
graphical conventions, and also restructur- 
ing and simplifying it, whenever this can be 
done in a reliable, meaning-preserving way. 

2. By annotating the input with linguistic in- 
formation, whenever this can be reliably 
done with a shallow linguistic analysis, to 
reduce input ambiguity and make a full lin- 
guistic analysis more manageable. 

Figure (1) shows the system architecture, 
with a particular emphasis on the pre- 
processing pipeline. The next section describes 
the pipeline up to tagging. Proper name 
recognition and segmentation, which deal more 
specifically with the problems described in the 
introduction, are discussed in further sections. 

3 N o r m a l i z a t i o n  a n d  t a g g i n g  

The label normalization groups three compo- 
nents, which clean up and tokenize the input. 

The text-level normalization module performs 
operations at the string level, such as remov- 
ing extraneous text and punctuation (e.g. curly 
brackets , used to mark off sound effects), or re- 
moving periods from abbreviations. E.g.: 

(I) "I went to high school in the u.s." 

"I went to high school in the usa." 

The tokenizer breaks a line into words. The 
token-level normalization recognizes and an- 
notates tokens belonging to special categories 
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Figure 1: System architecture. 

(times, numbers, etc.), expands contractions, 
recognizes, normalizes and annotates stutters 
(e.g. b-b-b-bright), identifies compound words 
and converts number words into digits. E.g.: 

(2) "I" "went" "to" "high" "school" 

"in" "the" "usa" " " 

"I" "went" "to" "high school" "in" 

"the" "usa" " " 

(3) "W-wh-wha~'s" "that" "?"0 
"what"/stutter "is" "that" "?" 

Note that  annotations associated with tokens 

are carried along the entire translation process, 
so as to be used in producing the output (e.g. 
stutters are re-inserted in the output). 

The tagger assigns parts of speech to tokens. 
Part  of speech information is used by the subse- 
quent pre-processing modules, and also in pars- 
ing, to prioritize the most likely lexical assign- 
ments of ambiguous items. 

4 P r o p e r  n a m e  r e c o g n i t i o n  

Proper names are ubiquitous in closed captions 
(see Table 1). Their recognition is important 
for effective comprehension of closed captions, 
particularly in consideration of two facts: (i) 
users have little time to mentally rectify a mis- 
translation; (ii) a name can occur repeatedly 
in a program (e.g. a movie), with an annoy- 
ing effect if it is systematically mistranslated 
(e.g. a golf tournament where the golfer named 
Tiger Woods is systematically referred to as los 
bosques del tigre, lit. 'the woods of the tiger'). 
Name recognition is made harder in the closed 
caption domain by the fact that  no capitaliza- 
tion information is given, thus making unusable 
all methods that  rely on capitalization as the 
main way to identify candidates (Wolinski et al., 
1995) (Wacholder et al., 1997). For instance, an 
expression like 'mark s h i e l d s ' ,  as occurs in Ta- 
ble (1), is problematic in the absence of capital- 
ization, as both 'mark' and ' s h i e l d s '  are three- 
way ambiguous (proper name, common noun 
and verb). Note that  this identical problem may 
be encountered if an MT system is embedded 
in a speech-to-speech translation as well. This 
situation forced us to explore different ways of 
identifying proper names. 

The goal of our recognizer is to identify 
proper names in a tagged line and annotate 
them accordingly, in  order to override any 
other possiblelexical assignment in the follow- 
ing modules. The recognizer also overrides pre- 
vious tokenization, by possibly compounding 
two or more tokens into a single one, which 
will be treated as such thereafter. Besides part 
of speech, the only other information used by 
the recognizer is the lexical status of words, i.e. 
their ambiguity class (i.e. the range of possible 
syntactic categories it can be assigned) or their 
status as an unknown word (i.e. a word that  
is not in the lexicon). The recognizer scans an 
input line from left to right, and tries to match 
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each item against a sequences of patterns.  Each 
pat tern expresses constraints (in terms of word, 
part  of speech tag and lexical status) on the 
item under inspection and its left and right con- 
texts. Any number of items can be inspected to 
the left and right of the current  item. Such pat- 
terns also make use of regular expression bpera- 
tors (conjunction, disjunction, negation, Kleene 
star).  For instance (a simplified version of) a 
pat tern  might look like the following: 

(4) /the/DEW (NOUNIADJ)*] X' ['NOUN] 

where we adopt the convention of representing 
words by lowercase strings, part  of speech tags 
by uppercase strings and variables by primed 
Xs. The left and right context  are enclosed 
in square brackets, respectively to the left and 
right of the current  item. They  can also con- 
tain special markers for the beginning and end 
of a line, and for the left or right boundary of 
the proper name being identified. This way to- 
kenization can be overridden and separate to- 
kens joined into a single name. Constraints on 
the lexical s tatus of items are expressed as pred- 
icates associated with pat tern elements, e.g.: 

(5) proper_and_common (X') 

A pat tern like the one above (4-5) would 
match a lexically ambiguous proper /common 
noun preceded by a determiner (with any num- 
ber of nouns or adjectives in between), and not 
followed by a noun (e.g. ' t h e  b i l l  i s . . . ' ) .  Be- 
sides identifying proper names, some pat terns 
may establish tha t  a given item is not a name 
(as in the case above). A return value is as- 
sociated with each pattern,  specifying whether  
the current  match is or is not a proper name. 
Once a successful match occurs, no further pat- 
terns are tried. Pa t te rns  are ordered from more 
to less specific. At the bot tom of the pat tern  
sequence are the simplest patterns,  e.g.: 

(6) ( [] X' [] ), proper_and_common(X') 
yes 

which is the default assignment for words like 
' b i l l '  if no other  pat tern  matched.  However 
(6) is overridden by more specific pat terns like: 

(7) ( [x''] x' [] ) ,  
proper_and_common (X'), common(X") 

no 
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(s) ( [x ' ]  x' [] ) ,  
proper_and_common(X'),  p rope r (X" )  

yes 

The former pat tern  covers cases like 
' t e l e c o m m u n i c a t i o n s  b i l l ' ,  preventing 
' b i l l '  from being interpreted as a proper 
name, the lat ter  covers cases like 'damian 
b i l l ' ,  where ' b i l l '  is more likely to be a name. 

In general, the recognizer tries to disam- 
biguate lexically ambiguous nouns or to as- 
sign a category to unknown words on the ba- 
sis of the available context.  However, in prin- 
ciple any word could be turned into a proper 
name. For instance, verbs or adjectives can 
be turned into proper names, when the con- 
text  contains strong cues, like a title. Increas- 
ingly larger contexts provide evidence for more 
informed guesses, which override guesses based 
on narrower contexts. Consider the following 
examples tha t  show how a word or expression 
is t reated differently depending on the available 
context.  Recognized names are in italics. 

(9) biZ~ ~ 

(i0) the bill is ... 

(11) the b i l l  clinton is . . .  

(12) t h e  b i l l  c l i n t o n  a d m i n i s t r a t i o n  i s  

The lexically ambiguous bill, interpreted as 
a proper name in isolation, becomes a common 
noun if preceded by a determiner.  However, 
the interpretat ion reverts to proper name if an- 
other  noun follows. Likewise the unknown word 
clinton is (incorrectly) interpreted as a com- 
mon noun in (11), as it is the last i tem of a 
noun phrase introduced by a determiner,  but it 
becomes a proper name if another  noun follows. 

We also use a n a m e  m e m o r y ,  which pat terns 
have access to. As proper names are found in an 
input s t ream, they are added to the name mem- 
ory. A previous occurrence of a proper name is 
used as evidence in making decisions about  fur- 
ther occurrences. The idea is to cache names 
occurred in an 'easy'  context  (e.g. a name pre- 
ceded by a title, which provides strong evidence 
for its s ta tus  as a proper name), to use them 
later to make decisions in 'difficult' contexts,  
where the internal evidence would not  be suffi- 
cient to support  a proper name interpretat ion.  



Hence, what  typically happens is tha t  the same 
name in the same context  is interpreted differ- 
ently at different times, if previously the name 
has occurred in an 'easy'  context  and has been 
memorized. E.g.: 

(13) the individual title went to tiger 
woods. 

mr. tiger woods struggled today 
with a final round 80. 

name-memory 

the short well publicized 
professional life of t i g e r  woods 
has  been  an open book.  

The name memory  was designed to suit the 
peculiarity of closed captions. Typically, in this 
domain proper names have a low dispersion. 
They  are concentrated in sections of an input 
s tream (e.g. the name of the main characters  
in a movie), then disappear for long sections 
(e.g. after the movie is over). Therefore, a 
name memory  needs to be reset to reflect such 
changes. However, it is problematic to decide 
when to reset the name memory. Even if it was 
possible to detect  when a new program starts,  
one should take into account the possible sce- 
nario of an MT system embedded in a consumer 
product,  in which case the user might unpre- 
dictably change channel at any time. In or- 
der to keep a name memory  aligned with the 
current  program, without any detection of pro- 
gram changes, we s t ructured the name memory  
as a relatively short  queue (first in, first out). 
Every t ime a new item is added to the end of 
the queue, the first i tem is removed and all the 
other  items are shifted. Moreover, we do not 
check whether  a name is already in the mem- 
ory. Every t ime a suitable item is found, we 
add it to the memory, regardless of whether  it 
is already there. Hence, the same item could 
be present twice or more in the memory  at any 
given time. The result of this ar rangement  is 
tha t  a name only remains in the memory  :for a 
relatively short  time. It can only remain :[or a 
longer t ime if it keeps reappearing frequently in 
the input s t ream (as typically happens), other- 
wise it is removed shortly after it stopped ap- 
pearing. In this way, the name memory is kept 
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# of items 
Proper names correctly identified 
False positives 
False negatives 

152 
8 

57 

Table 2: Name recognition evaluation results. 

aligned with the current  program, with only a 
short  transition period, during which names no 
longer pert inent are still present in the memory, 
before gett ing replaced by pert inent  ones. 

The recognizer currently contains 63 pat- 
terns. We tested the recognizer on a sample of 
1000 lines (5 randomly chosen continuous frag- 
ments of 200 lines each). The results, shown in 
table (2), illustrate a recall of 72.7% and a pre- 
cision of 95.0%. These results reflect our cau- 
tious approach to name recognition. Since the 
core MT system has its own means of identify- 
ing some proper names (either in the lexicon or 
via default assignments to unknown words) we 
aimed at recognizing names in pre-processing 
only when this could be done reliably. Note 
also tha t  6 out  of the 8 false positives were iso- 
lated interjections tha t  would be bet ter  left un- 
t ranslated (e.g. p f f o o ,  e l  smacko), or closed 
captioner 's  typos (e.g. yo4swear) .  

5 Segmentat ion  

Segmentation breaks a line into one or more 
segments,  which are passed separately to sub- 
sequent modules (Ejerhed, 1996) (Beeferman et 
al., 1997). In translation, segmentat ion is ap- 
plied to split a line into a sequence of transla- 
tionally self-contained units (Lavie et al., 1996). 
In our system, the translation units we iden- 
tify are syntactic units, motivated by cross- 
linguistic considerations. Each unit is a con- 
s t i tuent  tha t  dan be translated independently. 
Its translation is insensitive to the context  in 
which the unit occurs, and the order  of the units 
is preserved by translation. 

One motivation for segmenting is tha t  pro- 
cessing is faster: syntactic ambiguity is reduced, 
and backtracking from a module to a previ- 
ous one does not  involve re-processing an en- 
tire line, but  only the  segment tha t  failed. A 
second motivation is robustness: a failure in 
one segment does not involve a failure in the  
entire line, and error-recovery can be limited 



only to a segment. Further motivations are pro- 
vided by the colloquial nature of closed cap- 
tions. A line often contains fragments with a 
loose syntactic relation to each other and to the 
main clause: vocatives, false starts, tag ques- 
tions, etc. These are most easily translated as 
individual segments. Parenthetical expressions 
are often also found in the middle of a main 
clause, thus making complete parses problem- 
atic. However, the solution involves a heavier 
intervention than just segmenting. Dealing with 
parentheticals requires restructuring a line, and 
reducing it to a 'normal'  form which ideally al- 
ways has parenthetical expressions at one end of 
a sentence (under the empirical assumption that  
the overall meaning is not affected). We will 
see how this kind of problem is handled in seg- 
mentation. A third motivation is given by the 
format of closed captions, with input lines split 
across non-constituent boundaries. One solu- 
tion would be delaying translation until a sen- 
tence boundary is found, and restructuring the 
stored lines in a linguistically principled way. 
However, the requirements of real time transla- 
tion (either because of real time captioning at 
the source, or because the MT system is embed- 
ded in a consumer product),  together with the 
requirement that  translations be aligned with 
the source text and, above all, with the images, 
makes this solution problematic. The solution 
we are left with, if we want lines to be bro- 
ken along constituent boundaries, is to further 
segment a sentence, even at the cost of some- 
times separating elements that  should go to- 
gether for an optimal translation. We also ar- 
gued elsewhere (Toole et al., 1998) that  in a 
time-constrained application the output  gram- 
maticality is of paramount  importance, even at 
the cost of a complete meaning equivalence with 
the source. For this reason, we also simplify 
likely problematic input, when a simplification 
is possible without affecting the core meaning. 

To sum up, the task at hand is broader than 
just  segmentation: re-ordering of constituents 
and removal of words are also required, to syn- 
tactically 'normalize' the input. As with name 
recognition, we aim at using efficient and easy 
to implement techniques, relying on limited lin- 
guistic information. The segmenter works by 
matching input  lines against a set of templates 
represented by pushdown transducers. Each 

transducer is specified in a fairly standard way 
(Gazdar and Mellish, 1989, 82), by defining an 
initial state, a final state, and a set of transitions 
of the following form: 

(14) (State I, State2, Label, Transducer> 

Such a transition specifies that Transducer 
can move from Statel to State2 when the in- 
put specified by Label is found. Label can be 
either a pair (InputSymbol, OutputSymbol) or 
the name of another transducer, which needs 
to be entirely traversed for the transition from 
S t a t e l  to S t a t e 2  to take place. An input sym- 
bol is a <Word, Tag> pair. An output  symbol 
is an integer ranging from 0 to 3, specifying to 
which of two output  segments an input sym- 
bol is assigned (0 = neither segment, 3 = both 
segments, 1 and 2 to be interpreted in the ob- 
vious way). The output  codes are then used to 
perform the actual split of a line. A successful 
match splits a line into two segments at most. 
However, on a successful split, the resulting seg- 
ments are recursively fed to the segmenter, until 
no match is found. Therefore, there is no limit 
to the number of segments obtained from an 
input line. The segmenter currently contains 
37 top-level transducers, i.e. segmenting pat- 
terns. Not all of them are used at the same time. 
The implementation of patterns is straightfor- 
ward and the segmenter can be easily adapted 
to different domains, by implementing specific 
patterns and excluding others. For instance, a 
very simple patterns split a line at every comma, 
a slightly more sophisticated one, splits a line at 
every comma, unless tagged as a coordination; 
other patterns split a final adverb, interjection, 
prepositional phrase, etc. 

Note that  a segment can be a discontinuous 
part of a line, as the same output  code can be 
assigned to non-contiguous elements. This fea- 
ture is used, e.g., in restructuring a sentence, as 
when a parenthetical expression is encountered. 
Thefollowing example shows an input sentence, 
an assignment, and a resulting segmentation. 

(15) this, however, is a political 
science course. 

(16) this/2 ,/0 however/l ,/i is/2 a/2 
political/2 science/2 course/2. 

(17) I. however , 
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2. this is a political science 

course 

We sometimes use the segmenter 's ability to 
simplify the input, e.g. with adverbs like just, 
which are polysemous and difficult to translate, 
but seldom contribute to the core meaning of a 
sentence. 

6 P e r f o r m a n c e  

We ran a test to evaluate how the recognizer 
and segmenter affected the quality of transla- 
tions. We selected a sample of 200 lines of closed 
captioning, comprising four continuous sections 
of 50 lines each. The sample was run through 
the MT system twice, once with the recognizer 
and segmenter activated and once without.  The 
results were evaluated by two native Spanish 
speakers. We adopted a very simple evalua- 
tion measure, asking the subjects to tell whether 
one translation was better than the other. The 
translations differed for 32 input  lines out  of 200 
(16%). Table (3) shows the evaluation results, 
with input lines as the unit of measurement.  
The third column shows the intersection of the 
two evaluations, i.e. the evaluations on which 
the two subjects agreed. The three rows show 
how often the translation was better (i) with 
pre-processing, (ii) without pre-processing, or 
(iii) no difference could be appreciated. 

The results show a discrepancy in the evalu- 
ations. One evaluator also pointed out tha t  it 
is hard to make sense of transcribed closed cap- 
tions, without the audio-visual context. These 
two facts seem to point out  that  an appropri- 
ate evaluation should be done in the operational 
context in which closed captions are normally 
used. Still, the intersection of the subjects '  eval- 
uations shows that  pre-processing improves the 
output  quality. In three of the four cases where 
the two evaluators agreed that  pre-processing 
yielded a worse result, the worse performance 
was due to an incorrect name recognition oi" seg- 
mentation. However, in two of the three cases, 
the original problem was an incorrect tagging. 

Note tha t  even when the name recognizer 
and segmenter are off, the system can identify 
some names, and recover from translation fail- 
ures by piecing together translations of frag- 
ments. Therefore, what  was being tested was 
not so much name recognition and segmenting 
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per se, but the idea of having separate modules 
for such tasks in the system front end. 

Finally, the test did not take into account 
speed, as we set higher time thresholds than 
an embedded application would require. Since 
segmentation reduces processing time, it is also 
expected to reduce the impact of tighter t ime 
thresholds, all other things being equal. 

We are planning to conduct an operational 
evaluation of the system. The goal is to evalu- 
ate the system ou tpu t  in its proper visual con- 
text, and compare the results with parallel re- 
sults for human translated closed captions. Dif- 
ferent groups of participants will watch a video 
With either human- or machine-translated sub- 
titles, and complete a questionnaire based on 
the subtitles in the video. The questionnaire 
will contain a set of questions to elicit the sub- 
ject 's assessment on the translation quality, and 
a set of questions to assess the subject 's  level of 
comprehension of the program. 

7 C o n c l u s i o n  

It  is apparent  that  the peculiarity of closed 
captions, both in terms of transcribed speech 
characteristic and constraints due to the input 
format,  require an ad hoc t reatment ,  consider- 
ably different from the approaches suitable for 
writ ten documents.  Yet the knowledge about 
a language (or the bilingual knowledge about 
a language-pair) is largely invariant across dif- 
ferent applications domains and should there- 
fore be portable from one application domain 
to another. The architecture we have proposed 
strives to combine the need for domain indepen- 
dent linguistic resources and linguistically prin- 
cipled methods with the need for robust MT 
systems tuned to real world, noisy and idiosyn- 
cratic input, as encountered when embedding 
MT in real woi:ld devices. 

In terms of adequacy, a s tandard evaluation 
and a comparison among different MT systems 
frtom different domains is hard, as the ade- 
quacy of a system depends on its application 
(Church and Hovy, 1993). This is even truer 
with-closed captions, where the use of transla- 
tion ou tpu t  is heavily influenced by operational 
constraints (time constraints, the presence of 
images, sound, etc.). In some cases such con- 
straints may place a heavier burden on a system 
(e.g. the time constraint),  in some other cases 



Judge 1 Judge 2 Both agreed 
Better with pre~processing 
Better without pre-processing 
No difference 

21 16 15 
4 12 4 
7 4 3 

Table 3: Evaluation results. 

they can make an imperfect translation accept- 
able (e.g. the presence of images and sounds). 
We did not attempt an assessment in absolute 
terms, which we believe should take into ac- 
count the operational environment and involve 
real-world users. More modestly, we aimed at 
showing that  our pre-processing techniques pro- 
vide an improvement in performance. 

Our work on closed captions also shows that 
the challenges coming from this domain, even 
in terms on low-level issues of input format, can 
lead to interesting developments of new linguis- 
tic techniques. We believe that our solutions to 
specific problems (namely, proper name recog- 
nition and segmentation) in the closed caption 
domain bear relevance to a wider context, and 
offer techniques that can be usefully employed 
in a wider range of applications. 
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