

new york to washington national

4 BOB: TEN A.M.

5 SYSTEM: i see a few flights from new
york to washington national which depart
about ten A M on january twenty seventh.
do you prefer to depart from newark, J F
K, or la guardia.

6 BOB: LA GUARDIA

7 SYSTEM: there are several flights from
la guardia, you can fly on delta
departing at nine thirty A M or ten
thirty A M, or on U S air at ten A M.
please specify an airline or time.

8 BOB: U.$= AIR

9 SYSTEM: U S - a i r f l i g h t 63 57 depar ts l a
guardia at ten A M on Thursday, january
twenty seventh and arrives in washington
national at eleven seventeen A M. Is
this flight okay?

i0 BOB: YES

Excerp t 2: The second excerpt regards a flight
~om New York to Melbourne, Australia. The ex-
cerpt is the system response after the user has re-
stricted his New York departure to La Guardia ai~
port, similarly to (Excerpt 1, Line 6):

SYSTEM: i see a couple of flights
from la guardia, both of them are on
american and make connections in chicago
o'hare and los angeles, the first
flight departs at nine thirty A M and
arrives at eight twenty five A M. the
second flight departs at nine thirty A M
and arrives at eight twenty five A M.

Note: The two flights differ only in the second of
three segments of the trip, Mthough the user would
only discover this rather unusual coincidence upon
asking for detMls about the individual flights. The
difficulty in this case arises because the mechanism
for generation for a very short list of flights has
not yet been subsumed as part of the aggregation
mechanism (described below) which would have au-
tomaticMly determined that the two flights should
be grouped.
Excerpt 3:

i SYSTEM: I will book this leg. Do you
want to continue with another leg?
Please say yes or no.

2 JANE: YES I NEED TO CONTINUE BUT I NEED

TO HAVE FLIGHT COMING BACK

3 SYSTEM: Okay, continuing with leg two.
flying from phoenix to newark on what
date?

4 JANE: 0KAY THAT WOULD BE FINE JUNE THIRD

5 SYSTEM: what time would you like to
leave on june third?

6 JANE: OF THE TWO O'CLOCK IN THE
AFTERNOON

7 SYSTEM: america west flight 7 74
departs phoenix at one thirty six P
M on Saturday, june third and arrives
in las vegas at two thirty eight P M,
connecting to continental flight 12
82 departing at three fifteen P M and
arriving in newark at ten forty one P M.

Is this flight okay?

8 JANE: NO IS THERE A DIRECT FLIGHT
FROM PHOENIX TO NEWARK I ON JUNE THIRD
ANYTIME TO THIRD

9 SYSTEM: pardon me, what time would you
like to leave?

I0 JANE: TIME TEN O'CLOCK IN THE MORNING

11 SYSTEM: i can't find any nonstop flights
from phoenix to newark on america west
which depart about ten A M on june
third, you may want to try changing the
departure time to seven twenty five A M,
eight fifty nine A M, twelve seventeen P
M, or three oh five P M.

4 Deep Generation
In this section we will focus on some tasks han-
dled by our deep generation module, emphasiz-
ing the role of constraint functions as a unifying
theme. Although the notion can be developed more
broadly in various ways, we will consider a con-
straint function here to be a function on a single
data record consisting of information about a par-
ticular flight from one location to another, possibly
making connections. Examples of a constraint func-
tion are: t lmeDepVal , giving the departure time
of the flight; t |meAr rClas s , giving the class of the
arrival time (before six A.M., between six A.M. and
noon, etc); and connVal giving the list of connec-
tion cities. A constraint on a data record is the
condition that some given constraint function has
a given value.

In a typical turn a user may modify the list of
Constraints imposed on the flights under discussion 2.
How the system interprets the user input, searches
for flights satisfying the constraints, and decides
what to say about them are all affected by the

shared conversational context between system and

2For brevity, we focus in this section on system response to
user input whose content consists solely of constraints modi-
fications. Processing of other kinds of input such as questions
(e.g. "when does the nine A.M. flight arrive?") is handled
similarly.

22

user. Specifically, we have found the following most
useful to keep track of:

1. the constraints the user has imposed on the
flights;

2. what information about the user input con-
straints the system has repeated back to the
user;

3. the flights the system has conveyed information
about to the user; and

4. the constraints on flights that the system has
discovered and whether those constraints have
been conveyed to the user or can be deduced by
the user.

In this section we focus on two particular cases
that need to be handled by any dialog system in
which the user and system negotiate to find a suit-
able record from a source of data: the under-
constrained case and the over-constrained case.

4.1 G r o u p i n g o f I n f o r m a t i o n

In this section we discuss how the system decides
what to say in the under-constrained case when there
are many flights satisfying the user request. Exam-
ples of the system response in this case can be found
in (Excerpt 1, Turn 5), (Excerpt 1, Turn 7), and
Excerpt 2. The following example occurred when a
user requested a departure after 10:00 A.M., after
having previously imposed the constraints of flying
from Chicago to Miami on March third. The system
responded as follows:

(I) there are several flights which depart
after ten A M.

(2) all of them leave from chicago o'hare
and arrive in the afternoon.

(3) do you prefer to fly on american or
united.

Part (i) of the system response summarizes the
most salient constraints of the user input using the
summary script of section 5 s. Part (2) is a specifi-
cation of the significant information common to all
flights. In part (3), the system has decided which
under-specified constraint is most likely relevant to
the user, grouped the flights according to the values
of the constraints, and prompted the user by speci-
fying the possible values of the constraint.

The significant common information in part (2)
and the most relevant grouping in part (3) are com-

B Some readers may have noticed that, in (Excerpt 1, Turn
5), the system unnecessarily reviewed constraints that have
recently been reviewed. This is because the generation mech-
anism used before enough constraints have been satisfied to
query the data base has not yet been fully unified with the
mechanism discussed in this paper.

23

9 .

simple node ~

1) ORD... 1230 ... american 1) ORD ... 1310 ... united
2) ORD... 1420 ... american 2) ORD ... 1520 .. united

depArp timeArr air dephrp timeArr air

Figure 1: Example of an Aggregation

puted by what we call the aggregation algorithm 4.
The principal domain dependent data needed by
the algorithm consists of utility functions for each
constraint telling how high a priority it is to go
into detail about that constraint. The output is a
tree structure which represents the hierarchy of con-
straint information that is deemed most useful to
convey to the user.

More specifically, the inputs to t h e aggregation
algorithm consist of a flat list of data records (e.g.
a table of flights) together with a list of aggrega-
tion specifications. An aggregation specification is
a triple consisting of: (1) a constraint function by
which data may be grouped, (2) a sort function
which orders the groups according to their constraint
value, and (3) a utility function to determine how
useful this grouping is (which may depend both on
conversational context as well as when in the algo-
r i thm the grouping is at tempted). The utility func-
tions also have the ability to return codes that con-
trol the search for the best tree. For example, a
utility function can declare itself to be the high-
est priority, thus pruning the search. The output
is a tree with non-terminal nodes labeled by lists of
constraint functions, edges labeled by values taken
by the constraint functions labeling the node above,
and terminal vertices labeled by a list of the data
records satisfying the constraints specified by the la-
belings of all its ancestor nodes and edges.

For the example discussed above, the output of
the aggregation algorithm is depicted in Figure 1.
The top node and the edge below it indicate that
all the flights leave from Chicago O'Hare in the af-
ternoon (i.e. the constraint d e p A r p V a l takes o n

4The term "aggregation" is sometimes used within the gen-
eration community referring to a process of combining groups
of linguistically similar phrases. One might say the aggrega-
tion here is occurring on a semantic level, i.e. the internal
representations of the flights are being grouped.

the SABRE code "0RD" for Chicago O'Hare and
the constraint t imeArrClass takes on the value
"morning"). We call this node a simple node be-
cause there is only one edge emanating from it. By
contrast, the node below is a complex node since
the constraint function at that node airVal can
take on more than one value (either "american" or
"united"). The box on the lower left contains those
input flights which are on American Airlines and de-
part from Chicago O'Hare in the morning, and sim-
ilarly for the box on the lower right.

For our application we have found it best to use
the same kind of utility function for all constraints.
When only this type of utility function is used the
behavior of the aggregation algorithm is quite simple
and always l:~od~uces a tree similar to the one in
Figure 1, namely~rm with two nodes: a simple one
above a complex one. Corresponding to the notion of
simple node and complex node, we call a constraint
function (chosen from the aggregation specification)
simple if it yields the same value when applied to
all of the data records and complex otherwise. The
simplified aggregation algorithm effectively proceeds
as follows:

(1) For each simple constraint function (whose
value is not known to the user based on the
conversational history) apply a significance test.
Place those constraints functions that pass the
test (if there are any) in the top node of the
tree.

(2) Pick the complex constraint function of maxi-
mum positive utility and place that in the node
below the top. If all utilities are negative, the
node remains empty.

As an example, when depArpVal is a simple con-
straint it is deemed significant if it is not the only
airport serving the departure location the user re-
quested. In our example, since Chicago is served
by both O'Hare and Midway airports, the fact that
all flights land in O'Hare is deemed significant to
tell the user. As our airline travel system develops
we expect to have available more expert knowledge
about the airline travel domain. For example, the
significance test for depArpVal may be modified
in the future if the system has a way of knowing
that Chicago O'Hare is the airport the user would.
naturally expect in many circumstances.

4.2 Re laxa t ion
In this section, we consider the over-constrained case
in which no suitable flights can be found that sat-
isfy the user request. One example of the system
response in such a case occurs in (Excerpt 3, line
11). Another example is the following:

(i) there don't seem to be any nonstop
flights from san francisco to newark

new jersey on united which serve
breakfast and depart after nine A M
on february tenth.

(2) you may want to try changing your

choice of meal, the airline to

Continental, or the departure time

to seven oh five A M or eight twenty A
M.

In part (I), the system first reviews detailed in-
formation about what it believes the current user
request is. This is particularly useful to help alert
the user to any previous conversational error. In
part (2), the system suggests possible relaxations
that may be of interest to the user. A relaxation
here is just a change of a single constraint in the
user request which would allow flights to be found.
For example, the system response (2) above indi-
cates that there ar~ flights on united which satisfy
all of the other user constraints listed in (1) above.

5 S u r f a c e G e n e r a t i o n

There are many approaches to generating text from
an underlying semantic representation. Simple tem-
plates are adequate for many purposes, but result
in a combinatorial explosion in the number of tem-
plates required to produce output for all possible
circumstances. There are also several powerful gen-
eration packages available. One package in partic-
ular that we found it insightful to experiment with
was FUF(Elhadad, 1989), which is short for "Func-
tional Unification Framework"(Elhadad and Robin,
1992). FUF comes available with a reusable gram-
mar of English(Elhadad and Robin, 1996). Al-
though we found the sophisticated linguistic frame-
work of FUF/SURGE difficult to adapt to our needs,
we have found it helpful to include analogues of some
elements of that framework in the approach we now
describe.

After our initial experiments, we decided to
"evolve" a surface generation module starting with
the straight forward model of template filling and
procedure calls provided by the programming lan-
guage tel. To overcome the problem of combina-
torial explosion in program size, our surface gen-
eration makes use of an exception catching mecha-
nism which allows sub-phrases within a complicated
phrase to be "turned on" if the semantic input re-
quired for them is present. This can be done re-
cursively. This approach has a side benefit of being
very robust because detailed error catching is built
in. Even if the script writer makes an unintentional
error in part of a script (and no alternatives for gen-
erating the information in the erroneous part are
available) only that part will fail to be generated.

Our system makes available to the developer sev-
eral useful domain independent constructs. In addi-
tion to these basic constructs, our surface generation

24

[opt-s {[DoStops Sstops]}] [opt-s {$rtow}] [Noun f l i g h t s
[opt-s {from [DoArp $1ocFr]}] [opt-s {to [DoArp $1ocTo]}]
[opt-s {on [DoAir Sair]}]
[opt-s { which

[NonEmptyConjunct ion [I ist
[opt-s {[Verb cost] [DoPriceRange Sprice]}]
[opt-s {[Verb have] flight number SfltNum}]
[opt-s {[Verb serve] Smeal}]
[opt-s {[subst $::Script(VPDep)]}]
[opt-s {[subst $: :Script(VPConnect)]}]
[opt-s {[subst $::Script(VPArr)]}]]] }]

Figure 2: Fragment from summarization script (generating text after vertical bar in examples in Table 1).

has a morphology module (giving the correct form of
a word based on number, tense, etc.) and a library
of routines for generating simple phrases. To give
the reader a flavor of our approach, we discuss the
example of the script which generates phrases such
as those in Table 1.

1. There are I several flights.

2. I can't find any I roundtrip flights from New
York to Chicago.

3. There don't seem to be any I nonstop flights
which serve breakfast and make a connection in
Dallas.

4. There is only one I flight on American which de-
parts between six p m and nine p m on February
second and arrives in the morning on February
third.

5. I see quite a few] flights which cost less than
$1000 and arrive in the morning.

Table 1: Sample output from summarization script.
(The vertical bar has been added to demarcate the
separation between parts generated by separate sub-
scripts.)

Phrases such as the ones above are generated by
surface generation when it is asked by deep genera-
tion to summarize some of the constraints on what
kind of flight the user is looking for and the approx-
imate number of flights found. The script fragment
in Figure 2 generates phrases like the ones after the
vertical bar in the above examples. Variables such as
locFr, da teDep, and air correspond to user spec-
ified constraints on departure location, departure
date, airline, and so on. Only those variables will
be set which deep generation has decided should be
summarized. Since there are thirteen variables re-
ferred to in the short script below and the (even
shorter) subscripts it refers to, they are capable of
generating 213 different kinds of phrases expressing
the desired content. It is perhaps a fortunate prop-

erty of the airline travel domain we are restricting to
that this approach allows fairly simple scripts to be
used in circumstances where an inordinate number
of templates would h~ve been required.

We offer a few words of explanation of the script in
Figure 2. First, the "morphology" procedure Verb
provides the appropriate morphological form of a
verb (depending on the current setting of number,
tense, etc.). The procedure subst is used for ex-
panding the subscripts referred to. The procedures
DoAir, DoArp DoPr lceRange , and DoStops
are from the "phrase library". They generate ap-
propriate phrases associated with an airline, an air-
port, a price range, or whether or not a flight is
nonstop. One may think of these as rules for con-
verting the semantic information, previously deter-
mined by deep generation and stored in variables
such as air and price, into a surface realization. For
example, "[DoAir Sai r]" returns "American" and
"[DoPrice SPr i te]" returns " less than $1000".

The construct opt-s (short for op__t)onal
substitution) includes the text generated by
expanding its argument if that expansion is suc-
cessful, or else catches and ignores any errors if
the expansion was not successful. The construct
N o n E m p t y C o n j u n e t i o n is used to adjoin a list
of phrases. (The separators between phrases are
optional arguments.) If the input list is empty,
however, an error is generated. In such a case (e.g.
examples 1 and 2 above), the error is caught by
the enclosing opt-s, so the entire "which" clause is
omitted.

Another example of a construct is SayOnce. This
is used when generating a list of phrases, so that
a particular script fragment will only be expanded
and included the first time it is encountered. For
example, SayOnce has been used to omit the sec-
ond occurrence of the word "departing" in (Excerpt
1, Turn 7). Similarly, in the following response to
a user query about the arrival times of the flights
under discussion, the second occurrence of the word
"flights" has been omitted by a simple application

2@

of SayOnce:

i see at l e a s t 3 f l i g h t s which a r r i v e
between two P M and s ix P M, and 4
which a r r i v e between s ix P M and ten P

6 C o n c l u s i o n

In developing our deep and surface generation mod-
ules we have followed a strategy of starting with a
simple approach and adding basic building blocks as
they are warranted, for example the generation con-
structs described in section 5 and the utility func-
tions of sections 4.1. This strategy has helped us
develop generation modules which are flexible, ro-
bust, and interact well with the other components
of our system. Also, the tools presented here tend
to reduce the growth in code size with complexity (as
measured by the number of possible constraints).

We are optimistic that these methods can be ap-
plied to other domains, although certainly additional
features would have to be added. For instance, in
Excerpt 2, we gave an example of a shortcoming
of our system that arose when we summarized de-
tails about a very short list of flights. This problem
could be fixed either by subsuming the case of a
very short list of flights into the general aggregation
mechanism or by adding an additional mechanism
to handle this separate case better. Since the prob-
lem seemed insignificant enough in the airline travel
domain we have not yet resolved it, but we expect
that experience with other domains will dictate the
best approach.

We consider it to be an advantage of this ap-
proach that it is not tied to a particular linguis-
tic framework and affords rather straight forward
development. This certainly seems appropriate for
our application so far, where the summary script of
Figure 2 represents the typical level of complexity
of the scripts we have had to develop. It is pos-
sible that this could become a limiting factor as
the complexity, scope, and variety of domains in-
creases. However, we expect other limitations to be-
come more pressing. For example, we plan to inves-
tigate additional building blocks which will be useful
as we begin to delve into issues such as improving
our help messages or adding emphasis to particular
parts of the information we want to convey, either
via prosody or more finely crafted text.

R e f e r e n c e s

K. Biatov, E. Bocchieri, G. Di Frabbrizio, C. Kahm,
E. Levin, S. Narayanan, A. Pokrovsky, P. Ruscitti,
M. Rahim, and L. Walker. 2000. Spoken dialog
systems: Some case studies from AT~T. In Pre-
sentation at DARPA Communicator Workshop,
Charleston, SC, Jan. 2000. See http://www.dsic-
web.net :8501/pub/comra_2000jan/ATT-
Narayanan.pdf for presentation and
http://www.dsic-web.net/ito/mectings/
communicator_jan00/agenda.html for conference
agenda.

Michael Elhadad and Jacques Robin. 1992. Control-
ling content realization with functional unification
grammars. In Aspects of Automated Natural Lan-
guage Generation, Lecture Notes in Artificial In-
telligence, 587, pages 89-104. Springer, Berlin.

Michael Elhadad and Jacques Robin. 1996. An
overview of SUKGE: A re-usable comprehensive
syntactic realization component. In Proceedings of
the 8th International Workshop on Natural Lan-
guage Generation, Beer Sheva, Israel.

Michael Elhadad. 1989. FUF: The universal uni-
fier user manual. Technical report, Department
of Computer Science, Columbia University. URL
= http://www.cs.bgu.ac.il/surge/index.htm:

K. A. Papineni, S. Roukos, and R. T. Ward. 1999.
Free-flow dialog management using forms. In Pro-
ceedings of Eurospeech-99, pages 1411-1414, Sept.
1999.

A.I. Rudnicky, E. Thayer, P. Constantinides,
C. Tchou, R. Shern, K. Lenzo, W. Xu, and A. Oh.
1999. Creating natural dialogs in the Carnegie
Mellon Communicator system. In Proceedings of
Eurospeech-1999, pages 931-934, Budapest, Hun-
gary, Sept. 1999.

S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and
V. Zue. 1998. Galaxy-II: A reference architecture
for conversational system development. In Pi'o-
ceedings of ICSLP-1998, pages 1153-1156, Syd-
ney, Australia, Nov. 30-Dec. 4, 1998.

Wayne Ward and Bryan Pellom. 1999. The CU
Communicator system. In 1999 IEEE Work-
shop on Automatic Speech Recognition and Un-
derstanding, Keystone Colorado, Dec. 1999.

A c k n o w l e d g e m e n t s

The author would like to thank Mark Epstein,
Adwait Ratnaparhki, Salim Roukos, Kishore Paly-
ineni, and Todd Ward for helpful discussions. This
work was supported in part by DARPA contract
MDA972-97-C-0012.

26

