
A M e a s u r e  of S e m a n t i c  C o m p l e x i t y  for N a t u r a l  L a n g u a g e  S y s t e m s  

Shannon Pollard*and Alan W. Biermann 
Department of Computer Science, Duke University 
Box 90129, D224, LSRC, Durham, NC 27708-0129 

office: (919)660-6583 fax: (919)660-6519 
e-mail: shannon@cs.duke.edu 

Abstract 
This paper will describe a way to organize the salient 
objects, their attributes, and relationships between 
the objects in a given domain. This organization 
allows us to assign an information value to each col- 
lection, and to the domain as a whole, which cor- 
responds to the number of things to "talk about" 
in the domain. This number gives a measure of se- 
mantic complexity; that is, it will correspond to the 
number of objects, attributes, and relationships in 
the domain, but not to the level of syntactic diver- 
sity allowed when conveying these meanings. 

Defining a measure of semantic complexity for a 
dialog system domain will give an insight towards 
making a complexity measurement standard. With 
such a standard, natural language programmers can 
measure the feasibility of making a natural lan- 
guage interface, compare different language proces- 
sors' ability to handle more and more complex do- 
mains, and quantify the abilities of the current state 
of the art in natural language processors. 

1 Introduction 
Quantification of task difficulty has been applied to 
many areas in artificial intelligence, including in- 
formation retrieval (Bagga, 1997) (Bagga and Bier- 
mann, 1997), machine learning (Niyogi, 1996), pars- 
ing and grammatical formalisms(G. Edward Bar- 
ton et al., 1987), and language learning in general 
(Ristad, 1993). In addition to providing a way of 
comparing systems, these measures quantify task 
complexity before a system is built. The goal of 
this paper is to measure the complexity of domains 
for dialog processing. With a standard measure of 
complexity, domains can be compared and analyzed 
without having to build the dialog system first. This 
measure would be an indication of the cost, amount 
of code, accuracy, reliability, and execution time of 
the finished dialog system specified by the domain. 
The hope is to have a single number or pair of num- 
bers that correlates strongly with these standard 
measures. 

* Supported by the Defense Advanced Research Projects 
Agency, CPoF project, Grant F30602-99-C-0060 

Specifically, if domain D1 has complexity C1 and 
domain D2 has complexity C2 where C2 > C1, then 
we would expect D2 to have a greater cost of soft- 
ware, more lines of code, less accuracy, less reliabil- 
ity, and longer execution time. 

Section 2 will describe the difference in seman- 
tic and syntactic complexity and explain why we 
consider each separately. In section 3 we define the 
terms in the complexity analysis, which is explained 
in section 4. Sections 5 and 6 discuss how to compute 
information measures that are needed in the com- 
plexity analysis, and in sections 7 and 8 we present 
future work and conclude. 

2 S e m a n t i c  v s .  S y n t a c t i c  c o m p l e x i t y  

The complexity measurement described above must 
be one that takes into account both the semantic and 
syntactic complexity of the domain. Semantic com- 
plexity is the number of "things" that we can talk 
about in the domain. This will include all the ob- 
jects in the domain, the attributes of those objects to 
which one might refer, and the relationships between 
the objects that the user can express. Syntactic com- 
plexity refers to the variety of ways that the user will 
be allowed to refer to an object, attribute, or rela- 
tionship. For example, a domain could include only 
two boys but if the user is allowed to refer to them in 
many ways (e.g., "Bob", "Jim", "he", "they", "the 
two boys next to the water cooler at the back of the 
room"), then the domain is semantically simple but 
syntactically complex. Likewise a domain with 100 
objects that are each referred to only as Object1, 
Object2, etc.., is semantically complex but syntac- 
tically simple. 

Semantic and syntactic complexities form a trade- 
Off when it comes to building a language processor 
for a domain. To build a reliable and accurate pro- 
cessor, the domain must be sufficiently restrained. 
The more syntactic variety allowed the user, the 

fewer objects allowed in the domain. So, the more 
objects in the world, the more restricted the user's 
grammar and vocabulary. This leads to a tendency 
to consider the two fronts separately, and then con- 
sider a complete complexity measure as a combina- 

42 



tion of both. Having measures of syntactic and se- 
mantic complexity separately will help to find where 
the best compromise lies. 

This paper addresses semantic complexity only. It 
therefore does not completely define the complexity 
measure described in the introduction, but hopefully 
takes a step toward defining such a measure. Syntac- 
tic complexity measures such as grammar perplexity 
(Cole and Zue, 1995) should augment this semantic 
measure to give a full complexity measure. 

3 Domain  Terms 
To analyze a domain's complexity, the domain 
expert must first specify the domain in which 
the system will work by determining the objects 
in the domain, each object's attributes, and the 
relationships between objects. Consider as an 
example the small domain of a simple army map, 
where there are a few objects on the map and the 
user can display, move, and show or set attributes 
of them. This example will be used to show how to 
define a domain using the following terms: 

Objects are the types of salient things in the 
domain. They correspond roughly to the subjects 
and objects of sentences used in the dialog. In the 
army display domain, the objects will be tanks, 
troops, bridges, forests, and hills. Notice that a 
type of object only needs to be specified once at this 
high level. Bridge is one object in our world, even 
though the actual program is able to distinguish 
many different bridges. 

Attributes of an object are the things that the 
program needs to know about the object in order to 
use it in the domain. They correspond roughly to 
adjectives that describe the object, or things that 
distinguish one of the objects from the others of 
that type. In our example, the domain requires the 
name and position of the bridge and the material 
of which the bridge is made. These three pieces of 
information include everything the system needs to 
know about any bridge. In the following figure, the 
attributes of an object are listed underneath each 
object type. 

Classes are objects, attributes, predicates, or 
other classes that are grouped together. A class 
can act as an object in the sense that it can have 
a name and have relationships with other objects. 
In our example domain, we will want to distinguish 
objects that can move from those that cannot, i.e., 
a MobileObject class as a grouping of Tanks and 
Troops. There are always three trivial classes: the 
class of all objects, all attributes (of all objects), 
and all predicates. 

43 

T a n k  i T r o o p  Br idge  

F~d/F~ FdcmMFoe Name 

ID No. i Nan~ 
Pcdd~ion Po6llloa Poattlola 

Range or sight ~ of sight Matcdal 
Range of art I~¢ of art. 

I 
Fores t  Hi l l  

Name Name 
Area 

Arm 
, Elcvadon 

Politloa I Pomttion 

Figure 1: Example Domain Objects and Attributes 

Predicates are the relationships between the 
objects in the world. Any meaning that the user 
can convey using one or more of the objects should 
be represented by a predicate. They correspond 
to the relationship words, like the verbs and 
prepositions in a sentence, and one can usually 
find the predicates needed from looking at the 
allowed operations. For the example domain, the 
following is the list of allowable predicates, in a 
typical programming language format to distinguis h 
predicates from arguments. 

Display(Object) ["Display the tanks"] 
Move(MobileObject,Object) ["Move Troop at posi- 
tion 100, 400 to the hill"] 
Show(Attribute,Object) ["Show the range of sight 
of Tank 434"] 
Set(Object,Attribute,Attribute) ["The forest has an 
area of 100 square yards."] 

Notice that classes can be written as predicate 
arguments to mean that any object in the class can 
be an argument. Specifically, the Object type refers 
to all objects, MobileObject refers to either Tank or 
Troop, and Attribute refers to any object's attribute. 

4 C o m p l e x i t y  F o r m u l a s  

Now that the domain is specified, we can anMyze 
its semantics by estimating the number of bits of in- 
formation conveyed by referring to each different as- 
pect of the domain. This is common in information 
theory (Ash, 1965); that is, when the user makes a 
statement, it must be encoded, and the number of 
bits needed to encode the statement is a measure of 
its information content. Since the number of bits re- 
quired to encode a statement in a given domain cor- 
responds directly to the number of salient objects, 
this information measurement is useful in assigning 
a semantic complexity measurement. 

To get a. complexity measure for an entire do- 



main, we begin at the lowest level and make counts 
corresponding to the information content described 
above. The counts from lower levels are combined to 
give a higher level count. Specifically, first each at- 
tribute value for a specific object is computed, then 
attribute values are combined to give object values, 
which are combined to give class values, and so forth 
until a value for the entire domain is computed. 

Define B(X)  to be the number of bits conveyed by 
an instance of random variable X, and IX] to be the 
number of possible values of X. (Possible ways of 
computing B(X)  will be given in the next sections.) 
The random variable will represent different events, 
depending on where we are in the complexity anal- 
ysis, but in general, the variable will represent the 
specification of possible attributes, objects, classes, 
or predicates. 

We start by defining the complexity of a single 
attribute for a single object. We give the formu- 
las for computing the different levels of complex- 
ity (attribute level, object level, etc) and then work 
through the example domain. 

The complexity of attribute i for object j ,  denoted 
ACatt~,obji is 

AGtt,,obji = B(A) 
where A is the specification of an attribute value. 

The object complexity of object j is the sum of all 
its attributes' complexities: 

OC°bj$ "~- E ACatt~,obji 
i 

A simple sum is used because identifying one ob- 
ject uniquely corresponds to knowing each of its at- 
tributes. Therefore, the sum of the attribute infor- 
mation is the same as the complete object informa- 
tion. 

Since objects can be grouped together into classes, 
a class complexity is the number of bits conveyed by 
distinguishing one type of object from that class, 
plus the maximum object complexity that occurs in 
that class: 

CC., . . .  = B(O) + max (OCob#) 
obj~class 

where O is the specification of an object in class. 
When a member of a class is specified, the amount 

of information conveyed is equal to the information 
in the object type specification (B(O)), plus the in- 
formation conveyed by the actual object itself. The 
most that can be is the maximum object complexity 
in the class. Classes of predicates and attributes are 
defined in the same way. 

For each predicate, the complexity is the sum of 
the complexities of its arguments: 

PCpred= E CC¢,ass 
classearg 

This is the same as the object complexity as a sum 
of the complexities of its attributes. 

In general, predicate arguments will be classes. If 
a single object is the only possibility for an argu- 
ment rather than a class of objects, then the object 
complexity can be used. This would be the same as 
making a class of one object: the class complexity 
of one object is equal to the complexity of the one 
member of the class. 

The entire domain's semantic complexity is then 
the same as the complexity of the class of all predi- 
cates defined for the domain. Specifically, for a do- 
main with a set of predicates P,  the semantic com- 
plexity S E M C  is 

S E M C  = B(P)  + max PCpred pred~P 

where P is the specification of a predicate in the 
domain. 

Any statement that the user can make should cor- 
respond to some predicate in the domain model. The 
information given in the sentence is the information 
given by the predicate specification (B(P)) plus the 
information given in the arguments to the predicate, 
which is as much as the greatest predicate complex- 
ity. 

5 Using Equal Probability 
Assumptions 

Now we find a formula for B(X), the bits of infor- 
mation conveyed when referring to certain parts of 
the domain. For the army map example, we assume 
that all objects are equally likely to be referred to, 
and all attributes, classes, and relationships are also 
equally likely. So a troop is as likely to be referred 
to as a tank, or as a forest, etc. Also, a tank on the 
map is equally likely to be friend, foe, or unknown. 
Every value for the attributes will be equally likely. 

Under this assumption, the number of bits of in- 
formation conveyed by referring to one entity out of 
v possible entities is log2v. That is, for the equally 
probable case, B(X)  = log2[X[. 

Now we fill in the table from Figure 1, beginning 
with attribute values. A domain expert would decide 
how many different values are allowed for each at- 
tribute. In this example, we will specify that Tank's 
Priend/Foe value is either friend, foe, or unknown - 
three possibilities. 

ACFriend/Foe,Tank -~- Iog23 ~ 2 
Assuming that there are 128 ID number possibili- 

ties, 65,000 positions, and 1,000 possible ranges, and 
assuming equal probability, we take the log of each 
number and fill in the complexity beside each at- 
tribute for that object. Following the hierarchy, we 
now add the attribute complexities to get the com- 
plexity of the tank object. 

4 4  



MoblleObJect 

Tank 45 

Fdend/Foe 2 
ID No. 7 

Position 16 

Range of sight 10 

Range of art. 10 

43 Troop 

Friend/Foe 2 

Name 5 

Position 16 

Range of sight 10 

Range of art. 10 

Bridge 

Name 

Position 

Material 

21 

2 

16 

Forest 2s Hill 

Name 2 Name 

Area 
Area 10 

Elevation 

Position 16 Position 

33 

2 

10 

5 

16 

Object 

Attribute 20 

Oblect 48 

MoblleObject 46 

Display(Object) 

Move(MobileObject, Object) 
Show(Attribute,Object) 
Set(Object,Attribute,Attribute) 

48 Total Semantic 
Complexity 

94 = 96 
68 

88 

Figure 2: Map Domain Complexity Analysis under the Equal Probability Assumption 

Now we have OCtank = 45 and let's say in like 
manner we get OCtroop = 43. These two types of 
objects comprise the MobileObject class, so now we 
can compute this complexity: 

CCMobileObject = log2 2 + maxobj~MobileObject (OCobj) 
= 1 + O C ~ . k  
= 46 

Similar formulas are used for predicate and com- 
plete domain complexity measurements, and the rest 
of the example should be obvious from Figure 2. 

6 M o r e  G e n e r a l  I n f o r m a t i o n  
M e a s u r e m e n t  

In most cases, the equal probability assumption will 
not hold. For example, the bridges in the domain 
can be made of any of eight materials, but if all of 
the visible bridges are made of wood, then the Mate- 
rial attribute for Bridge will probably be wood most 
of the time. In this case, referring to the "wooden 
bridge" on the map doesn't give much more informa- 
tion than just "bridge." For this more general case, 
define B(X)  to be B(X1, X2, . . .X,) where each Xi 
is a possible value of X. Also define pl,p2, ...Pn to 
be their associated probabilities. Then 

B(X t ,  X2, ...Xn) = - E p l  logpi 
i=1 

These probabilities can be determined using fre- 
quency counts from sample dialogs, or estimated 
based on domain knowledge. 

7 F u t u r e  W o r k  

The next step in this research is to obtain several do- 
mains that have been built into a dialog system and 
analyze them. The Circuit Fix-It Shoppe(Smith and 
D.R.Hipp, 1994) has been analyzed, but the results 
will only be interesting in comparison to other real 
domains. This comparison will not only help us ver- 
ify the correctness of the analyses, but also bring up 
possible situations that the analysis may not cover. 

Next, we will want to identify a measure of syn- 
tactic complexity. This could be related to gram- 
mar perplexity. It should take into account vocab- 
ulary size, grammar constraints, and the amount of 
ambiguity in the grammar. We would like to be 
able to analyze the domains with both the seman- 
tic complexity and the syntactic complexity, and see 
that the results match our intuitions of complexity 
and the standards of lines of code, reliability, cost 
of software, and execution time. We would also be 

45 



interested in observing the correlation between the 
syntactic and semantic complexities. 

8 C o n c l u s i o n  
This paper describes a way to organize the objects, 
attributes, classes, and relationships in a domain 
and to use these classifications to define a semantic 
domain complexity. This measurement, along with 
a syntactic complexity measurement, will give nat- 
ural language programmers a way to quantify the 
complexity of a given domain in terms of real-world 
costs: cost of software, reliability, accuracy, and ex- 
ecution time. After defining a syntactic complexity 
measure, domains can be analyzed against these real 
costs to be sure that the measure is accurate. Such 
a measure will allow natural language systems pro- 
grammers a way to analyze domains and estimate 
the costs of building a natural language system be- 
forehand, based on the domain's semantic and syn- 
tactic constraints. A standard complexity measure 
will also allow a comparison of different language 
processors' ability to handle more and more com- 
plex domains and quantify the abilities of the cur- 
rent state of the art in natural language processors. 

Refe rences  
Robert B. Ash. 1965. Information Theory. Inter- 

science Publishers. 
Amit Bagga and Alan W. Biermann. 1997. Ana- 

lyzing the complexity of a domain with respect 
to an information extraction task. Proceedings of 
the tenth International Conference on Research on 
Computational Linguistics (ROCLING X), pages 
175--94, August. 

Amit Bagga. 1997. Analyzing the performance of 
message understanding systems. In Proceedings 
of the Natural Language Processing Pacific Rim 
Symposium (NLPRS '97), pages 637---40, Decem- 
ber. 

Ron Cole and Victor Zue. 1995. Survey of the state 
of the art in human language technology, Novem- 
ber. 

Jr G. Edward Barton, Robert C. Berwick, and 
Eric Sven Ristad. 1987. Computational Complex- 
ity and Natural Language. The MIT Press, Cam- 
bridge, Massachusetts. 

Partha Niyogi. 1996. The Informational Complexity 
of Learning from Examples. Ph.D. thesis, MIT. 

Eric Sven Ristad. 1993. The Language Complexity 
Game. MIT Press. 

R.W. Smith and D.R.Hipp. 1994. Spoken Natural 
Language Dialog Systems: A Practical Approach. 
Oxford University Press, New York. 

46 


