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A b s t r a c t  

This paper describes an automat ic  method for 
extracting systematic polysemy from a hierar- 
chically organized semantic lexicon (WordNet). 
Systematic polysemy is a set of word senses 
that  are related in systematic and predictable 
ways. Our method uses a modification of a tree 
generalization technique used in (Li and Abe, 
1998), and generates a tree-cut, which is a list 
of clusters that  parti t ion a tree. We compare 
the systematic relations extracted by our auto- 
matic method to manually extracted WordNet 
cousins. 

1 I n t r o d u c t i o n  

In recent years, several on-line broad-coverage 
semantic lexicons became available, including 
L D O C E  (Procter, 1978), WordNet (Miller, 
1990) and H E C T O R  .(Kilgarriff, 1998a). 
These lexicons have been used as a domain- 
independent semantic resource as well as an 
evaluation criteria in various Natural  Language 
Processing (NLP) tasks, such as Information 
Retrieval (IR), Information Extraction (IE) and 
Word Sense Disambiguation (WSD). 

However, those lexicons are rather complex. 
For instance, WordNet (version 1.6) contains a 
total of over 120,000 words and 170,000 word 
senses, which are grouped into around 100,000 
synsets (synonym sets). In addit ion to the size, 
word entries in those lexicon are often polyse- 
mous. For instance, 20% of the words in Word- 
net have more than one sense, and the average 
number of senses of those polysemous words is 
around 3. Also, the distinction between word 
senses tends to be ambiguous and arbitrary. 
For example, the following 6 senses are listed 
in WordNet for the noun "door": 

1. d o o r  - a swinging or sliding barrier 

2. d o o r  - the space in a wall 
3. d o o r  - anything providing a means of 

access (or escape) 
4. d o o r  - a swinging or sliding barrier that  

will close off access into a car 
5. d o o r  - a house that  is entered via a door 
6. d o o r  - a room that  is entered via a door 

Because of the high degree of ambiguity, using 
such complex semantic lexicons brings some se- 
rious problems to the performance of NLP sys- 
tems. The first, obvious problem is the com- 
putat ional  intractability: increased processing 
time needed to disambiguate multiple possibili- 
ties will necessarily slow down the system. An- 
other problem, which has been receiving atten- 
tion in the past few years, is the inaccuracy: 
when there is more than  one sense applicable in 
a given context, different systems (or human in- 
dividuals) may select different senses as the cor- 
rect sense. Indeed, recent studies in WSD show 
that,  when sense definitions are fine-grained, 
similar senses become indistinguishable to hu- 
man annotators and often cause disagreement 
on the correct tag (Ng et al., 1999; Veronis, 
1998; Kilgarriff, 1998b). Also in IR and IE 
tasks, difference in the correct sense assignment 
will surely degrade recall and precision of the 
systems. Thus, it is apparent that ,  in order for 
a lexicon to be useful as an evaluation criteria 
for NLP systems, it must represent word senses 
at the level of granularity that  captures human 
intuition. 

In Lexical Semantics, several approaches have 
been proposed which organize a lexicon based 
on systematic polysemy: 1 a set of word senses 
that  are related in systematic and predictable 

ISystematic polysemy (in the sense we use in this 
paper) is also referred to as regular polysemy (Apresjan, 
1973) or logical polyseray (Pustejovsky, 1995). 
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ways (e.g. ANIMAL and MEAT meanings of the 
word "chicken"). 2 In particular, (Buitelaar, 
1997, 1998) identified systematic relations that 
exist between abstract semantic concepts in 
the WordNet noun hierarchy, and defined a 
set of underspecified semantic classes that rep- 
resent the relations. Then he extracted all 
polysemous nouns in WordNet according to 
those underspecified classes and built a lexicon 
called CORELEX.  For example, a C O R E L E X  
class AQU (which represents a relation between 
ARTIFACT and QUANTITY) contains words such 
as "bottle", "bucket" and "spoon". 

Using the abstract semantic classes and orga- 
nizing a lexicon based on systematic polysemy 
addresses the two problems mentioned above in 
the following ways. For the first problem, using 
the abstract classes can reduce the size of the 
lexicon by combining several related senses into 
one sense; thus computation becomes more effi- 
cient. For the second problem, systematic poly- 
semy does reflect our general intuitions on word 
meanings. Although the distinction between 
systematic vs. non-systematic relations (or re- 
lated vs. unrelated meanings) is sometimes un- 
clear, systematicity of the related senses among 
words is quite intuitive and has been well stud- 
ied in Lexical Semantics (for example, (Apres- 
jan, 1973; Cruse, 1986; Nunberg, 1995; Copes- 
take and Briscoe, 1995)). 

However, there is one critical issue still to 
be addressed: the level of granularity at which 
the abstract classes are defined. The prob- 
lem is that, when the granularity of the ab- 
stract classes is too coarse, systematic rela- 
tions defined at that level may not hold uni- 
formly at more fine-grained levels (Vossen et 
al., 1999). For instance, the C O R E L E X  class 
AQU mentioned above also contains a word 
"dose" .3 Here, the relation between the senses 
of "dose" is different from that of "bottle", 
"bucket" and "spoon", which can be labeled as 
CONTAINER-CONTAINERFUL relation. We argue 
that human intuitions can distinguish meanings 

2Note that systematic polysemy should be contrasted 
with homonymy which refers to words which have more 
than one unrelated sense (e.g. FINANCIAL_INSTITUTION 
and SLOPING_LAND meanings of the word "bank"). 

3Senses of "dose" in WordNet are: (1) a measured 
portion of medicine taken at any one time, and (2) 
the quantity of an active agent (substance or radiation) 
taken in or absorbed at any one time. 

ARTIFACT 

AIRCRAFT TOY 

/ \  / l \  
airplane helicopter ball kite puzzle 

Figure 1: An example thesaurus tree 

at this level, where differences between the sys- 
tematic relations are rather clear, and therefore 
lexicons that encode word senses at this level of 
granularity have advantages over fine-grained as 
well as coarse-grained lexicons in various NLP 
tasks. 

Another issue we like to address is the ways 
for extracting systematic polysemy. Most of- 
ten, this procedure is done manually. For ex- 
ample, the current version of WordNet (1.6) 
encodes the similarity between word senses (or 
synsets) by a relation called cousin. But those 
cousin relations were identified manually by the 
WordNet lexicographers. A similar effort was 
also made in the EuroWordnet project (Vossen 
et al., 1999). However, manually inspecting a 
large, complex lexicon is very time-consuming 
and often prone to inconsistencies. 

In this paper, we propose a method which au- 
tomatically extracts systematic polysemy from 
a hierarchically organized semantic lexicon 
(WordNet). Our method uses a modification of 
a tree generalization technique used in (Li and 
Abe, 1998), and generates a tree-cut, which is a 
list of clusters that partition a tree. Then, we 
compare the systematic relations extracted by 
our automatic method to the WordNet cousins. 
Preliminary results show that our method dis- 
covered most of the WordNet cousins as well as 
some more interesting relations. 

2 T r e e  G e n e r a l i z a t i o n  u s i n g  T r e e - c u t  
a n d  M D L  

Before we present our method, we first give a 
brief summary of the tree-cut technique which 
we adopted from (Li and Abe, 1998). This tech- 
nique is used to acquire generalized case frame 
patterns from a corpus using a thesaurus tree. 

2.1 T r e e - c u t  M o d e l s  

A thesaurus tree is a hierarchically organized 
lexicon where leaf nodes encode lexical data 
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(i.e., words) and internal nodes represent ab- 
stract semantic classes. A tree-cut is a partition 
of a thesaurus tree. It is a list of internal/leaf 
nodes in the tree, and each node represents a 
set of all leaf nodes in a subtree rooted by the 
node. Such set is also considered as a clus- 
ter. 4 Clusters in a tree-cut exhaustively cover 
all leaf nodes of the tree, and they are mutu- 
ally disjoint. For example, for a thesaurus tree 
in Figure 1, there are 5 tree-cuts: [airplane, he- 
licopter, ball, kite, puzzle], [AIRCRAFT, ball, 
kite, puzzle], [airplane, helicopter, TOY], [AIR- 
CRAFT, TOY] and [ARTIFACT]. Thus, a tree- 
cut corresponds to one of the levels of abstrac- 
tion in the tree. 

Using a thesaurus tree and the idea of tree- 
cut, the problem of acquiring generalized case 
frame patters (for a fixed verb) from a corpus 
is to select the best tree-cut that accounts for 
both observed and unobserved case frame in- 
stances. In (Li and Abe, 1998), this generaliza- 
tion problem is viewed as a problem of select- 
ing the best model for a tree-cut that estimates 
the true probability distribution, given a sample 
corpus data. 

Formally, a tree-cut model M is a pair consist- 
ing of a tree-cut F and a probability parameter 
vector O of the same length, 

M = (F, O) 

where F and ® are: 

(1) 

F=[Cx,..,Ck],O=[P(C,),..,P(Ck)] (2) 

words, that is, P(C) = ~ = 1  P(nj) .  Here, com- 
pared to knowing all P(nj)  (where 1 < j < m) 
individually, knowing one P(C) can only facil- 
itate an estimate of uniform probability distri- 
bution among members as the best guess, that 
is, P(nj)  = P(C) for all j .  Therefore, in general, m 
when clusters C1..Cm are merged and general- 
ized to C according to the thesaurus tree, the 
estimation of a probability model becomes less 
accurate. 

2.2 T h e  M D L  P r i n c i p l e  

To select the best tree-cut model, (Li and Abe, 
1998) uses the Minimal Description Length 
(MDL) principle (Rissanen, 1978). The MDL is 
a principle of data compression in Information 
Theory which states that, for a given dataset, 
the best model is the one which requires the 
minimum length (often measured in bits) to en- 
code the model (the model description length) 
and the data (the data description length). For 
the problem of case frame generalization, the 
MDL principle fits very well in that it captures 
the trade-off between the simplicity of a model, 
which is measured by the number of clusters in 
a tree-cut, and the goodness of fit to the data, 
which is measured by the estimation accuracy 
of the probability distribution. 

The calculation of the description length for 
a tree-cut model is as follows. Given a the- 
saurus tree T and a sample S consisting of 
the case frame instances, the total description 
length L(M, S) for a tree-cut model M = (F, 0 )  
is 

where Ci (1 < i < k) is a cluster in the tree- 
cut, P(Ci) is the probability of a cluster Ci, 
and ~/k=l P(Ci) = 1. For example, suppose 
a corpus contained 10 instances of verb-object 
relation for the verb "fly", and the frequency 
of object noun n, denoted f (n) ,  are as follows: 
f ( airpl ane ) -- 5, f ( helicopter ) = 3, f ( bal l ) = 
O, f(ki te)  -- 2, f(puzzle) = 0. Then, the set of 
tree-cut models for the thesaurus tree shown in 
Figure 1 includes ([airplane, helicopter, TOY], 
[0.5, 0.3, 0.2]) and ([AIRCRAFT, TOY], [0.8, 
0.2]). 

Note that P(C) is the probability of cluster 
C = {nl, .., nm) as a whole. It is essentially the 
sum of all (true) probabilities of the member 

4A leaf node is also a cluster whose cardinality is 1. 

L(M,S)=L(F)+L(eT)+L(SJF, e) (3) 

where L(F) is the model description length, 
L(OIF) is the parameter description length (ex- 
plained shortly), and L(SIF , O) is the data de- 
scription length. Note that L(F) + L(OIF ) es- 
sentially corresponds to the usual notion of the 
model description length. 

E a c h  length in L(M,  S) is calculated as fol- 
lows. 5 The model description length L(F) is 

L ( r )  = log21GI (4) 

where G is the set of all cuts in T, and IG I de- 
notes the size of G. This value is a constant for 

• SFor justification and detailed explanation of these 
formulas, see (Li and Abe, 1998). 
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all models, thus it is omitted in the calculation 
of the total length. 

The parameter  description length L(OIF ) in- 
dicates the complexity of the model. It is the 
length required to encode the probability dis- 
tribution of the clusters in the tree-cut F. It is 
calculated as 

k 
L(Olr)  = x Zog21Sl (5) 

where k is the length of ®, and IS[ is the size of 
S. 

Finally, the data  description length L(SIF, O) 
is the length required to encode the whole sam- 
ple data. It is calculated as 

L ( S I F ,  e )  = - log2P(n) (6) 
nES 

where, for each n E C and each C E F, 

and 

P ( n ) -  P(C) 
ICl (7) 

P ( C ) -  f ( c )  (8) 
ISl 

Note here that,  in (7), the probability of C is di- 
vided evenly among all n in C. This way, words 
that  are not observed in the sample receive a 
non-zero probability, and the data sparseness 
problem is avoided. 

Then, the best model is the one which re- 
quires the min imum total description length. 

Figure 2 shows the MDL lengths for all five 
tree-cut models that  can be produced for the 
thesaurus tree in Figure 1. The best model is 
the one with the tree-cut [AIRCRAFT, ball, kite, 
puzzle] indicated by a thick curve in the figure. 

3 C l u s t e r i n g  S y s t e m a t i c  P o l y s e m y  

3.1 Generalization Technique 
Using the generalization technique in (Li and 
Abe, 1998) described in the previous section, 
we wish to extract systematic polysemy au- 
tomatically from WordNet. Our assumption 
is that,  if a semantic concept is systemati- 
cally related to another concept, words that  
have one sense under one concept (sub)tree are 
likely to have another sense under the other 

concept (sub)tree. To give an example, Fig- 
ure 3 shows parts of WordNet noun trees for 
ARTIFACT and MEASURE, where subtrees under 
CONTAINER and C0NTAINERFUL respectively con- 
tain "bottle", "bucket" and "spoon". Note a 
dashed line in the figure indicates an indirect 
link for more than one level. 

Based on this assumption, it seems system- 
atic polysemy in the two trees can be extracted 
straight-forwardly by clustering each tree ac- 
cording to polysemy as a feature, and by match- 
ing of clusters taken from each tree. 6 To this 
end, the notion of tree-cut and the MDL prin- 
ciple seem to comprise an excellent tool. 

However, we must be careful in adopting Li 
and Abe's technique directly: since the problem 
which their technique was applied to is funda- 
mentally different from ours, some procedures 
used in their problem may not have any inter- 
pretat ion in our problem. Although both  prob- 
lems are essentially a tree generalization prob- 
lem, their problem estimates the true probabil- 
ity distribution from a random sample of exam- 
ples (a corpus), whereas our problem does not 
have any additional data to estimate, since all 
data (a lexicon) is already known. This differ- 
ence raises the following issue. In the calcu- 
lation of the data description length in equa- 
tion (6), each word in a cluster, observed or un- 
observed, is assigned an estimated probability, 
which is a uniform fraction of the probability 
of the cluster. This procedure does not have 
interpretation if it is applied to our problem. 
Instead, we use the distribution of feature fre- 
quency proportion of the clusters, and calculate 
the data  description length by the following for- 
mula: 

k 
L(SIF, e) = - f(Ci) × log2P(Ci) (9) 

i=l 

where F = [C1,.., Ck], 0 = [P(C,) , . . ,  P(Ck)]. 
This corresponds to the length required to en- 
code all words in a cluster, for all clusters 
in a tree-cut, assuming Huffman's algorithm 
(Huffman, 1952) assigned a codeword of length 
- log2P(Ci)  to each cluster C/ (whose propor- 

6We could also combine two (or possibly more) trees 
into one tree and apply clustering over that tree once. 
In this paper, we describe clustering of two trees for ex- 
ample purpose. 
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F 
[A] 
[AC,TOY] 
[ap,heli,TOY] 
[AC,ball,kite,puz]. 
[ap,hel,ball,kite,puz] 

L(eIF) L(SIF.e) L(M,S) 
1.66 11.60 13.26 
3.32 14.34 17.66 
4.98 14.44 19.42 
6.64 4.96 11.60 
8.31 5.06 13.37 

ARTIFACT 

/ \ k.o.o/o.2 o.o 
/ \ / ~ k  

airplane helicopter ball kite puzzle 

Figure 2: The MDL lengths and the final tree-cut 

ARTIFACT MEASURE 

CONTAINER MEDICINE dose CONTAINERFUL 

VESSEL spoon dose bottle bucket spoon / \  
bottle bucket 

Figure 3: Parts  of WordNet trees ARTIFACT and MEASURE 

tion is P ( C i )  = .~_~_d~ Isl J" 
All other notions and formulas are applicable 

to our problem without modification. 

3.2 C l u s t e r i n g  M e t h o d  

Our clustering method uses the the modified 
generalization technique described in the last 
section to generate tree-cuts. But before we ap- 
ply the method,  we must transform the data  in 
Wordnet. This is because WordNet differs from 
a theaurus tree in two ways: it is a graph rather 
than a tree, and internal nodes as well as leaf 
nodes carry data, First, we eliminate multiple 
inheritance by separating shared subtrees. Sec- 
ond, we bring down every internal node to a 
leaf level by creating a new duplicate node and 
adding it as a child of the old node (thus making 
the old node an internal node). 

After trees are transformed, our method ex- 
tracts systematic polysemy by the following 
three steps. In the first step, all leaf nodes of 
the two trees are marked with either 1 or 0 (1 
if a node/word appears in both  trees, or 0 oth- 
erwise), 

In the second step, the generalization tech- 
nique is applied to each tree, and two tree-cuts 
are obtained. To search for the best tree-cut, 
instead of computing the description length for 
M1 possible tree-cuts in a tree, a greedy dy- 
namic programming algorithm is used. This 

algorithm , called F i n d - M D L  in (Li and Abe, 
1998), finds the best tree-cut for a tree by recur- 
sively finding the best tree-cuts for all of its sub- 
trees and merging them from bot tom up. This 
algorithm is quite efficient, since it is basically a 
depth-first search with minor overhead for com- 
put ing the description length. 

Finally in the third step, clusters from the two 
tree-cuts are matched up, and the pairs which 
have substantial  overlap are selected as system- 
atic polysemy. 

Figure 4 shows parts of the final tree-cuts 
for ARTIFACT and MEASURE obtained by our 
method.  ~ In both  trees, most of the clusters in 
the tree-cuts are from nodes at depth  1 (count- 
ing the root as depth 0). That  is because the 
tree-cut technique used in our method  is sensi- 
tive to the structure of the tree. More specifi- 
cally, the MDL principle inherently penalizes a 
complex tree-cut by assigning a long parame- 
ter length. Therefore, unless the entropy of the 
feature distribution is large enough to make the 
data  length overshadow the parameter length, 
simpler tree-cuts parti t ioned at abstract levels 
are preferred. This situation tends to happen 
often when the tree is bushy and the total fea- 
ture frequency is low. This was precisely the 
case with ARTIFACT and MEASURE, where both  

Tin the figure, bold letters indicate words which a r e  

polysemous in the two t r e e .  
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ARTIFACT 

0 ,  

STRUCTURE INSTRUMEN- ARTICLE 
TALITY / i \  

base !building J /  ~ MEDICINE~ 10.02 

foot IMPLEMENT DEVICE CONTAINER / ~ TABLEWARE 
/ \  

UTENSIL ROD 
J \  

mixer porcelain 
yard 

/ '"... I ~  inhalant dose / l ~  
foot VESSEL spoon spoon dish plate 

k . o t  / \  
bottle bucket 

0.36 

DEFINITE 
QUANTITY 

bit block 
ounce 

bottle bucket spoon 

MEASURE 

QUANTITY . ~k MEASURE / PERIOD 

CONTAINERFUL dose load LINEAR morning flash sixties 
UNIT 

l / ~  quarter 
mile knot yard foot 

Figure 4: Parts of the final tree-cuts for ARTIFACT and MEASURE 

trees were quite bushy, and only 4% and 14% of 
the words were polysemous in the two categories 
respectively. 

4 E v a l u a t i o n  

To test our method,  we chose 5 combinations 
from WordNet noun Top categories (which we 
call top relation classes), and extracted clus- 
ter pairs which have more than 3 overlapping 
words. Then we evaluated those pairs in two 
aspects: related vs. unrelated relations, and 
automatic vs. manual clusters. 

4.1 R e l a t e d  vs. U n r e l a t e d  C l u s t e r s  

Of the cluster pairs we extracted automatically, 
not all are systematically related; some are un- 
related, homonymous relations. They are essen- 
tially false positives for our purposes. Table 1 
shows the number of related and unrelated re- 
lations in the extracted cluster pairs. 

Although the results vary among category 
combinations, the ratio of the related pairs is 
rather low: less than 60% on average. There are 
several reasons for this. First, there are some 

pairs whose relations are spurious. For exam- 
ple, in ARTIFACT-GROUP class, a pair [LUMBER, 
SOCIAL_GROUP] was extracted. Words which 
are common in the two clusters are "picket", 
"board" and "stock". This relation is obviously 
homonymous.  

Second, some clusters obtained by tree-cut 
are rather abstract, so that  pairing two ab- 
stract clusters results in an unrelated pair. For 
example, in ARTIFACT-MEASURE class, a pair 
[INSTRUMENTALITY, LINEAR_UNIT] was selected. 
Words which are common in the two clus- 
ters include "yard", "foot" and "knot" (see 
the previous Figure 4). Here, the concept 
INSTRUMENTALITY is very general (at depth 
1), a n d  it also contains many (polysemous) 
words. So, matching this cluster with an- 
other  abstract cluster is likely to yield a pair 
which has just  enough overlapping words but  
whose relation is not systematic. In the case 
of [INSTRUMENTALITY, LINEAR_UNIT], the situ- 
ation is even worse, because the concept of 
LINEAR_UNIT in MEASURE represents a collection 
of terms that  were chosen arbitrarily in the his- 
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Table 1: Related vs. Unrelated Relations 

Top relation class Related Unrelated 

ACTION-L0CATION 
ARTIFACT-GROUP 
ARTIFACT-MEASURE 
ARTIFACT-SUBSTANCE 
COMMUNICATION-PERSON 

10 1 
18 9 
7 19 

19 12 
12 11 

Total 66 52 

Total 

11 
27 
26 
31 
23 

118 

% of 
related 

90.9 
66.7 
26.9 
61.3 
52.2 
55.9 

tory of the English language. 

4.2 A u t o m a t i c  vs.  M a n u a l  C l u s t e r s  

To compare the cluster pairs our me thod  ex- 
tracted automatical ly to manual ly  extracted 
clusters, we use WordNet cousins. A cousin 
relation is relatively new in WordNet,  and the 
coverage is still incomplete. However, it gives 
us a good measure to see whether  our auto- 
matic method discovered systematic  relations 
that  correspond to human intuitions. 

A cousin relation in WordNet  is defined be- 
tween two synsets (currently in the noun trees 
only), and it indicates that  senses of a word that  
appear in both  of the (sub)trees rooted by those 
synsets are related, s The cousins were manuMly 
extracted by the WordNet lexicographers. Ta- 
ble 2 shows the number  of cousins listed for each 
top relation class and the number  of cousins our 
automatic  method recovered (in the 'Auto'  col- 
umn). As you see, the total  recall ratio is over 
80% (27/33~ .82). 

In the right three columns of Table 2, we also 
show the breakdown of the  recovered cousins, 
whether  each recovered one was an exact match, 
or it was more general or specific than  the cor- 
responding WordNet cousin. From this, we 
can see that  more than  half of  the recovered 
cousins were more general than  the WordNet 
cousins. Tha t  is par t ly  because some WordNet 
cousins have only one or two common words. 
For example, a WordNet cousin [PAINTING, 
COLORING_MATERIAL] in ARTIFACT-SUBSTANCE 
has only one common word "watercolor". Such 

SActually, cousin is one of the three relations which 
indicate the grouping of related senses of a word. Others 
are sister and twin. In this paper, we use cousin to refer 
to all relations listed in "cousin.tps" file (available in a 
WordNet distribution). 
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a minor relation tends to be lost in our tree gen- 
eralization procedure.  However, the main rea- 
son is the difficulty mentioned earlier in the pa- 
per: the problem of applying the tree-cut tech- 
nique to a bushy tree when the da ta  is sparse. 

In addit ion to the  WordNet cousins, our auto- 
matic extract ion method  discovered several in- 
teresting relations. Table 3 shows some exam- 
ples, 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this paper,  we proposed an automat ic  
me thod  for extract ing systematic  polysemy 
from WordNet.  As we reported,  prel iminary re- 
sults show that  our method  identified almost 
all WordNet  cousins as well as some new ones. 
One difficulty is that  applying the generaliza- 
tion technique using the MDL principle to the 
bushy WordNet trees seems to yield a tree-cut  
at ra ther  abstract  level. 

For future work, we plan to compare the 
systematic  relations extracted by our automat ic  
me thod  to corpus data. In particular,  we like 
to test whether  our method  extracts  the same 
groups of senses which human  annotators  
disagreed (Ng et al., 1999). We also like to test 
whether  our me thod  agrees with the finding 
tha t  multiple senses which occur in a discourse 
are often systematical ly polysemous (Krovetz, 
1998). 
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Table 2: Automatic Clusters vs. WordNet Cousins 

Top relation class WN cousin 
ACTION-LOCATION 
ARTIFACT-GROUP 
ARTIFACT-MEASURE 
ARTIFACT-SUBSTANCE 
COMMUNICATION-PERSON 
Total 33 

A u t o  Exact Gen Spec 
2 1 0 1 0 
6 6 1 5 0 
1 1 0 1 0 

15 13 3 9 1 
9 6 5 1 0 

27 9 17 1 

Table 3: Examples of Automatically Extracted Systematic Polysemy 

Top relation class 
ACTION-LOCATION 

Relation 
[ACTION, POINT] 

Common Words 

[VOICE, SINGER] 

"drop", "circle", "intersection", "dig", 
"crossing", "bull's eye" 

ARTIFACT-GROUP [STRUCTURE, PEOPLE] "house", "convent", "market", "center" 
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