
CNLER: A Controlled Natural Language for Specifying
and Verbalising Entity Relationship Models

Bayzid Ashik Hossain, Gayathri Rajan and Rolf Schwitter
Department of Computing

Macquarie University, Sydney, Australia
{bayzid-ashik.hossain|rolf.schwitter}@mq.edu.au

gayathri.rajan@students.mq.edu.au

Abstract

The first step towards designing an informa-
tion system is conceptual modelling where do-
main experts and knowledge engineers iden-
tify the necessary information together to build
an information system. Entity relationship
modelling is one of the most popular concep-
tual modelling techniques that represents an
information system in terms of entities, at-
tributes and relationships. Entity relationship
models are constructed graphically but are of-
ten difficult to understand by domain experts.
To overcome this problem, we suggest to ver-
balise these models in a controlled natural lan-
guage. In this paper, we present CNLER,
a controlled natural language for specifying
and verbalising entity relationship (ER) mod-
els that not only solves the verbalisation prob-
lem for these models but also provides the ben-
efits of automatic verification and validation,
and semantic round-tripping which makes the
communication process transparent between
the domain experts and the knowledge engi-
neers.

1 Introduction

An information system is a piece of software that
has integrated components for organizing and ana-
lyzing data to aid decision making in an organiza-
tion (Laudon and Laudon, 2015). One of the ma-
jor roles of an information system is to accumu-
late data, turn it into information and later trans-
form that information into organizational knowl-
edge (Bourgeois, 2014). To be successful an infor-
mation system always depends on a good design
and conceptual modelling is the first step in the de-
sign process (Olivé, 2007). Information systems
are best specified on the conceptual level using
a language with names for individuals, concepts,
and relations that occur in the application domain.
Such a language is easy to understand by the do-
main experts and enhances correctness, compati-

bility, productivity and clarity in information sys-
tem design (Halpin, 1998). Conceptual modelling
involves different parties (e.g., domain experts and
knowledge engineers) who brainstorm together to
identify the necessary information for building
the system (Hossain and Schwitter, 2018). Af-
ter identifying the required information, knowl-
edge engineers build a conceptual model of the in-
formation system by using conceptual modelling
techniques such as entity relationship modelling
(ERM) (Richard, 1990; Frantiska, 2018), object
oriented modelling (UML) (O’Regan, 2017), or
object role modelling (ORM) (Halpin, 2009).

One of the problems with these models is that
they are constructed graphically and as a result
they are often hard to understand for domain ex-
perts (Jarrar et al., 2006). Another problem with
these conceptual modelling techniques is that they
have no formal semantics; therefore, they are
not machine comprehensible, do not support au-
tomatic verification and validation nor automatic
reasoning (Calvanese, 2013).

To overcome these problems previous works
used logic in parallel with traditional conceptual
modelling techniques (Lutz, 2002; Berardi et al.,
2005; Franconi et al., 2012). There are tools (Fil-
lottrani et al., 2012; Lembo et al., 2016b,a) that al-
low knowledge engineers to draw the conceptual
model and then translate the model constructs into
a logical representation. This logical representa-
tion is then used to verify and validate the model.
Using logic with traditional conceptual modelling
techniques also introduces some problems like the
difficulty to generate logical representations. Fur-
thermore, it is not easy to understand these logical
representations for domain experts since no well
established methodology is available to make this
process transparent (Calvanese, 2013).

Recent research on conceptual modelling
showed that using a controlled natural language

Figure 1: A CNL based conceptual modelling framework

(CNL) for specification and verbalisation can
overcome the problems introduced by logic in
the conceptual modelling process (Hossain and
Schwitter, 2018). A CNL can be defined as a sub-
set of natural language that is obtained by con-
straining the grammar and vocabulary in order to
eliminate the ambiguity as well as the complexity
of the language. A CNL can be designed in such a
way that it has well defined computational proper-
ties and thus can be translated unambiguously into
a formal representation (Schwitter, 2010). Us-
ing a CNL in conceptual modelling helps the do-
main experts to understand the conceptual mod-
els through specification and verbalisation, allows
the machine to understand the models as the CNL
can be translated into a formal representation, and
therefore supports automated reasoning and ques-
tion answering.

2 Motivation

The idea of using natural language for con-
ceptual modelling is not new but previous ap-
proaches (Saeki et al., 1989; Mich, 1996; Har-
main and Gaizauskas, 2003; Ambriola and Ger-
vasi, 2006; Ibrahim and Ahmad, 2010) did not
constrain the natural language enough and did
not use logic to formally represent the concep-
tual models. Furthermore, the idea of semantic
round-tripping from a specification to a conceptual
model and from a conceptual model to a specifica-
tion (verbalisation) is novel in this context. A re-
cent survey (Störrle, 2017) on conceptual models
showed that there are three modes of conceptual
modelling: 1. informal modelling for cognition
and communication; 2. semi-formal modelling for
planning and documentation; and 3. formal mod-
elling for generation and contracts. In the software
industry 70-79% of the modelling is done infor-
mally (Störrle, 2017).

We want to use CNL in the conceptual mod-
elling process to overcome the problems that occur

in traditional conceptual modelling approaches.
We want to bridge the gap between an informal
and formal conceptual model. We also want to of-
fer verbalisation for ERM. ERM is frequently used
in the industry and has no verbalisation support.
Existing tools that support creating ERM models
do not provide the facility of writing specifica-
tions for conceptual models and therefore seman-
tic round-tripping is not possible. We have devel-
oped a CNL-based conceptual modelling frame-
work [Fig. 3] that supports the following points:

1. Writing textual specifications for the concep-
tual modelling process.

2. Description logic based common formal rep-
resentation (DL ALCQI) for different con-
ceptual models.

3. Generating a conceptual model from a writ-
ten specification and the other way around.

4. Verification and validation of the written
specification.

In this paper we present CNLER, a controlled nat-
ural language that is specially designed to specify
and verbalize ERM constructs.

3 ERM Constructs

An ERM represents an information system in
terms of entities, attributes and relationships (Song
and Chen, 2009). ERM is mainly used to design
relational databases and to do the planning and re-
quirement analysis of an information system. The
outcome of an ERM process is a graphical model
often known as ER diagram (ERD). The basic
components of an ERD are entities, attributes, and
relationships [Fig. 2].

An entity is a real world object having inde-
pendent existence (e.g., person, place, organisa-
tion) (Song and Chen, 2009). An entity is also
known as a class or a concept. There are two types

Figure 2: ERM constructs

of entities: (1) strong entities that have key at-
tributes to uniquely identify each instance of an
entity (e.g., student has student id as a key at-
tribute); and (2) weak entities that do not have
any key attributes and they depend on other strong
entities to get identified (e.g., a room can not ex-
ist without a building, so “room" is a weak entity
whereas “building" is a strong entity).

An attribute indicates a property or character-
istic of an entity (Li and Chen, 2009). For exam-
ple, if a student is an entity then “student name",
“student id", and “phone number" would be the
attributes for that student. Attributes help us to
differentiate between entities. An attribute can
be single valued (e.g., “student name") or multi-
valued (e.g., “skills"). A single valued attribute or
a collection of single valued attributes that iden-
tify an instance of an entity uniquely is known as
A key attribute or a primary key.

A relationship depicts the association between
or among the entities. For example, if “student"
and “program" are entities then in the fact “student
is enrolled in program", the expression “is enrolled
in" is the relationship between “student" and “pro-
gram". Every relationship has a cardinality which
defines the number of occurrences (minimum and
maximum) of one entity that is related to a sin-
gle occurrence of the other entity (Song and Chen,
2009). Based on the form of cardinality, we can
divide a relationship in ERM into three types: one-
to-one, one-to-many and many-to-many. Some-
times a many-to-many relationship acts as an en-
tity itself which is known as an associative entity.
An associative entity can have attributes that rep-
resent the properties of the corresponding relation-
ship (Li and Chen, 2009). For example, if “stu-
dent" and “course" are entities then the facts “ev-
ery student studies 1 or more courses" and “ev-
ery course is studied by 1 or more students" in-
dicate that “student" and “course” have a many-

to-many relationship. So the relationship between
these two entities can act as an associative entity.
We can consider “study details" as an associative
entity that can have “study start date" and “study
end date" as attributes.

Entity Declaration
1. Student is an entity type.
2. Department is an entity type.
3. Course is an entity type.
4. Teacher is an entity type.
5. Enrolment is an entity type.
6. Section is an entity type.

Attribute Declaration
7. Student id is of integer data type.
8. Student name is of string data type.
9. Department number is of integer data type.
10. Department name is of string data type.
11. Teacher id is of integer data type.
12. Teacher name is of string data type.
13. Course id is of integer data type.
14. Course name is of string data type.
15. Enrolment semester is of integer data type.
16. Enrolment grade is of integer data type.
17. Section id is of integer data type.
18. Section name is of string data type.

Relationship Declaration
19. Student belongs to department.
20. Department contains student.
21. Teacher works in department.
22. Department employs teacher.
23. Course is offered by department.
24. Department offers course.
25. Course is offered in sections.
26. Teacher teaches students in course.
27. Enrolment associates

"Teacher teaches students in course".

Constraint Declaration
28. Every student belongs to exactly 1 department.
29. Every department contains 1 or more students.
30. Every teacher works in exactly 1 department.
31. Every department employs 1 or more teachers.
32. Every course is offered by exactly 1 department.
33. Every department offers 1 or more courses.
34. Every enrolment includes exactly 1 teacher.
35. Every enrolment includes exactly 1 student.
36. Every enrolment includes exactly 1 course.
37. Every student owns exactly 1 student id and owns

exactly 1 student name.
38. Every teacher owns exactly 1 teacher id and owns

exactly 1 teacher name.
39. Every course owns exactly 1 course id and owns

exactly 1 course name.
40. Every department owns exactly 1 department

number and owns exactly 1 department name.
41. Every enrolment consists of exactly 1 enrolment

semester and consists of exactly 1 enrolment
grade.

42. Every section is dependent of exactly 1 course.

Table 1: Extended example scenario from the ER pa-
per (Frantiska, 2018) expressed using CNLER

Listing 1: Grammar rules for entity declaration

% Input: Student is an entity.
% Output: entity(A, student)

s([mode:M, type:entity, sem:L1-L2]) -->
np([mode:M, num:sg, type:entity, pos:subj, sem:L1-L2]),
[is, an, entity, type], [’.’].

np([mode:M, num:N, type:T, pos:P, sem:L1-L2]) -->
noun([mode:M, num:N, type:T, pos:P, sem:L1-L2]).

noun([mode:proc, num:N, type:entity, pos:P, sem:[L1|L2]-[[L0|L1]|L2]]) -->
lexical_rule([cat:noun, num:N, type:entity, pos:P, sem:L0]).

noun([mode:gen, num:N, type:entity, pos:P, sem:[[L0|L1]|L2]-[L1|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:_X, sem:L0])},
WForm.

4 CNLER for ERM Constructs

In this section we discuss how to express ERM
constructs using CNLER. For this purpose, we
have taken an example scenario from the pa-
per (Frantiska, 2018) and extended it by adding a
weak entity and modifying the associative entity.
CNLER has a distinct sentence format to declare
an entity in ERM. For example, to define the fact
that a student is an entity, CNLER has the follow-
ing sentence pattern with a noun (student) in sub-
ject position, followed by a copula (is) and the key
phrase an entity type in object position (e.g., see
sentences 1-6 in table [1]).

CNLER also has a particular sentence pattern to
declare attributes in ERM. For example, to spec-
ify an attribute of type integer, CNLER uses a
sentence that contains a previously declared entity
name (e.g., student) followed by an attribute name
(e.g., id); this forms a data property name (student
id) which is followed by a copula (is), and the key
phrase (e.g., of integer data type). For example,
sentences 7-18 in Table [1] show the attribute dec-
larations for the example scenario.

To declare a relationship, we use a declared en-
tity type name (e.g., student) in subject position
and a declared entity type name (e.g., department)
in object position with a relationship name (e.g.,
belongs to) in between. (e.g., see sentences 19-27
in table [1] for relationship declarations).

To define cardinality constraints over the rela-
tionships, CNLER uses a quantifying expression
followed by entities and attributes: a quantifier
(every) in subject position and either a quantifier
(0 or more, 1 or more) or a cardinality constraint

(at least, at most, exactly) in object position. For
example, to define a one-to-one relationship cardi-
nality between the entities “student" and “depart-
ment", sentence (28) in table [1] is used, and to
define a one-to-many relationship cardinality, sen-
tence (29) in table [1] is used.

In order to define a many-to-many relationship
in CNLER, we have to write two sentences that ex-
press the relationship between the entities in both
direction. For example, to express a may-to-many
relationship between “student" and “course", we
have to write the following two sentences.

• Every student studies 1 or more courses.

• Every course is studied by 1 or more stu-
dents.

To declare an associative entity in CNLER

(e.g., “enrolment"), we have to declare the entity
first. After that the entity needs to be linked with
a many-to-many relationship using a predefined
word “associates". The sentence 27 in table [1]
declares an associative entity that links the ternary
relationship among a teacher, a student and a unit.
The relationship “includes" in the sentences 34, 35
and 36 of table [1] is predefined and can only be
used together with an associative entity. An asso-
ciative entity can have attributes like other entities.
For example, sentence 41 in table [1] specifies at-
tributes for the associative entity “enrolment".

To declare a weak entity in CNLER, we have to
declare both strong and weak entities first as enti-
ties (e.g., “course" and “section" in table [1]). Af-
ter that we need to specify that the weak entity is
dependent of the strong entity. For example, to

declare that a section is a weak entity, sentence
42 specifies that “section" is a dependent of the
“course" entity by using a predefined relationship
“dependent of" in table [1].

5 Grammar

We use a definite clause grammar (DCG) (Pereira
and Shieber, 2002) to process and translate a
CNLER specification. The key advantage of using
a DCG is that it implements a logic program that
allows us to build a bi-directional grammar. The
grammar translates the CNLER sentences into a
corresponding internal description logic (DL) rep-
resentation. This internal DL representation is fur-
ther processed to generate an ERD.

A specification in CNLER consists of function
words and content words. Function words (quan-
tifiers, cardinality constraints and operators) de-
scribe the structure of the sentences and the num-
ber of these function words is fixed. In contrast,
content words (nouns and verbs) are domain spe-
cific and are added to the lexicon during the writ-
ing process when they are declared. It is impor-
tant to note that the bi-directional DCG contains
grammar rules that translate every CNLER sen-
tence into the internal DL representation and vice
versa; this enable semantic round-tripping in our
conceptual modelling framework. In this paper,
we discuss the DCG rules that process some of
the core ERM constructs. Below we discuss the
grammar rules that process entity, attribute, rela-
tionship, constraint and associative entity declara-
tions.

5.1 Entity Declaration

Listing [1] shows the grammar rules for an entity
declaration. The first grammar rule states that a
declarative sentence (s) consists of a noun phrase
(np) and a key phrase (“is an entity type"), fol-
lowed by a full stop (.). The grammar rule contains
additional arguments that implement feature struc-
tures in the form of attribute:value pairs whereas
the value can be a simple term or a complex
term (for example in the form of a difference list:
[Head|Tail]-Tail). The feature structure mode:M
specifies whether the rule is used in the process-
ing or generating mode and the feature structure
type:entity specifies the type of the ERM con-
struct. The feature structure sem:L1-L2 is used to
build up the semantic representation for an entity.
The grammar rule for the noun phrase (np) con-

tains a feature structure (num:N) that deals with
number agreement (singular or plural), a feature
structure (arg:X) that defines the argument of an
entity, and one (pos:subj) that specifies the po-
sition of the noun. Finally, the feature structure
cat:noun specifies a noun and wform:WForm spec-
ifies a word form consisting of potentially multi-
ple elements. To extract an entity from the input
list, a lexical rule lexical_rule/1 is used that gener-
ates lexical entries with their corresponding singu-
lar and plural forms (e.g., student and students) for
that entity with the help of a morphological com-
ponent.

5.2 Attribute Declaration
To process a sentence that is used to declare an at-
tribute, we use similar grammar rules as shown in
listing [1] but with a different key phrase (e.g., of
integer data type). To process an attribute and its
data type, a lexical rule is used that extracts the
attribute from the input list by excluding the cop-
ula and the key phrase and by identifying the type
(e.g., integer, string, date) from the key phrase.
After that the lexical rule is used to insert the at-
tribute and its type information into the lexicon.

5.3 Relationship Declaration
Listing [2] shows the grammar rules for a rela-
tionship declaration. The first grammar rule states
again that a declarative sentence (s) consists of a
noun phrase (np) and a verb phrase (vp), followed
by a full stop (.). The feature structures for the
mode declaration and the semantic representation
are similar to the entity declaration whereas the
feature structure type:fact specifies the ERM con-
struct relationship.

The second grammar rule states that a verb
phrase (vp) consists of a verb (verb) and a noun
phrase (np). In the case of processing, the gram-
mar rule for the verb consists of a lexical rule (lexi-
cal_rule/1) that extracts a relationship from the in-
put list by identifying the noun phrases in the sub-
ject and object position. After that, the lexical rule
adds the extracted relationship to the lexicon and
adds the semantic representation (L0) for that rela-
tionship to the outgoing part ([[L0|L1]|L2]) of the
difference list. In the case of generating, the gram-
mar rule for a verb removes the semantic represen-
tation (L0) from the incoming part ([[L0|L1]|L2])
of the difference list and tries to find this represen-
tation in the lexicon in order to return the corre-
sponding lexical entry.

Listing 2: Grammar rules for relationship declaration

% Input: Student is enrolled in program.
% Output: [entity(A, student), relation(A, B, is_enrolled_in), entity(B, program)]

s([mode:M, type:fact, sem:L1-L3]) -->
np([mode:M, num:N, type:fact, pos:subj, arg:X, sem:L1-L2]),
vp([mode:M, num:N, type:fact, arg:X, sem:L2-L3]),
[’.’].

vp([mode:M, num:N, type:fact, arg:X, sem:L1-L3])-->
verb([mode:M, num:N, type:fact, arg:X, arg:Y, sem:L1-L2]),
np([mode:M, num:_N, type:fact, pos:obj, arg:Y, sem:L2-L3]).

np([mode:M, num:N, type:T, pos:P, arg:X, sem:L1-L2) -->
noun([mode:M, num:N, type:T, pos:P, arg:X, sem:L1-L2]).

noun([mode:proc, num:N, type:fact, pos:P, arg:X, sem:[L1|L2]-[[L0|L1]|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:X, sem:L0])},
WForm.

noun([mode:gen, num:N, type:fact, pos:P, arg:X, sem:[[L0|L1]|L2]-[L1|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:X, sem:L0])},
WForm.

verb([mode:proc, num:N, type:fact, arg:X, arg:Y, sem:[L1|L2]-[[L0|L1]|L2]]) -->
lexical_rule([cat:verb, num:N, arg:X, arg:Y, sem:L0]).

verb([mode:gen, num:N, type:fact, arg:X, arg:Y, sem:[[L0|L1]|L2]-[L1|L2]])-->
{lexicon([cat:verb, wform:WForm, num:N, type:brel, arg:X, arg:Y, sem:L0])},
WForm.

Figure 3: ERD of the example scenario (Frantiska, 2018) generated by the proposed CNL based conceptual mod-
elling framework.

5.4 Constraint Declaration

To process a sentence that declares a cardinality
constraint over a relationship, we use a grammar
rule that is quite similar to the grammar rule in list-
ing [2] with an additional quantifier (qnt) in sub-
ject position and a constraint (cst) in the object po-
sition. Note that the grammar rules for a quantifier

and a cardinality constraint play an important role
because they provide the relevant structure for the
internal representation. For example, the gram-
mar rule for the universal quantifier (every) results
in a pattern of the form sem:forall(X, Res ==>
Sco) that takes a restrictor (Res) that contains the
information derived from the noun phrase in sub-

Listing 3: Grammar rules for associative entity declaration

% Fact Type "Association"
% Input: Enrolment associates "student is enrolled in program".
% Output: [entity(A, enrollment), associates(A, B), entity(C, student),
% B#relation(C, D, is_enrolled_in), entity(D, program)]

s([mode:M, type:fact_ob, sem:L1-L4]) -->
np([mode:M, num:N, type:fact, pos:subj, arg:X, sem:L1-L2]),
verb([mode:M, wform:[associates], num:N, type:fact_ob, arg:X, arg:R, sem:L2-L3]),
[’"’],
s([mode:M, type:ob_fact, rel:R, sem:L3-L4]),
[’"’, ’.’].

np([mode:M, num:N, type:T, pos:P, arg:X, sem:L1-L2) -->
noun([mode:M, num:N, type:T, pos:P, arg:X, sem:L1-L2]).

noun([mode:proc, num:N, type:fact, pos:P, arg:X, sem:[L1|L2]-[[L0|L1]|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:X, sem:L0])},
WForm.

noun([mode:gen, num:N, type:fact, pos:P, arg:X, sem:[[L0|L1]|L2]-[L1|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:X, sem:L0])},
WForm.

verb([mode:proc, wform:WForm, num:N, type:fact_ob, arg:X, arg:Y,
sem:[L1|L2]-[[L0|L1]|L2]]) -->

{lexicon([cat:verb, wform:WForm, num:N, type:ob_rel, arg:X, arg:Y, sem:L0])},
WForm.

verb([mode:gen, wform:WForm, num:N, type:fact_ob, arg:X, arg:Y,
sem:[[L0|L1]|L2]-[L1|L2]]) -->

{lexicon([cat:verb, wform:WForm, num:N, type:ob_rel, arg:X, arg:Y, sem:L0])},
WForm.

ject position and the scope (Sco) that contains the
information derived from the verb phrase and re-
turns a pattern for an implication. In the case of a
cardinality constraint that pattern might have the
following form: exists(X, Res & min(L) : Sco :
max(U)). Note also that the restrictor and scope
are built up in these grammar rules with the help
of specific feature structures.

5.5 Associative Entity Declaration
Listing [3] shows an excerpt of the grammar rules
that are used to process and generate sentences for
an associative entity. The first rule reuses the rule
for a relationship and uses a key verb word (asso-
ciates) to process an associative entity declaration.
The first rule states that a sentence consists of a
noun phrase (np) in subject position, a verb (verb)
and a sentence in object position that refers to a
particular relationship in the lexicon.

The grammar rule for np is the same as we used
for the relationship declaration (see listing [2]) and
for the ease of understanding we keep it in listing
[3]. The feature structure rel:R in the sentence rule

in object position states that this is a "reified" rela-
tionship available in the lexicon and unlike the re-
lationship rule stated in listing [2], it does not need
to be processed by the lexical rule (lexical_rule/1).

This relationship could be a binary relationship
or a ternary relationship. This grammar rule is
used to link an entity to a relationship that makes
the entity an associative entity.

6 Evaluation

We took an example scenario from the ER pa-
per (Frantiska, 2018), extended the scenario and
expressed the scenario in CNLER (see table [1]).
After that we translated the CNLER specification
into an internal DL representation and translated
the resulting ERM constructs into a RuleML (Bo-
ley et al., 2010) JSON1 representation (see figure
4). This JSON representation is used by our con-
ceptual modelling tool for building an interactive
diagram. The implementation of our conceptual
modelling tool is based on the GoJS 2.0 frame-

1https://wiki.ruleml.org/index.php/RuleML_in_JSON

{"And":
{"Atom":

[{
"Rel": "entity",
"Ind": "department",
"Var": "X"

},
{

"Rel": "relation",
"Ind": "employ",
"Var": ["X","Y"]

},
{

"Rel": "entity",
"Ind": "teacher",
"Var": "Y"

}]
}

}

Figure 4: RuleML JSON representation of the sentence
(22) from table [1].

work2.
The JSON representation is parsed to identify

the entities, attributes and relationships for the re-
sulting diagram. Unique entity names and re-
lationship names are identified and added to a
node array. Relationships are assessed individu-
ally to identify the links and added to a link array.
These constructs are then translated into the inter-
nal GoJS representation that is used by the GoJS
engine to render the diagram in a web browser (see
figure 3). New entities, attributes and relation-
ships can be added to a diagram and existing com-
ponents can be modified or deleted by the user.
Building a new diagram from scratch is also possi-
ble, since we designed the graphical editor for con-
ceptual modelling as a standalone tool. When a
diagram is saved, its internal GoJS representation
is produced from which the internal JSON repre-
sentation can be derived to generate the CNLER

specification again.
To evaluate the controlled natural language

CNLER, we then checked the expressiveness of
the language in terms of ERM constructs. We
compared the constructed diagram with the textual
CNLER specification of the scenario and found
that the diagram correctly represented all cor-
responding entities, attributes and relationships.
Furthermore, it is possible to generate a seman-
tically equivalent CNLER specification from the
diagram in a round-tripping fashion.

2https://gojs.net/latest/index.html

7 Discussion

In this paper we presented CNLER, a controlled
natural language that can be used to specify and
verbalise ER models. Our main objective is to
develop a controlled natural language based uni-
versal conceptual modelling framework where a
domain expert can actively participate in the con-
ceptual modelling process with a knowledge engi-
neer. CNLER is a controlled natural language that
can express ERM constructs in natural language
and the language processor can translate it into a
formal language (e.g., any serialization of DL AL-
CQI (Lutz, 2002; Berardi et al., 2005; Franconi
et al., 2012)). This formal representation can be
further used for verification and validation. After
that the formal representation can be processed to
generate an ERD.

The goal of this work is to improve the current
conceptual modelling process and enable domain
domain experts to express their knowledge in a
well defined subset of natural language that can
be used as high-level interface language to con-
struct conceptual models. Future work will in-
vestigate the scalability of CNLER by extending
the coverage of the language so that also UML
class diagrams (Calvanese, 2013) and ORM dia-
grams (Franconi et al., 2012) can be expressed in
the same grammatical framework. These exten-
sions involve parametrising and modularising the
existing grammar to support additional modelling
constructs.

8 Conclusion

CNLER is a high-level specification and verbalisa-
tion language for ER models that supports a con-
trolled natural language based conceptual mod-
elling approach. A textual specification of a con-
ceptual model in CNLER can be translated via
an internal representation into a JSON represen-
tation that is then used to generate an ER diagram.
The translation works also in the other direction
and supports the verbalisation of ER diagrams in
CNLER. Because of these properties, CNLER has
the potential to bridge the communication gap be-
tween a domain expert and a knowledge engineer
in the domain of entity relationship modelling and
makes the modelling process at the same time for-
mal in a seemingly informal way.

References
Vincenzo Ambriola and Vincenzo Gervasi. 2006. On

the systematic analysis of natural language require-
ments with circe. Automated Software Engineering,
13(1):107–167.

Daniela Berardi, Diego Calvanese, and Giuseppe De
Giacomo. 2005. Reasoning on uml class diagrams.
Artificial Intelligence, 168(1):70–118.

Harold Boley, Adrian Paschke, and Omair Shafiq.
2010. Ruleml 1.0: the overarching specification
of web rules. In International Workshop on Rules
and Rule Markup Languages for the Semantic Web,
pages 162–178. Springer.

David Bourgeois. 2014. Information systems for busi-
ness and beyond. The Saylor Foundation.

Diego Calvanese. 2013. Description Logics for Con-
ceptual Modeling Forms of reasoning on UML Class
Diagrams. EPCL Basic Training Camp.

Pablo R Fillottrani, Enrico Franconi, and Sergio Tes-
saris. 2012. The icom 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web,
3(3):293–306.

Enrico Franconi, Alessandro Mosca, and Dmitry Solo-
makhin. 2012. Orm2: formalisation and encoding
in owl2. In OTM Confederated International Con-
ferences" On the Move to Meaningful Internet Sys-
tems", pages 368–378. Springer.

Joseph Frantiska. 2018. Entity-relationship diagrams.
In Visualization Tools for Learning Environment De-
velopment, pages 21–30. Springer.

Terry Halpin. 1998. ORM/NIAM Object-Role Model-
ing. Springer Berlin Heidelberg, Berlin, Heidelberg.

Terry Halpin. 2009. Object-role modeling. In Ency-
clopedia of Database Systems, pages 1941–1946.
Springer.

HM Harmain and Robert Gaizauskas. 2003. Cm-
builder: A natural language-based case tool for
object-oriented analysis. Automated Software En-
gineering, 10(2):157–181.

Bayzid Ashik Hossain and Rolf Schwitter. 2018. Spec-
ifying conceptual models using restricted natural
language. In Proceedings of the Australasian
Language Technology Association Workshop 2018,
pages 44–52, Dunedin, New Zealand.

Mohd Ibrahim and Rodina Ahmad. 2010. Class di-
agram extraction from textual requirements using
natural language processing (nlp) techniques. In
2010 Second International Conference on Computer
Research and Development, pages 200–204. IEEE.

Mustafa Jarrar, C Maria, and Keet Paolo Dongilli.
2006. Multilingual verbalization of orm conceptual
models and axiomatized ontologies.

Kenneth C. Laudon and Jane P. Laudon. 2015. Man-
agement Information Systems: Managing the Digi-
tal Firm Plus MyMISLab with Pearson eText – Ac-
cess Card Package, 14th edition. Prentice Hall
Press, Upper Saddle River, NJ, USA.

Domenico Lembo, Daniele Pantaleone, Valerio
Santarelli, and Domenico Fabio Savo. 2016a. Easy
owl drawing with the graphol visual ontology
language. In Fifteenth International Conference on
the Principles of Knowledge Representation and
Reasoning.

Domenico Lembo, Daniele Pantaleone, Valerio
Santarelli, and Domenico Fabio Savo. 2016b.
Eddy: A graphical editor for owl 2 ontologies. In
IJCAI, pages 4252–4253.

Qing Li and Yu-Liu Chen. 2009. Entity-Relationship
Diagram, pages 125–139. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Carsten Lutz. 2002. Reasoning about entity relation-
ship diagrams with complex attribute dependencies.
In Proceedings of the International Workshop in
Description Logics 2002 (DL2002), number 53 in
CEUR-WS (http://ceur-ws.org), pages 185–194.

Luisa Mich. 1996. Nl-oops: from natural language to
object oriented requirements using the natural lan-
guage processing system lolita. Natural language
engineering, 2(2):161–187.

Antoni Olivé. 2007. Conceptual Modeling of Informa-
tion Systems. Springer-Verlag, Berlin, Heidelberg.

Gerard O’Regan. 2017. Unified modelling language.
In Concise Guide to Software Engineering, pages
225–238. Springer.

Fernando CN Pereira and Stuart M Shieber. 2002. Pro-
log and natural-language analysis. Microtome Pub-
lishing.

Barker Richard. 1990. CASE Method: Entity Relation-
ship Modelling. Addition-Wesley Publishing Com-
pany, ORACLE Corporation UK Limited.

Motoshi Saeki, Hisayuki Horai, and Hajime Enomoto.
1989. Software development process from natu-
ral language specification. In 11th International
Conference on Software Engineering, pages 64–73.
IEEE.

Rolf Schwitter. 2010. Controlled natural languages for
knowledge representation. In Proceedings of the
23rd International Conference on Computational
Linguistics: Posters, pages 1113–1121. Association
for Computational Linguistics.

Il-Yeol Song and Peter P. Chen. 2009. Entity Relation-
ship Model, pages 1003–1009. Springer US, Boston,
MA.

https://doi.org/10.1007/978-3-662-03526-9_4
https://doi.org/10.1007/978-3-662-03526-9_4
https://www.aclweb.org/anthology/U18-1005
https://www.aclweb.org/anthology/U18-1005
https://www.aclweb.org/anthology/U18-1005
https://doi.org/10.1007/978-3-540-89556-5_6
https://doi.org/10.1007/978-3-540-89556-5_6
https://doi.org/10.1007/978-0-387-39940-9_148
https://doi.org/10.1007/978-0-387-39940-9_148

Harald Störrle. 2017. How are conceptual models used
in industrial software development?: A descriptive
survey. In Proceedings of the 21st International
Conference on Evaluation and Assessment in Soft-
ware Engineering, pages 160–169. ACM.

