SuperOCR for ALTA 2017 Shared Task

Yufei Wang
Computer Science and Engineering
UNSW, Sydney, Australia
yufei.wang@student.unsw.edu.au

Abstract

This paper describes the SuperOCR sys-
tem submitted for the ALTA 2017 shared
task, which aims at correcting noisy OCR
output for the Trove database. We used
heuristic rules and patterns in submitted
system and we apply language model to
further improve our system. Experiment
shows that language model plays an vital
role in performance. Surprisingly, a tri-
gram language model outperforms LSTM
language model in this task.

1 OCR Post-Correction

ALTA 2017 shared task ! aims at Optical Charac-
ter Recognition (OCR) post-correction for Trove
database (Holley, 2010) 2. OCR extracts text
from image, allowing further language analysis.
However, OCR is inherently error-prone, in par-
ticular for old scanned documents. High qual-
ity OCR analysis result benefits downstream NLP
task, including named entity recognition (NER)
(Mac Kim and Cassidy, 2015) and information ex-
traction (Taghva et al., 2006). In this shared task,
given a set of OCR raw-correction pairs, participa-
tors are required to build a system to automatically
and accurately correct the OCR-ed documents.

Our submitted system achieved averaged F1
score 16.82%, which is 2" best system. Later, we
further improved our submitted system to 20.72%
by using context and weighted OCR error in-
formation. However, The wining system had
achieved averaged F1 score 32.99%, indicating
that our system still has large margin to be im-
proved.

Our submitted system mainly targeted in (a)
correcting word-level errors, e.g. words with char-

! http://www.alta.asn.au/events/sharedtask2017/description.html
*http://trove.nla.gov.au/

acters being dis-recognized during OCR process,
and (b) delete frequent noisy text pattern. For (a),
we first filtered out normal words using vocabu-
lary list; then we applied correction to those error-
like tokens. For (b), we extracted the frequent cor-
rected patterns from the aligned documents. The
experiment result shows that language model and
high-quality vocabulary list are vital to boost per-
formance. Surprisingly, a simple tri-gram lan-
guage model outperforms a state-of-the-art LSTM
language model in selecting candidate words for
correction.

This paper is organized as follows: Section 2
profiles data set and OCR errors. Section 3 in-
troduces submitted system and improved system.
Section 4 shows the experiment result. We sum-
marize our finding in Section 5.

2 OCR Documents and Errors

In this section, we first summarize some basic
statistics of the OCR documents from this shared
task in Table 1.

#Docs 6000
#avg. Words 571.9
#avg. Errors 39.6
#Error Ratio 6.93%

Table 1: Statistics of Share Task Data

We are also interested in the types of correction
made by annotators in this data set. To extract the
correction, we first align document pairs and un-
aligned words in raw documents are the correc-
tions. We characterize them largely based on the
vocabulary list used in our final system. We refer
words in the list to “in-vocabulary” (IV), other-
wise “Out-of-Vocabulary” (OOV). We categorize
these corrections into the following types:

e Single Word Split: Split an IV into two

Yufei Wang. 2017. SuperOCR for ALTA 2017 Shared Task. In Proceedings of Australasian Language Technology

Association Workshop, pages 124—128.

OOVs. 21.89%

e Single Word Correction: Change an OOV to
an IV. 18.16 %

e Words Deletion: Delete words from OCRed
Text. 12.79 %

e Multiple Words Merge: Merge multiple
words into a single IV. 8.05%

e Punctuation Transform: Change a punctua-
tion to another punctuation. 4.52%

e Known Word Correction: Change an IV to
another IV. 4.18%

e Unknown Word Modify: Change an OOV to
another OOV. 3.95%

e Character Case: Change the character case of
a word. 1.44%

e Other: Other Corrections 25 %

It should be noted that, the correction Single
Word Split often splits valid words into two OOVs
randomly, for example, randomly modifying “yes-
terday” to “yes” and “terday”; modifying “Aus-
tralian” to “Austra” and “lian” etc. We suspect
that this is caused by a text processing errors.
The correction distribution also shows the diffi-
culties of this shared task as only 6.93% of words
are modified while majority of words remain un-
changed. Even worse, around 25% of errors are
multiple words correction, which cannot be solved
by checking single words.

Lastly, we analysis the length of the continuous
corrected word sequence in the data set. As shown
in Table 2, around 75% errors are length 1. There-
fore, most of OCR errors are not continuous and
separated by context words.

Len. | 1 2 3 4 5+
) T49%| 13.2%| 5.7% | 3.9% | 2.3%

Table 2: Error Length Distribution

3 System Description

There are two important factors to consider when
designing system:

e Candidate Filtering In our data, only 6.9%
of words are corrected by annotators, which

125

means that we are facing an imbalanced situ-
ation. If we apply correction to every word in
document, it will generate a lot of false pos-
itive examples. Our intuition is that, a valid
word is unlikely to be an error in OCRed text.

e Independent Correction As shown previ-
ously, most of errors are isolated by their un-
changed context. Correction using sequence
modeling may not be helpful as the depen-
dency between errors are weak. Therefore,
we correct words individually in our system.

Therefore, we design our system as shown
in Alg 1. The system includes following post-
correction components:

e ProcRawText: Correct frequent errors and
split text into tokens.

e Word Filtering: Filtering out most of correct
words in OCRed text.

e Correction: Correct an OOV word into a non-
OOV word.

e ProcessKnownWord: Correct a non-OOV
word to another non-OOV word.

Both of our systems follow the above frame-
work and they only differ in strategies used in each
component.

Algorithm 1: System Framework
Data: OCRed Text
WordList = ProcRawText(OC R_Text);
Create CorrectedList ;
foreach w € WordList do
if w should be Corrected then
‘ w = Correction(w);

else
L w = ProcessKnownWord(w);
B Add w To CorrectedList;

return TextJoin(CorrectedList) ;

3.1 Submitted System

In our submitted system, we mainly used heuristic
rules and patterns obtained from training data to
correct text.

In ProcRawText part, we used three strate-
gies:

1. Deleting a set of errors patterns with format
“* > and “- * ” where “*” stands for one
of “< % >1ij:? ! 1;1”. These patterns
are the most frequent deleted error sequences
in training pairs. Interestingly, these pat-
terns often result in valid words being split-
ted and their character shapes are similar to
each other. So these errors may be caused by
similar noise in image input.

. Splitting text based on white space and re-
moving length one tokens except for “a” and
“A”. These length one tokens tend to be noise
in the data set. Although “I” is indeed a valid
word, our experiment result shows that there
are much more noisy “I”’ than the valid one.
So, we remove it as well.

. the leading and following non-alphabet char-
acters are removed from each word except for
the following punctuation “.” and “)’. We
skip numbers and punctuation in this step.

In Word Filtering part, we constructed a vo-
cabulary list by merging the most frequent 15000
words from corrected OCR documents in training
data and most frequent words 10000 from 1 Bil-
lion Word Language Model Benchmark *. Given
the vocabulary list, OOVs or words with most
three non-alphabet characters (words with four or
more non-alphabet characters are too noisy to be
corrected) are selected as correction target. All
other words remain unchanged.

In Correction part, we extracted frequent sin-
gle correction pairs in training data (e.g. “tne” =
“the”). If a candidate matched one of the pairs,
we would correct it. Otherwise, we exhaustively
searched for words in vocabulary list that are k
edit distance from the correction target. We refer
these two methods as word-level correction and
exhaustive correction respectively. Finally, we
will correct the character case based on the origi-
nal word shape.

We skipped ProcessKnownWord stage in
our submitted system.

3.2 Language model enhanced System

This system was submitted after the shared task.
Following (Tursun and Cakici, 2017), we used tri-
gram KenLM (Heafield et al., 2013) * language

3http://www.statmt.org/lm-benchmark/
*https://github.com/kpu/kenlm

126

model. Experiment result shows that tri-gram lan-
guage model is sufficient for this task. To train the
language model, we used the corrected documents
in training data and lower-cased all words before
the training. Intuitively, language model would
capture the context information and therefore, it
is helpful when we rank the correction candidate.

In ProcRawText part, we still used strategy 1
and 2 in submitted system. However, we changed
the tokenization method to the one used in the pro-
vided evaluation script. This method splits punc-
tuation from words and provides better boundaries
between words and punctuation, but, this could
potentially lead to inappropriate punctuation split
in noisy text. For example, given noisy word “-
Mr.” whose ground truth of is “Mr.”, our method
splits it into “~-Mr” and *“.”, making it impossible to
merge the punctuation back. To tackle this issue,
we collected the frequent cases from training data
to correct the errors before tokenization.

In Word Filtering part, we constructed the
vocabulary list by combining non-singleton words
that are no shorter than 5 in training corrected text
and words that are no longer than 4 in 1 Billion
Language model benchmark.

In Correction part, we additionally applied
character error information to suggest correction
candidates. We first extracted all Single Word
Correction pairs (18.16% of all errors) and then
aligned each of them in character level. We refer
this as character-level correction. Besides, we
corrected an OOV by merging or splitting if we
can obtain I'Vs.

To combine both language model and word/char
transformation information, we applied “Noisy
Channel Model” (Mays et al., 1991) to select op-
timal candidates. Formally, we tried to find the
optimal word c for correction target w such that it
maximize P(c|w), as shown in 1:

arg min Pr(w|c) * Pr(c)

C

(1

where Pr(c) is the language model score indicat-
ing how likely it should be there given the context;
while Pr(w|c) is the error model indicating how
like w is an error of c. To unify our character-level,
word-level and exhaustive correction, we grouped
error pairs with same correction target together
and normalize their count as weight. We always
assigned exhaustive correction a constant weight.
Note that, we only applied character transforma-
tion once to each word, the combination of trans-

formation have not been considered here.

Given a word, its context window and candi-
dates list, (a) we calculated the language model
score for all candidates and original word, with
context, which is a window with size of 5, which
includes itself and its previous and following two
context words. Candidates words that receive
higher score than original word are chosen for
comparison using above model. If no candidate
words get higher score than the original word, we
remained original word unchanged.

In Process KnownW ord, our improved model
applied known word transformation correction by
using the frequent patterns in training data. If a
known word was found in the patterns, we used
the above Noisy Channel Model to decide if we
should make correction.

4 Experiment Result and Discussion

In this section, we show two performance mea-
sure, the randomly sampled development set
(Dev.) and final test set (Test.) performance
for our systems. During system development, we
split provided documents into 5500 documents for
training and 500 documents for validation. The
performance is shown in Table 3.

System Dev. Test.
Sub Sys. 17.72% 16.82%
LM-Imprved Sys. | 20.68% 20.72%

Table 3: Performance for both System

Table 3 shows that the language model boosts
system performance by around 4%. Addition-
ally, our new system no longer suffered from over-
fitting as the submitted system did. This indicates
that the context information provided by language
model surpassed hand-crafted rules in earlier sys-
tem.

4.1 Ablation Study

To show the effectiveness of each components, an
ablation study is conducted for our final system in
this section. Note that all reported performance is
based on development data set.

Table 4 shows that language model is the most
vital component in the system. This shows the
importance of context modeling components for
spelling correction task. In addition, the contribu-
tion of the vocabulary list cannot be neglected. We
manually investigated the vocabulary of corrected

127

System ave. F1 A ‘

Full Sys. 20.68% -

-LM 9.51% -11.17%

- Vocabulary 15.08% -5.6%

- Prepossess 18.85% -1.83%

- Multi Word & Trans. 20.23% -0.45%

- Wegt. Error 20.53% -0.15%
Table 4: Ablation Performance. LM: Set lan-

guage model score to be 1.0; Vocabulary: Only
using words in corrected training data; Prepos-
sess: Disable patterns and word cleaning in begin-
ning; Multi Word & Trans: No word merge split
and known word trans correction; Wegt. Error:
Removing the Error Model, all weights for correct
candidates are 1.0.

OCR text and found that low frequent words tend
to be noisy. Many of these low frequent words
should have been corrected during the annotation
process. This indicates that the quality of training
data needs to be improved.

4.2 Optimal Language Model

In our final system, we used a tri-gram tradi-
tional language model. Will higher order language
model or advanced neural model continuously im-
prove the performance? We conduct an experi-
ment regarding the order of language model in this
section.

In this experiment, we applied a language
model based on LSTM (Hochreiter and Schmid-
huber, 1997). Comparing with transitional lan-
guage model, LSTM language model can be
viewed as oco-order because LSTM can capture
long-range dependent information using the cell
and hidden information (Hochreiter and Schmid-
huber, 1997). In our experiment, we used the ten-
sorflow implementation ° of (Kim et al., 2016).
We did not change the default parameter setting in
the source code as they are optimized based on En-
glish Penn Treebank (PTB)(Marcus et al., 1993).
We used the corrected documents with the same
text prepossess technologies as we train KenLLM.
We also experimented with uni-, bi-, 4-, 5-, 6-
gram KenLM for comparsion. Note that, we used
LSTM language model in the same way as we use
KenLM.

The performance for different language models

Shttps://github.com/dhyeon/character-aware-neural-
language-models

are shown in Fig. 4.2. As the result show, bi-
and tri-gram language models have already pro-
vided satisfying performance. Higher order lan-
guage model even slightly decrease performance
by 0.1%. Surprisingly, the LSTM-based language
model dramatically decrease the performance by
over 5%. During the LSTM model training, we
monitored average perplexity over development
set. The final model performance is around 80 per-
plexity which is a reasonable performance com-
pared with (Kim et al., 2016), showing no over-
fitting in model training. We argue that two possi-
ble reasons could explain this:

1. The training data for neural networks is too
noisy. It has been shown that neural net-
works cannot work well when training on
noisy data. (Natarajan et al., 2013)

In the task of OCR post-correction, correct-
ing errors only require nearby words, rather
than long-dependency information would
provide noisy information.

We can conclude that bi- and tri-gram language
model are the optimal choice for OCR post-

correction task.
Effect of Language Model’s Order

25 T T T T T T

20
=
9 15
<

104

5 | | | | | |
0 1 2 3 4 5 6 ©©
Order

5 Conclusion

We applied heuristic rule and patterns to the task
of OCR post-correction. We further apply lan-
guage model to boost the performance. Our sys-
tem finally achieve average F1 score 20.68%,
a 2,4 score in all submitted systems. Experi-
ment result suggest that 3-order language model
is more capable in modeling context information
than state-of-the-art LSTM-based language model
when ranking correction candidates.

128

Acknowledgments

We would like to thank Prof. Wei Wang for discus-
sion, Dr. Stephen Wan and Dr. Diego Moll-Aliod
for their time in proofreading this paper. We would
also like to thank the organizers of the shared task
for their support.

References

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735-1780.

Rose Holley. 2010. Trove: Innovation in access to in-
formation in australia. Ariadne (64).

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Sunghwan Mac Kim and Steve Cassidy. 2015. Find-
ing names in trove: Named entity recognition for
australian historical newspapers. In Proceedings of

the Australasian Language Technology Association
Workshop 2015. pages 57-65.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313-330.

Eric Mays, Fred J] Damerau, and Robert L. Mercer.
1991. Context based spelling correction. Informa-
tion Processing & Management 27(5):517-522.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K
Ravikumar, and Ambuj Tewari. 2013. Learning with
noisy labels. In Advances in neural information pro-
cessing systems. pages 1196-1204.

Kazem Taghva, Russell Beckley, and Jeffrey Coombs.
2006. The effects of ocr error on the extraction of
private information. In Document Analysis Systems.
Springer, volume 3872, pages 348-357.

Osman Tursun and Ruket Cakici. 2017. Noisy uyghur
text normalization. In Proceedings of the 3rd Work-
shop on Noisy User-generated Text. pages 85-93.

	Invited talks
	Tutorials
	Long papers
	Stock Market Prediction with Deep Learning: A Character-based Neural Language Model for Event-based Trading Leonardo Dos Santos Pinheiro and Mark Dras
	Improving End-to-End Memory Networks with Unified Weight Tying Fei Liu, Trevor Cohn and Timothy Baldwin
	Joint Sentence-Document Model for Manifesto Text Analysis Shivashankar Subramanian, Trevor Cohn, Timothy Baldwin and Julian Brooke
	Leveraging linguistic resources for improving neural text classification Ming Liu, Gholamreza Haffari, Wray Buntine and Michelle Ananda-Rajah
	A Hybrid Model for Quality Assessment of Wikipedia Articles Aili Shen, Jianzhong Qi and Timothy Baldwin
	Phonemic Transcription of Low-Resource Tonal Languages Oliver Adams, Trevor Cohn, Graham Neubig and Alexis Michaud
	A Comparative Study of Two Statistical Modelling Approaches for Estimating Multivariate Likelihood Ratios in Forensic Voice Comparison Shunichi Ishihara
	Automatic Negation and Speculation Detection in Veterinary Clinical Text Katharine Cheng, Timothy Baldwin and Karin Verspoor
	Medication and Adverse Event Extraction from Noisy Text Xiang Dai, Sarvnaz Karimi and Cecile Paris
	Incremental Knowledge Acquisition Approach for Information Extraction on both Semi-structured and Unstructured Text from the Open Domain Web Maria Myunghee Kim
	Short papers
	On Extending Neural Networks with Loss Ensembles for Text Classification Hamideh Hajiabadi, Diego Mollá-Alliod and Reza Monsefi
	Towards the Use of Deep Reinforcement Learning with Global Policy For Query-based Extractive Summarisation Diego Mollá-Alliod
	From Word Segmentation to POS Tagging for Vietnamese Dat Quoc Nguyen, Thanh Vu, Dai Quoc Nguyen, Mark Dras and Mark Johnson
	ALTA Shared Task papers
	Overview of the 2017 ALTA Shared Task: Correcting OCR Errors Diego Mollá-Alliod and Steve Cassidy
	OCR Post-Processing Text Correction using Simulated Annealing (OPTeCA) Gitansh Khirbat
	SuperOCR for ALTA 2017 Shared Task Yufei Wang

