

 Incremental Knowledge Acquisition Approach for Information

Extraction on both Semi-structured and Unstructured Text from the

Open Domain Web

Maria Myung Hee Kim

Defence Science Technology Group
Edinburgh, SA 5111, Australia
maria.kim@dst.defence.gov.au

Abstract

Extracting information from semi-
structured text has been studied only for

limited domain sources due to its hetero-
geneous formats. This paper proposes a

Ripple-Down Rules (RDR) based ap-

proach to extract relations from both semi-
structured and unstructured text in open

domain Web pages. We find that RDR's
'case-by-case' incremental knowledge ac-

quisition approach provides practical flex-

ibility for (1) handling heterogeneous for-
mats of semi-structured text; (2) conduct-

ing knowledge engineering on any Web

pages with minimum start-up cost and (3)
allowing open-ended settings on relation

schema. The efficacy of the approach has
been demonstrated by extracting contact

information from randomly collected open

domain Web pages. The rGALA system
achieved 0.87 F1 score on a testing dataset

of 100 Web pages, after only 7 hours of
knowledge engineering on a training set of

100 Web pages.

1 Introduction

Open Information Extraction (Open IE) (Banko
et al., 2007; Wu and Weld, 2010; Fader et al.,
2011) was introduced to extract information from
the open domain Web where the relations of in-
terest cannot be pre-defined in advance due to its
heterogeneity in domain. Its purpose is to avoid
specifying target relations and developing extrac-
tion models for individual target relations. The
Open IE systems focus on discovering a binary
relation candidate tuple in the form of (E1,
RelText, E2) by identifying two entities of inter-
est E1 and E2, and the salient textual cues
RelText (aka 'relational text') between the two
entities. Then, they classify whether any binary

relation R exists between the two entities in a
given tuple to extract a binary relation tuple like
(E1, R, E2).
 To date extracting information from the open
domain Web has mainly focused on the unstruc-
tured text (i.e., where text is formatted in para-
graphs and expressed as full sentences). Howev-
er, most Web pages generally contain infor-
mation expressed in semi-structured text includ-
ing tables, lists, isolated words or text snippets as
well as unstructured text. Therefore, it is im-
portant to develop an IE capability that is able to
process both semi-structured and unstructured
text from the open domain Web.
 Unlike unstructured text, semi-structured text
usually includes HTML tags, which is primarily
for formatting purposes. The variability in the
way people use HTML tags impedes IE process.
Above all, HTML tags have the following char-
acteristics which hinder the IE task:
(1) HTML's tabular structure is often abused to
arrange the graphical aspect instead of using cas-
cading style sheets; and
(2) HTML tags can be deeply nested mixing rel-
evant content with web noise in a loose manner.
 Processing semi-structured text from the open
domain Web is very challenging task as it needs
to deal with heterogeneous formats as well as
heterogeneous domains. It is difficult to create
sufficient labelled data for semi-structured text in
heterogeneous formats. Due to these difficulties,
extracting information from semi-structured text
has been studied only for specific domains
(Chang et al., 2006). Moreover, existing semi-
structured text IE approaches cannot be extended
to the open domain Web sources as they usually
require domain dependent inputs.
 In summary, extracting information from semi-
structured text in the open domain Web presents
the following three main challenges:

Maria Myunghee Kim. 2017. Incremental Knowledge Acquisition Approach for Information Extraction on both
Semi-structured and Unstructured Text from the Open Domain Web. In Proceedings of Australasian Language Technology
Association Workshop, pages 88�96.

1. It is difficult to distinguish between the rel-
evant content and web noise without domain
knowledge. There is no explicit difference in
HTML structure between them.
2. There are no clear linguistic markers (e.g.,
punctuation) to segment semi-structured text
in the same manner as a sentence in unstruc-
tured text.
3. It is hard to create "sufficient" labelled
training data and/or a complete ruleset for
semi-structured text in open domain due to its
heterogeneous formats.

 Our rGALA system aims to extract infor-
mation from both semi-structured and unstruc-
tured text in the open domain Web. To handle
heterogeneous formats in semi-structured text,
the rGALA system treats semi-structured text the
same way as unstructured text in the Open IE
task. The system filters out most of HTML tags
and forms a binary relation candidate tuple (E1,
RelText, E2); the system then extracts a binary
relation tuple (E1, R, E2) if a relation R exists
between the two given entities.
 The rGALA system adopts a Ripple-Down
Rules (RDR)’ incremental knowledge acquisition
approach; in RDR, the rule creation process is
simple and rapid with ensured consistency in
ruleset maintenance. The system does not require
labelled training data or up-front knowledge for
rule creation. Moreover, it supports open-ended
settings on target relation definition by starting
with a small set of relations and incrementally
adding more relations as discovered during the
extraction process.

2 Related Work

2.1 Open Information Extraction (Open IE)

Open Information Extraction (Open IE) aims to

achieve domain-independent discovery of rela-
tions from the heterogeneous Web. Existing Open

IE systems can be categorised into two groups

based on the level of sophistication of the NLP
techniques applied: (1) shallow syntactic parsing;
and (2) dependency parsing. Shallow syntactic
parsing based Open IE systems annotate sentences
with Part-of-Speech (POS) tags and phrase chunk
tags, then identify relations by matching patterns

over these tags. The systems in this category in-
clude TextRunner (Banko et al., 2007), WOEpos

(Wu and Weld, 2010), ReVerb (Fader et al., 2011)
and R2A2 (Etzioni et al., 2011). Dependency

parsing based Open IE systems utilise a depend-
ency parser to identify whole subtrees connecting

the relation predicate and its arguments. The sys-

tems in this category include OLLIE (Mausam et
al., 2012), ClausIE (Corro and Gemulla, 2013),
Wanderlust (Akbik and Brob, 2009), WOEparse

(Wu and Weld, 2010) and KrakeN (Akbik and

Loser, 2012). Each of these systems makes use of
various heuristics to obtain extractions from the

dependency parses. They are generally more time

consuming than the shallow parsing based sys-
tems. They trade efficiency for improved preci-

sion and recall.

2.2 Ripple-Down Rules (RDR)

The basic idea of RDR (Compton and Jansen,
1990) is that each case is processed by the sys-
tem and when the outcome is incorrect or NULL,
one or more rules are added to provide the cor-
rect outcome for that case. The system also
stores cornerstone cases, cases which triggered
the creation of new rules.
 The RDR approach has been applied to a range
of NLP applications. Pham and colleagues devel-
oped KAFTIE using the RDR approach to extract

positive attributions from scientific papers (Pham
and Hoffmann, 2004) and to extract temporal rela-

tions (Pham and Hoffmann, 2006). KAFTIE was
noted to have outperformed machine learning

based systems. The RDR Case Explore (RDRCE)
system (Xu and Hoffmann, 2010) combined RDR
with a Machine Learning method. RDRCE was

applied for POS tagging task and achieved a slight
improvement over a state-of-the-art POS tagging

system after 60 hours of knowledge engineering.
A hybrid RDR-based Open IE system (Kim and
Compton, 2012) makes use of RDR's incremental
knowledge acquisition technique as an add-on to

the state-of-the-art ReVerb Open IE system. With
this wrapper approach, the ReVerb system’s per-

formance is further improved using RDR's error

correction for the domain of interest.

2.3 IE systems for Semi-structured Text

Early IE systems for semi-structured text have
been studied largely with manual approaches
(Hammer et al., 1997; Arocena and Mendelzon,
1999) and supervised approaches (Kushmerick,
1997; Hsu and Dung, 1998; Soderland, 1999;
Muslea et al., 1999; Califf and Mooney, 1999;
Freitag, 2000; Laender et al., 2002). In order to
increase the level of automation and reduce
manual efforts, most of recent work has focused
on semi-supervised approaches (Chang and Lui,
2001; Chang and Kuo, 2004) and unsupervised

89

approaches (Crescenzi et al., 2001; Arasu and
Garcia-Molina, 2003; Zhai and Liu, 2005; Liu et
al., 2010; Grigalis, 2013). Semi-supervised and
unsupervised IE systems can be applied only to
template based Web pages as they depend heavi-
ly on the existence of a common template
(Chang et al., 2006).
 In the same manner as the rGALA system,
WHISK (Soderland, 1999) also aims to extract in-

formation from both semi-structured and unstruc-
tured text; but unlike rGALA, it targets specific
domain Web pages and uses a supervised learning

algorithm. To reduce the amount of manual label-
ling, WHISK interleaves learning new rules and

annotating new instances (training examples) us-
ing selective sampling; thus, the learning and an-

notation process is iterative. It begins with an
empty set of rules and at each iteration: (1) it pre-
sents to the user a batch of instances to be labelled
via a graphical interface; (2) the labelled instances
are added to a training set; (3) for each instance in
a training set (not covered by the existing ruleset),

WHISK learns the new rule using top-down in-

duction, i.e., it finds the most general rule that co-
vers the seed, then specialises the rule by adding

terms incrementally until a stopping condition is
met and finally (4) it prunes the rules.

3 rGALA System

3.1 rGALA Implementation

The rGALA system consists of the following three
main components: (1) Preprocessor, (2) Tuple Ex-
tractor, and (3) RDR Engine.
(1) Preprocessor consists of the following four
tools:

(a) Web transformer
A simple HTML transformation tool was
built using JSOUP 1 to extract both semi-
structured and unstructured text. To keep all
potential information while minimising the
amount of Web noise, the Web transformer
tool conducts the following two steps:
Step1: removes most of HTML tags and at-
tributes except <table>, <list> and <p> tags.
Step2: extracts text within <p> tags.
(b) Text segmenter
A text segmenter was built using the JFlex2
(fast lexical analyser generator for Java) parser

1 https://jsoup.org/
2 http://jflex.de/ - The JFlex parser uses Deterministic Finite
Automata (DFA) to segment a text stream based on a set of
user-defined rules.

to identify text segments from both semi-
structured and unstructured text. It takes a
specification with a set of regular expressions
and corresponding actions to identify a whole
block of text for semi-structured text and a
sentence for unstructured text.
 (c) Tokeniser
Similar to the text segmenter a tokeniser was
built using the JFlex parser to tokenise formal
and informal multi-lingual text. It tokenises
text based on its semantic bearing instead of
white spaces. For example, a phone number
in text such as (08) 999 8888 is tokenised as a
single token.
(d) generic Active Learning Application
(gALA) system
The gALA3 system identifies Part-of-Speech
tags and Named Entity tags. The gALA in-
cremental learning system is based on the
Maximum Entropy (MaxEnt) algorithm. It is
configurable and portable across domains
with minimal or no NLP knowledge.

(2) Tuple Extractor extracts candidate tuples,
[ENTITY_1, BETWEEN, ENTITY_2], which
become RDR cases for binary relation classifica-
tion task in the RDR Engine. A candidate tuple
consists of two entities (ENTITY_1 and ENTI-
TY_2) and a relational text (BETWEEN), which
includes all the words between the two entities.
The maximum number of tokens in the relational
text is not limited by default but this value is
configurable.
(3) RDR Engine follows these three steps:

 (a) Step 1: The user checks the Relation Ex-
traction (RE) result returned from the system.
For each RDR case, the system can return a
correct or an incorrect RE result, or a NULL
result when no rule was fired for the given
case.
 (b) Step 2: The user creates an RDR rule when
the result returned is not correct or NULL.
If the system returns an incorrect RE result, a
new rule is created under the rule which
returned the incorrect result. If the system
returns a NULL result, a new rule is created
under the root rule.
 (c) Step 3: The system evaluates the newly
created RDR rule and the user refines it when
required.
For the newly created rule, the system auto-
matically evaluates it against the relevant cas-
es (the parent rule’s cases and the sibling

3 The gALA system was developed by Defence Science and
Technology (DST) group.

90

rules’ cases) in the system, which may con-
flict with the new rule. If the rule conflicts
with these cases, the user can refine the rule’s
condition to make the rule more precise.

3.2 RDR Rule Description

An RDR rule has one or more conditions connect-

ed with an 'AND' operation, and a conclusion.
Figure 1 shows the components of the RDR rule

condition and conclusion. Note that ‘Cond’ and

‘Conc’ refer to ‘Condition’ and ‘Conclusion’ re-
spectively.

Figure 1: Components of RDR rule

(1) A condition consists of four components in the
form of (ATTRIBUTE_1.ATTRIBUTE_2 OP-
ERATOR VALUE).

(a) ATTRIBUTE _1 refers to one of the 5 sec-
tions of a given text segment which is in the
form of [E1BEFORE, ENTITY_1, BE-
TWEEN, ENTITY_2, E2AFTER].
E1BEFORE and E2AFTER sections contain
all the remaining tokens before the ENTITY_1
and after the ENTITY_2 sections, respectively.
(b) ATTRIBUTE _2 refers to one of the NLP
features; currently the following three NLP
features are available:

• Lexical feature: token (TKN)

• Syntactic feature: Part-Of-Speech (POS)

• Semantic feature: Named Entity (NE)
(c) Currently the rGALA system supports nine

OPERATORs including ‘==’, ‘!=’, ‘con-

tains’, ‘!contains’, ‘regEx’, ‘startsWith’,
‘hasWordIn’, ‘Pattern’ and ‘NULL’. Especial-
ly, the operator ‘regEx’, ‘hasWordIn’ and ‘Pat-

tern’ assist a single rule to handle multiple cas-
es with similar patterns and words.
(d) VALUE is usually derived automatically in

the system’s GUI based on the choice made for
the ATTRIBUTE_1 and ATTRIBUTE_2.

(2) A conclusion contains the relation extraction
result in the form of (ENTITY1, RELATION,
ENTITY2).

3.3 Rule Construction Example in Multiple
Classification RDR (MCRDR)

A Multiple Classification RDR (MCRDR) is an
‘n-ary’ tree structure with only except edges. A
case is evaluated by passing it to the root rule,
which is always satisfied. An MCRDR evaluates
all the first level rules which are direct children
of the root rule. When a rule is satisfied, all its
corresponding children rules are tested recursive-
ly where the children rules' conclusions over-
write the parent rule’s conclusion. The inference
process stops when there are no more children
rules to evaluate.

Figure 2: Rule construction example in MCRDR

 The rGALA system applies an MCRDR for the
single classification task as it is proved to be more

efficient than a Single Classification RDR
(SCRDR) even for single classification task (Kang

et al., 1995). Figure 2 demonstrates MCRDR
ruleset construction starting with an empty ruleset
and the following three RDR cases described in
the examples below.

Example 1. From the below text segment 1, RDR
case 1 is identified. As the system returns a NULL

result, a new rule is created.

Text segment 1:
'Copies can be bought by contacting: Dr. John Smith
at NCID Edinburgh and phone: 77778888.'

RDR case1:
[ENTITY_1: 'John Smith',
BETWEEN: 'at NCID Edinburgh and phone:',
ENTITY_2: 77778888]
RDR actions:
1. The default rule R0 is fired with a NULL result as
there is no rule to handle the given case.
2. A user creates a new rule R1 under R0 to extract
‘hasPhone’ relation from the given case.
R1:

Cond1:(ENTITY_1.NE == Person Name) AND
Cond2:(ENTITY_2.NE == Phone Number) AND
Cond3:(BETWEEN.NE !contains Person Name)
Conc: (ENTITY_1, hasPhone, ENTITY_2)

91

Example 2. From the below text segment 2,
RDR case 2 and RDR case 3 are identified. The
system returns a correct result for the RDR case
2, but an incorrect result for the RDR case 3.

Text segment 2:
'<p>Dr. Jane Smith </p>
<p>Postal Address</p>
<p>Elizabeth, East Ave., Australia</p>
<p>Phone: (618) 322 4444, Fax: (618)
3115555</p>'
RDR case2:
[ENTITY_1: 'Jane Smith',
BETWEEN: '<p>Postal Address</p>
<p>Elizabeth, East Ave., Australia</p>
<p>Phone:',
ENTITY_2: '(618) 322 4444']
RDR actions:
1. The rule R1 is fired and returns the [ENTITY_1,
hasPhone, ENTITY_2] result which is correct. The
given case is saved under the rule R1 and no further
action is required.
RDR case3:
[ENTITY_1: 'Jane Smith',
BETWEEN: '<p>Postal Address</p>
<p> Elizabeth, East Ave., Australia</p>
<p>Phone: (618) 322 4444, Fax:',
ENTITY_2: '(618) 311 5555']

RDR actions:
1. The rule R1 is fired and returns the [ENTITY_1,
hasPhone, ENTITY_2] result which is an incorrect
result as the ENTITY_2 is a fax number rather than a
phone number.
2. The user needs to create an exception rule R2 under
R1 to extract ‘hasFax’ relation from the given case by
adding one more condition to specify the given case
and returns the [ENTITY_1, hasFax, ENTITY_2]
result. R1’s three conditions become pre-conditions of
R2 automatically.
R2:

Cond1: (BETWEEN.TKN contains 'Fax')
Conc: (ENTITY_1, hasFax, ENTITY_2)

 In RDR's exception rule structure, a user needs

to select only a few conditions which are enough
to distinguish the current case from the corner-

stone case of the parent rule.

3.4 rGALA Graphic User Interface (GUI)

Figure 3 presents the RDR Engine GUI of the
rGALA system. The GUI allows a user to view
each RDR case and the system's classification re-
sults, and to form a rule when required. The
numbers in figure 3 describes the followings:

1. Displays a text segment;

2. Displays identified candidate tuples in the
form of [ENTITY_1, BETWEEN, ENTI-
TY_2];
3. Displays relation extraction result returned
from the RDR ruleset in the form of [ENTI-
TY1, RELATION, ENTITY2];
4. Displays NLP features in the form of
[E1BEFORE, ENTITY_1, BETWEEN, EN-
TITY_2, E2AFTER] for the current case, cor-
nerstone case and evaluated cases;
5. Selects rule's conditions and a conclusion;
6. Displays rule's pre-conditions, conditions
and a conclusion; and
7. Displays the process log, the currently fired
rule's path and the evaluation results.

4 Experiments

The experiments were conducted to demonstrate
the efficacy of the rGALA system in creating rules

and the effectiveness of its ruleset on both semi-
structured and unstructured text in open domain
Web pages.

4.1 Experiment Settings

In order to examine the efficacy of the rGALA
system on open domain Web pages, a set of Web

pages was collected from various educational in-
stitutions (e.g. '.edu'), commercial companies (e.g.

'.com') and government organisations (e.g. '.gov')
web sites based on their URL addresses (without
domain specific keywords). Manual annotation of
a gold standard data is the very time consuming

process. Therefore, from 1351 collected Web pag-
es, only two sets of 100 Web pages were random-

ly selected as training and testing datasets without

duplication.
 Five types of relations about contact infor-
mation including 'hasPhone', 'hasFax', 'hasAdd-
ress', 'hasEmail' and 'hasDomainAddress' were
chosen as initial target relations because: (1) they
are commonly observed information in both
semi-structured and unstructured text in open
domain Web pages; and (2) they are usually writ-
ten in heterogeneous formats influenced by per-
sonal, organisational and cultural preferences.
 In the experiments, these five types of rela-
tions were further categorised into ten target rela-
tions. For example, the 'hasPhone' relation was
further specified into two relations 'O_hasPhone'
and 'P_hasPhone' to capture the different entity
types (organisation and person).

92

Figure 3: RDR Engine GUI for case-by-case incremental Knowledge Acquisition

 Note that partially matched entities (esp.
phone numbers) were evaluated as correct ex-
tractions in these experiments. For example, for
‘+61 2 9999 5444/9999 1111’, the extracted en-
tity ‘9999 1111’ instead of ‘+61 2 9999 1111’
was counted as a correct extraction.

4.2 Initial RDR Ruleset Construction

This section presents how the initial RDR
ruleset was created to handle instances of the
target relations from an empty ruleset.
 To create the gold standard data, we
manually analysed the post-processed 100
Web pages in the training dataset. As shown in
the Table 1, a total of 325 instances of target
relations were identified; 320 instances were
found from semi-structured text written in 61
patterns and 5 instances were found from
unstructured text written in 5 patterns.
 To build the initial RDR ruleset, the rGALA
system processed the 100 Web pages in the
training dataset. It identified 1396 text seg-
ments and 5770 candidate tuples (RDR cases).
In the tuple extraction process, 7 NE types
were identified as entities’ of interest including
person, organisation, location, phone number,
fax number, email address, postal address, and
domain address.
 The 5770 candidate tuples include 318 in-
stances of the target relations and missed 7 tar-
get relation instances due to errors in detecting
some phone number formatting. For example,

for ‘Phone: (618) 322 4444/5555’, the current
system can detect ‘(618) 322 4444’ but it can-
not detect the last shortened phone number
‘5555’.
 Table 1 shows the number of RDR rules cre-
ated for each type of target relations. In total,
22 rules were created; 21 rules were created to
cover 67 patterns and 1 rule was created to re-
shape an overly generalised rule causing a false
positive error. On average, for semi-structured
text, one rule covered three or more patterns.
 Some RDR rules created for unstructured text
also handled semi-structured text, and vice ver-
sa. These are indicated using bold numbers in
Table 1. For example, no rule was required to
handle the 17 instances of ‘P_hasPhone’ rela-
tion from semi-structured text as it was covered
by one rule created from one instance in un-
structured text. This arises because the rGALA
system handles semi-structured text the same
way as unstructured text; it filters out most of
HTML tags and identifies candidate tuples in
the form of (E1, RelText, E2).
 The knowledge engineering of 5770 candi-
date tuples (RDR cases) took about 7 hours
without any extra-preparation time for labelling
data or understanding the data structure in ad-
vance. The initial RDR ruleset construction time
starts when a case is called and finishes when a
rule is accepted as complete. This construction
time is logged automatically.

93

Semi-structured
text

Unstructured
text

 Ins Pat RDR Ins Pat RDR
O_hasPhone 149 13 4 1 1 0
P_hasPhone 17 4 0 1 1 1
O_hasFax 92 11 4 0 0 0
P_hasFax 4 3 1 0 0 0
O_hasAddress 22 12 3 0 0 0
P_hasAddress 10 4 1 0 0 0

O_hasEmail 18 9 2 1 1 1
P_hasEmail 6 3 1 0 0 0
O_hasDomain
Address

1 1 0 2 2 2

P_hasDomain
Address

1 1 1 0 0 0

Total 320 61 17 5 5 4

 Both Semi-structured
and Unstructured text

 Ins P R F1
O_hasPhone 74 0.87 0.78 0.82
P_hasPhone 0 0 0 0
O_hasFax 49 1.00 0.86 0.92
P_hasFax 0 0 0 0
O_hasAddress 13 1.00 0.85 0.92
P_hasAddress 0 0 0 0

O_hasEmail 5 0.8 0.8 0.8
P_hasEmail 0 0 0 0
O_hasDomain
Address

0 0 0 0

P_hasDomain
Address

0 0 0 0

Total 141 0.93 0.83 0.88

Table 1: rGALA rule creation analysis on the training
Dataset. (‘Ins’ and ‘Pat’ refers to ‘Instances’ and ‘Pat-

terns’ respectively)

Table 2: The rGALA performance on the testing
dataset. (‘Ins’ refers to ‘Instances’)

4.3 rGALA System Performance

This section presents the performance of the
rGALA system on the 100 Web pages in the
testing dataset with the RDR ruleset constructed
from the training dataset.
 To create the gold standard data, the post-
processed 100 Web pages in the testing dataset
were also manually analysed. As shown in Table
2, a total of 141 instances of the target relations
were identified; 137 instances were found from
semi-structured text written in 26 patterns and 4
instances were found from unstructured text
written in 4 patterns. Among the 26 patterns
from semi-structured text, 10 patterns were the
same as the patterns from semi-structured text
in the training dataset.
 As shown in Table 2, the testing dataset only
included four target relations out of our ten tar-
get relations including 'O_hasPhone',
'O_hasFax', 'O_hasAddress' and 'O_hasEmail'
due to the random selection of testing data. The
testing dataset contained four out of five types
of relations about contact information including
'hasPhone', 'hasFax', 'hasAddress' and 'hasE-
mail'.

When processing the testing dataset, the
rGALA system identified 1386 text segments

and 2818 candidate tuples (RDR cases). Over-
all, the rGALA system achieved reasonable and
balanced performance of 0.88 F1 score with
0.93 precision and 0.83 recall. Total of 24 errors

occurred including 4 False Positive (FP) errors
and 20 False Negative errors (FN). All the 24

errors were caused from NE errors in the pre-
processing phase; the 4 FP errors were due to
incorrect NE types and the 20 FN errors were

due to missed NEs. Among the 20 FN errors,
the 8 FN errors were from missing shortened

phone numbers format and 12 FN errors were
from missing person and organisation named
entities.

5 Discussion

As mentioned in section 4, the rGALA system
achieved reasonable performance of 0.88 F1
score (with 0.93 precision and 0.83 recall) after
only 7 hours of knowledge engineering on 100
open domain Web pages. No extra time was
spent in analyzing the data, validating the rules
or debugging.
 In our experiment, the training dataset by
chance contained more examples and patterns
than the testing dataset. If the testing dataset
were to contain more examples and patterns,
the system may degrade. However, the rGALA
system can quickly handle those uncovered ex-
amples in the testing dataset by adding rules
incrementally.
 The rGALA system cleans out HTML tags
and treats semi-structured text in the same way
as unstructured text. This approach brings out
two main advantages shown in Table 1: (1) the
rGALA system can handle various patterns of
semi-structured text without any prior
knowledge of the data structure/format and (2)
its RDR rules work on both semi-structured
and unstructured text. It is usually difficult to

94

perfectly extract information from open do-
main Web pages in one go. Subsequent
maintenance and evolution of the ruleset is of
utmost importance. In the rGALA system, a
new rule is automatically organised in an ex-
ception structure, with automatic checking for
any potential conflicts. This effectively ad-
dresses the critical maintenance issue from
which most manual approaches suffer.
 Although the size of the experimental da-
taset was not large, it fully satisfied our initial
scenario where IE is required from a collection
of open domain Web pages without prior
knowledge of the data. Experience suggests
that knowledge acquisition with RDR remains
very simple and rapid even for large rulesets
with over 10,000 rules (Compton et al., 2011).
 As mentioned in section 2.3, WHISK
(Soderland, 1999) also aimed for information
extraction from both semi-structured and un-
structured text. While the rGALA system
builds one ruleset which works for both semi-
structured and unstructured text for open do-
main sources, WHISK builds separate rulesets
for semi-structured and unstructured text; it re-
quires specific inputs for different domains
such as the exact phrase delimiters to be ex-
tracted from semi-structured text.
 The rGALA system is simple but effective;
its case-by-case incremental knowledge acqui-
sition approach helps to efficiently capture
human knowledge to handle heterogeneous
formats of semi-structured text in the open
domain Web without prior knowledge, a la-
belled dataset or pre-defined relation schema.
Rules can be updated as errors are uncovered,
or when new formats are discovered, or new
target relations are defined. The rGALA sys-
tem is not a system to extract all potential rela-
tions from the whole Web, but it is a system to
extract any relations of interests from any giv-
en Web pages. To date no work has been pub-
lished on IE from semi-structured text for open
domain Web pages. We have demonstrated
that treating semi-structured text the same way
as unstructured text for this problem shows
considerable promise.

References

Alan Akbik and Jugen Brob. 2009. Wanderlust:
Extracting semantic relations from natural
language text using dependency grammar
patterns. In Proceedings of the 18th
International conference on World Wide Web,
pages 6-15.

Alan Akbik and Alexander Loser. 2012. Kraken:
N-ary facts in open information extraction. In
Proceedings of the Joint Workshop on
Automatic Knowledge Base Construction and
Web-scale Knowledge Extraction, pages 52-56.

Arvind Arasu and Hector Garcia-Molina. 2003.
Extracting structured data from web pages. In
Proceedings of the 2003 ACM SIGMOD
International Conference on Management of
Data, pages 337-348.

Gustavo O. Arocena and Alberto O. Mendelzon.
1999. WebOQL: Restructuring documents,
databases and Webs. Theory and Practice of
Object Systems, 5(3): 127-141.

Michele Banko, Michael J. Cafarella, Stephen
Soderland, Matt Broadhead and Oren Etzioni.
2007. Open information extraction from the
web. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence,
pages 2670-2676.

Mary Elaine Califf and Raymond J. Mooney. 1999.
Relational Learning of Pattern-Match Rules for
Information Extraction. In Proceedings of the
16th National Conference on Artificial
Intelligence and 11th Conference on Innovative
Applications of Artificial Intelligence. pages
328-334.

Chia-Hui Chang and Shih-Chien Kuo. 2004.
OLERA: Semisupervised Web-data extraction
with visual support. IEEE Intelligent Systems,
19(6): 56-64.

Chia-Hui Chang, M. Kayed, M.R. Girgis and K.F.
Shaalan. 2006. A Survey of Web Information
Extractio Systems. IEEE Transactiona on
Knowledge and Data Engineering, 18(10): 1411-
1428.

Chia-Hui Chang and Shao-Chen Lui. 2001.
IEPAD: informatio extraction based on pattern
discovery. In Proceedings of the 10th
International World Wide Web Conference,
pages 681-688.

Paul Compton and Bob Jansen. 1990. A
philosophical basis for knowledge acquisition.
Knowledge Acquisition, 2(3): 241-258.

Paul Compton, Lindsay Peters, Timothy Lavers,
Yang-Sok Kim. 2011. Experience with long-
term knowledge acquisition. In Proceedings of
the 6th international conference on Knowledge
capture, pages 49-56.

Luciano Del Corro and Rainer Gemulla. 2013.
ClausIE: Clause-Based Open Information
Extraction. In Proceedings of the 22nd
International conference on World Wide Web,
pages 355-366.

95

Valter Crescenzi, Giansalvatore Mecca and Paolo
Merialdo. 2001. RoadRunner: Towards
Automatic Data Extraction from Large Web
Sites. In Proceedings of the 27th International
Conference on Very Large Data Basaes, pages
109-118.

 Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam. 2011. Open
information extraction: The second generation.
In Proceedings of the Conference on Artificial
Intelligence, pages 3-10.

Anthony Fader, Stephen Soderland and Oren
Etzioni. 2011. Identifying relations for open
information extraction. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 1535-1545.

Dayne Freitag. 2000. Machine Learning for
Information Extraction in Informal Domains.
Machine Learning, 39(2-3): 169-202.

Tomas Grigalis, Towards web-scale structured web
data extraction. 2013. In Proceedings of the 6th
ACM International Conference on Web search
and data mining, pages 753-758.

Joachim Hammer, Jason McHugh and Hector
Garcia-Molina. 1997. Semistructured Data: The
TSIMMIS Experience. In Proceedings of the 1st
East-European conference on Advances in
Databases and Information Systems, pages 22-
22.

 Chun-Nan Hsu and Ming-Tzung Dung. 1998.
Generating finite-state transducers for semi-
structured data extraction from the Web.
Information systems, 23(8): 521-538.

Byeong Ho Kang, Paul Compton and Phil Preston.
1995. Multiple classification ripple down rules:
evaluation and possibilities. In Proceedings of
the 9th Banff Knowledge Acquisition for
Knowledge Based Systems Workshop.

Myung Hee Kim and Paul Compton. Improving
Open Information Extraction for Informal Web
Documents with Ripple-Down Rules. 2012. In
Proceedings of the 12th Pacific Rim conference
on Knowledge Management and Acquisition for
Intelligent Systems, pages 160-174.

Nicholas Kushmerick. 1997. Wrapper induction for
information extraction. PhD dissertation,
University of Washington.

Alberto H.F. Laender, Berthier Ribeiro-Neto and
Altigran S. da Silva. 2002. DEByE - Data
Extraction By Example. Data and Knowledge
Engineering, 40(2): 121-154.

Wei Liu, Xiaofeng Meng and Weiyi Meng. 2010.
Vide: A vision-based approach for deep web
data extraction. IEEE Transactions on
Knowledge and Data Engineering, 22 (3), pages
447-460.

Mausam, Michael Schmitz, Robert Bart, Stephen
Soderland and Oren Etzioni. 2012. Open
Language Learning for Information Extraction.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language
Processing and Computational Natural
Langauge Learning, pages 523-534.

Ion Muslea, Steve Minton and Craig Knoblock.
1999. A hierarchical approach to wrapper
induction. In Proceedings of the 3rd Annual
Conference on Autonomous Agents. pages 190-
197.

Son Bao Pham and Achim Hoffmann. 2004.
Extracting Positive Attributions from Scientific
papers. In Proceedings of the 7th International
conference on Discovery Science Conference,
pages 169-182.

Son Bao Pham and Achim Hoffmann. 2006.
Efficient Knowledge Acquisition for Extracting
Temporal Relations. In Proceedings of the 17th
European Conference on Artificial Intelligence,
pages 521-525.

Stephen Soderland. 1999. Learning Information
Extraction Rules for Semi-structured and Free
Text. Machine Learning, pages 1-44.

Fei Wu and Daniel S. Weld. 2010. Open
information extraction using Wikipedia. In
Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics,
pages 118-127.

Han Xu and Achim Hoffmann. 2010. RDRCE:
Combining Machine Learning and Knowledge
Acquisition. In Proceedings of the 11th
International Workshop, pages 165-179.

Yanhong Zhai and Bing Liu. 2005. Web data
extraction based on partial tree alignment. In
Proceedings of the 14th International
Conference on World Wide Web. pages 76-85.

96

	Invited talks
	Tutorials
	Long papers
	Stock Market Prediction with Deep Learning: A Character-based Neural Language Model for Event-based Trading Leonardo Dos Santos Pinheiro and Mark Dras
	Improving End-to-End Memory Networks with Unified Weight Tying Fei Liu, Trevor Cohn and Timothy Baldwin
	Joint Sentence-Document Model for Manifesto Text Analysis Shivashankar Subramanian, Trevor Cohn, Timothy Baldwin and Julian Brooke
	Leveraging linguistic resources for improving neural text classification Ming Liu, Gholamreza Haffari, Wray Buntine and Michelle Ananda-Rajah
	A Hybrid Model for Quality Assessment of Wikipedia Articles Aili Shen, Jianzhong Qi and Timothy Baldwin
	Phonemic Transcription of Low-Resource Tonal Languages Oliver Adams, Trevor Cohn, Graham Neubig and Alexis Michaud
	A Comparative Study of Two Statistical Modelling Approaches for Estimating Multivariate Likelihood Ratios in Forensic Voice Comparison Shunichi Ishihara
	Automatic Negation and Speculation Detection in Veterinary Clinical Text Katharine Cheng, Timothy Baldwin and Karin Verspoor
	Medication and Adverse Event Extraction from Noisy Text Xiang Dai, Sarvnaz Karimi and Cecile Paris
	Incremental Knowledge Acquisition Approach for Information Extraction on both Semi-structured and Unstructured Text from the Open Domain Web Maria Myunghee Kim
	Short papers
	On Extending Neural Networks with Loss Ensembles for Text Classification Hamideh Hajiabadi, Diego Mollá-Alliod and Reza Monsefi
	Towards the Use of Deep Reinforcement Learning with Global Policy For Query-based Extractive Summarisation Diego Mollá-Alliod
	From Word Segmentation to POS Tagging for Vietnamese Dat Quoc Nguyen, Thanh Vu, Dai Quoc Nguyen, Mark Dras and Mark Johnson
	ALTA Shared Task papers
	Overview of the 2017 ALTA Shared Task: Correcting OCR Errors Diego Mollá-Alliod and Steve Cassidy
	OCR Post-Processing Text Correction using Simulated Annealing (OPTeCA) Gitansh Khirbat
	SuperOCR for ALTA 2017 Shared Task Yufei Wang

