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Abstract 

Extracting information from semi-
structured text has been studied only for 

limited domain sources due to its hetero-
geneous formats. This paper proposes a 

Ripple-Down Rules (RDR) based ap-

proach to extract relations from both semi-
structured and unstructured text in open 

domain Web pages. We find that RDR's 
'case-by-case' incremental knowledge ac-

quisition approach provides practical flex-

ibility for (1) handling heterogeneous for-
mats of semi-structured text; (2) conduct-

ing knowledge engineering on any Web 

pages with minimum start-up cost and (3) 
allowing open-ended settings on relation 

schema. The efficacy of the approach has 
been demonstrated by extracting contact 

information from randomly collected open 

domain Web pages. The rGALA system 
achieved 0.87 F1 score on a testing dataset 

of 100 Web pages, after only 7 hours of 
knowledge engineering on a training set of 

100 Web pages. 

1 Introduction 

Open Information Extraction (Open IE) (Banko 
et al., 2007; Wu and Weld, 2010; Fader et al., 
2011) was introduced to extract information from 
the open domain Web where the relations of in-
terest cannot be pre-defined in advance due to its 
heterogeneity in domain. Its purpose is to avoid 
specifying target relations and developing extrac-
tion models for individual target relations. The 
Open IE systems focus on discovering a binary 
relation candidate tuple in the form of (E1, 
RelText, E2) by identifying two entities of inter-
est E1 and E2, and the salient textual cues 
RelText (aka 'relational text') between the two 
entities. Then, they classify whether any binary 

relation R exists between the two entities in a 
given tuple to extract a binary relation tuple like 
(E1, R, E2).     
    To date extracting information from the open 
domain Web has mainly focused on the unstruc-
tured text (i.e., where text is formatted in para-
graphs and expressed as full sentences). Howev-
er, most Web pages generally contain infor-
mation expressed in semi-structured text includ-
ing tables, lists, isolated words or text snippets as 
well as unstructured text. Therefore, it is im-
portant to develop an IE capability that is able to 
process both semi-structured and unstructured 
text from the open domain Web.  
    Unlike unstructured text, semi-structured text 
usually includes HTML tags, which is primarily 
for formatting purposes. The variability in the 
way people use HTML tags impedes IE process. 
Above all, HTML tags have the following char-
acteristics which hinder the IE task:  
(1) HTML's tabular structure is often abused to 
arrange the graphical aspect instead of using cas-
cading style sheets; and 
(2) HTML tags can be deeply nested mixing rel-
evant content with web noise in a loose manner. 
    Processing semi-structured text from the open 
domain Web is very challenging task as it needs 
to deal with heterogeneous formats as well as 
heterogeneous domains. It is difficult to create 
sufficient labelled data for semi-structured text in 
heterogeneous formats. Due to these difficulties, 
extracting information from semi-structured text 
has been studied only for specific domains 
(Chang et al., 2006). Moreover, existing semi-
structured text IE approaches cannot be extended 
to the open domain Web sources as they usually 
require domain dependent inputs.  
    In summary, extracting information from semi-
structured text in the open domain Web presents 
the following three main challenges: 
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1. It is difficult to distinguish between the rel-
evant content and web noise without domain 
knowledge. There is no explicit difference in 
HTML structure between them. 
2. There are no clear linguistic markers (e.g., 
punctuation) to segment semi-structured text 
in the same manner as a sentence in unstruc-
tured text.  
3. It is hard to create "sufficient" labelled 
training data and/or a complete ruleset for 
semi-structured text in open domain due to its 
heterogeneous formats.    

    Our rGALA system aims to extract infor-
mation from both semi-structured and unstruc-
tured text in the open domain Web. To handle 
heterogeneous formats in semi-structured text, 
the rGALA system treats semi-structured text the 
same way as unstructured text in the Open IE 
task.  The system filters out most of HTML tags 
and forms a binary relation candidate tuple (E1, 
RelText, E2); the system then extracts a binary 
relation tuple (E1, R, E2) if a relation R exists 
between the two given entities.  
    The rGALA system adopts a Ripple-Down 
Rules (RDR)’ incremental knowledge acquisition 
approach; in RDR, the rule creation process is 
simple and rapid with ensured consistency in 
ruleset maintenance. The system does not require 
labelled training data or up-front knowledge for 
rule creation. Moreover, it supports open-ended 
settings on target relation definition by starting 
with a small set of relations and incrementally 
adding more relations as discovered during the 
extraction process. 

2 Related Work 

2.1 Open Information Extraction (Open IE) 

Open Information Extraction (Open IE) aims to 

achieve domain-independent discovery of rela-
tions from the heterogeneous Web. Existing Open 

IE systems can be categorised into two groups 

based on the level of sophistication of the NLP 
techniques applied: (1) shallow syntactic parsing; 
and (2) dependency parsing. Shallow syntactic 
parsing based Open IE systems annotate sentences 
with Part-of-Speech (POS) tags and phrase chunk 
tags, then identify relations by matching patterns 

over these tags. The systems in this category in-
clude TextRunner (Banko et al., 2007), WOEpos 

(Wu and Weld, 2010), ReVerb (Fader et al., 2011) 
and R2A2 (Etzioni et al., 2011). Dependency 

parsing based Open IE systems utilise a depend-
ency parser to identify whole subtrees connecting 

the relation predicate and its arguments. The sys-

tems in this category include OLLIE (Mausam et 
al., 2012), ClausIE (Corro and Gemulla, 2013), 
Wanderlust (Akbik and Brob, 2009), WOEparse 

(Wu and Weld, 2010) and KrakeN (Akbik and 

Loser, 2012). Each of these systems makes use of 
various heuristics to obtain extractions from the 

dependency parses. They are generally more time 

consuming than the shallow parsing based sys-
tems. They trade efficiency for improved preci-

sion and recall. 

2.2 Ripple-Down Rules (RDR) 

The basic idea of RDR (Compton and Jansen, 
1990) is that each case is processed by the sys-
tem and when the outcome is incorrect or NULL, 
one or more rules are added to provide the cor-
rect outcome for that case. The system also 
stores cornerstone cases, cases which triggered 
the creation of new rules.  
    The RDR approach has been applied to a range 
of NLP applications. Pham and colleagues devel-
oped KAFTIE using the RDR approach to extract 

positive attributions from scientific papers (Pham 
and Hoffmann, 2004) and to extract temporal rela-

tions (Pham and Hoffmann, 2006). KAFTIE was 
noted to have outperformed machine learning 

based systems. The RDR Case Explore (RDRCE) 
system (Xu and Hoffmann, 2010) combined RDR 
with a Machine Learning method. RDRCE was 

applied for POS tagging task and achieved a slight 
improvement over a state-of-the-art POS tagging 

system after 60 hours of knowledge engineering. 
A hybrid RDR-based Open IE system (Kim and 
Compton, 2012) makes use of RDR's incremental 
knowledge acquisition technique as an add-on to 

the state-of-the-art ReVerb Open IE system. With 
this wrapper approach, the ReVerb system’s per-

formance is further improved using RDR's error 

correction for the domain of interest. 

2.3 IE systems for Semi-structured Text 

Early IE systems for semi-structured text have 
been studied largely with manual approaches 
(Hammer et al., 1997; Arocena and Mendelzon, 
1999) and supervised approaches (Kushmerick, 
1997; Hsu and Dung, 1998; Soderland, 1999; 
Muslea et al., 1999; Califf and Mooney, 1999; 
Freitag, 2000; Laender et al., 2002). In order to 
increase the level of automation and reduce 
manual efforts, most of recent work has focused 
on semi-supervised approaches (Chang and Lui, 
2001; Chang and Kuo, 2004) and unsupervised 
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approaches (Crescenzi et al., 2001; Arasu and 
Garcia-Molina, 2003; Zhai and Liu, 2005; Liu et 
al., 2010; Grigalis, 2013). Semi-supervised and 
unsupervised IE systems can be applied only to 
template based Web pages as they depend heavi-
ly on the existence of a common template 
(Chang et al., 2006).  
    In the same manner as the rGALA system, 
WHISK (Soderland, 1999) also aims to extract in-

formation from both semi-structured and unstruc-
tured text; but unlike rGALA, it targets specific 
domain Web pages and uses a supervised learning 

algorithm. To reduce the amount of manual label-
ling, WHISK interleaves learning new rules and 

annotating new instances (training examples) us-
ing selective sampling; thus, the learning and an-

notation process is iterative. It begins with an 
empty set of rules and at each iteration: (1) it pre-
sents to the user a batch of instances to be labelled 
via a graphical interface; (2) the labelled instances 
are added to a training set; (3) for each instance in 
a training set (not covered by the existing ruleset), 

WHISK learns the new rule using top-down in-

duction, i.e., it finds the most general rule that co-
vers the seed, then specialises the rule by adding 

terms incrementally until a stopping condition is 
met and finally (4) it prunes the rules. 

3 rGALA System 

3.1 rGALA Implementation  

The rGALA system consists of the following three 
main components: (1) Preprocessor, (2) Tuple Ex-
tractor, and (3) RDR Engine.  
(1) Preprocessor consists of the following four 
tools:  

(a) Web transformer 
A simple HTML transformation tool was 
built using JSOUP 1  to extract both semi-
structured and unstructured text. To keep all 
potential information while minimising the 
amount of Web noise, the Web transformer 
tool conducts the following two steps: 
Step1: removes most of HTML tags and at-
tributes except <table>, <list> and <p> tags. 
Step2: extracts text within <p> tags.  
(b) Text segmenter  
A text segmenter was built using the JFlex2 
(fast lexical analyser generator for Java) parser 

                                                      
1 https://jsoup.org/ 
2 http://jflex.de/ - The JFlex parser uses Deterministic Finite 
Automata (DFA) to segment a text stream based on a set of 
user-defined rules. 

to identify text segments from both semi-
structured and unstructured text. It takes a 
specification with a set of regular expressions 
and corresponding actions to identify a whole 
block of text for semi-structured text and a 
sentence for unstructured text. 
 (c) Tokeniser 
Similar to the text segmenter a tokeniser was 
built using the JFlex parser to tokenise formal 
and informal multi-lingual text. It tokenises 
text based on its semantic bearing instead of 
white spaces. For example, a phone number 
in text such as (08) 999 8888 is tokenised as a 
single token.  
(d) generic Active Learning Application 
(gALA) system 
The gALA3 system identifies Part-of-Speech 
tags and Named Entity tags. The gALA in-
cremental learning system is based on the 
Maximum Entropy (MaxEnt) algorithm.  It is 
configurable and portable across domains 
with minimal or no NLP knowledge. 

(2) Tuple Extractor extracts candidate tuples, 
[ENTITY_1, BETWEEN, ENTITY_2], which 
become RDR cases for binary relation classifica-
tion task in the RDR Engine. A candidate tuple 
consists of two entities (ENTITY_1 and ENTI-
TY_2) and a relational text (BETWEEN), which 
includes all the words between the two entities.  
The maximum number of tokens in the relational 
text is not limited by default but this value is 
configurable.  
(3) RDR Engine follows these three steps: 

 (a) Step 1: The user checks the Relation Ex-
traction (RE) result returned from the system. 
For each RDR case, the system can return a 
correct or an incorrect RE result, or a NULL 
result when no rule was fired for the given 
case. 
 (b) Step 2: The user creates an RDR rule when 
the result returned is not correct or NULL. 
If the system returns an incorrect RE result, a 
new rule is created under the rule which 
returned the incorrect result. If the system 
returns a NULL result, a new rule is created 
under the root rule. 
 (c) Step 3: The system evaluates the newly 
created RDR rule and the user refines it when 
required. 
For the newly created rule, the system auto-
matically evaluates it against the relevant cas-
es (the parent rule’s cases and the sibling 

                                                      
3 The gALA system was developed by Defence Science and 
Technology (DST) group. 
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rules’ cases) in the system, which may con-
flict with the new rule. If the rule conflicts 
with these cases, the user can refine the rule’s 
condition to make the rule more precise.  

3.2 RDR Rule Description 

An RDR rule has one or more conditions connect-

ed with an 'AND' operation, and a conclusion. 
Figure 1 shows the components of the RDR rule 

condition and conclusion. Note that ‘Cond’ and 

‘Conc’ refer to ‘Condition’ and ‘Conclusion’ re-
spectively. 

 

 

Figure 1: Components of RDR rule 

 
(1) A condition consists of four components in the 
form of (ATTRIBUTE_1.ATTRIBUTE_2 OP-
ERATOR VALUE).  

(a) ATTRIBUTE _1 refers to one of the 5 sec-
tions of a given text segment which is in the 
form of [E1BEFORE, ENTITY_1, BE-
TWEEN, ENTITY_2, E2AFTER]. 
E1BEFORE and E2AFTER sections contain 
all the remaining tokens before the ENTITY_1 
and after the ENTITY_2 sections, respectively. 
(b) ATTRIBUTE _2 refers to one of the NLP 
features; currently the following three NLP 
features are available: 

• Lexical feature: token (TKN) 

• Syntactic feature: Part-Of-Speech (POS) 

• Semantic feature: Named Entity (NE) 
(c) Currently the rGALA system supports nine 

OPERATORs including ‘==’, ‘!=’, ‘con-

tains’, ‘!contains’, ‘regEx’, ‘startsWith’, 
‘hasWordIn’, ‘Pattern’ and ‘NULL’. Especial-
ly, the operator ‘regEx’, ‘hasWordIn’ and ‘Pat-

tern’ assist a single rule to handle multiple cas-
es with similar patterns and words. 
(d) VALUE is usually derived automatically in 

the system’s GUI based on the choice made for 
the ATTRIBUTE_1 and ATTRIBUTE_2.  

(2) A conclusion contains the relation extraction 
result in the form of (ENTITY1, RELATION, 
ENTITY2). 

3.3 Rule Construction Example in Multiple 
Classification RDR (MCRDR) 

A Multiple Classification RDR (MCRDR) is an 
‘n-ary’ tree structure with only except edges. A 
case is evaluated by passing it to the root rule, 
which is always satisfied. An MCRDR evaluates 
all the first level rules which are direct children 
of the root rule. When a rule is satisfied, all its 
corresponding children rules are tested recursive-
ly where the children rules' conclusions over-
write the parent rule’s conclusion. The inference 
process stops when there are no more children 
rules to evaluate.  

 

Figure 2: Rule construction example in MCRDR 

     
    The rGALA system applies an MCRDR for the 
single classification task as it is proved to be more 

efficient than a Single Classification RDR 
(SCRDR) even for single classification task (Kang 

et al., 1995). Figure 2 demonstrates MCRDR 
ruleset construction starting with an empty ruleset 
and the following three RDR cases described in 
the examples below. 

 
Example 1. From the below text segment 1, RDR 
case 1 is identified. As the system returns a NULL 

result, a new rule is created.  
 

Text segment 1:  
'Copies can be bought by contacting: Dr. John Smith 
at NCID Edinburgh and phone: 77778888.' 

RDR case1:  
[ENTITY_1:  'John Smith', 
BETWEEN: 'at NCID Edinburgh and phone:', 
ENTITY_2: 77778888] 
RDR actions: 
1. The default rule R0 is fired with a NULL result as 
there is no rule to handle the given case. 
2. A user creates a new rule R1 under R0 to extract 
‘hasPhone’ relation from the given case. 
R1:   

Cond1:(ENTITY_1.NE == Person Name) AND 
Cond2:(ENTITY_2.NE == Phone Number) AND 
Cond3:(BETWEEN.NE !contains Person Name)  
Conc: (ENTITY_1, hasPhone, ENTITY_2) 
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Example 2. From the below text segment 2, 
RDR case 2 and RDR case 3 are identified. The 
system returns a correct result for the RDR case 
2, but an incorrect result for the RDR case 3. 
 
Text segment 2:  
'<p>Dr. Jane Smith </p> 
<p>Postal Address</p>  
<p>Elizabeth, East Ave., Australia</p> 
<p>Phone: (618) 322 4444, Fax: (618) 
3115555</p>'  
RDR case2:  
[ENTITY_1:  'Jane Smith', 
BETWEEN: '<p>Postal Address</p>  
<p>Elizabeth, East Ave., Australia</p> 
<p>Phone:', 
ENTITY_2: '(618) 322 4444'] 
RDR actions: 
1. The rule R1 is fired and returns the [ENTITY_1, 
hasPhone, ENTITY_2] result which is correct. The 
given case is saved under the rule R1 and no further 
action is required. 
RDR case3:  
[ENTITY_1:  'Jane Smith', 
BETWEEN: '<p>Postal Address</p>  
<p> Elizabeth, East Ave., Australia</p>  
<p>Phone: (618) 322 4444, Fax:', 
ENTITY_2: '(618) 311 5555'] 

RDR actions: 
1. The rule R1 is fired and returns the [ENTITY_1, 
hasPhone, ENTITY_2] result which is an incorrect 
result as the ENTITY_2 is a fax number rather than a 
phone number.  
2. The user needs to create an exception rule R2 under 
R1 to extract ‘hasFax’ relation from the given case by 
adding one more condition to specify the given case 
and returns the [ENTITY_1, hasFax, ENTITY_2] 
result. R1’s three conditions become pre-conditions of 
R2 automatically. 
R2:  

Cond1: (BETWEEN.TKN contains 'Fax') 
Conc: (ENTITY_1, hasFax, ENTITY_2) 

 
    In RDR's exception rule structure, a user needs 

to select only a few conditions which are enough 
to distinguish the current case from the corner-

stone case of the parent rule. 

3.4 rGALA Graphic User Interface (GUI) 

Figure 3 presents the RDR Engine GUI of the 
rGALA system. The GUI allows a user to view 
each RDR case and the system's classification re-
sults, and to form a rule when required. The 
numbers in figure 3 describes the followings: 

1. Displays a text segment;  

2. Displays identified candidate tuples in the 
form of [ENTITY_1, BETWEEN, ENTI-
TY_2];  
3. Displays relation extraction result returned 
from the RDR ruleset in the form of [ENTI-
TY1, RELATION, ENTITY2]; 
4. Displays NLP features in the form of 
[E1BEFORE, ENTITY_1, BETWEEN, EN-
TITY_2, E2AFTER] for the current case, cor-
nerstone case and evaluated cases;  
5. Selects rule's conditions and a conclusion; 
6. Displays rule's pre-conditions, conditions 
and a conclusion; and 
7. Displays the process log, the currently fired 
rule's path and the evaluation results. 

4 Experiments 

The experiments were conducted to demonstrate 
the efficacy of the rGALA system in creating rules 

and the effectiveness of its ruleset on both semi-
structured and unstructured text in open domain 
Web pages. 

4.1 Experiment Settings 

In order to examine the efficacy of the rGALA 
system on open domain Web pages, a set of Web 

pages was collected from various educational in-
stitutions (e.g. '.edu'), commercial companies (e.g. 

'.com') and government organisations (e.g. '.gov') 
web sites based on their URL addresses (without 
domain specific keywords). Manual annotation of 
a gold standard data is the very time consuming 

process. Therefore, from 1351 collected Web pag-
es, only two sets of 100 Web pages were random-

ly selected as training and testing datasets without 

duplication.  
    Five types of relations about contact infor-
mation including 'hasPhone', 'hasFax', 'hasAdd-
ress', 'hasEmail' and 'hasDomainAddress' were 
chosen as initial target relations because: (1) they 
are commonly observed information in both 
semi-structured and unstructured text in open 
domain Web pages; and (2) they are usually writ-
ten in heterogeneous formats influenced by per-
sonal, organisational and cultural preferences. 
    In the experiments, these five types of rela-
tions were further categorised into ten target rela-
tions. For example, the 'hasPhone' relation was 
further specified into two relations 'O_hasPhone'   
and 'P_hasPhone' to capture the different entity 
types (organisation and person). 
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Figure 3: RDR Engine GUI for case-by-case incremental Knowledge Acquisition  

 
 

    Note that partially matched entities (esp. 
phone numbers) were evaluated as correct ex-
tractions in these experiments. For example, for 
‘+61 2 9999 5444/9999 1111’, the extracted en-
tity ‘9999 1111’ instead of ‘+61 2 9999 1111’ 
was counted as a correct extraction. 

4.2 Initial RDR Ruleset Construction 

This section presents how the initial RDR 
ruleset was created to handle instances of the 
target relations from an empty ruleset. 
    To create the gold standard data, we 
manually analysed the post-processed 100 
Web pages in the training dataset. As shown in 
the Table 1, a total of 325 instances of target 
relations were identified; 320 instances were 
found from semi-structured text written in 61 
patterns and 5 instances were found from 
unstructured text written in 5 patterns.  
    To build the initial RDR ruleset, the rGALA 
system processed the 100 Web pages in the 
training dataset. It identified 1396 text seg-
ments and 5770 candidate tuples (RDR cases). 
In the tuple extraction process, 7 NE types 
were identified as entities’ of interest including 
person, organisation, location, phone number, 
fax number, email address, postal address, and 
domain address.  
    The 5770 candidate tuples include 318 in-
stances of the target relations and missed 7 tar-
get relation instances due to errors in detecting 
some phone number formatting. For example, 

for ‘Phone: (618) 322 4444/5555’, the current 
system can detect ‘(618) 322 4444’ but it can-
not detect the last shortened phone number 
‘5555’.   
    Table 1 shows the number of RDR rules cre-
ated for each type of target relations.  In total, 
22 rules were created; 21 rules were created to 
cover 67 patterns and 1 rule was created to re-
shape an overly generalised rule causing a false 
positive error. On average, for semi-structured 
text, one rule covered three or more patterns.  
    Some RDR rules created for unstructured text 
also handled semi-structured text, and vice ver-
sa. These are indicated using bold numbers in 
Table 1. For example, no rule was required to 
handle the 17 instances of ‘P_hasPhone’ rela-
tion from semi-structured text as it was covered 
by one rule created from one instance in un-
structured text. This arises because the rGALA 
system handles semi-structured text the same 
way as unstructured text; it filters out most of 
HTML tags and identifies candidate tuples in 
the form of (E1, RelText, E2). 
    The knowledge engineering of 5770 candi-
date tuples (RDR cases) took about 7 hours 
without any extra-preparation time for labelling 
data or understanding the data structure in ad-
vance. The initial RDR ruleset construction time 
starts when a case is called and finishes when a 
rule is accepted as complete. This construction 
time is logged automatically. 
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Semi-structured 
text 

Unstructured 
text  

 Ins Pat RDR Ins Pat RDR 
O_hasPhone 149 13 4 1 1 0 
P_hasPhone 17 4 0 1 1 1 
O_hasFax 92 11 4 0 0 0 
P_hasFax 4 3 1 0 0 0 
O_hasAddress 22 12 3 0 0 0 
P_hasAddress 10 4 1 0 0 0 

O_hasEmail 18 9 2 1 1 1 
P_hasEmail 6 3 1 0 0 0 
O_hasDomain 
Address 

1 1 0 2 2 2 

P_hasDomain 
Address 

1 1 1 0 0 0 

Total 320 61 17 5 5 4 
 

 Both Semi-structured 
and Unstructured text 

 Ins P R F1 
O_hasPhone 74 0.87 0.78 0.82 
P_hasPhone 0 0 0 0 
O_hasFax 49 1.00 0.86 0.92 
P_hasFax 0 0 0 0 
O_hasAddress 13 1.00 0.85 0.92 
P_hasAddress 0 0 0 0 

O_hasEmail 5 0.8 0.8 0.8 
P_hasEmail 0 0 0 0 
O_hasDomain 
Address 

0 0 0 0 

P_hasDomain 
Address 

0 0 0 0 

Total 141 0.93 0.83 0.88 
 

Table 1: rGALA rule creation analysis on the training 
Dataset. (‘Ins’ and ‘Pat’ refers to ‘Instances’ and ‘Pat-

terns’ respectively ) 

Table 2: The rGALA performance on the testing 
dataset. (‘Ins’ refers to ‘Instances’) 

 

4.3 rGALA System Performance 

This section presents the performance of the 
rGALA system on the 100 Web pages in the 
testing dataset with the RDR ruleset constructed 
from the training dataset.  
    To create the gold standard data, the post-
processed 100 Web pages in the testing dataset 
were also manually analysed. As shown in Table 
2, a total of 141 instances of the target relations 
were identified; 137 instances were found from 
semi-structured text written in 26 patterns and 4 
instances were found from unstructured text 
written in 4 patterns.  Among the 26 patterns 
from semi-structured text, 10 patterns were the 
same as the patterns from semi-structured text 
in the training dataset.  
    As shown in Table 2, the testing dataset only 
included four target relations out of our ten tar-
get relations including 'O_hasPhone', 
'O_hasFax', 'O_hasAddress' and 'O_hasEmail' 
due to the random selection of testing data. The 
testing dataset contained four out of five types 
of relations about contact information including 
'hasPhone', 'hasFax', 'hasAddress' and 'hasE-
mail'.  

When processing the testing dataset, the 
rGALA system identified 1386 text segments 

and 2818 candidate tuples (RDR cases). Over-
all, the rGALA system achieved reasonable and 
balanced performance of 0.88 F1 score with 
0.93 precision and 0.83 recall. Total of 24 errors 

occurred including 4 False Positive (FP) errors 
and 20 False Negative errors (FN). All the 24  
 

 
errors were caused from NE errors in the pre-
processing phase; the 4 FP errors were due to 
incorrect NE types and the 20 FN errors were 

due to missed NEs. Among the 20 FN errors, 
the 8 FN errors were from missing shortened 

phone numbers format and 12 FN errors were 
from missing person and organisation named 
entities. 

5 Discussion 

As mentioned in section 4, the rGALA system 
achieved reasonable performance of 0.88 F1 
score (with 0.93 precision and 0.83 recall) after 
only 7 hours of knowledge engineering on 100 
open domain Web pages. No extra time was 
spent in analyzing the data, validating the rules 
or debugging.  
    In our experiment, the training dataset by 
chance contained more examples and patterns 
than the testing dataset. If the testing dataset 
were to contain more examples and patterns, 
the system may degrade. However, the rGALA 
system can quickly handle those uncovered ex-
amples in the testing dataset by adding rules 
incrementally. 
    The rGALA system cleans out HTML tags 
and treats semi-structured text in the same way 
as unstructured text. This approach brings out 
two main advantages shown in Table 1: (1) the 
rGALA system can handle various patterns of 
semi-structured text without any prior 
knowledge of the data structure/format and (2) 
its RDR rules work on both semi-structured 
and unstructured text. It is usually difficult to 
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perfectly extract information from open do-
main Web pages in one go. Subsequent 
maintenance and evolution of the ruleset is of 
utmost importance. In the rGALA system, a 
new rule is automatically organised in an ex-
ception structure, with automatic checking for 
any potential conflicts. This effectively ad-
dresses the critical maintenance issue from 
which most manual approaches suffer.  
    Although the size of the experimental da-
taset was not large, it fully satisfied our initial 
scenario where IE is required from a collection 
of open domain Web pages without prior 
knowledge of the data. Experience suggests 
that knowledge acquisition with RDR remains 
very simple and rapid even for large rulesets 
with over 10,000 rules (Compton et al., 2011).  
    As mentioned in section 2.3, WHISK 
(Soderland, 1999) also aimed for information 
extraction from both semi-structured and un-
structured text. While the rGALA system 
builds one ruleset which works for both semi-
structured and unstructured text for open do-
main sources, WHISK builds separate rulesets 
for semi-structured and unstructured text; it re-
quires specific inputs for different domains 
such as the exact phrase delimiters to be ex-
tracted from semi-structured text. 
    The rGALA system is simple but effective; 
its case-by-case incremental knowledge acqui-
sition approach helps to efficiently capture 
human knowledge to handle heterogeneous 
formats of semi-structured text in the open 
domain Web without prior knowledge, a la-
belled dataset or pre-defined relation schema. 
Rules can be updated as errors are uncovered, 
or when new formats are discovered, or new 
target relations are defined. The rGALA sys-
tem is not a system to extract all potential rela-
tions from the whole Web, but it is a system to 
extract any relations of interests from any giv-
en Web pages. To date no work has been pub-
lished on IE from semi-structured text for open 
domain Web pages. We have demonstrated 
that treating semi-structured text the same way 
as unstructured text for this problem shows 
considerable promise. 
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