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Abstract

In this paper, we develop a weakly su-
pervised version of logistic regression to
help to improve biomedical text classi-
fication performance when there is lim-
ited annotated data. We learn cascaded
latent variable models for the classifica-
tion tasks. First, with a large number of
unlabelled but limited amount of labelled
biomedical text, we will bootstrap and
semi-automate the annotation task with
partially and weakly annotated data. Sec-
ond, both coarse-grained (document) and
fine-grained (sentence) levels of each in-
dividual biomedical report will be taken
into consideration. Our experimental work
shows this achieves higher classification
results.

1 Introduction

In recent years, large amounts of biomedical text
have become available with the development of
electronic medical record (EMR) systems. The
type of biomedical text ranges from reports of CT
scans to doctoral notes and discharge summaries.
Based on these biomedical text, there are medi-
cal tasks such as disease identification, diagnostic
surveillance and evaluation and other clinical sup-
port services. Manual extraction and classification
for these medical tasks from biomedical text is a
time-consuming and often costly effort.
Biomedical text classification systems which
consider both manual effort (e.g. annotation) and
predictive performance are more appropriate in
the medical context than those which only con-
sider classification predictive performance. Early
biomedical classification methods are rule-based
(Tinoco et al., 2011; Matheny et al., 2012), which
requires medical experts to develop logical rules
to identify reports consistent with some diseases.
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The main advantages of such rule-based systems is
that high precision can be achieved, but the weak-
ness lies in the fact that the process is not easily
transferable to similar tasks, because medical ex-
perts have to carefully develop specific types of
rules and formulas for different kinds of diseases.
In recent years, machine learning methods have
been widely used in disease identification from
biomedical text(Ehrentraut et al., 2012; Bejan et
al., 2012; Martinez et al., 2015; Hassanpour and
Langlotz, 2015), which also ask medical experts
to do some annotation work for building training
data. Unlabelled free biomedical text in hospitals
and other clinical organizations is abundant but
manual annotation is very expensive.

Exploiting fine-grained sentence level proper-
ties for coarse-grained document level classifi-
cation has attracted large amounts of attention.
Pang(Pang and Lee, 2004) first explored subjec-
tivity extraction methods based on a minimum cut
formulation, in which they performed subjectiv-
ity detection on individual sentences and imple-
mented document level polarity classification by
leveraging those extracted subjective sentences.
McDonald(Téckstrom and McDonald, 2011) pro-
posed a structured model for jointly classifying
the sentiment of text at varying levels of granu-
larity, they showed that this task can be reduced
to sequential classification with constrained in-
ference. Yessenalina(Yessenalina et al., 2010)
described a joint two-level approach for docu-
ment level sentiment classification that simulta-
neously extracts useful sentences, and Fang(Fang
and Huang, 2012) extended it by incorporating as-
pect information to the structured model to aspect
level sentiment analysis.

In this paper, we propose a cascaded latent vari-
able model for biomedical text classification that
combines logistic regression and EM, which is
trained with a large number of unlabelled but lim-
ited amount of labelled biomedical text. Exper-
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imental results show that the combined cascaded
model is efficient in biomedical text classification
tasks.

2 Methodology

In this section, we propose variants developed
from a cascaded logistic regression model: the
partially supervised model called as logistic re-
gression with hard EM (LREM) and the weakly
supervised model named as weak logistic regres-
sion with hard EM (WLREM). LREM is trained
with part of the fully-annotated data and all of the
partially-annotated data. WLREM is trained with
the same part of the fully-annotated data and all of
the weakly annotated data.

2.1 Preliminaries

Let d be a document consisting of n sen-
tences, X = (X;)7,, with a document-sentence-
sequence pair denoted d = (d,X). Let y? de-
note the document level polarity and Z = (Z;)"
be the sequence of sentence level polarity. In
what follows, we assume that there are three types
of training sets: a small set of fully labeled in-
stances D which are annotated at both sentence
and document levels, another small set of par-
tially labeled instances Dp which are annotated
only at the document level, and a large set of
weakly annotated instances Dy (explained later).
Besides, we assume that all Z; take values in
{POS(+1), NEG(—1), NEU(0)} while y?is in
{POS(+1), NEG(-1)}.

The following three cascaded models are based
on logistic regression, with the following standard
parametrization

Py (y'1X) = 3 Pay*Z) Po(2IX) (1)
V/

where 0 = {«, }, and « and 3 are the parameters
of document and sentence level classifiers respec-
tively.

2.2 The partially supervised model

The partially supervised model (LREM) is trained
from the sets of fully labeled data Dr and par-
tially labelled data Dp. Since the sentence po-
larity is unknown in Dp, a hard EM algorithm is
used to iteratively estimate Z and maximize the
cascaded goal function. Figure 1 outlines LREM.
The parameters, o and 3, of this model can be es-
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Figure 1: A partially supervised model.

timated by maximizing the joint conditional like-
lihood function

N
@, = argmax (Zlog Pe(yd!X)) (2)
d=1

)

where N = |Dp U Dp]|.

2.3 The weakly supervised model

The weakly supervised model (WLREM) is
trained from the sets of fully labeled data Dy and
weakly labelled data Dy;. In our case, the docu-
ment polarity is unknown from Dy, while U rep-
resents the patient level diagnostic result in the
treating hospital. Generally, if a patient is diag-
nosed with positive infection in the hospital, the
reports of this patient are more likely to be pos-
itive. We get this estimated probability from a
confusion matrix of Dg as shown in table 1. We

Table 1: Confusion matrix of fully-annotated
dataset

Dp | y=POS y=NEG

U=POS | 167 68

U=NEG | 41 82

notice that P(U = POS|y = POS) = 0.803,
which is a trustful prior information for guessing
y, thus we can extend the previous partially super-
vised model into a weakly one. Figure 2 shows
WLREM. The parameters, « and /3, of this model
can be estimated by maximizing the joint condi-
tional likelihood function

Py(UX) =30, 7 Ps(Z|X) Pu(y|Z) P(U%|y)
a,B = argmaxaps (Hf}il Pg(Ud|X)> 3)

where M = |Dp U Dy|.
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Figure 2: A weakly supervised model.

3 Combining partial and weak
supervision

The partially and weakly supervised models both
have their merits. The former requires document
level annotation, while the latter can be used di-
rectly with available documents except for an ini-
tial guess of the document level polarity. In or-
der to achieve the best predictive performance, we
propose to combine the merits of these two mod-
els.

3.1 A combined cascaded latent variable
model

Given in Algorithm 1, ComLREM is an integra-
tion of the above two models (LREM+WLREM),
which can make full use of the partially and
weakly annotated data.

Algorithm 1 ComLREM
«, B < update for data D via Eqn (2)
Z; < 0 for all the sentences in Dp U Dyy

y <— 1 for all the documents in Dy;
while the convergence condition is meet do
for every document d € Dp do
ngq <—number of sentences of d
for k =1tonginddo
Zg = argmaxq Py (yd|X)
> from Equation (1)

for every document d € Dy do
ngq <—number of sentences in d
for k =1tonginddo
Zg, Y = arg MaX yd yd
Py(ZIX) Pa(y*|Z) P(Uy")

«, B < update for all data via Eqns (2), (3)
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Table 2: Feature representation
Feature level Discription
Sentence-level | Uni-gram tokens + MetaMap concepts
Pos sentence exists or not
Neg sentence exists or not
No. of pos sentences
No. of neg sentences
No. of other sentences
Polarity of the first sentence
Polarity of the last sentence
Percentage of pos sentences
Percentage of neg sentences
Pos sentence exists in the beginning
Pos sentence exists in the end
Neg sentence exists in the beginning
Neg sentence exists in the end

Report-
level

3.2 Feature representation

Two main types of features are explored: Bag
and Structural. Bag features are applied to the
sentence-level classification, while structural fea-
tures are built on the results of sentence-level clas-
sification.

Dates, time and numbers are normalised into
DATE, TIME, and NUM symbols. Reports
are segmented into sentences using the JulieLab
(Tomanek et al., 2007) automatic sentence seg-
mentor. Stop words are terms and phrases which
are regarded as not conveying any significant se-
mantics to the sentences and reports, NLTK stop
word list was chosen to do the filtering. The Ge-
nia Tagger (Tsuruoka et al., 2005) is used to do to-
kenization and lemmatization. The MetaMap con-
cepts (Aronson, 2001) come from the mappings of
biomedical knowledge representation. Table 1 il-
lustrates the feature representation at the sentence
and report levels.

4 Experiment

As shown in (Martinez et al., 2015), CT reports
for fungal disease detection were collected from
three hospitals. For each report, only the free text
section were used, which contains the radiologist’s
understanding of the scan and the reason for the
requested scan as written by clinicians. Every re-
port was de-identified: any potentially identifying
information such as name, address, age/birthday,
gender were removed. Table 2 shows the num-
ber of distribution of reports over fully-annotated,
partially-annotated and verified data sets.

Receiver operating characteristic (ROC) curve
and Precision recall (PR) curve are used for the
model evaluation. Area under ROC curve and



Table 3: Fully-annotated, partially-annotated and
weakly annotated datasets

Datasets Dp Dp Dy
Pos fungal 150 o1 431
Neg fungal 208 53 816

PR curve is an estimated measure of the test ac-
curacy.The results presented here are 5-fold cross
validation outcomes on the fully-annotated data.

Fig. 3 and 4 show the ROC curves and PR
curves of the four models: LR is the baseline algo-
rithm, LREM is trained based on part of the fully-
annotated data and all of the partially-annotated
data, WLREM is trained based on part of the fully-
annotated data and all of the unannotated data,
and ComLREM is an integration of the above two
models.

1of
08
z
&
f 06|
G
T 04}
2 - — LR 0.776878
0zl — LREM 0.774177
—  WLREM 0.861063
il — ComLREM 0.870726 ||

04 0.6
False Positive Rate

0a 02 08 10

Figure 3: ROC curve of LR, LREM, WLREM and
ComLREM.
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Figure 4: PR curve of LR, LREM, WLREM and
ComLREM.
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We can see from Fig. 3 that WLREM obtained
higher ROC score than LR, the area under LREM
and WLREM ROC curve is 0.774 and 0.861,
which shows that the involvement of weakly anno-
tated data contributes higher than that of partially
annotated data to the improvement of classifica-
tion performance. It is noticed WLREM achieved
greater improvement than LREM, because the Dy;
contains big volume and trustful prior information.
The highest ROC score (0.870) was achieved with
a combination of the above two models, which
is within our expectation. Fig. 4 shows the PR
curves of the four models, there is a trade-off be-
tween precision and recall with recall as the most
important metric. When the threshold is set to ob-
tain a high recall (> 0.9), ComLREM obtained
higher precision than other models. Overall, with
true positive rate or recall as the first priority,
the combined model ComL.LREM achieved the best
classification performance.

We also compared our model with Mar-
tinez’s system (Martinez et al., 2015), in which
they applied conservative rules over sentence-
classification output. Their sentence-level classi-
fier used SVMs with Bag-of-words and Bag-of-
concepts features. Since the conservative rules in-
dicate that a report is labeled as positive if any
sentence in it is labeled positive, the report-level
prediction is not probabilistic and the PR curve
can not be drawn accordingly. In order to make
some comparison, we adjusted the threshold of our
report-level logistic regression classifier to make
our recall the same as theirs (0.930), and see
whether the precision improves. Table 3 shows
the compared results, we noticed that both WL-
REM and ComLREM outperforms the Conserva-
tive SVM approach, which indicates that the esti-
mation we made from the unlabelled data is trust-
ful and can be used to improve classification per-
formance.

Table 4: Comparison of the experimental results

Models Recall | Precision | F score
Conservative SVM | 0.930 0.694 0.795
LR 0.930 0.646 0.762
LREM 0.930 0.656 0.769
WLREM 0.930 0.703 0.801
ComLREM 0.930 0.707 0.802

5 Conclusion

Learning classification models in a fully super-
vised manner is expensive in the biomedical do-



main. We therefore proposed a combined cas-
caded latent variable model, which effectively
combines both partial and weak supervision for
biomedical text classification. Sentence label is
regarded as a latent variable in this model, and
both fine-grained and coarse-grained features are
considered in the learning process. In the future,
we consider to develop active learning methods to-
wards our cascaded latent variable model and fur-
ther reduce manual annotation cost.
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