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Abstract

Relation extraction models based on deep
learning have been attracting a lot of at-
tention recently. Little research is carried
out to reduce their need of labeled training
data. In this work, we propose an unsu-
pervised pre-training method based on the
sequence-to-sequence model for deep re-
lation extraction models. The pre-trained
models need only half or even less training
data to achieve equivalent performance as
the same models without pre-training.

1 Introduction

Relation extraction (RE) is the task of detect-
ing and categorizing semantic relations between
named entities mentioned in a text corpus. This
is important for a wide variety of practical appli-
cations. For example, tourism planning bodies are
interested in mining social media such as tweets
to identifying which restaurants tourists eat in and
which hotels those same tourists stay in.

RE has been intensively studied for several
years (Chan and Roth, 2011; Chan and Roth,
2010). Recently, RE models based on deep neu-
ral networks (DNN) have achieved better perfor-
mance than conventional RE models that rely on
handcrafted features (Xu et al., 2015). However,
these DNN models require a large amount of an-
notated training data, which is difficult and ex-
pensive to obtain. The data problem is not com-
pletely solved by relying on methods such as large
external knowledge bases and distant supervision
because i) models employing only large knowl-
edge bases often still perform poorly on RE (An-
geli et al., 2014); ii) the external knowledge bases
are incomplete; and iii) many important appli-
cations lack the relevant domain specific knowl-
edge bases. This paper asks the question: can
we use unlabeled data to help training DNN RE

models? Although unsupervised pre-training is
known to be effective for training deep neural net-
works, it remains unclear how to apply it to the
recently proposed DNN RE models. The main
advantage of deep models (compared to the shal-
low counterparts) is that they automatically learn
distributed representations of the relevant compo-
nents of the model (e.g., words, entities, relations,
etc.). If we can encode rich syntactic-semantic
patterns of relation expressions into the automat-
ically learned, low-dimensional representations,
and require these representations to be similar if
they play a similar role using only unlabeled data,
it should be possible for a DNN RE system to
achieve a high level of generalization from only
small amount of labeled data.

In a relational expression, the named entities
and words around it provide useful context in-
formation. For example, in the sentence ”By
1982 the BL Cars Ltd division renamed itself
Austin Rover Group shortly before the launch of
the Maestro.” renamed itself is used much less
often than an expression such as was founded in
to indicate the relation org:foundedIn. Thus it is
likely that was founded in will be found in the
training set, even if renamed itself does not appear
in the training set. Despite this, the co-occurrence
of 1982 and Austin Rover Group, as well as key-
words such as by, form a context that is similar to
that of Austin Rover Group was founded in 1982.
If such shared contextual information can require
the similarity of the representations of these ex-
pressions, a classifier can easily infer that renamed
itself is likely to indicate org:foundedIn. Inspired
by observations such as these, we seek meth-
ods that exploit context information composed of
words and named entities to learn representations
of expressions, such that semantically similar ex-
pressions tend to have similar representations.

In this paper, we propose a pre-training
method that generalizes well-known sequence-to-

Zhuang Li, Lizhen Qu, Qiongkai Xu and Mark Johnson. 2016. Unsupervised Pre-training With Seq2Seq Reconstruction
Loss for Deep Relation Extraction Models. In Proceedings of Australasian Language Technology Association Workshop,
pages 54−64.



sequence model (Dai and Le, 2015) for deep RE
models. This approach formalizes unsupervised
pre-training as minimizing reconstruction errors of
input sequences. For a given DNN RE model, our
approach first pre-trains it on a large, unlabeled,
domain-general corpus, and then fine-tunes it on
target corpora. Our experiments show that, espe-
cially when the size of the labeled training data
is small, the deep relation extraction models pre-
trained with our unsupervised pre-training method
using half or even a quarter of the labeled data are
able to achieve similar performance as the mod-
els without pre-training. Our unsupervised ap-
proach does not need domain-specific corpora for
pre-training; in fact, they work well with 13,000
sentences randomly sampled from Wikipedia.

2 Related Work

Recent advance of relation extraction demon-
strates the power of deep learning by showing that
the deep models significantly outperform the con-
ventional approaches (Jiang and Zhai, 2007; Chan
and Roth, 2010; Chan and Roth, 2011) on the
ACE relation extraction datasets. Except for the
FCM model (Yu et al., 2015), at the core of al-
most all deep RE models are variants of convolu-
tional neural networks (CNN) (Zeng et al., 2014;
Nguyen and Grishman, 2015; Wang et al., 2016;
Miwa and Bansal, 2016), recurrent neural net-
works (RNN) (Zhang et al., 2015; Socher et al.,
2012; Ebrahimi and Dou, 2015; Lin et al., 2016),
or both of them (Liu et al., 2015; Cai et al., 2016).

Several RE systems (Chen et al., 2006a;
GuoDong et al., 2009; Li et al., 2010; LongHua
and Qiaoming, 2008; Chen et al., 2006b; Kim
and Lee, 2012) are built upon the semi-supervised
learning algorithm label propagation to exploit the
use of unlabeled data. This family of algorithms
start with building a similarity graph between each
pair of relation mentions, and propagate relation
labels from labeled ones to unlabeled ones. How-
ever, deep RE models require substantial change
in order to use these algorithms, while our meth-
ods just need to replace the training criterion dur-
ing pre-training, which is easy-to-implement by
using a standard deep learning toolkit. It is also
too expensive to involve all unlabeled data in both
training and prediction processes for each target
dataset. In contrast, our pre-training algorithms
are performed only once on a general corpus and
the resulted models are fine-tuned only on target

corpora.
There is also ample of work exploring the idea

of distant supervision for knowledge base comple-
tion (Riedel et al., 2013; Weston et al., 2013; Yang
et al., 2014; Bordes et al., 2013) in order to avoid
the use of manually labeled data. Although some
of these models include a relation extraction com-
ponent (Surdeanu et al., 2012; Angeli et al., 2014;
Toutanova et al., 2015), the outputs of their sys-
tems are whether a relation holds between entities
rather than entity mentions. In contrast, we aim
to classify relation mentions no matter if a target
relation exists in a knowledge base or not.

There have also been other efforts towards min-
imizing the use of labeled data. In (Sun, 2009),
they proposed a bootstrapping approach to extract
textual patterns for training a SVM-based rela-
tion extraction system. In (Chan and Roth, 2011),
they show that supervised models equipped with
syntactico-semantic features are capable of clas-
sifying relation mentions with a few labeled data.
However, both work are customized for supervised
models with handcrafted features and relations be-
tween nominals. In other lines of research, ac-
tive learning (Fu and Grishman, 2013; Sun and
Grishman, 2012) and domain adaptation (Nguyen
and Grishman, 2014) pursued to select high qual-
ity training examples for training relation extrac-
tion models. Jiang (2009) leverages the knowl-
edge of known relations to predict new relations
in a weakly supervised setting. These approaches
have different problem settings than ours, which
focus on the use of unlabeled data.

Since 2006, various pre-training techniques are
proposed to make the training of deep neural net-
works practical (Hinton and Salakhutdinov, 2006;
Dahl et al., 2010; Bengio, 2009). They are not
universally applicable for all problems and most
of them focus on computer vision problems. To
the best of our knowledge, we are the first to ex-
plore the use of pre-training for deep RE models.

3 Relation Extraction Models

Suppose we are given a relation mention, which is
a pair of named entity mentions (mh,mt) together
with its relation expression in a sentence S. Each
mention m is disambiguated into an entity e. Let
x ∈ X denote a relation mention, where X is the
space of all relation mentions, RE models assign a
binary relation y ∈ Y to x, where Y is a finite set
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Figure 1: General Architecture for deep RE models.

of all possible relations. As a result, an RE model
is a function g : X → Y .

Given a training set (x1, y1), ..., (xn, yn) ∈ X×
Y , we can directly learn an RE model by minimiz-
ing a supervised loss function Ls : X × Y → R.
In absence of sufficient supervised training data,
we resort to a two-stage approach. In the first
stage, we pre-train RE models on a dataset anno-
tated with named entity mentions and their corre-
sponding entities by minimizing an unsupervised
loss Lu : X → R. In the second stage, we fine-
tune the pre-trained models on the labeled dataset
by applying the supervised loss Ls. In our exper-
iments, Ls is the cross-entropy loss, as a result
of applying multi-class logistic regression (LR) in
the supervised setting.

The deep RE models proposed recently
are variants of Long Short Term Mem-
ory (LSTM) (Graves and Schmidhuber,
2005) and Convolutional Neural Networks
(CNN) (Krizhevsky et al., 2012). As represen-
tative examples we consider three recent RE
models: i) bidirectional LSTM that takes words
around entity mentions as input (Zhang et al.,
2015), coined BiLSTM; ii) LSTM taking shortest
paths in dependency trees as input, coined Dep-
TreeLSTM; iii) CNN taking words sequences and
position embeddings as input (dos Santos et al.,
2015), coined PCNN.

All three RE models consist of four compo-
nents. As illustrated in Figure 1, as input they take
either word sequences between two entity men-
tions or the shortest dependency path between two
entity mentions. A look up table maps each input

word into its word embedding. Herein we denote
the word embedding of a word i by ei ∈ RM ,
where M is the dimension of word embeddings.
All word embeddings are initialized with the ones
pre-trained on a large domain-general corpus (Qu
et al., 2015). As suggested in (Qu et al., 2015), we
do not update these word embeddings during train-
ing to avoid overfitting. In the next step, a feature
learning component projects the embeddings into
a hidden representation h. If it is in a supervised
setting, both h and handcrafted features are taken
as the input of a multi-class LR classifier for cat-
egorizing target relations. In case of unsupervised
pre-training, h is fed into a classifier for a desig-
nated unsupervised predictive task.

The RE models based on BiLSTM and TreeL-
STM are extensions of LSTM. LSTM is a recur-
rent neural network capable of capturing long de-
pendencies (Graves and Schmidhuber, 2005). At
the t-th time step, the LSTM layer takes the form:

ut, ct = LSTM(xt,ut−1, ct−1) (1)

where xt is the input to LSTM at time step t, and
ut and ct are the hidden states and memory states
of LSTM at time step t, respectively.

BiLSTM reads an input word sequence in both
directions with two separate LSTM layers. As il-
lustrated in Figure 2c, one LSTM reads the word
sequence between two entity mentions in forwards
direction, while the other with shared parameters
reads the same sequence in the reverse direction.
As a result, they generate two hidden representa-
tions

−→
h and

←−
h , which are further concatenated to

form the input vector h of the classifier.
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(a) DepTreeLSTM (b) PCNN

(c) BiLSTM

Figure 2: Deep relation extraction models.

DepTreeLSTM takes as input the shortest path
between two entity mention in a syntactic depen-
dency tree. The shortest path consists of two sub-
paths, which starts from an entity mention and
ends at their lowest common ancestor. Since both
subpaths are word sequences, as shown in Figure
2a, the feature learning component is composed
of two LSTM layers with shared parameters to
read the two subpaths respectively. The resulted
two representations are concatenated as the input
of the classifier. This model can be viewed ei-
ther as the model proposed in (Ebrahimi and Dou,
2015) by replacing the recursive neural networks
with LSTM, or as simplifying the model proposed
in (Xu et al., 2015) by removing the max-pooling
layer. The max-pooling layer leads to degraded
performance in our preliminary experiments.

PCNN implements the model in (dos Santos et
al., 2015), which takes as input the word sequence
between two entity mentions. It starts with map-
ping each input word to its word embedding. Each
word embedding is further concatenated with its
position embedding, which encodes relative dis-
tance of the word w.r.t. each entity mention. To
cope with input word sequences of varying length,
the embedding sequences smaller than the pre-

specified maximal length are padded with the em-
bedding of the padding token. Then a convolu-
tional layer and a max pooling layer are applied in
sequel to generate the input h for the classifier.

For all three models, we augment them with
the handcrafted features used in the top conven-
tional RE systems that do not rely on deep learn-
ing techniques. They lead to improved results ac-
cording to our preliminary experiments. In par-
ticular, we include lexical, collocation, and de-
pendency features proposed in (Chan and Roth,
2010). The other features used in (Chan and Roth,
2010) are dropped because the relevant informa-
tion is not available in our target datasets. In ad-
dition, we implemented the POS features and the
base phrase chunk features introduced in (Chan
and Roth, 2011).

4 Unsupervised Pre-training

Inspired by the semi-supervised sequence-to-
sequence model (Dai and Le, 2015), our unsuper-
vised pre-training methods tackle the learning of
deep RE models in two steps. First, we learn entity
embeddings by using a stepwise training strategy.
Second, we train the feature learning components
h(x) of deep RE models by using sequence recon-
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struction loss.

4.1 Learning Entity Embeddings
Entities often provide vital information for rela-
tion extraction (Chan and Roth, 2010). Qu et al.
(2015) show that the extraction of entity mentions
benefits significantly from distributional similar-
ity, thus we learn entity embeddings by using the
Skip-gram model (Mikolov et al., 2013). An entity
mention such as Austin Rover Group often spans
more than one word, while the Skip-gram model
works on sequences of tokens. Therefore we reto-
kenize text by mapping each entity mention into a
single token, and replace them with the IDs of the
referred entities.

The domain specific RE corpora are often small.
The retokenization of documents further leads to a
substantial number of infrequent entity tokens. We
can only obtain embeddings of poor quality for
these tokens if we train them from scratch (Col-
lobert et al., 2011). To circumvent the problems,
we employ a stepwise strategy. First, we initial-
ize all word embeddings with the pre-trained ones
on a large corpus (Qu et al., 2015). Second, we
initialize each entity embedding by averaging the
embeddings of all the words ever occurred in its
mentions, following (Socher et al., 2013). Third,
we update only entity embeddings by using the
Skip-Gram model. This allows us to update them
with an aggressive learning rate since we expect a
large change of these embeddings. And we keep
the pre-trained word embeddings intact to preserve
the knowledge of distributional similarity learned
from a large general corpus, as suggested in (Qu
et al., 2015). After training with the Skip-gram
model, we also do not update these entity embed-
dings while training with the deep RE models be-
cause updating these embeddings was not shown
to be useful in our preliminary experiments.

4.2 Sequence Reconstruction Loss
Given pre-trained word and entity embeddings,
the randomly initialized deep RE models still suf-
fer from poor performance if the target training
datasets are too small compared to their vast num-
ber of model parameters. Inspired by Autoen-
coders (Vincent et al., 2010), our key idea is to
obtain high quality representations by reconstruct-
ing the corresponding inputs. During the process
of reconstruction, if two expressions share similar
context, we expect that they end up with having
similar representations.

We draw inspiration from the semi-supervised
sequence-to-sequence (seq2seq) model (Dai and
Le, 2015) for pre-training deep RE models. Its
underlying seq2seq (Sutskever et al., 2014) model
consists of an LSTM encoder and an LSTM de-
coder. The encoder reads a sequence of words
and map them into a hidden representation. Then
the decoder takes the representation as input and
predicts the most likely sequence of words. The
training objective is to minimize the discrepancy
between the predicted sequence and the input se-
quence.

All of the three deep RE models presented in
Sec 3 take as input word sequences, and generate a
hidden representation h for the classifier. Our key
idea of generalizing the semi-supervised seq2seq
model is to reuse the feature learning component
h(x) as the encoder and reconstruct the input se-
quence in each direction by using an LSTM de-
coder. The change of encoder is particularly inter-
esting for PCNN , which adopts a different type of
model than the decoder.

Given an entity mention pair, the input of both
PCNN and BiLSTM is the word sequence be-
tween both mentions and the mentions themselves.
PCNN applies CNN to read the input sequence in
both forwards and backwards directions, and re-
sults in two hidden representations

−→
h and

←−
h re-

spectively. Its LSTM decoder reads each repre-
sentation and reconstructs the input sequence in
the corresponding direction, respectively. In the
same manner, BiLSTM applies the two LSTM
layers to read and reconstruct input sequences in
both directions. Although DepTreeLSTM takes
input from dependency trees, it follows the same
way as the other two models by reconstructing two
word sequences in their respective reading direc-
tion. Herein, each sequence is read from the entity
mention to their lowest common ancestor.

The LSTM decoder consists of an LSTM in the
form of Equation (1) and a softmax classifier. At
time step t, the LSTM layer reads the previous hid-
den state ut−1 and the predicted word xt−1 at time
step t− 1, followed by generating the current hid-
den state ut. The current hidden state ut is fed
into the softmax classifier to predict the word xt,
where the softmax classifier is defined as:

P (x = j|ut) =
exp(eT

jut)∑|V|
k=1 exp(e

T
kut)

where V denotes the vocabulary. When t = 1, the
LSTM initializes the initial state as u and c0 = 0.
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For the sake of computational efficiency, we
minimize the reconstruction loss by approximat-
ing the cross-entropy loss of the softmax func-
tion by using the negative sampling technique
in (Mikolov et al., 2013). As a result, at the t-th
time step during decoding, we minimize

− log σ(eT
xt
ut)−

k∑
j=1

Exj∼Pn(x) log σ(−e
T
xj
ut)

where xt is the corresponding word observed in
the input sequence, σ denotes the sigmoid func-
tion, and Pn(x) is the noise distribution for draw-
ing k negative samples. In our experiments, we
employ uniform distribution as the noise distribu-
tion. Then the loss function Lu is the sum of the
above loss over all words in input sequences.

5 Experimental Setup

5.1 Datasets and Evaluation Protocol
We use the Stanford Relation Extraction corpus
(StanfordRE) (Angeli et al., 2014) as the tar-
get corpus for evaluation. Each entity mention is
associated with a canonical name. We map each
canonical name to an entity ID in two ways. If the
canonical name can be found in Freebase, we re-
place the mention with its Freebase machine ID.
Otherwise we replace the mention with the ID
based on its canonical name. In addition, we filter
out the relation mentions with a annotator agree-
ment lower than 80% as well as the ones labeled
as no relation, because they are the source of label
noise based on our manual inspection. This is be-
yond the scope of this work. As a result, we obtain
9150 relation mentions and 40 relations in total.

Among all relation mentions in the
StanfordRE corpus, we hold out 20% re-
lation mentions for testing, 10% for development,
and the remaining for training. In order to test
the impact of the volume of training data for
fine-tuning, we split the training portion of the
corpus into 10 partitions based on a log scale,
and created 10 successively larger training sets
S1, S2, ..., S10 by merging these partitions from
smallest to largest. As a result, Si+1 is twice the
size of the Si and S10 is the full training set.

For pre-training, we use the FIGER corpus,
which is a sample of Wikipedia annotated with
millions of entity mentions (Desmet and Hoste,
2014). Because each entity mention is also linked
to a canonical name, we convert each mention to
an entity ID in the same way as for StanfordRE.

To investigate the influence of size of pre-
training corpora, we create three corpora for pre-
training:

(i) StanfordWiki: to verify if the relation
mentions from the FIGER corpus, whose entity
mention pairs also occur in target corpora, are
most relevant during pre-training, we collect all
sentences, in which there are at least one en-
tity pair occurring also in a sentence from the
StanfordRE corpus. Then we merge them with
the StanfordRE to build a corpus, which con-
tains 133,793 relation mentions in total.

(ii) WikiRandom: we randomly sample five
non-overlapped subsets from the FIGER corpus,
each of them contains similar number of relation
mentions as StanfordWiki.

(iii) WikiWhole: we collect all sentences in
the whole FIGER corpus, which contain at least
two entity mentions. As a result, we get 1,004,831
sentences and 3,886,998 relation mentions.

In this paper, we mainly present the pre-training
results of all models on WikiRandom, because
i) they are similar to those on StanfordWiki
and WikiWhole; ii) random sentence samples
are easy to acquire. For the experiments on
WikiRandom, we perform one run on each of
the five random samples, report averaged micro-
F1 scores over all five runs as well as their stan-
dard deviations.

5.2 Baselines

We compared pre-trained deep RE models with
their randomly initialized counterparts, which dif-
fer in their input features.

Handcrafted: an LR classifier with the same
handcrafted features as the deep RE models.

Avg embed: deep RE models with handcrafted
features, pre-trained word embeddings, and en-
tity embeddings generated by averaging the em-
beddings of the words occurred in mentions. The
model parameters of the feature learning compo-
nent and the LR classifier are randomly initialized.

Random stepwise: deep RE models with hand-
crafted features, pre-trained word embeddings,
and entity embeddings trained by our stepwise
training strategy. Their model parameters are ran-
domly initialized in the same way as avg embed.

We compare both LSTM based RE models in
two different settings of pre-training: i) the LSTM
in the decoder does not share parameters with the
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LSTM in the feature learning component; ii) both
LSTM layers share parameters.

Given small training datasets, the performance
of neural network models often depend on ran-
domly initialized parameters, thus we perform five
runs with different random initialization and report
the averaged micro-F1 score.

5.3 Implementation Details

In our experiments, we reuse the 200-dimensional
pre-trained word embeddings based on the Skip-
gram model from our prior work (Qu et al., 2015).
The corresponding negative samples is 10 and the
size of local context window is 5. During step-
wise training, all entity embeddings are fine-tuned
with a learning rate 0.001 for 50 epochs within
a local context window of size 5, the number of
negative samples is set to 10. For both LSTM
variants, we implemented LSTM in the same way
as in (Vinyals et al., 2014), the dimension of hid-
den units is fixed to 200. For PCNN , the dimen-
sion of each position embedding is 70, as in (dos
Santos et al., 2015), the size of the context win-
dow is 3, and the output of the convolutional layer
consists of 200 hidden units. During pre-training,
the number of negative samples is set to 10. In
both pre-training and fine-tuning, we adopt Ada-
Grad (Duchi et al., 2011) and L2 regularizer for
optimization. We tune all hyperparameters on the
development set. As a result, the initial learning
rates ε of AdaGrad is 0.1 for both LSTM variants
and 0.05 for PCNN during pre-training, and it is
fixed to 0.05 during supervised training. For all
models, the hyperparameter of L2 regularization
is fixed to 10E−6.

6 Results and Discussions

As illustrated in Figure 3, all deep RE models
pre-trained with the best method outperform the
baselines with a wide margin unless the full train
set is used. And the performance of these pre-
trained models has small variance across all five
random training samples. Among all these mod-
els, pre-trained DepTreeLSTM is the best per-
forming model on StanfordRE on average. The
pre-trained BiLSTM achieves the largest improve-
ment w.r.t. its randomly initialized counterpart
with the entity embeddings computed by averag-
ing word embeddings. It needs merely 800 sen-
tences to achieve similar performance as the ran-
domly initialized one trained on 3200 sentences.

Both LSTM based models show that it is better
off not sharing the parameters of LSTM between
encoders and decoders. Otherwise they achieve
only similar performance as the best baselines. We
also observe that the gap between both pre-trained
LSTM variants and their competitors narrows as
the size of the in-domain training data grows more
than 1000 sentences. For them, pre-training is
only useful when training data is small.

In contrast, the pre-trained PCNN follows a dif-
ferent trend by achieving the highest improvement
over the random initialized one when there are
more than 3200 target relation mentions for train-
ing. Without pre-training, PCNN performs even
worse than the baseline with handcrafted features
unless the full training set is used. We conjecture,
the opposite trend is caused by the high variance
introduced by max-pooling and the learning of po-
sition embeddings. This model is indeed more dif-
ficult to train than the other two models, because it
obtains the highest variance among all three mod-
els when parameters are randomly initialized. De-
spite this, the pre-training provides significantly
better initialization of model parameters and leads
to small variance across all pre-training samples.

The stepwise training strategy is helpful for im-
proving entity embeddings regardless the type of
models, as shown in Figure 3. However, it is also
not the main power booster during pre-training as
the largest improvement is achieved always by un-
supervised training losses. In case of BiLSTM ,
the improvement over the averaged word embed-
dings becomes clear when more than 800 training
instances are used.

In order to gain a deeper understanding of the
effect of pre-training, we compare the representa-
tions generated by the pre-trained models with the
ones without pre-training. We compare them also
at the begin and the end of fine-tuning respectively.
In particular, we apply T-SNE (Maaten and Hin-
ton, 2008) to visualize the expression representa-
tions generated by the feature learning component
h(x) of PCNN . As the Figure 4 illustrates, com-
pare to the randomly initialized PCNN , at the be-
gin of fine-tuning, we are more likely to find the
representations closed to each other with the one
pre-trained with the sequence reconstruction loss,
if the corresponding expressions express the same
relation. It is an evidence of our high-level intu-
ition: our unsupervised pre-training losses are able
to build similar representations for similar relation
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(a) BiLSTM (b) DepTreeLSTM (c) PCNN

Figure 3: Comparison between baselines, stepwise training of entity embeddings, and the pre-trained
models. The error bars indicate standard deviation computed on all five experiments.

(a) randomly initialised, before fine-tuning (b) randomly initialised, after fine-tuning

(c) sequence reconstruction, before fine-tuning (d) sequence reconstruction, after fine-tuning

Figure 4: Visualization of the relation expressions of the top 5 most frequent relations sampled from the
development set. The representations of these expressions are generated by using h(x) of PCNN and
further visualized by T-SNE. The top two figures are generated by randomly initialized PCNN , while the
bottom ones are generated by PCNN pre-trained with SeqReconstruct . Different relations are marked
with different colors.

expressions. After fine-tuning, the expressions of
the same relation form more compact clusters by
the pre-trained model than by the randomly initial-
ized one. This explains the performance improve-
ment achieved by the pre-trained PCNN .

The size and sampling strategies of unlabeled
data have little influence on pre-training. Figure

5 shows that all models achieve similar results on
random samples as on WikiRandom. Using the
whole FIGER corpus leads to a marginal improve-
ment up to 3% F1 score. This suggests that a few
thousand randomly selected sentences are suffi-
cient for achieving the pre-training effect with this
sequence reconstruction loss.
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(a) BiLSTM (b) DepTreeLSTM (c) PCNN

Figure 5: Impact of the size of training data.

7 Conclusion

In the absence of large amount of manually labeled
training data, we propose the sequence reconstruc-
tion loss as a generalization of semi-supervised
seq2seq model for pre-training deep RE mod-
els. The pre-trained models achieve competi-
tive performance as their counterparts without pre-
training while employing merely half or even a
quarter of the training data.
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