Query-Based Single Document Summarization Using an Ensemble Noisy
Auto-Encoder

Mahmood Yousefi Azar, Kairit Sirts, Diego Molla Aliod and Len Hamey
Department of Computing
Macquarie University, Australia
mahmood.yousefiazar@students.mg.edu.au,
{kairit.sirts, diego.molla-aliod, len.hamey}@mg.edu.au

Abstract

In this paper we use a deep auto-encoder
for extractive query-based summarization.
We experiment with different input repre-
sentations in order to overcome the prob-
lems stemming from sparse inputs charac-
teristic to linguistic data. In particular, we
propose constructing a local vocabulary for
each document and adding a small random
noise to the input. Also, we propose us-
ing inputs with added noise in an Ensem-
ble Noisy Auto-Encoder (ENAE) that com-
bines the top ranked sentences from mul-
tiple runs on the same input with different
added noise. We test our model on a pub-
licly available email dataset that is specifi-
cally designed for text summarization. We
show that although an auto-encoder can be
a quite effective summarizer, adding noise
to the input and running a noisy ensemble
can make improvements.

1 Introduction

Recently, deep neural networks have gained pop-
ularity in a wide variety of applications, in partic-
ular, they have been successfully applied to vari-
ous natural language processing (NLP) tasks (Col-
lobert et al., 2011; Srivastava and Salakhutdinov,
2012). In this paper we apply a deep neural net-
work to query-based extractive summarization task.
Our model uses a deep auto-encoder (AE) (Hinton
and Salakhutdinov, 2006) to learn the latent repre-
sentations for both the query and the sentences in
the document and then uses a ranking function to
choose certain number of sentences to compose the
summary.

Typically, automatic text summarization systems
use sparse input representations such as ¢f-idf. How-
ever, sparse inputs can be problematic in neural
network training and they may make the training

slow. We propose two techniques for reducing
sparsity. First, we compose for each document a
local vocabulary which is then used to construct
the input representations for sentences in that doc-
ument. Second, we add small random noise to the
inputs. This technique is similar to the denoising
auto-encoders (Vincent et al., 2008). However, the
denoising AE adds noise to the inputs only during
training, while during test time we also add noise
to input.

An additional advantage of adding noise dur-
ing testing is that we can use the same input with
different added noise in an ensemble. Typically,
an ensemble learner needs to learn several differ-
ent models. However, the Ensemble Noisy Auto-
Encoder (ENAE) proposed in this paper only needs
to train one model and the ensemble is created from
applying the model to the same input several times,
each time with different added noise.

Text summarization can play an important role in
different application domains. For instance, when
performing a search in the mailbox according to a
keyword, the user could be shown short summaries
of the relevant emails. This is especially attractive
when using a smart phone with a small screen. We
also evaluate our model on a publicly available
email dataset (Loza et al., 2014). In addition to
summaries, this corpus has also been annotated
with keyword phrases. In our experiments we use
both the email subjects and annotated keywords as
queries.

The contributions of the paper are the following:

1. We introduce an unsupervised approach for
extractive summarization using AEs. Al-
though AEs have been previously applied to
summarization task as a word filter (Liu et al.,
2012), to the best of our knowledge we are the
first to use the representations learned by the
AE directly for sentence ranking.

2. We add small Gaussian noise to the sparse
input representations both during training and

Mahmood Yousefi Azar, Kairit Sirts, Len Hamey and Diego Molla Aliod. 2015. Query-Based Single Document
Summarization Using an Ensemble Noisy Auto-Encoder . In Proceedings of Australasian Language Technology

Association Workshop, pages 2—10.

testing. To the best of our knowledge, nois-
ing the inputs during test time is novel in the
application of AEs.

3. We introduce the Ensemble Noisy Auto-
Encoder (ENAE) in which the model is trained
once and used multiple times on the same in-
put, each time with different added noise.

Our experiments show that although a deep AE
can be a quite effective summarizer, adding stochas-
tic noise to the input and running an ensemble on
the same input with different added noise can make
improvements.

We start by giving the background in section 2.
The method is explained in section 3. Section 4
describes the input representations. The Ensem-
ble Noisy Auto-Encoder is introduced in section 5.
The experimental setup is detailed in section 6. Sec-
tion 7 discusses the results and the last section 8
concludes the paper.

2 Background

Automatic summarization can be categorized into
two distinct classes: abstractive and extractive. An
abstractive summarizer re-generates the extracted
content (Radev and McKeown, 1998; Harabagiu
and Lacatusu, 2002; Liu et al., 2015). Extractive
summarizer, on the other hand, chooses sentences
from the original text to be included in the summary
using a suitable ranking function (Luhn, 1958; De-
nil et al., 2014b). Extractive summarization has
been more popular due to its relative simplicity
compared to the abstractive summarization and this
is also the approach taken in this paper.

Both extractive and abstractive summarizers can
be designed to perform query-based summariza-
tion. A query-based summarizer aims to retrieve
and summarize a document or a set of documents
satisfying a request for information expressed by
a user’s query (Daumé III and Marcu, 2006; Tang
et al., 2009; Zhong et al., 2015), which greatly fa-
cilitates obtaining the required information from
large volumes of structured and unstructured data.
Indeed, this is the task that the most popular search
engines (e.g. Google) are performing when they
present the search results, including snippets of text
that are related to the query.

There has been some previous work on using
deep neural networks for automatic text summa-
rization. The most similar to our work is the model
by Zhong et al. (2015) that also uses a deep AE
for extractive summarization. However, they use

the learned representations for filtering out relevant
words for each document which are then used to
construct a ranking function over sentences, while
we use the learned representations directly in the
ranking function. Denil et al. (2014a) propose a
supervised model based on a convolutional neural
network to extract relevant sentences from docu-
ments. Cao et al. (2015) use a recursive neural
network for text summarization. However, also
their model is supervised and uses hand-crafted
word features as inputs while we use an AE for
unsupervised learning.

The method of adding noise to the input pro-
posed in this paper is very similar to the denoising
auto-encoders (Vincent et al., 2008). In a denoising
AE, the input is corrupted and the network tries
to undo the effect of the corruption. The intuition
is that this rectification can occur if the network
learns to capture the dependencies between the in-
puts. The algorithm adds small noise to the input
but the reconstructed output is still the same as
uncorrupted input, while our model attempts to
reconstruct the noisy input. While denoising AE
only uses noisy inputs only in the training phase,
we use the input representations with added noise
both during training and also later when we use the
trained model as a summarizer.

Previously, also re-sampling based methods have
been proposed to solve the problem of sparsity for
AE (Genest et al., 2011).

3 The Method Description

An AE (Figure 1) is a feed-forward network that
learns to reconstruct the input . It first encodes the
input x by using a set of recognition weights into
a latent feature representation C'(x) and then de-
codes this representation back into an approximate
input & using a set of generative weights.

While most neural-network-based summariza-
tion methods are supervised, using an AE provides
an unsupervised learning scheme. The general pro-
cedure goes as follows:

1. Train the AE on all sentences and queries in
the corpus.

2. Use the trained AE to get the latent represen-
tations (a.k.a codes or features) for each query
and each sentence in the document;

3. Rank the sentences using their latent represen-
tations to choose the query-related sentences
to be included into the summary.

...

Decoder

I P
Discriminative |
layer H

X Encoder

Figure 1: The structure of an AE for dimension-
ality reduction. = and % denote the input and re-
constructed inputs respectively. h; are the hidden
layers and w; are the weights. Features/codes C'(x)
are in this scheme the output of the hidden layer
hy.

The AE is trained in two phases: pre-training
and fine-tuning. Pre-training performs a greedy
layer-wise unsupervised learning. The obtained
weights are then used as initial weights in the fine-
tuning phase, which will train all the network layers
together using back-propagation. The next subsec-
tions will describe all procedures in more detail.

3.1 Pre-training Phase

In the pre-training phase, we used restricted Boltz-
mann machine (RBM) (Hinton et al., 2006). An
RBM (Figure 2) is an undirected graphical model
with two layers where the units in one layer are
observed and in the other layer are hidden. It has
symmetric weighted connections between hidden
and visible units and no connections between the
units of the same layer. In our model, the first
layer RBM between the input and the first hidden
representation is Gaussian-Bernoulli and the other
RBMs are Bernoulli-Bernoulli.

The energy function of a Bernoulli-Bernoulli
RBM, i.e. where both observed and hidden units
are binary, is bilinear (Hopfield, 1982):

Figure 2: The structure of the restricted Boltzmann
machine (RBM) as an undirected graphical model:
x denotes the visible nodes and h are the hidden
nodes.

E(m,h;&) = - Zblxl - Z ajhj

eV jeH

=Y wihjwij,
1,J

where V and H are the sets of visible and hidden
units respectively, and h are the input and hid-
den configurations respectively, w;; is the weight
between the visible unit x; and the hidden unit h;,
and b; and a; are their biases. § = {W,a, b}
denotes the set of all network parameters.

The joint distribution over both the observed and
the hidden units has the following equation:

)

€xp (_E(m7 h7 0))
Z 9
where Z =}, s exp (—E(x',h;0)) is the par-
tition function that normalizes the distribution.
The marginal probability of a visible vector is:

plas0) = T2 (E@1:0)

The conditional probabilities for a Bernoulli-
Bernoulli RBM are:

p(z, h; 0) =

2

3

exp (D, wijzi + a;)

h; =1|x;0) =
= sigm(z wijTi + aj)
ex <wi~h- +bi
p(z; = 1|h:) = p(Zj 7')
1—|—exp (Z] wijhj +bi> (5)

= sigm(z wijh; + b;)
J

When the visible units have real values and the
hidden units are binary, e.g. the RBM is Gaussian-
Bernoulli, the energy function becomes:

(zi — b;)®
E(z, h;0) = ZT —) ajh;

i€V i jeEH ©6)
> =h
_ iy N
- O_Z y 17
1’7.7

where o; is the standard deviation of the ¢th visible
unit. With unit-variance the conditional probabili-
ties are:

exp (>, wijz; + a;)
1+ exp (Zz Wi T4 + CL]’)
= sigm(z wijT; + aj)

7

p(hy = 1]z;0) =

(7)

p(zilh; 0) =

1
V2
=N Zwijhj+bi,1

J
3)

To estimate the parameters of the network, max-
imum likelihood estimation (equivalent to mini-
mizing the negative log-likelihood) can be applied.
Taking the derivative of the negative log-probability
of the inputs with respect to the weights leads to
a learning algorithm where the update rule for the
weights of a RBM is given by:

Aw;j = €({zi, hj)data — (Tis hj)model)s (9)

where € is the learning rate, angle brackets denote
the expectations and (2;, 1j) datq is the so-called
positive phase contribution and (x;, ;) moder is the
so-called negative phase contribution. In particular,
the positive phase is trying to decrease the energy
of the observation and the negative phase increases
the energy defined by the model. We use k-step
contrastive divergence (Hinton, 2002) to approx-
imate the expectation defined by the model. We
only run one step of the Gibbs sampler, which pro-
vides low computational complexity and is enough
to get a good approximation.

The RBM blocks can be stacked to form the
topology of the desired AE. During pre-training

(z —bi — 32 wijh;)?
exp | — 5

Figure 3: Several generative RBM models stacked
on top of each other.

the AE is trained greedily layer-wise using individ-
ual RBMs, where the output of one trained RBM
is used as input for the next upper layer RBM (Fig-
ure 3).

3.2 Fine-tuning Phase

In this phase, the weights obtained from the pre-
training are used to initialise the deep AE. For that
purpose, the individual RBMs are stacked on top
of each other and unrolled, i.e. the recognition and
generation weights are tied.

Ngiam et al. (2011) evaluated different types of
optimization algorithm included stochastic gradient
descent (SGD) and Conjugate gradient (CG). It has
been observed that mini-batch CG with line search
can simplify and speed up different types of AEs
compared to SGD. In this phase, the weights of the
entire network are fine-tuned with CG algorithm
using back-propagation. The cost function to be
minimised is the cross-entropy error between the
given and reconstructed inputs.

3.3 Sentence Ranking

Extractive text summarization is also known as
sentence ranking. Once the AE model has been
trained, it can be used to extract the latent represen-
tations for each sentence in each document and for
each query. We assume that the AE will place the
sentences with similar semantic meaning close to
each other in the latent space and thus, we can use
those representations to rank the sentences accord-

Sentence Ranking
A

Sentence Selection
|

D ; - Rankin
N) : g
. | - /‘4'[0'551_] ' Encoder ’
Q5 5 5 e
—— e P
Wi Wy Wy Wy
Wy W, Wy o wy

\ Wy Wy Wy e

w, /,\ PN
e T

Figure 4: The Ensemble Noisy Auto-Encoder.

ing to their relevance to the query. We use cosine
similarity to create the ranking ordering between
sentences.

4 Input Representations

The most common input representation used in
informations retrieval and text summarization sys-
tems is #f-idf (Wu et al., 2008), which represents
each word in the document using its term frequency
tf in the document, as well as over all documents
(idf). In the context of text summarization the #f-idf
representations are constructed for each sentence.
This means that the input vectors are very sparse be-
cause each sentence only contains a small number
of words.

To address the sparsity, we propose computing
the #f representations using local vocabularies. We
construct the vocabulary for each document sepa-
rately from the most frequent terms occurring in
that document. We use the same number of words
in the vocabulary for each document.

This local representation is less sparse compared
to the #f-idf because the dimensions in the input
now correspond to words that all occur in the cur-
rent document. Due to the local vocabularies the
AE input dimensions now correspond to different
words in different documents. As a consequence,
the AE positions the sentences of different docu-
ments into different semantic subspaces. However,
this behaviour causes no adverse effects because
our system extracts each summary based on a sin-
gle document only.

In order to reduce the sparsity even more, we
add small Gaussian noise to the input. The idea is
that when the noise is small, the information in the
noisy inputs is essentially the same as in the input
vectors without noise.

5 Ensemble Noisy Auto-Encoder

After ranking, a number of sentences must be se-
lected to be included into the summary. A straight-
forward selection strategy adopted in most extrac-
tive summarization systems is just to use the top
ranked sentences. However, we propose a more
complex selection strategy that exploits the noisy
input representations introduced in the previous sec-
tion. By adding random noise to the input we can
repeat the experiment several times using the same
input but with different noise. Each of those ex-
periments potentially produces a slightly different
ranking, which can be aggregated into an ensemble.

In particular, after running the sentence ranking
procedure multiple times, each time with differ-
ent noise in the input, we use a voting scheme for
aggregating the ranks. In this way we obtain the
final ranking which is then used for the sentence
selection. The voting scheme counts, how many
times each sentence appears in all different rank-
ings in the n top positions, where n is a predefined
parameter. Currently, we use the simple counting
and do not take into account the exact position of
the sentence in each of the top rankings. Based on
those counts we produce another ranking over only
those sentences that appeared in the top rankings
of the ensemble runs. Finally, we just select the top
sentences according to the final ranking to produce
the summary.

A detailed schematic of the full model is pre-
sented in Figure 4. The main difference between
the proposed approach and the commonly used
ensemble methods lies in the number of trained
models. Whereas during ensemble learning several
different models are trained, our proposed approach
only needs to train a single model and the ensemble
is created by applying it to a single input repeatedly,
each time perturbing it with different noise.

6 Experimental Setup

We perform experiments on a general-purpose sum-
marization and keyword extraction dataset (SKE)
(Loza et al., 2014) that has been annotated with
both extractive and abstractive summaries, and ad-
ditionally also with keyword phrases. It consists
of 349 emails from which 319 have been selected
from the Enron email corpus and 30 emails were
provided by the volunteers. The corpus contains
both single emails and email threads that all have
been manually annotated by two different annota-
tors.

We conduct two different experiments on the
SKE corpus. First, we generate summaries based
on the subject of each email. As some emails in the
corpus have empty subjects we could perform this
experiment only on the subset of 289 emails that
have non-empty subjects. Secondly, we generate
summaries using the annotated keyword phrases
as queries. As all emails in the corpus have been
annotated with keyword phrases, this experiment
was performed on the whole dataset. The annotated
extractive summaries contain 5 sentences and thus
we also generate 5 sentence summaries.

ROUGE (Lin, 2004) is the fully automatic metric
commonly used to evaluate the text summarization
results. In particular, ROUGE-2 recall has been
shown to correlate most highly with human evalua-
tor judgements (Dang and Owczarzak, 2008). We
used 10-fold cross-validation, set the confidence
interval to 95% and used the jackknifing procedure
for multi-annotation evaluation (Lin, 2004).

Our deep AE implementation is based on G. Hin-
ton’s software, which is publicly available.! We
used mini-batch gradient descent learning in both
pre-training and fine-tuning phases. The batch size
was 100 data items during pre-training and 1000
data items during fine-tuning phase. During pre-
training we trained a 140-40-30-10 network with
RBMs and in fine-tuning phase we trained a 140-
40-30-10-30-40-140 network as the AE. Here, 140
is the size of the first hidden layer and 10 is the size
of the sentence representation layer, which is used
in the ranking function.

As a pre-processing step, we stem the docu-
ments with the Porter stemmer and remove the
stop words.?

'nttp://www.cs.toronto.edu/-hinton/
MatlabForSciencePaper.html

2Stop word list obtained from http://xpo6.com/
list-of-english-stop-words

Model Subject Phrases
tf-idf V=1000 0.2312 0.4845
tf-idf V=5% 0.1838 0.4217
tf-idf V=2% 0.1435 0.3166
tf-idf V=60 0.1068 0.2224
AE (tf-idf V=2%) 0.3580 0.4795
AE (#f-idf V=60) 0.3913 0.4220
L-AE 0.4948 0.5657
L-NAE 0.4664 0.5179
L-ENAE 0.5031 0.5370

Table 1: ROUGE-2 recall for both subject-oriented
and key-phrase-oriented summarization. The upper
section of the table shows #f-idf baselines with var-
ious vocabulary sizes. The middle section shows
AE with #f-idf as input representations. The bottom
section shows the AE with input representations
constructed using local vocabularies (L-AE), L-AE
with noisy inputs (L-NAE) and the Ensemble Noisy
AE (L-ENAE).

We use 1f-idf> as the baseline. After preprocess-
ing, the SKE corpus contains 6423 unique terms
and we constructed #f-idf vectors based on the 1000,
320 (5% of the whole vocabulary), 128 (2% of the
whole vocabulary), and 60 most frequently occur-
ring terms. V' = 60 is the size of the #f representa-
tion used in our AE model. *

We apply the AE model to several different input
representations: ¢f-idf, tf constructed using local
vocabularies as explained in Section 4 (L-AE), #f
using local vocabularies with added Gaussian noise
(L-NAE) and in the noisy ensemble (L-ENAE).

7 Results and Discussion

Table 1 shows the ROUGE-2 scores of the #f-idf
baselines and the AE model with various input
representations. The columns show the scores of
the summaries generated using the subjects and
keyword phrases as queries respectively.

The main thing to note is that AE performs in
most cases much better than the #f-idf baseline, es-
pecially when using subjects as queries. The only
scenario where the #f-idf can compete with the AE

3We use the inverse frequency as the idf term.

*We did not train the AE-s with larger vocabularies be-
cause this would have required changing the network structure
as during the preliminary experiments we noticed that the
network did not improve much when using inputs larger than
the first hidden layer.

is with the vocabulary of size 1000 and when using
keyword phrases as queries. This is because the
manually annotated keyword phrases do in many
cases contain the same words as extracted summary
sentences, especially because the queries and sum-
maries where annotated by the same annotators.
However, when the vocabulary size is the same as
used in the AE, #f-idf scores are much lower in both
experimental settings.

The second thing to notice is that although AE
with #f-idf input performs better than plain #f-idf,
it is still quite a bit worse than AE using #f repre-
sentations derived from the local vocabularies. We
believe it is so because the deep AE can extract ad-
ditional information from the #f-idf representations,
but the AE learning is more effective when using
less sparse inputs, provided by the #f representa-
tions constructed from local vocabularies.

Although we hoped that the reduced sparsity
stemming from the added noise will improve the
results even more, the experiments show that this is
not the case—AE without noise performs in both
settings better than the noisy AE. However, when
combining the rankings of the noisy ensemble, the
results are much better than a single noisy AE and
may even improve over the simple AE. This is the
case when extracting summaries based on the sub-
ject. The subjects of the emails are less informative
than the annotated keyword phrases. Perhaps this
explains why the ENAE was able to make use of
the noisy inputs to gain small improvements over
the AE without any noise in this scenario.

There is considerable difference between the re-
sults when using the email subjects or keyword
phrases as queries with keyword phrases leading to
better summaries. This is to be expected because
the keyword phrases have been carefully extracted
by the annotators. The keyword phrases give the
highest positive contribution to the ¢d-idf baselines
with largest vocabularies, which clearly benefits
from the fact that the annotated sentences contain
the extracted keyword phrases. The ENAE shows
the smallest difference between the subject-based
and keyword-based summaries. We believe it is
because the ENAE is able to make better use of the
whole latent semantic space of the document to ex-
tract the relevant sentences to the query, regardless
of whether the query contains the exact relevant
terms or not.

Figure 5 illustrates the ROUGE-2 recall of the
best baseline and the AE models with both #f-idf

Recall
0.6
051
0.42
033
0.24
015
1 2 3 4 5
TE-IDF V= 1000 AE (TE-IDE V = 60) AE

Figure 5: ROUGE-2 recall for summaries contain-
ing different number of sentences using the key-
word phrases as queries.

and #f input representations using keyword phrases
as queries and varying the length of the generated
summaries. In this experiment, each summary was
evaluated against the annotated summary of the
same length. As is expected, the results improve
when the length of the summary increases. While
the AE model’s results improve almost linearly
over the 5 sentences, tf-idf gains less from increas-
ing the summary length from 4 to 5 sentences. The
scores are almost the same for the #f-idf and the
AE with #f representation with 1 and 2 sentences.
Starting from 3 sentences, the AE performs clearly
better.

To get a better feel what kind of summaries the
ENAE system is generating we present the results
of a sample email thread (ECT020). This typical
email thread contains 4 emails and 13 lines. The
summaries extracted by the ENAE system using
both subjects and keyword phrases are given in
Figure 6. The annotated summaries consist of sen-
tences [03, 04, 10, 11, 05] and [03, 04, 11, 06, 05]
for the first and the second annotator respectively.

Both generated summaries contain the sentences
03, 04 and 06. These were also the sentences cho-
sen by the annotators (03 and 04 by the first anno-
tation and all three of them by the second). The
sentence 11 present in the subject-based summary
was also chosen by both annotators, while sentence
10 in keyword-based summary was also annotated
by the first annotator. The only sentences that were
not chosen by the annotators are 08 in the subject-
based summary and 12 in the keyword-based sum-
mary. Both annotators had also chosen sentence 05,
which is not present in the automatically generated
summaries. However, this is the sentence that both
annotators gave the last priority in their rankings.

In general the order of the sentences generated
by the system and chosen by the annotators is the

a) ENAE summary based on subject

03 Diamond-san, As I wrote in the past, Nissho
Iwai’s LNG related department has been
transferred into a new joint venture company
between Nissho and Sumitomo Corp. as of
October 1, 2001, namely, "LNG Japan Corp.”.

We are internally discussing when we start our
official meeting.

08

04 In this connection, we would like to conclude
another NDA with LNG Japan Corp, as per

attached.

Also, please advise us how we should treat
Nissho’s NDA in these circumstances.

06

11
to a joint venture.

03

04

They need to change the counterparty name due 06

b) ENAE summary based on keyword phrases
10 Please approve or make changes to their new
NDA.

Diamond-san, As I wrote in the past, Nissho
Iwai’s LNG related department has been
transferred into a new joint venture company
between Nissho and Sumitomo Corp. as of
October 1, 2001, namely, "LNG Japan Corp.”.

In this connection, we would like to conclude
another NDA with LNG Japan Corp, as per
attached.

12 1 wanted to let you know this was coming in as

soon as Mark approves the changes.

Also, please advise us how we should treat
Nissho’s NDA in these circumstances.

Figure 6: Examples of subject-based (left) and keyword-based (right) summaries extrated by the Ensemble

Noisy AE.

a) First annotator

LNG Japan Corp. is a new joint venture between
Nissho and Sumitomo Corp. Given this situation
a new NDA is needed and sent for signature to
Daniel Diamond. Daniel forward the NDA to
Mark for revision.

b) Second annotator

An Enron employee is informed by an employee
of Nissho Iwai that the Nissho Iwai’s LNG related
department has been transferred into a new joint
venture company, namely, 'LNG Japan Corp.’. As
a result, there is a need to change the counterparty
name in the new NDA. The new change has to be
approved and then applied to the new NDA with
LNG Japan Corporation

Figure 7: The abstractive summaries created by the
annotators for the example email.

same in both example summaries. The only excep-
tion is sentence 10, which is ranked as top in the
summary generated based on the keyword phrases
but chosen as third after the sentences 03 and 04
by the first annotator.

Looking at the annotated abstractive summaries
we found that the sentence 12 chosen by the
keyword-based summarizer is not a fault extrac-
tion. Although neither of the annotators chose this
sentence for the extractive summary, the informa-
tion conveyed in this sentence can be found in both

annotated abstractive summaries (Figure 7).

8 Conclusion

In this paper we used a deep auto-encoder (AE) for
query-based extractive summarization. We tested
our method on a publicly available email dataset
and showed that the auto-encoder-based models
perform much better than the #f-idf baseline. We
proposed using local vocabularies to construct in-
put representations and showed that this improves
over the commonly used #f-idf, even when the lat-
ter is used as input to an AE. We proposed adding
small stochastic noise to the input representations
to reduce sparsity and showed that constructing an
ensemble by running the AE on the same input
multiple times, each time with different noise, can
improve the results over the deterministic AE.

In future, we plan to compare the proposed sys-
tem with the denoising auto-encoder, as well as
experiment with different network structures and
vocabulary sizes. Also, we intend to test our En-
semble Noisy Auto-Encoder on various different
datasets to explore the accuracy and stability of the
method more thoroughly.

References

Zigiang Cao, Furu Wei, Li Dong, Sujian Li, and Ming
Zhou. 2015. Ranking with recursive neural net-
works and its application to multi-document summa-

rization. In Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence.

Ronan Collobert, Jason Weston, Lon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research,
12:2493-2537.

Hoa Trang Dang and Karolina Owczarzak. 2008.
Overview of the tac 2008 update summarization task.
In Proceedings of text analysis conference, pages 1—
16.

Hal Daumé IIT and Daniel Marcu. 2006. Bayesian
query-focused summarization. In Proceedings of
ACLO06, pages 305-312. Association for Computa-
tional Linguistics.

Misha Denil, Alban Demiraj, and Nando de Freitas.
2014a. Extraction of salient sentences from labelled
documents. arXiv preprint arXiv:1412.6815.

Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil
Blunsom, and Nando de Freitas. 2014b. Modelling,
visualising and summarising documents with a sin-

gle convolutional neural network. arXiv preprint
arXiv:1406.3830.

Pierre-Etienne Genest, Fabrizio Gotti, and Yoshua Ben-
gio. 2011. Deep learning for automatic summary
scoring. In Proceedings of the Workshop on Auto-
matic Text Summarization, pages 17-28.

Sanda M Harabagiu and Finley Lacatusu. 2002. Gen-
erating single and multi-document summaries with
gistexter. In Document Understanding Conferences.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504-507.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye
Teh. 2006. A fast learning algorithm for deep be-
lief nets. Neural computation, 18(7):1527-1554.

Geoffrey E Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural com-
putation, 14(8):1771-1800.

John J Hopfield. 1982. Neural networks and physi-
cal systems with emergent collective computational
abilities. Proceedings of the national academy of
sciences, 79(8):2554-2558.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop, volume 8.

Yan Liu, Sheng-hua Zhong, and Wenjie Li. 2012.
Query-oriented multi-document summarization via
unsupervised deep learning. In Tiventy-Sixth AAAI
Conference on Artificial Intelligence.

10

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A Smith. 2015. Toward abstrac-
tive summarization using semantic representations.

Vanessa Loza, Shibamouli Lahiri, Rada Mihalcea, and
Po-Hsiang Lai. 2014. Building a dataset for summa-
rization and keyword extraction from emails. Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14).

H. P. Luhn. 1958. The automatic creation of literature
abstracts. IBM Journal of Research Development,
2(2):159.

Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby
Prochnow, Quoc V Le, and Andrew Y Ng. 2011.
On optimization methods for deep learning. In Pro-
ceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 265-272.

Dragomir R Radev and Kathleen R McKeown. 1998.
Generating natural language summaries from mul-
tiple on-line sources. Computational Linguistics,
24(3):470-500.

Nitish Srivastava and Ruslan R Salakhutdinov. 2012.
Multimodal learning with deep boltzmann machines.
In Advances in neural information processing sys-
tems, pages 2222-2230.

Jie Tang, Limin Yao, and Dewei Chen. 2009. Multi-
topic based query-oriented summarization. In SDM,
volume 9, pages 1147-1158. SIAM.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In Proceedings of the 25th international
conference on Machine learning, pages 1096—1103.
ACM.

Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong,
and Kui Lam Kwok. 2008. Interpreting tf-idf term
weights as making relevance decisions. ACM Trans-
actions on Information Systems (TOIS), 26(3):13.

Sheng-hua Zhong, Yan Liu, Bin Li, and Jing Long.
2015. Query-oriented unsupervised multi-document
summarization via deep learning model. Expert Sys-
tems with Applications, 42(21):8146-8155.

