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Abstract

In our contribution to the ALTA 2012
shared task we experimented with the use
of cluster-based features for sentence clas-
sification. In a first stage we cluster the
documents according to the distribution of
sentence labels. We then use this informa-
tion as a feature in standard classifiers. We
observed that the cluster-based feature im-
proved the results for Naive-Bayes classi-
fiers but not for better-informed classifiers
such as MaxEnt or Logistic Regression.

1 Introduction

In this paper we describe the experiments that led
to our participation to the ALTA 2012 shared task.
The ALTA shared tasks1 are programming com-
petitions where all participants attempt to solve
a problem based on the same data. The partic-
ipants are given annotated sample data that can
be used to develop their systems, and unannotated
test data that is used to submit the results of their
runs. There are no constraints about what tech-
niques of information are used to produce the fi-
nal results, other than that the process should be
fully automatic.

The 2012 task was about classifying sentences
of medical publications according to the PIBOSO
taxonomy. PIBOSO (Kim et al., 2011) is an alter-
native to PICO for the specification of the main
types of information useful for evidence-based
medicine. The taxonomy specifies the follow-
ing types: Population, Intervention, Background,
Outcome, Study design, and Other. The dataset
was provided by NICTA2 and consisted of 1,000

1http://alta.asn.au/events/sharedtask2012/
2http://www.nicta.com.au/

medical abstracts extracted from PubMed split
into an annotated training set of 800 abstracts and
an unannotated test set of 200 abstracts. The com-
petition was hosted by “Kaggle in Class”3.

Each sentence of each abstract can have mul-
tiple labels, one per sentence type. The “other”
label is special in that it applies only to sentences
that cannot be categorised into any of the other
categories. The “other” label is therefore disjoint
from the other labels. Every sentence has at least
one label.

2 Approach

The task can be approached as a multi-label se-
quence classification problem. As a sequence
classification problem, one can attempt to train a
sequence classifier such as Conditional Random
Fields (CRF), as was done by Kim et al. (2011).
As a multi-label classification problem, one can
attempt to train multiple binary classifiers, one per
target label. We followed the latter approach.

It has been observed that the abstracts of differ-
ent publication types present different character-
istics that can be exploited. This lead Sarker and
Mollá (2010) to the implementation simple but ef-
fective rule-based classifiers that determine some
of the key publication types for evidence based
medicine. In our contribution to the ALTA shared
task, we want to use information about different
publication types to determine the actual sentence
labels of the abstract.

To recover the publication types one can at-
tempt to use the meta-data available in PubMed.
However, as mentioned by Sarker and Mollá
(2010), only a percentage of the PubMed abstracts
is annotated with the publication type. Also,

3http://inclass.kaggle.com/c/alta-nicta-challenge2
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time limitations did not let us attempt to recover
the PubMed information before the competition
deadline. Alternatively, one can attempt to use a
classifier to determine the abstract type, as done
by Sarker and Mollá (2010).

Our approach was based on a third option. We
use the sentence distribution present in the ab-
stract to determine the abstract type. In other
words, we frame the task of determining the ab-
stract type as a task of clustering. We attempt
to determine natural clusters of abstracts accord-
ing to the actual sentence distributions in the ab-
stracts, and then use this information to determine
the labels of the abstract sentences.

Our approach runs into a chicken-and-egg
problem: to cluster the abstracts we need to know
the distribution of their sentence labels. But to de-
termine the sentence labels we need to know the
cluster to which the abstract belongs. To break
this cycle we use the following procedure:

At the training stage:

1. Use the annotated data to train a set of classi-
fiers (one per target label) to determine a first
guess of the sentence labels.

2. Replace the annotated information with the
information predicted by these classifiers,
and cluster the abstracts according to the dis-
tribution of predicted sentence labels (more
on this below).

3. Train a new set of classifiers to determine the
final prediction of the sentence labels. The
classifier features include, among other fea-
tures, information about the cluster ID of the
abstract to which the sentence belongs.

Then, at the prediction stage:

1. Use the first set of classifiers to obtain a first
guess of the sentence labels.

2. Use the clusters calculated during the train-
ing stage to determine the cluster ID of the
abstracts of the test set.

3. Feed the cluster ID to the second set of clas-
sifiers to obtain the final sentence type pre-
diction.

2.1 Clustering the abstracts
The clustering phase clusters the abstracts accord-
ing the distribution of sentence labels. In par-
ticular, each abstract is represented as a vector,

where each vector element represents the relative
frequency of a sentence label. For example, if ab-
stract A contains 10 sentences such that there are
2 with label “background”, 1 with label “popu-
lation”, 2 with label “study design”, 3 with la-
bel “intervention”, 3 with label “outcome”, and
1 with label “other”, then A is represented as
(0.2, 0.1, 0.2, 0.3, 0.3, 0.2, 0.1). Note that a sen-
tence may have several labels, so the sum of all
features of the vector is greater than or equal to 1.

We use K-means to cluster the abstracts. We
then use the cluster centroid information to deter-
mine the cluster ID of unseen abstracts at the pre-
diction stage. In particular, at prediction type an
abstract is assigned the cluster ID whose centroid
is closest according to the clustering algorithm in-
herent distance measure.

In preliminary experiments we divided the ab-
stracts into different zones and computed the label
distributions in each zone. The rationale is that
different parts of the abstract are expected to fea-
ture different label distributions. For example, the
beginning of the abstract would have a relatively
larger proportion of “background” sentences, and
the end would have a relatively larger proportion
of “outcome” sentences. However, our prelimi-
nary experiments did not show significant differ-
ences in the results with respect to the number
of zones. Therefore, in the final experiments we
used the complete sentence distribution of the as
one unique zone, as described at the beginning of
this section.

Our preliminary experiments gave best results
for a cluster size of K = 4 and we used that
number in the final experiments. We initially used
NLTK’s implementation of K-Means and submit-
ted our results to Kaggle using this implemen-
tation. However, in subsequent experiments we
replaced NLTK’s implementation with our own
implementation because NLTK’s implementation
was not stable and would often crash, especially
for values of K >= 4. In our final implemen-
tation of K-Means we run 100 instances of the
cluster algorithm with different initialisation val-
ues and choose the run with lower final cost. The
chosen distance measure is

�
i(xi − ci)

2, where
xi is feature i of the abstract, and ci is feature i of
the centroid of the cluster candidate.
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3 Results

For the initial experiments we used NLTK’s Naive
Bayes classifiers. We experimented with the fol-
lowing features:

p Sentence position in the abstract.

np Normalised sentence position. The position is
normalised by dividing the value of p with
the total number of sentences in the abstract.

w Word unigrams.

s Stem unigrams.

c Cluster ID as returned by the clustering algo-
rithm.

The results of the intial experiments are shown
in Table 1. Rows in the table indicate the first
classifier, and columns indicate the second clas-
sifier. Thus, the best results (in boldface) are ob-
tained with a first set of classifiers that use word
unigrams plus the normalised sentence position,
and a second set of classifiers that use the cluster
information and the normalised sentence position.

Due to time constraints we were not able to
try all combinations of features, but we can ob-
serve that the cluster information generally im-
proves the F1 scores. We can also observe that
the word information is not very useful, presum-
ably because the correlation between some of the
features degrades the performance of the Naive
Bayes classifiers.

In the second round of experiments we used
NLTK’s MaxEnt classifier. We decided to use
MaxEnt because it handles correlated features
and therefore better results are expected. As Ta-
ble 1 shows, the results are considerably bet-
ter. Now, word unigram features are decidedly
better, but the impact of the cluster information
is reduced. MaxEnt with cluster information is
only marginally better than the run without clus-
ter information, and in fact the difference was not
greater than the variation of values that were pro-
duced among repeated runs of the algorithms.

We performed very few experiments with the
MaxEnt classifier because of a practical problem:
shortly after running the experiments and submit-
ting to Kaggle, NLTK’s MaxEnt classifier stopped
working. We attributed this to an upgrade of our
system to a newer release of Ubuntu, which pre-
sumably carried a less stable version of NLTK.

We subsequently implemented a Logistic Regres-
sion classifier from scratch and carried a few fur-
ther experiments. The most relevant ones are in-
cluded in Table 1. We only tested the impact us-
ing all features due to time constraints, and to the
presumption that using only sentence positions
would likely produce results very similar to those
of the Naive Bayes classifiers, as was observed
with the MaxEnt method.

The Logistic Regression classifier used a sim-
ple gradient descent optimisation algorithm. Due
to time constraints, however, we forced it to stop
after 50 iterations. We observed that the runs that
did not use the cluster information reached closer
to convergence than those that used the cluster in-
formation, and we attribute to this the fact that the
runs with cluster information had slightly worse
F1. Overall the results were slightly worse than
with NLTK’s MaxEnt classifiers, presumably due
to the fact that the optimisation algorithm was
stopped before convergence.

The value in boldface in the MaxEnt compo-
nent of Table 1 shows the best result. This cor-
responds to a first and second set of classifiers
that use all the available features. This set up of
classifiers was used for the run submitted to Kag-
gle which achieved best results, with an AUC of
0.943. That placed us in third position in the over-
all ranking.

Table 2 shows the results of several of the runs
submitted to Kaggle. Note that, whereas in Ta-
ble 1 we used a partition of 70% of the training
set for training and 30% for testing, in Table 2 we
used the complete training set for training and the
unannotated test set for the submission to Kaggle.
Note also that Kaggle used AUC as the evaluation
measure. Column prob shows the results when
we submitted class probabilities. Column thesh-
old shows the results when we submitted labels
0 and 1 according to the classifier threshold. We
observe the expected degradation of results due to
the ties. Overall, F1 and AUC (prob) preserved
the same order, but AUC (threshold) presented
discrepancies, again presumably because of the
presence of ties.

4 Summary and Conclusions

We tested the use of cluster-based features for the
prediction of sentence labels of medical abstracts.
We used multiple binary classifiers, one per sen-
tence label, in two stages. The first stage used
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With Naive Bayes classifiers

− c+ p c+ np c+ w c+ w + np c+ s+ np

p 0.440 0.572
np 0.555 0.577
w 0.448 0.610 0.442
w + np 0.471 0.611 0.468
s+ np 0.485

With MaxEnt classifiers

− c+ p c+ np c+ w c+ w + np c+ s+ np

p
np 0.574
w 0.646 0.704
w + np 0.740 0.759
ws+ np 0.758

With Logistic Regression classifiers

− c+ p c+ np c+ w c+ w + np c+ s+ np

w + np 0.757 0.747

Table 1: F1 scores with a Naive Bayes classifiers.

F1 AUC (prob) AUC (threshold)

MaxEnt w + np− c+ w + np 0.759 0.943
NB w − c+ np 0.610 0.896
NB np− c+ np 0.577 0.888
NB p− c+ p 0.572 0.873 0.673
NB w 0.448 0.727
NB w − c+ w 0.442 0.793
NB p 0.440 0.654

Table 2: Comparison between F1 in our results and AUC in the results submitted to Kaggle.

standard features, and the second stage incorpo-
rated cluster-based information.

We observed that, whereas cluster-based infor-
mation improved results in Naive Bayes classi-
fiers, it did not improve results in better informed
classifiers such as MaxEnt or Logistic Regression.
Time constraints did not allow us to perform com-
prehensive tests, but it appears that cluster-based
information as derived in this study is not suffi-
ciently informative. So, after all, a simple set of
features based on word unigrams and sentence po-
sitions fed to multiple MaxEnt or Logistic Regres-
sion classifiers were enough to obtain reasonably
good results for this task.

Further work on this line includes the incor-

poration of additional features at the clustering
stage. It is also worth testing the impact of publi-
cation types as annotated by MetaMap or as gen-
erated by Sarker and Mollá (2010).
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