
Feature Stacking for Sentence Classification in Evidence-Based Medicine

Marco Lui

NICTA VRL

Department of Computing and Information Systems

University of Melbourne

mhlui@unimelb.edu.au

Abstract

We describe the feature sets and methodol-

ogy that produced the winning entry to the

ALTA 2012 Shared Task (sentence classi-

fication in evidence-based medicine). Our

approach is based on a variety of feature

sets, drawn from lexical and structural in-

formation at the sentence level, as well

as sequential information at the abstract

level. We introduce feature stacking, a met-

alearner to combine multiple feature sets,

based on an approach similar to the well-

known stacking metalearner. Our system

attains a ROC area-under-curve of 0.972

and 0.963 on two subsets of test data.

1 Introduction

The ALTA Shared Task 20121 was a sentence-

level classification problem in the domain of

biomedical abstracts. Given a collection of ab-

stracts pre-segmented into discrete sentences, the

task is to label each sentence according to one of

6 pre-defined classes. The dataset used was in-

troduced by Kim et al. (2011), which also give a

description of the classes and an analysis of their

distribution. In this work, we will describe the

winning entry, focusing on the feature sets and

machine learning techniques used.

The main contributions of this work are: (1)

additional features to describe sentences for au-

tomatic classification of sentences to support evi-

dence based medicine beyond those of Kim et al.

(2011), (2) a method for performing the task that

does not use a sequential learning algorithm, and

(3) a method to combine multiple feature sets that

outperforms a standard concatenation approach.

1
http://www.alta.asn.au/events/

sharedtask2012

2 Task Description

The dataset of Kim et al. (2011) (hereafter re-

ferred to as NICTA-PIBOSO) consists of 11616

sentences (10379 after headings are removed),

manually annotated over the 6 PIBOSO classes

(Kim et al., 2011). For the shared task, NICTA-

PIBOSO was divided by the competition orga-

nizers into train and test partitions. Participants

were given labels for the training sentences, and

asked to produce an automatic system to predict

the labels of the test instances. We do not give

further details of the task as it will be covered in

much greater depth by the shared task organizers

in a paper that will appear alongside this paper.

The shared task was hosted on Kaggle,2 and as

part of Kaggle’s standard competition structure,

the test dataset was further subdivided into “pub-

lic” and “private” subsets. Participants did not

know which test sentence belonged to which sub-

set. Each submission by a participant consisted

of predictions over the entire test set, and Kag-

gle then automatically computed the competition

metric broken down over the public and private

subsets. Participants were allowed to submit up to

2 entries per day, and upon submission were im-

mediately given a score on the public subset. The

score on the private subset was withheld until af-

ter the conclusion of the submission period. Final

ranking of competitors is based on the private sub-

set of the test data; the breakdown between public

and private serves to penalize entries that overfit

the test data in the public subset. The method we

describe in this work was the top-scoring system

on both the public and private subsets.

2
http://www.kaggle.com

Marco Lui. 2012. Feature Stacking for Sentence Classification in Evidence-Based Medicine. In Proceedings of
Australasian Language Technology Association Workshop, pages 134−138.



3 Software Used

All experimentation and analysis was imple-

mented using hydrat3, a declarative frame-

work for text categorization developed by the au-

thor. Word tokenization was carried out using

NLTK (Bird et al., 2009). The learning algorithm

used was logistic regression, as implemented in

liblinear (Fan et al., 2008). For part-of-

speech tagging, we used TreeTagger (Schmid,

1994).

4 Features

NICTA-PIBOSO contains two different types

of abstracts, structured and unstructured. Un-

structured abstracts are free text, as is the com-

mon format in NLP literature. Structured ab-

stracts are divided into sections by headings, such

as “Background” or “Outcome”, and are becom-

ing increasingly common in biomedical literature.

For the shared task participants were not given an

explicit indication of which abstracts were struc-

tured, or which “sentences” were actually head-

ings. In this work, we applied a simple heuristic:

any sentence which contained only uppercase let-

ters was considered a heading, and any abstract

containing a heading was considered structured.

This definition is slightly more simplistic than that

used by Kim et al. (2011), but in practice the dif-

ference is minimal.

4.1 Lexical Features

Lexical features are features drawn from the text

of a sentence. The lexical feature sets we use are:

(1) BOW, a standard bag-of-words. We retained

the 15,000 most frequent words, and did not apply

stopping or stemming. (2) LEMMAPOS, bigrams

of part-of-speech tagged lemmas. (3) POS, bi-

grams and trigrams of part-of-speech tags, with-

out the underlying lemma. Whereas BOW and

LEMMAPOS are fairly standard lexical features,

POS is relatively novel. We included POS based

on the work of Wong and Dras (2009), which used

POS n-grams to capture unlexicalized aspects of

grammar in order to profile a document’s author

by their native language. The intuition behind the

use of POS for our task is that sentences from

different PIBOSO categories may have systematic

differences in their grammatical structure.

3
http://hydrat.googlecode.com

Each of BOW, LEMMAPOS and POS are ex-

tracted for each sentence. We then use these fea-

tures to define lexico-sequential features, which

are simply the summation of the feature vectors

of specific sentences in the same abstract as the

target sentence. We refer to these other sentences

as the context. The contexts that we use are:

(1) all prior sentences in the same abstract, (2)

all subsequent sentences, (3) n-prior sentences

(1≤n≤6), (4) n-subsequent sentences (1≤n≤6),

(5) n-window (i.e. n-prior and n-subsequent,

1≤n≤3). These lexico-sequential features are in-

tended to capture the information that would be

utilized by a sequential learner.

4.2 Structural Features

Structural features model characteristics of a sen-

tence not directly tied to the specific lexicaliza-

tion.4 In this work, our structural features are: (1)

SENTLEN, the length of the sentence, in both ab-

solute and relative terms, (2) HEADING, the head-

ing associated with each sentence, (3) ABSTLEN,

the length of the containing abstract, and (4) IS-

STRUCT, a Boolean feature indicating if the ab-

stract is structured.

We treat HEADING similarly to BOW,

LEMMAPOS and POS, and extract the same

5 types of sequential (indirect dependency)

features. We also extract POSITION, a set of

sequential features based on the position of the

sentence in the abstract, in both absolute and

relative terms.

4.3 Differences with Kim et al. (2011)

To summarize, the differences between our sen-

tence features and those of Kim et al. (2011)

are: (1) we use POS n-grams in addition to POS-

tagged lemmas, (2) we used sentence length as a

feature, (3) we expanded indirect dependencies to

include sentences both before as well as after the

target sentence, and (4) we increased the scope

of indirect dependencies to include BoW, POS as

well as section heading information. Differently

to Kim et al. (2011), we did not use (1) MetaMap

(or any thesaurus), (2) rhetorical roles to group

headings, and (3) direct dependency features.

4The distinction between lexical and structural is some-

what arbitrary, as for example the length of sentences is ob-

viously dependent on the length of the words contained, but

we maintain this distinction for consistency with Kim et al.

(2011).

135



(a) concatenation (b) feature stacking

Figure 1: Comparison of (left) a standard concatenation-based approach to combining feature sets with

(right) feature stacking, a metalearning approach.

5 Classifiers

Our main challenge in building a classifier was

the need to integrate the large variety of features

we extracted. The feature sets are very hetero-

geneous; some are large and sparse (e.g. BOW),

whereas others are small and dense (e.g. struc-

tural features). Relative weighting between fea-

ture sets is difficult, and simply concatenating

the feature vectors often led to situations where

adding more features reduced the overall accuracy

of the system. Rather than attempt to tune fea-

ture weights in an ad-hoc fashion, we opted for a

metalearning approach. The intuition behind this

is that in principle, the output of “weak” learn-

ers can be combined to produce a “strong(-er)”

learner (Schapire, 1990).

The metalearner we implemented is closely re-

lated to stacking (Wolpert, 1992). We call our ap-

proach feature stacking in order to highlight the

difference, the main difference being that in con-

ventional stacking, a number of different learn-

ing algorithms (the L0 learners) are used on the

same training data, and their respective predic-

tions are combined using another learner (the L1

learner). In our approach, we do not use different

algorithms as L0 learners; we always use logistic

regression, but instead of training each L0 learner

on all the available features, we train a learner on

each feature set (e.g. BOW, LEMMAPOS, etc).

Hence, we are learning a “weak” learner for each

feature set, which are then composed into the fi-

nal “strong” learner. This approach has two main

advantages over simple concatenation of features:

(1) it learns the relative importance of each fea-

ture set, and (2), it allows learning of non-linear

relationships between features.

Figure 1 shows a side-by-side comparison of

the two approaches to feature combination. The

key difference is that the stacking approach in-

troduces an additional inner (L0) layer, where

each instance is projected into the stacked feature

space. Given that we have n feature sets and k

possible classes, each sentence (training and test)

is passed to the L1 learner as a n×k feature vec-

tor. The process for converting L0 features into

L1 features is different for the training and the test

data, because we only have labels for the train-

ing data. For the training data, we use a cross-

validation to generate a vector over the k classes

for each sentence. We repeat this once for each

of the n feature sets, thus yielding the n×k fea-

ture L1 representation. For the test data, we do

not have labels and thus for each of the n feature

sets we train a classifier over all of the training

sentences. We use each of these n classifiers to

generate a k-feature vector for each test sentence,

which we then concatenate into the final n×k fea-

ture L1 representation.

We chose logistic regression as the learner af-

ter initial results indicated it outperformed naive

Bayes and SVM in feature stacking on this task.

Logistic regression is theoretically well-suited to

feature stacking, as stacked logistic regression

corresponds to an artificial neural network (Drei-

seitl and Ohno-Machado, 2002).

136



Combination Output Public Private

Concatenation Boolean 0.885 0.883

Stacking Boolean 0.893 0.875

Stacking Probability 0.972 0.963

Table 1: ROC area-under-curve for Public and

Private test sets, using (1) feature stacking or

concatenation for feature combination, and (2)

Boolean or probabilistic output.

6 Results

In this work, we report results that were made

available on the Kaggle leaderboard. These re-

sults are not directly comparable to previous work

(Kim et al., 2011; Verbeke et al., 2012), because

the evaluation metric used is fundamentally dif-

ferent. Previously, the task was evaluated us-

ing metrics based on precision, recall and F1-

score, which is standard for classification tasks.

However, in the shared task the metric used was

the Receiver Operating Characteristic area under

curve (ROC AUC). This metric is common in in-

formation retrieval, and it takes into consideration

not just a single classification for each sentence,

but rather the relative ordering between classes,

in order to evaluate a system’s ability to trade off

precision for recall. This is an easier problem

than classification, because classification is all-

or-nothing; an instance label is either correct or

wrong. Ranking-based metrics such as ROCAUC

soften this, by penalizing ranking the correct class

second much less than ranking it sixth.

Despite this ranking based metric, there was

some initial confusion amongst competitors as to

whether classification predictions (i.e. a Boolean

value for each possible class) or ranking predic-

tions (i.e. a probability value for each class, which

is used to rank the classes) should be submitted.

This was clarified by the organizers, and led to all

participants seeing substantial increases in score.

This difference can be seen in Table 1, where our

system improved from 0.893 to 0.972 on the pub-

lic leaderboard. For Boolean output, we assigned

only the most probable label to each sentence,

whereas for probabilistic output, we provided the

computed probability of each label. Our Boolean

output essentially ignored the small proportion

of multi-label sentences, treating all sentences as

mono-label. This likely accounts for some of the

increase in score, though we expect that a good

proportion is also due to instances where the cor-

rect class was ranked second.

In Table 1, our performance on the public

leaderboard suggested that the stacking-based ap-

proach to feature combination improved over the

concatenation approach (also using logistic re-

gression). On this basis, we focused all further de-

velopment on using the stacking-based approach.

However, the private leaderboard results (which

were only released at the conclusion of the com-

petition) tell a different story; here the stacking

result is lower than the concatenation result on

Boolean output. Unfortunately, we did not submit

a run using probabilistic output from concatena-

tion, so we do not have this data point for com-

parison. Based on just these results, we cannot

draw any conclusions on whether the stacking ap-

proach outperforms concatenation. We are cur-

rently carrying out further evaluation, based on

the full dataset (including the goldstandard labels

of the test data), which was only made available

to participants after the conclusion of the shared

task. This evaluation will be based on micro-

averaged F1-score, in order to enable direct com-

parison to the results of Kim et al. (2011) and Ver-

beke et al. (2012). Our early analysis is highly en-

couraging, indicating that feature stacking clearly

outperforms concatenation, and that our method

outperforms the published state-of-the art on this

task (Verbeke et al., 2012), with particular im-

provement on unstructured abstracts. We are cur-

rently investigating if this is attributable to our ex-

tended features or to feature stacking. We expect

to make our full analysis available at a later date.

7 Conclusion

In this work, we presented the features and

methodology that were used to produce the win-

ning entry to the ALTA2012 Shared Task. We

provided an overview of the feature sets, and a de-

tailed description of feature stacking, a metalearn-

ing approach to combining feature sets to produce

a high-accuracy classifier for the task. In future

work, we will provide a more detailed analysis of

the impact of the metalearning approach, as well

as the relative impact of the different feature sets,

using micro-averaged F1-score as the metric for

direct comparability to previous work. We will

also compare the use of sequential features with

stacked logistic regression to a sequential learn-

ing algorithm.

137



Acknowledgments

NICTA is funded by the Australian Government as

represented by the Department of Broadband, Com-

munications and the Digital Economy and the Aus-

tralian Research Council through the ICT Centre of

Excellence program.

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural Language Processing with Python — An-

alyzing Text with the Natural Language Toolkit.

O’Reilly Media, Sebastopol, USA.

Stephan Dreiseitl and Lucila Ohno-Machado. 2002.

Logistic regression and artificial neural network

classification models: a methodology review. Brain

and Cognition, 35:352–359.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-

Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A li-

brary for large linear classification. J. Mach. Learn.

Res., 9:1871–1874, June.

Su Nam Kim, David Martinez, Lawrence Cavedon,

and Lars Yencken. 2011. Automatic classification

of sentences to support evidence based medicine.

BMC Bioinformatics, 12:1–10.

Robert E. Schapire. 1990. The Strength of Weak

Learnability. Machine Learning, 5:197–227.

Helmut Schmid. 1994. Probabilistic part-of-speech

tagging using decision trees. In Proceedings of the

Conference on New Methods in Natural Language

Processing, Manchester, 1994.

Mathias Verbeke, Vincent Van Asch, Roser Morante,

Paolo Frasconi, Walter Daelemans, and Luc

De Raedt. 2012. A statistical relational learning ap-

proach to identifying evidence based medicine cat-

egories. In Proceedings of the 2012 Joint Confer-

ence on Empirical Methods in Natural Language

Processing and Computational Natural Language

Learning, pages 579–589, Jeju Island, Korea, July.

Association for Computational Linguistics.

David H. Wolpert. 1992. Stacked generalization.

Neural Networks, 5:241–259.

Sze-Meng Jojo Wong and Mark Dras. 2009. Con-

trastive analysis and native language identification.

In Proceedings of the Australasian Language Tech-

nology Workshop 2009 (ALTW 2009), pages 53–61,

Sydney, Australia, December.

138


