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Abstract

We apply the graph-structured stack (GSS) to
shift-reduce parsing in a Combinatory Cate-
gorial Grammar (CCG) parser. This allows
the shift-reduce parser to explore all possible
parses in polynomial time without resorting
to heuristics, such as beam search. The GSS-
based shift-reduce parser is 34% slower than
CKY in the finely-tuned C&C parser. We per-
form frontier pruning on the GSS, increasing
the parsing speed to be competitive with the
C&C parser with a small accuracy penalty.

1 Introduction

Parsing is a vital component of sophisticated natu-
ral language processing (NLP) systems that require
deep and accurate semantic interpretation, including
question answering and summarisation. Unfortu-
nately, the complexity of natural languages results in
substantial ambiguity. For even a typical sentence,
thousands of potential analyses may be considered
by a wide-coverage parser, making parsing imprac-
tical for large-scale applications.

Several methods have been proposed to improve
parsing speed, including supertagging (Bangalore
and Joshi, 1999; Clark and Curran, 2004; Kummer-
feld et al., 2010), coarse-to-fine parsing (Charniak
and Johnson, 2005; Pauls and Klein, 2009), chart
repair (Djordjevic, 2006), chart constraints (Roark
and Hollingshead, 2009), structure caching (Daw-
born and Curran, 2009) and chart pruning (Zhang
et al., 2010). These heuristic methods offer a trade-
off between accuracy and speed. A* parsing (Klein
and Manning, 2003) offers speed increases with no

reduction in accuracy. For parsers optimised for
speed, the overhead required by additional efficiency
techniques can exceed the speed gains they provide
(Dawborn and Curran, 2009). As mistakes made
in the parsing phase propagate to later stages, high
speed but low accuracy parsers may not be useful in
NLP systems (Chang et al., 2006).

In this paper, we modify the C&C (Clark and Cur-
ran, 2007) Combinatory Categorial Grammar (CCG)
parser to enable shift-reduce (SR) parsing. The
Cocke-Kasami-Younger (CKY) algorithm (Kasami,
1965; Younger, 1967) is replaced with the shift-
reduce algorithm (Aho and Ullman, 1972). How-
ever, back-tracking in shift-reduce parsers make
them exponential in the worst case.

To eliminate this duplication of work, a graph-
structured stack (GSS; Tomita, 1988) is employed.
This is the equivalent, for shift-reduce parsing, of
the chart in CKY parsing, which stores all possible
parse states compactly and enables polynomial time
worst-case complexity. Due to the incremental na-
ture of shift-reduce parsing, we can perform prun-
ing of the parse state in the process of considering
the next word (the frontier). Our frontier pruning
model is an averaged perceptron trained to recognise
the highest-scoring derivation that the C&C parser
would have selected. By eliminating unlikely
derivations , we substantially decrease the amount
of ambiguity that the parser is required to handle.

The GSS SR parser considers all the derivations
that the C&C parser would consider, but is 34%
slower. When frontier pruning is applied, incremen-
tal parsing speed is improved by 39% relative to the
GSS parser with a negligible impact on accuracy.

Stephen Merity and James R. Curran. 2011. Frontier Pruning for Shift-Reduce CCG Parsing . In Proceedings
of Australasian Language Technology Association Workshop, pages 66−75



2 CCG Parsing

Combinatory Categorial Grammar (CCG; Steedman,
2000) is a lexicalised grammar formalism that incor-
porates both constituent structure and dependency
information into its analyses.

In CCG, each word is assigned a category which
encodes sub-categorisation information. Categories
may be atomic, such as N and S ; or complex, such
as NP/N for a word that requires an N to the right
to produce an NP . Similarly, S\NP is an intran-
sitive verb and produces a sentence when an NP is
found to the left. Finally, a transitive verb receives
(S\NP)/NP as it consumes an NP on the right,
producing a verb phrase. Figure 1 shows two exam-
ples of CCG derivations with lexical categories as-
signed to each word. Both examples also provide
the word saw with the (S\NP)/NP category.

Lexicalised grammars typically have a small set
of rules (the combinatory rules in CCG) and instead
rely on categories that describe a word’s syntactic
role in a sentence. In Figure 1, the word with con-
tains two separate categories indicating whether it
modifies saw (first example) or John (second exam-
ple). In a highly lexicalised grammar, a parser may
need to explore a large search space of categories in
order to select the correct category for each word.

Bangalore and Joshi (1999) proposed supertag-
ging, where each word is assigned a reduced set of
categories by a sequence tagger, rather than all of
the categories previously seen with that word. Our
supertags are CCG categories, and so are much more
detailed than POS tags. By limiting the number of
supertags for each word, there is a massive reduc-
tion in the number of derivations. The effectiveness
of supertagging (Clark and Curran, 2004) demon-
strates the influence of lexical ambiguity on parsing
complexity for lexicalised grammars.

Hockenmaier and Steedman (2007) developed
CCGbank, a semi-automated conversion of the Penn
Treebank (Marcus et al., 1993) to the CCG formal-
ism. A number of statistical parsers (Hockenmaier
and Steedman, 2002; Clark et al., 2002) have been
created for CCG parsing using CCGbank.

2.1 The C&C Parser

Clark and Curran (2007) describe the three stages of
the high-performance C&C CCG parser. First, the
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Figure 1: Two CCG derivations with PP ambiguity.

supertagger provides each word with a set of likely
categories, reducing the search space considerably.
Second, the parser combines the categories, using
the CKY chart-parsing algorithm and CCG’s combi-
natory rules, to produce all derivations that can be
constructed with the given categories. Finally, the
decoder finds the best derivation from amongst the
spanning analyses in the chart.

The C&C parser uses a maximum-entropy model
to score each derivation, using a wide range of fea-
tures defined over local sub-trees in the derivation,
including the head words and their POS tags, the lo-
cal categories, and word-word dependencies. We
use the default normal-form mode with the deriva-
tions decoder (Clark and Curran, 2007) and a maxi-
mum of 1,000,000 categories in the chart.

Clark and Curran (2004) describe the role of su-
pertagging in the C&C parser and its impact on
parser speed. The supertagger initially assigns as
few supertags as possible per word. If the parser is
unable to provide a spanning analysis, the parser re-
quests more supertags for each word. By restricting
the number of supertags considered, this provides
substantial pruning at the lexical level. Recent work
by Kummerfeld et al. (2010) has shown that by train-
ing the supertagger on parser output, the parser’s
speed can be substantially increased whilst achiev-
ing the same accuracy as the baseline system. This
exploits the idea that the only supertags the parser
needs are those used by the highest-scoring deriva-
tion, reducing the search space even more than tra-
ditional supertagging.

Whilst the approach we present here focuses on
CCG parsing, the techniques apply equally to any
other binary branching or binarised grammars.
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I saw John with binoculars
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Figure 2: A graph-structured stack (GSS) representing an incomplete parse of the sentences found in Figure 1. The
nodes and lines in bold were provided by the supertagger, whilst the non-bold nodes and lines have been created during
parsing. The light gray lines represent what reduce operation created that lexical category.

3 Shift-Reduce Parsing

In its deterministic form, a shift-reduce parser per-
forms a single left-to-right scan of the input sen-
tence, selecting one or more actions at each step.
The current state of the parser is stored in a stack,
where the partial derivation is stored and the pars-
ing operations are performed. For the actions, either
we shift the current word onto the stack or reduce
the top two (or more) items at the top of the stack
(Aho and Ullman, 1972). As the scoring model can
be defined over actions, this can allow for highly
efficient parsing through greedy search (Sagae and
Lavie, 2005). This has made shift-reduce parsing
popular for high-speed dependency parsers (Yamada
and Matsumoto, 2003; Nivre and Scholz, 2004).

Unfortunately, a deterministic shift-reduce parser
cannot handle ambiguity because it only considers
a single derivation. A simple extension is to elim-
inate determinism and perform a best-first search,
backtracking if the parser reaches a dead end. This
backtracking leads to duplicate construction of sub-
structures and complete exploration is exponential in
the worst case. Beam search has been used to han-
dle this exponential explosion by discarding a large
portion of the search space.

In Zhang and Clark (2011), a direct comparison
is made between their shift-reduce CCG parser and
the chart-based C&C parser. As CCG allows for
a limited number of unary rules, specifically type-
changing and type-raising, Zhang and Clark extend

the shift-reduce algorithm to consider unary actions.
In order to handle the exponential search space,
their parser performs beam search, only keeping
the top 16 scoring states. Whilst this approximate
search may potentially lose the best scoring parse,
they achieve competitive accuracies compared to the
C&C chart parser.

3.1 Advantages of Semi-Incremental Parsing

Shift-reduce parsing allows for fully incremental
parsing that does not require the full sentence.
Whilst the C&C parser could be modified to perform
in this fashion, POS tagging and supertagging accu-
racy would likely decrease, leading to lower overall
parsing accuracy as mistakes propagate up the pars-
ing pipeline.

Semi-incremental parsing can still be advanta-
geous compared to non-incremental parsing. By us-
ing features to provide a partial understanding of
the sentence structure to components not tradition-
ally integrated with the parser, such as the POS tag-
ger and supertagger, improved accuracy is possible.
This is because these components currently only use
the orthographic properties of the input text as fea-
tures, with no understanding of how each word may
be potentially used during parsing. In Merity (2011),
we have begun exploring tightly integrating parsing
and tagging, specifically for POS tags and supertags,
by using semi-incremental parsing and shown im-
proved tagging accuracy is possible.
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3.2 Graph-Structured Stack

Back-tracking shift-reduce parsers are worst case
exponential, preventing a full exploration of the
search space. A graph-structured stack (GSS) is a
general structure that allows for the efficient han-
dling of non-determinism in shift-reduce parsing
(Tomita, 1988). The GSS allows for polynomial time
non-deterministic shift-reduce parsing and has been
shown to be highly effective for dependency pars-
ing (Huang and Sagae, 2010). The use of GSS al-
lows for the incremental construction of the parse
tree without being forced to discard large segments
of the search space.

Here we will show an example of using a GSS to
augment shift-reduce parsing and then show how it
can be applied to CCG parsing. In the example gram-
mar below, all three reduction rules are possible on
the given stack. By performing backtracking and
pursuing all possible reductions, shift-reduce pars-
ing becomes worst-case exponential as previous re-
sults must be re-computed.

∅ A B C D E

Reduction Rules
F ← D E
G ← D E
H ← C D E

The GSS solves this by storing multiple possible
derivations in a single structure. Note that all pos-
sible rules have been applied and are now stored
in the GSS. These reduce operations are also non-
destructive, leaving the original structure from the
above figure in place. Thus, the GSS can store mul-
tiple possible derivations. Note that there is only a
single bottom node, ∅, representing an empty stack.

F

G

∅ A B C D E

H

When a new node is pushed onto the stack, we
combine it with the heads of all of the existing stacks

stored in the GSS. This means that only a single shift
action is necessary for the GSS instead of one for
each possible derivation.

F

G

∅ A B C D E I

H

Finally, to prevent an exponential explosion due
to local ambiguity, we check if a new partial deriva-
tion is equivalent to any existing partial derivations.
If it is, we keep track of the ways the given node
can be generated and then merge them into a single
node. This is referred to as local ambiguity packing
by Tomita (1988) and allows shift-reduce parsing to
be performed in polynomial time. In the example
below, the new reduction rules result in two new J
nodes. These two nodes are merged to form a single
node as they are equivalent.

F

G J

∅ A B C D E I

H

Reduction Rules
J ← F I
J ← G I

When parsing an n word sentence, there are n
possible stages in the GSS. We refer to these stages
as frontiers, with the kth frontier containing all par-
tial derivations that contain a total span of k. In CKY

chart terms, a frontier can be considered as repre-
senting all cells on the diagonal from the top left to
the bottom right, as seen in Figure 3.

Figure 2 represents an incomplete sentence
processed using a GSS-based shift-reduce CCG

parser. The frontier for the word with con-
tains two heads, ((S\NP)\(S\NP))/NP and
(NP\NP)/NP . When the CCG category for the

69



1 432 5

2

3

4

5

1

Frontier
Span

Figure 3: An illustration of the relation between the chart
in CKY and the graph-structured stack in SR

word binoculars is shifted on to the GSS, it connects
to both of the previous heads. As the category for
the word binoculars is an NP , we can then reduce
the stack by applying combinatory rules from CCG

to both of the heads found in the previous frontier.
In light gray, we show the full derivation for “John
with binoculars”.

During the parsing process, we start with an
empty GSS. During the shift step, we add all the
possible CCG categories provided by the supertagger
for the kth word to the GSS and connect each cate-
gory to all of the head categories on the GSS. Next,
we attempt all possible reduce operations on the par-
tial derivations in the current frontier. In CCG shift-
reduce parsing, these reduce operations are the CCG

combinatory rules. If a reduction is possible, we cre-
ate a new top partial derivation from the result and
place it in the kth frontier.

4 Frontier Pruning

The purpose of frontier pruning is to cut down the
search space of the parser by only considering par-
tial derivations that are likely to be in the highest-
scoring derivation. Like adaptive supertagging, it
exploits the idea that the only partial derivations
the parser needs to generate are those used by the
highest-scoring derivation. The model is trained us-
ing the parser’s initial unpruned output and aims
to distinguish between partial derivations that are
necessary and those that are not. By eliminating
a large number of those unnecessary partial deriva-

tions, parsing ambiguity is significantly decreased.
This approach is similar to beam search as frontier

pruning removes partial derivations once it is likely
they will not be used in the highest-scoring deriva-
tion. Beam search prunes nodes that are below a
multiple (β) of the highest-scoring node in the fron-
tier. For certain instances, such as n-best re-ranking,
beam search would be preferred as derivations with-
out the highest score are still useful in the parsing
process. For one best parsing, however, the parser
may waste time generating these additional deriva-
tions when it could be known in advanced that they
will not be used. This could occur during attach-
ment ambiguity where, although the parser is guar-
anteed to select one attachment, the other attachment
may be constructed as it is valid and still competitive
when considered by beam search’s criteria.

5 Experiments

The only modifications are to the core parsing al-
gorithm, which involves replacing CKY with SR,
and to the parsing process via pruning. As the de-
coder and base models used for selecting the best-
scoring derivation remain unchanged, any improve-
ments seen are from an improved parsing process.

The C&C code base has been optimised for CKY

parsing and we have made only limited attempts to
optimise specifically for the shift-reduce approach.
Due to this, the speed of the SR parser is 34% slower
than the CKY parser. As the frontier pruning is im-
plemented on the SR parser, all speeds will be rela-
tive to the SR baseline. For the frontier pruning SR

parser to be competitive with the CKY parser, a speed
improvement of 34% or more must be achieved.

5.1 Training and Processing

We train a binary averaged perceptron model
(Collins, 2002) on parser output generated by the SR

C&C parser using the standard parsing model. Once
the base parser has successfully processed a sen-
tence, all partial derivations that lead to the highest-
scoring derivation are marked. For each partial
derivation in the GSS, the perceptron model attempts
to classify whether it was part of the marked set. If
the classification is incorrect, the perceptron model
updates the weights appropriately.

During processing, pruning occurs as each fron-
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Feature Type Example
Category S\NP

Binary Composition (S\NP)/NP and NP
Forward Application True

Head Word saw
Head POS VBD

Previous Frontier NP
Next Frontier ((S\NP)\(S\NP))/NP
Next Frontier (NP\NP)/NP

Table 1: Example features extracted from S\NP in the
third frontier of Figure 2. For the frontier features, bold
represents the highest-scoring feature selected for contri-
bution to the classification decision.

tier is developed. For each partial derivation, the per-
ceptron model classifies whether the partial deriva-
tion is likely to be used in the highest-scoring deriva-
tion. If not, the partial derivation is removed from
the frontier, eliminating any paths that the partial
derivation would have generated. Perfect frontier
pruning would allow only a single derivation, specif-
ically the highest-scoring one, to develop.

5.2 Model Features

For frontier pruning to be effective, the model must
be able to accurately distinguish between partial
derivations that will be used in the highest-scoring
derivation and those that shall not. As the features
of the C&C parser dictate the highest-scoring deriva-
tion, the features used for frontier pruning have been
chosen to be similar. For a full description of the
features used in the C&C parser, refer to Clark and
Curran (2007).

Each partial derivation is given a base set of fea-
tures derived from the current category. The initial
features include a NULL which all categories re-
ceive, the CCG category itself and whether the cat-
egory was assigned by the supertagger. There are
also features that encode rule instantiation, includ-
ing whether the category was created by type rais-
ing, a lexical rule, or any CCG combinatory rule. If
the category was created by a CCG combinatory rule,
the type of rule (such as forward/backward applica-
tion and so on) is included as a feature.

Features representing the past decisions the parser
has made are also included. Note that current rep-

resents the current category and left/right is the cur-
rent category’s left or right child respectively. For
unary categories, a tuple of [current,current→left] is
included as a feature. For binary categories, a tu-
ple of [current→left, current, current→right] is in-
cluded. If a category is a leaf, then two features [cur-
rent, word] and [current, POS] are included. Features
representing the root category of the partial deriva-
tion are also included, encoding the category head’s
word and POS tag.

Finally, additional features are added that repre-
sent the possible future parsing decisions. This is
achieved by adding information about the remain-
ing partial derivations on the stack (the past fron-
tier) and the future incoming partial derivations (the
next frontier). These do not exist in the C&C parser
and are only possible due to the implementation of
the GSS. For each category in the previous fron-
tier, a feature is added of the type [previous, cur-
rent]. For the next frontier, which is only composed
of supertags at this point, the feature is [current,
next]. These features allow the pruning classifier to
determine whether the current category is likely to
be active in any other reductions in future parsing
work. As we only want to score the optimal path us-
ing the previous and next features, only the highest
weighted of these features are selected. The rest of
the previous and next features are discarded and do
not contribute to the classification.

An example of this can be seen in Table 1, where
the features for the partial derivation of S\NP are
enumerated.

These features differ to the traditional features
used by shift-reduce parsers due to the addition of
the GSS. As traditional shift-reduce parsing only
considers a single derivation at a time, it is trivial
to include history further back than the current cat-
egory’s previous frontier. As GSS-based shift-reduce
parsing encodes an exponential number of states,
however, the overhead of unpacking these states
into a feature representation is substantial. Our ap-
proximation of selecting the highest weighted previ-
ous and next frontier features approximates the non-
deterministic shift-reduce solution.

5.3 Improving Marked Set Recall
Compared to the unmarked set, the marked set of
partial derivations used to create the highest-scoring
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derivation is small. If a single CCG category from
the marked set is pruned accidentally, the accuracy
may be negatively impacted. The loss of a single
category may even mean it is impossible to form a
spanning analysis.

To prevent this loss of accuracy and coverage, the
recall of the marked set needs to be improved. This
can be achieved by biasing the binary perceptron al-
gorithm towards a certain class, trading precision for
recall. Traditionally, a binary perceptron classifier
returns true if w · x > 0, else false, with w being a
vector of weights for each feature and x being a bi-
nary vector indicating whether a feature was active.

By providing a manual bias λ, w · x > λ, we can
bias the classifier towards a class. The value of λ
modifies the perceptron threshold level, allowing us
to improve the recall of the marked set by lowering
the precision. The value for λ is obtained manually
through the use of a development set.

Identifying the optimal threshold value is impor-
tant. Too high a recall value would prevent pruning
any parts of the parse tree whilst too low a threshold
reverts back to traditional unpruned parsing. Due to
the overheads involved in the frontier pruning pro-
cess, ineffective frontier pruning may also be slower
than traditional parsing, especially for an optimised
parser such as the C&C parser. This value is deter-
mined experimentally using a development dataset.

5.4 Balancing Pruning Features and Speed
For frontier pruning to produce a speed gain, enough
of the search space must be pruned in order to com-
pensate for the additional computational overhead of
the pruning step itself. This is a challenge as the
C&C parser is written in C++ with a focus on effi-
ciency and already features substantial lexical prun-
ing due to the use of supertagging.

For this reason, there were instances where ex-
pressive features needed to be traded for simpler fea-
tures in the frontier pruning process. Whilst these
simpler features may not prune as effectively, they
take far less time to compute and result in higher
speed gains than complex features with a further re-
duced search space. The complexity of the frontier
pruning features may be dictated by the speed of the
core parser itself, with more expressive features be-
ing possible if the core parser is slower.

The implementation of these features also had

to focus on efficiency. To decrease the stress and
improve memory locality of the hash table storing
the feature weights, only a subset of features were
stored. This feature subset was obtained from the
gold standard training data as it contains far less am-
biguity than the same training data which uses lexi-
cal categories supplied by the supertagger.

Hash tables were used for storing the relevant fea-
ture weights. Simple hash based feature representa-
tion were used for associating features with weights
to reduce the complexity of equivalence checking.
The hash values of features that were to be reused
were also cached to prevent recalculation, substan-
tially decreasing the computational overhead of fea-
ture calculation.

6 Evaluation

Our experiments are performed using CCGbank
which was split into three subsets for training (Sec-
tions 02-21), development (Section 00), and the final
evaluation (Section 23). The performance is mea-
sured in terms of sentence coverage, accuracy and
parsing time. The accuracy is computed as F-score
over the extracted labeled and unlabeled CCG de-
pendencies found in CCGbank. All unmarked ex-
periments use gold standard POS tags whilst experi-
ments marked Auto use automatically assigned POS

tags using the C&C POS tagger.

7 Results

7.1 Training the Frontier Pruning Algorithm
To establish bounds on the potential search space re-
duction, the size of the marked set compared to the
total tree size was tracked over all sentences in the
training data. This represents the size of the tree af-
ter optimal pruning occurs. Two figures are pre-
sented, one with gold supertags and the other with
supertags supplied by the C&C supertagger. Gold
represents the reduction in search space possible
when only the correct CCG categories are used to
parse the sentence. In contrast, the C&C supertag-
ger may apply multiple CCG categories to improve
supertagging accuracy, resulting in higher ambigu-
ity and greater potential search space reductions.

As can be seen in Table 2, the size of the marked
set is 10 times smaller for gold supertags and 15
times smaller for automatically supplied supertags.
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Task Acc.
Marked set recall (gold supertags) 84.4%
Marked set recall 72.9%
Average pruned size (gold supertags) 9.6%
Average pruned size 6.7%

Table 2: Recall of the marked set from the frontier prun-
ing algorithm across all trees and the size of the pruned
tree compared to the original tree.

This places an upper-bound on the potential speed
improvement the parser may see due to aggressive
frontier pruning.

The recall of the marked set was low for both gold
supertags and automatically assigned supertags.
This suggests the need for a modified perceptron
threshold level in order to increase the recall of the
marked set.

7.2 Tuning the Perceptron Threshold Level

Tuning the perceptron threshold level, as described
in the previous section, has an important impact on
frontier pruning. If the baseline parser cannot form
a spanning analysis with the supertags initially sup-
plied by the supertagger, it requests more supertags.
Aggressive frontier pruning may counter-intuitively
result in a slower parser as the parser spends more
time attempting to unsuccessfully parse the sentence
with an increasingly large number of supertags. By
tuning the perceptron threshold level we can prevent
potential slow-downs caused by aggressive pruning.

To optimise the threshold level, experiments were
performed on the development portion of CCGbank,
Section 00. The results are shown in Table 3. De-
creasing the perceptron thresholds level (λ) is shown
to decrease the speed of the parser substantially
without increasing the accuracy. For extremely low
values of λ, frontier pruning will keep partial deriva-
tions previously discarded as the perceptron classi-
fier becomes biased towards recall. For a sufficiently
low value, the accuracy would reach the same levels
as the CKY and SR C&C parsers, but the speed would
be far too slow due to the computational overhead of
frontier pruning added to the small reduction in the
search space. More work on fine-tuning the feature
representation and allowing for more expressive fea-
tures in a faster manner will be required.

Model Coverage lf. uf. Speed
(%) (%) (%) (sents/sec)

CKY C&C 99.01 86.37 92.56 55.6
SR C&C 98.90 86.35 92.44 48.6
FP λ = 0 99.01 86.11 92.25 61.1
FP λ = −1 99.06 86.16 92.23 56.4
FP λ = −2 99.01 86.13 92.19 53.9
FP λ = −3 99.06 86.15 92.21 49.0
CKY C&C Auto 98.90 84.30 91.26 56.2
SR C&C Auto 98.85 84.27 91.10 47.5
FP λ = 0 Auto 98.80 84.09 90.97 60.0

Table 3: Comparison to baseline parsers and analysis of
the impact of threshold levels on frontier pruning (FP).
The perceptron threshold level is referred to as λ. All
results are against the development dataset, Section 00 of
CCGbank, which contains 1,913 sentences.

For λ = 0, however, frontier pruning increases the
parser’s speed by 25.7% compared to the baseline
GSS-based SR parser on which the frontier pruning
operates. There is also a small 9.8% speed increase
compared to the CKY baseline parser. The F-score
for both labeled and unlabeled dependencies is neg-
atively impacted though.

7.3 Speed Improvements during Evaluation
Table 4 reports the impact frontier pruning has on
speed compared to the baseline CKY and SR C&C
parsers. Frontier pruning has improved the speed of
the GSS-based SR C&C parser by 39%, an improve-
ment over the speed increase seen during evaluation.
Longer sentences seem to have a higher impact on
the speed of the frontier pruning algorithm due to the
increased computational complexity of feature gen-
eration. This indicates that implementing a form of
beam search on top of this may be beneficial, keep-
ing on the top k scoring states in a frontier. Cur-
rently all partial derivations that are greater than the
perceptron threshold level λ are kept.

8 Discussion and future work

As the C&C parser is already highly tuned and thus
extremely fast, the optimal balance between feature
expressiveness and accurate pruning is difficult to
achieve. However, there was still room for improve-
ment. This suggests that on slower parsers than the
C&C parser, frontier pruning may have a much more
substantial impact on parsing speeds.
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Model Coverage lf. uf. Speed
(%) (%) (%) (sents/sec)

CKY C&C 99.34 86.79 92.50 96.3
SR C&C 99.58 86.78 92.41 71.3
FP λ = 0 99.38 86.51 92.25 95.4
CKY C&C Auto 99.25 84.59 91.20 82.0
SR C&C Auto 99.50 84.53 91.09 61.2
FP λ = 0 Auto 99.29 84.29 90.88 84.9

Table 4: Final evaluation on Section 23 of CCGbank
for the top performing models from Table 3, containing
2,407 sentences.

More work needs to be done on reducing the
number of computationally intensive feature look-
ups and calculations. Even when using the gold-
standard subset of the features, the feature look-up
process accounts for the majority of the slow-down
that the frontier pruning algorithm causes.

The C&C code has been highly optimised to suit
CKY parsing. It should be possible to improve
the GSS parser to be directly competitive with the
CKY implementation. The frontier pruning provides
speed increases for the GSS parser, allowing it to be
competitive with the original CKY parser, but with
an improved GSS parser, we could expect further im-
provements over the original CKY parser.

Finally, we are still using the separate maximum
entropy model and decoder to find the best deriva-
tion. If we add more features to the perceptron
model, it may be possible to use it for frontier prun-
ing and finding the best derivation.

9 Conclusion

We present a shift-reduce CCG parser that can
explore all possible analyses in polynomial time
through the use of a graph-structured stack (GSS).
Whilst this parser is 34% slower than the CKY parser
on which it is based, it can parse 60 sentences per
second whilst exploring the full search space. We
show that by performing frontier pruning on the GSS

and reducing this search space, the speed of the GSS

parser can be improved by 39% whilst only incur-
ring a small accuracy penalty. This allows for shift-
reduce parsing to attain speeds directly competitive
with the CKY parser, whilst allowing all the potential
advantages of a semi-incremental parser.

We have also shown that whilst pruning is occur-

ring at the lexical level due to supertagging, substan-
tial speed-ups are still possible by performing prun-
ing during the parsing process itself. This has also
illustrated the difficulty in balancing expressive fea-
tures and feature calculations overhead that frontier
pruning needs to achieve.

Our approach uses the output of the original C&C
parser as training data, and so we can use any
amount of parser output to train the system. This
self-training has been shown to be highly effective
in adaptive supertagging for increasing parser speed
(Kummerfeld et al., 2010). The final result will be
a substantially faster wide-coverage CCG parser that
can be used for large-scale NLP applications.
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