
Formalizing Semantic Parsing with Tree Transducers

Bevan Keeley Jones & Mark Johnson
Department of Computing

Macquarie University
Sydney, NSW 2109, Australia

Bevan.Jones@students.mq.edu.au
Mark.Johnson@mq.edu.au

Sharon Goldwater
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK

sgwater@inf.ed.ac.uk

Abstract

This paper introduces tree transducers as a
unifying theory for semantic parsing models
based on tree transformations. Many exist-
ing models use tree transformations, but im-
plement specialized training and smoothing
methods, which makes it difficult to mod-
ify or extend the models. By connecting
to the rich literature on tree automata, we
show how semantic parsing models can be de-
veloped using completely general estimation
methods. We demonstrate the approach by
reframing and extending one state-of-the-art
model as a tree automaton. Using a variant of
the inside-outside algorithm with variational
Bayesian estimation, our generative model
achieves higher raw accuracy than existing
generative and discriminative approaches on a
standard data set.

1 Introduction

Automatically interpreting language is an important
challenge for computational linguistics.Semantic
parsing addresses the specific task of learning to
map natural language sentences to formal represen-
tations of their meaning, a problem that arises in de-
veloping natural language interfaces, for example.
Given a set of (sentence, meaning representation)
pairs like the example below, we want to to learn a
map that generalizes to previously unseen sentences.

1. Sentence: what is the capital of texas ?
Meaning: answer(capital1(stateid(texas)))

Researchers have formalized the learning prob-
lem in various ways, with approaches including

string classifiers (Kate and Mooney, 2006), syn-
chronous grammar (Wong and Mooney, 2006),
combinatory categorial grammar (Zettlemoyer
and Collins, 2005; Kwiatkowski et al., 2010),
and PCFG-based approaches (Lu et al., 2008;
Borschinger et al., 2011). Each approach has re-
quired its own custom algorithms, which has made
model development and innovation slow. Never-
theless, there are many similarities between the
approaches, which all exploit parallels between the
structure of the meaning representation and that of
the natural language. The meaning representation,
as a context-free formal language, has an obvious
tree structure. Trees are also widely used to describe
natural language structure. Consequently, the
semantic parsing problem can be generally defined
as learning a mapping between trees, one of which
may be latent. This mapping can be expressed as a
tree transducer, a formalism from automata theory
that maps input trees to output trees or strings. Tree
transducers have well understood properties and
algorithms, and a rich literature, making them a
particularly appealing model class.

Although some previous approaches strongly re-
semble tree transducers, to our knowledge, we are
the first to explicitly formulate the problem in this
way. We argue that connecting semantic parsing
to the tree automata literature will free researchers
from devising custom solutions and allow them to
focus on studying and improving their models and
developing more general learning algorithms.

To demonstrate the effectiveness of the approach,
we choose one state-of-the-art model, the hybrid tree
(Lu et al., 2008), translate it into the tree transducer

Bevan Jones, Mark Johnson and Sharon Goldwater. 2011. Formalizing Semantic Parsing with Tree
Transducers. In Proceedings of Australasian Language Technology Association Workshop, pages 19−28

Figure 1: An extended left hand side, root-to-frontier, lin-
ear, non-deleting, tree-to-tree transducer (a) and an ex-
ample derivation (b). Numbered arrows in the derivation
indicate which rules apply during that step. Rule [1] is
the only rule with an extended left hand side.

framework, and add a small extension, made easy by
the framework. We also update a standard tree trans-
ducer training algorithm to incorporate a Variational
Bayes approximation. The result is the first purely
generative model to achieve state-of-the-art results
on a standard data set.

2 Extended, root-to-frontier, linear,
non-deleting tree transducers

Tree transducers (Rounds, 1970; Thatcher, 1970)
are generalizations of finite state machines that take
trees as inputs and either output a string or another
tree. Mirroring the branching nature of its input,
the tree transducer may simultaneously transition to
any number of successor states, assigning a separate
state to process each sub-tree. Although they were
originally conceived of by Rounds (1970) as a way
to formalize tree transformations in linguistic theory,
they have since received far more interest in theoret-
ical computer science. Recently, however, they have
also been used for syntax-based statistical machine
translation (Graehl et al., 2008; Knight and Greahl,
2005).

Figure 1 presents an example of a tree-to-tree
transducer. It is defined using tree transformation
rules, where the left hand side identifies a state of
the transducer and a fragment of the input tree, and
the right hand side describes a fragment of the output
tree. Variablesxi stand for entire sub-trees. There
are many classes of transducer, each with its own se-
lection of algorithms (Knight and Greahl, 2005). In
this paper we restrict consideration primarily to the
extended left hand side, root-to-frontier, linear, non-
deleting tree transducers (Maletti et al., 2009), and

we particularly make use of tree-to-string transduc-
ers.

Formally, an extended left hand side, root-
to-frontier, tree-to-tree transducer is a 5-tuple
(Q,Σ,∆, qstart,R). Q is a finite set of states,Σ
and∆ are the input and output tree alphabets,qstart
is the start state, andR is the set of rules. We de-
note a pair of symbols,a andb by a.b, and the cross
product of two setsA andB by A.B. LetX be the
set of variables{x0, x1, ...}. Finally, letTΣ(A) be
the set of trees with non-terminals from alphabetΣ
and leaf symbols from alphabetA. Then, each rule
r ∈ R is of the form[q.t → u].v, whereq ∈ Q,
t ∈ TΣ(X), u ∈ T∆(Q.X) such that everyx ∈ X

in u also occurs int, andv ∈ ℜ≥0 is the weight of
the rule.

We sayq.t is the left hand side of the rule andu
is the right hand side. The transducer islinear iff no
variable appears more than once on the right hand
side. It isnon-deletingiff all variables on the left
hand side also occur on the right hand side. Iff every
treet on the left hand side is of the formσ(x0, ...xn),
whereσ ∈ Σ (i.e., it is a tree of depth≤ 1), then the
transducer is simply root-to-frontier, otherwise we
say it has anextended left hand sidewith the added
power to look a bounded depth into the tree at each
step. Finally, for atree-to-stringtransducer,∆ is an
alphabet, and the right hand sides of the rules consist
of finite tuples of elements taken from∆ ∪Q.X.

A weighted tree transducer may define a probabil-
ity distribution, either a joint distribution over input
and output pairs or a conditional distribution of the
output given the input. Here, we will use joint dis-
tributions, which can be defined by ensuring that the
weights of all rules with the same state on the left-
hand side sum to one. In this case, it can be helpful
to view the transducer as simultaneously generating
both the input and output, rather than the usual view
of reading inputs and writing outputs.

3 Semantic parsing and meaning
representation languages

The goal of semantic parsing is to assign formal
meanings to natural language (NL) sentences, re-
quiring a formal meaning language. Some systems
use lambda expressions; others use variable free log-
ical languages or functional languages (such as that

20

of example 1 in the introduction). Here we deal with
meaning representations (MRs) of the latter form
where the bracketing makes the tree structure ob-
vious 1 We refer to functions and predicates in the
MR as either symbols or entities. Since MRs are
trees, the language can be defined by a Regular Tree
Grammar (a kind of CFG that generates trees). We
refer to this grammar as themeaning representation
grammaror MR grammar. Figure 3 shows a frag-
ment of such a grammar and an MR parse. The
parse is just the MR with each symbol labeled with
its grammar rule. Like most systems, the MR gram-
mar is one of our inputs.

4 The hybrid tree model

The idea of the hybrid tree model (Lu et al., 2008) is
to start with the MR and apply a series of transfor-
mations to create a kind of parse tree for the NL.
There are two types of transformation. The first
determines word order by simultaneously choosing
where to attach words (but not the particular words)
and whether or not to swap the order of siblings (Fig-
ure 2a). Once the order is determined, word gener-
ating transformations are then applied to insert spe-
cific words in the determined locations (Figure 2b).

The hybrid tree includes parameters for the MR
as well as the transformations in Figure 2 that relate
words to meaning representations. The probability
of each symbol in the MR is conditioned on the MR
grammar rules that derive its parent symbol. Defin-
ing symbol probabilities in terms of their parents’
grammar rules (as opposed to parent symbols as in
a standard PCFG) distinguishes between functions
and predicates with the same name but different se-
mantics (Wong and Mooney, 2006).

To formally define the probability of the MR, let
paths be the set of paths from the root to every node
in the MR where paths are represented using a vari-
ety of Gorn’s notation (Gorn, 1962)2. Let argsi be
the set of indices of the children of the node at pathi;
andRi be the grammar rule that derives the symbol
at i according to the MR parse. Then, the following

1With a pre-parsing step, it may also be possible to represent
lambda expressions with trees (see Liang et al. (2011)).

2I.e., paths are represented by strings where the empty string
ǫ is the path to the root, and ifi is a path andj is the index of a
child of the node ati, i · j is the path to that child.

equation definesP (MR).

P (MR) =P (Rǫ)
∏

i∈paths

∏

j∈argsi

P (Ri·j |j, Ri) (1)

In other words, each node in the tree is generated
according to the probability of the MR rule that de-
rives it conditioned on (1) the MR ruleRi that de-
rives its parent symbol and (2) its positionj beneath
that parent.

The hybrid tree model then re-orders and extends
this basic skeleton to include the NL. The probabil-
ity of this hybrid tree can be formally defined as fol-
lows if we let pati be the word order pattern used
to generate the children of the node at pathi, and
wordsi be the indices of the words attached under
the node ati.

P (NL-MR hybrid) = P (Rǫ)
∏

i∈paths

P (pati|Ri)

·
∏

j∈argsi

P (Ri·j |j, Ri)
∏

k∈wordsi

P (wi·k|Ri)

(2)

Note thatP (pat|R) andP (w|R) correspond re-
spectively to the weights on the word order and word
generation transformations. In fact, equation 2 is a
joint probability over not only theNL andMR pair
but also the actual set of transformations chosen to
produce the particular hybrid tree relating them.

5 Reframing the hybrid tree as a tree
transducer

We now define a tree transducer that simultaneously
generates an MR tree and NL string according to the
joint probability defined by equation 2. We create
separate states for each of the two transformation
types (orderstates for word order selection andword
states for word generation). In order to model the
properties of the MR grammar (necessary for mod-
eling equation 1), we create one additional state type
for selecting MR children (arg states) and embed the
MR grammar rules into the states so that each state
is identified with exactly one grammar rule. Tran-
sitions between transducer states then simulate the
action of the MR grammar as it generates a new MR
tree. Notationally, we employ subscripts to indicate
each state’s basic type (arg, order, or word) and su-
perscripts to indicate the associated MR grammar

21

Figure 2: The two transformation types of the hybrid tree model and an example of their application. (a) Word order
transformations simultaneously permute arguments and addW symbols where words should be attached. The dotted
lines indicate thatW symbols may or may not be attached in each of the possible locations, and siblings may or
may not be swapped. Each possible configuration of sibling orderings andW attachments corresponds to a single
transformation. Thus there are 4 different transformations for the case whereA has one child, and 16 for when it has
2. In the case whereA has no children, word attachment is not optional. (b) Word generation replaces eachW symbol
with actual words. (c) The series of transformations from example MRcityid(portland,me)to produce a parse for the
Japanese equivalent of ‘portland, maine’.

rule, so that, for instance, stateqRorder is an order
state associated with MRL grammar ruleR.

Figure 3 presents a graphical representation of the
basic state transitions of the transducer, where the
states for each grammar rule are clustered inside dot-
ted lines beneath its associated grammar rule label.
The transducer begins in anargstate and proceeds as
follows. First, thearg state selects the next child by
transitioning to anorder state corresponding to the
MR rule that generates the appropriate child. The
order state then chooses the appropriate word order
pattern and transitions to thewordandarg states as-
sociated with that same grammar rule3. The word
states proceed to generate words one at a time in a
loop and finally terminate the string. Then thearg
state begins the cycle over again by transitioning to
theorderof the next child in the MR tree.

Table 1 lists the actual transducer rule types.
Rule probabilities are conditioned on the state on
the left hand side. Thus, since states identify both
their function and the grammar rule of the current
MR node, rule weights correspond directly to the
terms in equation 2:P (Ri·j |j, Ri), P (pat|R), and

3Note that onlyarg states are permitted to transition to states
for different grammar rules.

P (w|R).

5.1 Source tree language model: P (Ri·j |j, Ri)

Rule type 1 in Table 1 begins the process by tran-
sitioning from start stateqstart to qRorder, where the
grammar ruleR ranges over those rules with the start
symbolS on the left hand side. Choosing exactly
which qRorder to transition to corresponds to the de-
cision of choosing the root symbol of the MR tree
(the symbol generated byR), and these transducer
rules define theP (Rǫ) term in equation 1, i.e., the
probability of the grammar rule corresponding to the
root symbol of the MR tree.

For each pair of MR grammar rulesRp andRc,
we add a transducer rule of the form of rule type 2
that transitions from the states associated withRp

to those forRc if Rc generates a valid child of the
symbol generated byRp. Thus, the choice of state
transition here corresponds to choosing the child of
the last generated symbol of the input tree. State
qR

p

arg,i selects theith argument of the current func-
tion in the MR without generating anything in the
input tree. With rules described in the next section,
stateqR

c

order then writes the symbol to the input tree
specified by MR grammar ruleRc.

22

Figure 3: State transitions selecting appropriate grammarrules for generating an MR. Solid arcs indicate a state
transition was taken; dotted lines are alternatives. States are divided up into disjoint sets and associated with a specific
MR rule. Transitioning between state sets implicitly chooses an MR rule. The rules lined up with the MR tree to
the left constitute an MR parse. The bottom right shows the grammar fragment corresponding to this portion of the
transducer.

Since the state on the left encodes the rule of the
parent and the argument number, and the state on the
right the child rule, the weights for transducer rules
of type 2 defineP (Ri·j |j, Ri) in equation 1.

5.2 Order decisions: P (pat|R)

Word ordering decisions are made with the aid of
preprocessing step that addsW symbols to the input
tree wherever words can be attached. These symbols
are just a convenience: it is easier to design rules
where every output structure has a counterpart in the
input. The symbols are removed later in a postpro-
cessing step (also using a tree transducer). Attach-
ment decisions are then made by deciding which of
theseW symbols to replace with the empty string
(no attachment) or a string of words.

We add transducer rules of the form of rule type
3 in Table 1 for each MR grammar ruleRf , to de-
fine the selection of one of the word order patterns

of the hybrid tree. These rules simply enumerate
the conjunction of all the possible word attachment
patterns and argument order decisions. Binary se-
quencei indicates the word attachment portion of
the hybrid tree pattern, where each bit is either 1 in-
dicating an attachment, or 0 for a decision not to at-
tach. For ann argument function, there aren + 1
such choices, requiring ann+1 bit sequence, where
ik is the decision for thekth position. Argument
order is indicated byj, a permutation of the num-
bers0, 1, ...n − 1, andjk is thekth number in the
permutation, indicating which argument appears at
positionk. StateqR

f

words,1 generates the words forf ,

stateqR
f

words,0 replaces the symbolW with the empty

string, and the statesqR
f

arg,k select the grammar rule

with which to generate thekth child. When there
is only a single childW , no decisions about argu-
ment order or child attachment are needed; rule type
4 always generates words for these constants.

23

qstart.x0 → qRorder.x0 (1)

qR
p

arg,i.x0 → qR
c

order.x0 (2)

qR
f

order.f(w0, x0, w1, x1, w2, ...xn−1, wn) → qR
f

words,i0
.w0 q

Rf

arg,j0
.xj0 q

Rf

words,i1
.w1 q

Rf

arg,j1
.xj1

qR
f

words,i2
.w2 ... q

Rf

arg,jn−1
.xjn−1

qR
f

words,in
.wn (3)

qR
f

order.f(w0) → qR
f

words,1.w0 (4)

qRwords,1.x0 → wordk qRwords,1.x0 (5)

qRwords,1.x0 → wordk qRwords,0.x0 (6)

qRwords,0.W → ǫ (7)

Table 1: Seven transducer rule types for three classes of transformation. (1)-(2) defineP (Ri·j |j, Ri), (3)-(4) define
P (pat|Ri), and (5)-(7) defineP (w|Ri).

The following input tree and output string pair is
illustrates an intermediate computation produced by
interleaving these two kinds of ordering rules with
the argument selection rules of the previous section,
and applying them to the example in Figure 2:

qR
cityid

order .cityid(W, portland(W),W,me(W),W)
∗
⇒

qR
cityid

words,0.W qR
me

words,1.W qR
cityid

words,1.W

qR
portland

words,1 .W qR
cityid

words,0.W

The weights on these rules define the conditional
probabilityP (pat|R), wherepat is one of the pat-
terns of the word transformations illustrated in Fig-
ure 2.

5.3 Word generation: P (w|R)

Rule types 5 and 6 in Table 1 define the conditional
probability of a wordwordk given an MR grammar
rule, and rule type 7 terminates generation by gener-
atingW in the input andǫ in the output. Using the
same example as in the previous section, this yields
5 W symbols in the input tree and the string ‘meen
no porutorando’ in the output.

qR
cityid

words,0.W
∗
⇒ ǫ

qR
me

words,1.W
∗
⇒ ‘meen’ ǫ

qR
cityid

words,1.W
∗
⇒ ‘no’ ǫ

qR
portland

words,1 .W
∗
⇒ ‘porutorando’ǫ

qR
cityid

words,0.W
∗
⇒ ǫ

5.4 Derivation weights and the joint
probability distribution

The transducer applies the rules from the three
classes of transformation in Table 1 to ultimately
produce an MR-NL pair. The probability of this
derivation is essentially the same quantity as that of
the hybrid tree of the original model (shown in equa-
tion 2).

6 An extension: head-switching

Reordering siblings allows the hybrid tree to cap-
ture a large number of word orders, but it is still
constrained by the hierarchy of the tree. This con-
straint reduces the search space but also prevents the
model from learning some word orders. Figure 4 il-
lustrates with trees from the following Japanese sen-
tence meaningwhat’s the highest point in the USA?
(the third line gives the correct alignment of words
to components of the gold MR, which cannot be
learned by the hybrid tree):

beikoku no
america’s
loc(america)

mottomo takai
most high
highest()

chiten
point
place()

wa nan desu ka
what is
answer()

To address this problem, we modify the trans-
ducer to allow it to rotate parents with their chil-
dren in addition to re-ordering siblings. This change
is easy within the transducer framework but would
be difficult in the original implementation, requiring
a complete reworking of the training and decoding
algorithms. In the original transducer, rules oper-

24

Figure 4: An example from Japanese illustrating head-switching. The tree on the left attempts (and fails) to generate
the target sentence from the gold meaning representation. Switching highestandplaceallows the correct MR-NL
map.

ate on tree fragments of depth≤ 1. We implement
the change using extended left-hand-side transduc-
ers, which can operate on larger fragments as long
as the depth is bounded (Maletti et al., 2009). In
particular, we introduce rules like the following:

qR
p

order.p(w
p
0
, c(wc

0, x
c
0, w

c
1), w

p
1
) → qR

c

words,i0
.wc

0

qR
p

words,i1
.w

p
0
qR

c

arg,0.x
c
0 q

Rp

words,i2
.w

p
1
qR

c

words,i3
.wc

1

This rule begins the word generation process si-
multaneously for both the parent and child, re-
ordering the words to simulate the new nesting struc-
ture, and then proceeds to choose the child func-
tion’s argument. We add similar rules for the vari-
ous cases where the child and parent have multiple
arguments.

7 Varitional Bayes parameter estimation

Tree transducer derivations are themselves trees,
allowing for the computation of inside and out-
side probabilities much as for the derivation trees
of PCFGs. EM can then be applied in much the
same way as for PCFGs, substituting the tree-to-
string derivation algorithm for standard PCFG pars-
ing (Graehl et al., 2008). Note that while EM maxi-
mizes the likelihood of the training data, items not
observed during training receive zero probability,
limiting the ability of models to generalize to new
data sets. Furthermore, many items that are actu-
ally present in the training data are only seen a very
few times, which can lead to a poor estimate of their
distribution in the target data set. Bayesian estima-
tion techniques such as Variational Bayes (VB) ad-
dress these problems by allowing us to place a prior

probability over the parameters, which particularly
influence parameter estimates for sparse items and,
depending on the choice of prior, may also assign
some non-zero probability to unseen items.

We give a high-level outline of how a Dirichlet
prior can be incorporated into tree transducer train-
ing using Variational Bayes, drawing heavily on the
essential similarity of inside-outside for PCFGs and
training for tree transducers. We direct the reader
to Kurihara and Sato (2006) for the details of PCFG
training using VB, and to Graehl et al. (2008) for
the full treatment of the basic EM algorithm for tree
transducers, on which our VB training algorithm is
closely based. See Bishop (2006) for a general in-
troduction to VB and Beal (2003) for a derivation of
VB as applied to Dirichlet-multinomials.

The objective of training is to find an estimate for
the weightsθ of the transducer rules given some
symmetric Dirichlet prior with hyperparameterα
and observed pairs of natural language sentencesW

and meaning representation treesY .

p(θ|α,W, Y) =
p(W,Y, θ|α)

p(W,Y |α)
(8)

The tree transducer defines the probability
p(W,X, Y |θ), whereX is a vector of derivations
such thatxi ∈ X is the derivation from MRL tree
yi ∈ Y to NL stringwi ∈ W . We put a symmetric
Dirichlet prior overθ so that the probabilityp(θ|α)
follows directly from the definition of the Dirichlet
distribution. Thus, computing the denominator of
equation 8 involves integrating outθ andX.

p(W,Y |α) =

∫

p(W,X, Y |θ)p(θ|α)dXdθ

25

However, this integral is intractable, so instead,
following from Variational Bayes, we make an ap-
proximation q(X, θ) for the posterior probability
p(X, θ|W,Y, α).

log p(W,Y |α) = log

∫

p(W,X, Y, θ|α)dXdθ

= log

∫

q(X, θ)
p(W,X, Y, θ|α)

q(X, θ)
dXdθ

≥

∫

q(X, θ) log
p(W,X, Y, θ|α)

q(X, θ)
dXdθ

= F

We can minimize the KL divergence between
q(X, θ) and p(W,Y |α) by maximizing the lower
boundF , called the variational free energy. Since
F is a function ofq, this amounts to maximizingq.

Following from Kurihara and Sato (2006)’s treat-
ment of PCFGs, we employ the mean field ap-
proximation that assumes the posterior is well ap-
proximated by a factorized functionq(X, θ) =
q1(X)q2(θ), which treats the derivationsX and the
rule weightsθ as independent. This allows us to
maximizingq by alternately updating parameters for
q1 with q2 fixed, and then updating parameters for
q2 with q1 fixed, essentially in the same manner that
E and M steps alternate in EM. The mathematical
derivation of the modified inside-outside algorithm
then follow directly from Kurihara and Sato (2006).

In practice, VB requires only a slight modifica-
tion to the basic EM algorithm, and we refer the
reader to Graehl et al. (2008) for the details of EM
for tree transducers. As in inside-outside for PCFGs,
the E-step involves computing estimated rule counts,
weighted using inside and outside probabilities. The
M-step resolves to calculating the vector parame-
ters of the multinomial distributions over transducer
rules using these count estimates. That is, ifθs is
a multinomial parameter vector for transducer rules
with states on the left hand side,θs,k is its kth

component (i.e., the weight of thekth rule with s

on the left hand side), andcs,k is the corresponding
expected count, we have the following equation for
straight EM.

θs,k =
cs,k

∑

k′ cs,k′

Incorporating a Dirichlet prior with parameterα
using our VB approximation simply requires replac-

ing this ratio with the following alternative quantity
τ , whereΨ is the digamma function.

τs,k = exp

(

Ψ(cs,k + α)−Ψ

(

∑

k′

cs,k′ + α

))

For each step of EM, the updatedτ vectors from
the previous M-step are then used to compute the
expected countsc during the current E-step.

8 Experimental setup

We use Tiburon (May and Knight, 2006), a tree
transducer toolkit, to train our transducer using 40 it-
erations of its inside-outside-like EM training proce-
dure, and modify it slightly to include the mean field
VB approximation for a symmetric Dirichlet prior
over the multinomial parameters as just described.

Decoding is handled the same by Tiburon for both
training procedures, producing the MR input tree
with the tree transducer derivation that maximizes
the probability over derivations of equation 2.

In keeping with the original hybrid tree, we run
100 iterations of IBM alignment model 1 (Brown
et al., 1993) to initialize the word distribution pa-
rameters. Also in keeping with Lu et al. (2008),
we use the standard noun phrase list from the given
language to help initialize the word distributions for
their counterparts in the meaning representation lan-
guage.

9 Results

To evaluate our models, we use the the GeoQuery
corpus, a standard benchmark data set. The corpus
contains English sentences (questions about U.S. ge-
ography) paired with an MR in a database query lan-
guage, 250 of which were translated into Japanese
(among other languages) yielding two training sets
using the same MRs. For testing we run 10-fold
cross validation, using the standard train and test
splits of Wong and Mooney (2006), and micro-
average our performance metrics across folds.

We measure performance using precision, recall,
and f-score (the harmonic mean of precision and re-
call) as standardly defined in the semantic parsing
literature. Recall is simply the raw accuracy: the
percentage of correct parses found out of all test sen-
tences (where a parse is considered correct if it re-
trieves the same results from the GeoQuery database

26

System
English Japanese

Pre. Rec. F1 Pre. Rec. F1
UBL-s 80.8 80.4 80.6 80.6 80.5 80.6
WASP 95.4 70.0 80.8 92.0 74.4 82.9
Lu-uni 80.2 71.2 75.4 79.7 73.6 76.5
Lu-dis 91.5 72.8 81.1 87.6 76.0 81.4
trs 88.3 69.6 77.9 82.4 67.2 74.0
trsVB 82.0 82.0 82.0 78.0 78.0 78.0
hs 89.5 71.6 79.6 84.3 68.8 75.8
hsVB 82.8 82.8 82.8 80.8 80.8 80.8

Table 2: Performance of the various models on the mul-
tilingual section of GeoQuery.

as the gold MR). Precision is the percentage of cor-
rect parses out of all sentences for which we find any
parse at all.

Table 2 compares our models’ performance to
previously published results. We list two versions of
our model: the direct adaptation of the hybrid tree
and the transducer with parent-child swapping rules.
We train each version with both standard EM and the
VB approximation (hyperparameter 0.1). The other
state-of-the-art systems shown are: 1) two versions
of the original hybrid tree (Lu et al., 2008):Lu-uni,
which uses a unigram distribution over words, and is
therefore the most similar to our transducer imple-
mentation, andLu-dis, the best-performing version,
which uses a mixture of unigram and bigram model
with discriminative re-ranking; 2) WASP (Wong and
Mooney, 2006), which uses a synchronous grammar
approach; and 3) UBL-s (Kwiatkowski et al., 2010),
the model with the highest published raw accuracy
(recall).

The transducers are competitive with the state-of-
the-art, especially when using VB. VB smooths the
parameter estimates, so there are no parse failures in
the test set due to unseen words or functions; pre-
cision, recall, and f-score all reduce to raw accu-
racy. The basic transducer with VB has higher accu-
racy (recall) than all other models except for UBL-
s, which does better on Japanese. The head-switch
transducer is better still, with the highest recall on
both languages. Although the improvement over the
basic transducer is small, we anticipate that using the
transducer framework will allow us to easily explore
many other possible extensions that could increase
performance further.

As expected, the basic EM-trained transducer gets
numbers that are similar, though not identical, to Lu-
uni. The main reason for the discrepancy is that
Lu et al. (2008) use custom smoothing methods for
the source tree language model and word probabil-
ities. While these could be emulated in a trans-
ducer, we instead use a more general approach, VB,
with better pay-off. Lu-uni was the simplest model
presented by Lu et al. (2008), yet applying VB to
our transducer implementation yields a fully gen-
erative model whose performance rivals their best-
performing system that uses discriminative rerank-
ing.

10 Conclusion

In this paper, we have shown how to formulate se-
mantic parsing as tree transduction. This formula-
tion is more general than previous approaches and
allows us to exploit the rich literature on transduc-
ers, including theoretical results as well as standard
algorithms and toolkits. We focused here on ex-
tended left hand side, root-to-frontier, linear, non-
deleting, tree-to-string transducers (Maletti et al.,
2009), using them to reformulate and extend an ex-
isting model (Lu et al., 2008). Although we tried
only one simple extension, our purely generative
model already outperforms all previous models on
raw accuracy, with comparable f-score. Since the
transducer framework makes modifications easy, we
anticipate further gains in future, especially if we
add a discriminative reranking step as in Lu et al.
(2008). We also hope to investigate other transducer
classes. Finally, we note that working with a gen-
eral framework encourages the development of algo-
rithms that are widely applicable, even if developed
for a particular application. The VB training algo-
rithm presented here is just one example of such a
contribution.

Acknowledgments

We would like to thank Wei Lu and Jon May
for generously providing source code and support
for the hybrid tree parser and Tiburon, respec-
tively. Also, this work was supported under the Aus-
tralian Research Council’s Discovery Projects fund-
ing scheme (project number DP110102506).

27

References
Matthew J. Beal.Variational Algorithms for Approximate
Bayesian Inference. PhD thesis, Gatsby Computational
Neuroscience unit, University College London, 2003.

Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, 2006.

Benjamin Borschinger, Bevan K. Jones, and Mark John-
son. Reducing grounded learning tasks to grammati-
cal inference. InProc. of the Conference on Empirical
Methods in Natural Language Processing, 2011.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. The mathematics of statis-
tical machine translation: Parameter estimation.Com-
putational Linguistics, 19:263–311, 1993.

Saul Gorn. Processors for infinite codes of shannon-fano
type. InSymp. Math. Theory of Automata, 1962.

Jonathon Graehl, Kevin Knight, and Jon May. Training
tree transducers.Computational Linguistics, 34, 2008.

Rohit J. Kate and Raymond J. Mooney. Using string-
kernels for learning semantic parsers. InProc. of the
21st International Conference on Computational Lin-
guistics and the 44th annual meeting of the ACL, pages
913–920, 2006.

Kevin Knight and Jonathon Greahl. An overview of prob-
abilistic tree transducers for natural language process-
ing. In Proc. of the 6th International Conference on
Intelligent Text Processing and Computational Linguis-
tics, 2005.

Kenichi Kurihara and Taisuke Sato. Variational bayesian
grammar induction for natural language. InProc. of
the 8th International Colloquium on Grammatical In-
ference, 2006.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater,
and Mark Steedman. Inducing probabilistic ccg gram-
mars from logical form with higher-order unification. In
Proc. of the Conference on Empirical Methods in Natu-
ral Language Processing, 2010.

Percy Liang, Michael I. Jordan, and Dan Klein. Learning
dependency-based compositional semantics. InAssoci-
ation for Computational Linguistics (ACL), 2011.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S. Zettle-
moyer. A generative model for parsing natural language
to meaning representations. InProc. of the Conference
on Empirical Methods in Natural Language Processing,
2008.

Andreas Maletti, Jonathan Graehl, Mark Hopkins, and
Kevin Knight. The power of extended top-down tree
transducers.SIAM J. Comput., 39:410–430, June 2009.

Jon May and Kevin Knight. Tiburon: A weighted tree
automata toolkit. InProc. of International Conference
on Implementation and Application of Automata, 2006.

W.C. Rounds. Mappings and grammars on trees.Mathe-
matical Systems Theory 4, pages 257–287, 1970.

J.W. Thatcher. Generalized sequential machine maps.J.
Comput. System Sci. 4, pages 339–367, 1970.

Yuk Wah Wong and Raymond J. Mooney. Learning for
semantic parsing with statistical machine translation.
In Proc. of Human Language Technology Conference /
North American Chapter of the Association for Com-
putational Linguistics Annual Meeting, pages 439–446,
New York City, NY, 2006.

Luke. S. Zettlemoyer and Michael Collins. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. InProc.
of the 21st Conference on Uncertainty in Artificial In-
telligence, 2005.

28

