A Particle Filter algorithm for Bayesian Wordsegmentation

Benjamin Borschinger
Department of Computing
Macquarie University
Sydney

benjamin.borschinger@mg.edu.au

Abstract

Bayesian models are usually learned using
batch algorithms that have to iterate multiple
times over the full dataset. This is both com-
putationally expensive and, from a cognitive
point of view, highly implausible. We present
anovel online algorithm for the word segmen-
tation models of Goldwater et al. (2009) which
is, to our knowledge, the first published ver-
sion of a Particle Filter for this kind of model.
Also, in contrast to other proposed algorithms,
it comes with a theoretical guarantee of opti-
mality if the number of particles goes to infin-
ity. While this is, of course, a theoretical point,
a first experimental evaluation of our algo-
rithm shows that, as predicted, its performance
improves with the use of more particles, and
that it performs competitively with other on-
line learners proposed in Pearl et al. (2011).!

1 Introduction

Bayesian models have recently become quite pop-
ular in Computational Linguistics. One undesir-
able property of many such models is, however, that
the inference algorithms usually applied to them,
in particular popular Markov Chain Monte Carlo
Methods such as Gibbs Sampling, require multi-
ple iterations over the data — this is both compu-
tationally expensive and, from a cognitive point of
view, implausible. Online learning algorithms di-
rectly address this problem by requiring only a sin-
gle pass over the data, thus providing a first step

'The source code for our implementation is available

for download from http://web.science.mg.edu.au/
~bborschi/

Mark Johnson
Department of Computing
Macquarie University
Sydney
mark.johnson@mg.edu.au

from ‘ideal learner’ analyses towards more realistic
learning scenarios (Pearl et al., 2011). In this paper,
we present a Particle Filter algorithm for the word
segmentation models of Goldwater et al. (2009), to
our knowledge showing for the first time how a Par-
ticle Filter can be applied to models of this kind.
Notably, Particle Filters are mathematically well-
motivated algorithms to produce a finite approxima-
tion to the true posterior of a model, the quality of
which increases with larger numbers of particles and
recovering the true posterior if the number of par-
ticles goes to infinity. This sets them qualitatively
apart from most previously proposed online learners
that usually are based on heuristic ideas.

The structure of the rest of the paper is as fol-
lows. First, we give a high-level description of the
Bayesian word segmentation model our algorithm
applies to and make explicit our notion of an online
learner. Then, we give a quick overview of previous
work and go on to describe the word segmentation
model in more detail, introducing the relevant nota-
tion and formulae. Finally, we give a description of
the algorithm and present experimental results, com-
paring the algorithm with other proposed learning
algorithms for the model and its performance across
different numbers of particles.

2 The Goldwater model for word
segmentation

The model? assumes that a segmented text is cre-

ated by a random process that generates a sequence

2We only provide a high-level idea of the Bayesian Unigram
model for word segmentation of Goldwater et al. (2009). For
more details and a description of the Bigram model, we refer
the reader to the original paper.

Benjamin Borschinger and Mark Johnson. 2011. A Particle Filter algorithm for Bayesian Wordsegmentation.
In Proceedings of Australasian Language Technology Association Workshop, pages 10—18

of words ¢ = wy., which can be interpreted as a
segmentation of the unsegmented text T' that is the
result of concatenating these words.>

The first word is generated by a distribution over
possible words, the so-called base distribution F
that, in principle, can generate words of unbounded
length. We’ll come back to the details of the base
distribution in section 4.1. Each further word is
either generated by ‘reusing’ one of the previously
generated words, or by making a new draw from
the base distribution. This generative process, also
known as the (labelled) Chinese Restaurant Process,
is formally described as:

P(Wi=w | a) = Py(w) (1)
cw(Wii) + aPy(w)

i+«

P(Wit1=w | Wiy, «)
(2)

where Py is the base distribution over words and
cw(W1.;) is the number of times the word w has been
observed in the sequence W7.;. o is the hyperparam-
eter for the process, also known as the concentration
parameter, and controls the probability of generat-
ing previously unseen words by making a new draw
from F,.

This process can be understood in terms of a
restaurant metaphor: each generated word corre-
sponds to the order of a customer in a restaurant, and
each customer who enters the restaurant either sits at
an already occupied table with probability propor-
tional to the number of people already sitting there,
ordering the exact same dish they are already eat-
ing (the label of the table), or sits at a new table
with probability proportional to o and orders a new
dish which corresponds to making a draw from the
base distribution.* In principle, there is an infinite
number of tables in the restaurant but we only are
interested in those that are actually occupied, allow-
ing us to actually represent the state of this process
with finite means. We will be using the metaphor
of customers and tables in the following, for ease of
presentation and lack of a better terminology.

3We take an expression of the form 1., to refer to the se-
quence Ti,...,Tn.

“Note that the same word may label several different tables,
as the base distribution may generate the same word multiple
times.

11

The conditional distributions defined by eq. 1 and
eq. 2 is exchangeable, i.e. every permutation of the
same sequence of words is assigned the same proba-
bility. This allows us to completely capture the state
of the generative process after having generated ¢
words by a description of the seating for the ¢ cus-
tomers.

2.1 Inference for the model

While this description has focused on the genera-
tive side of the model, probabilistic models like this
are usually not used to generate random sequences
of words but to do inference. In this case, we are
interested in the posterior distribution over segmen-
tations o for a specific text 7', P(o | T').

While it is easy to calculate the probability of any
given segmentation using eq. 1 and eq. 2, determin-
ing the posterior distribution or even just finding the
most probable segmentation is computationally in-
tractable. Instead, an approximation to the posterior
can be calculated using, for example, Markov Chain
Monte Carlo algorithms such as Gibbs Sampling.
Going into the details of Gibbs Sampling is beyond
the scope of the paper, and in fact we propose an al-
ternative algorithm here. We refer the reader to the
original Goldwater et al. (2009) paper for a detailed
description of their Gibbs Sampling algorithm and
to Bishop (2006) for a general introduction.

2.2 Motivation for Online Algorithms

Gibbs Sampling is a batch method that requires mul-
tiple iterations over the whole data — in practice, it
is not uncommon to have 20,000 iterations on the
amount of data we are working with here. This is
both computationally expensive and, from a cogni-
tive point of view, highly implausible. Having on-
line learning algorithms is therefore a desirable goal,
and their failure to obtain an optimal solution can be
seen as telling us how a constrained learner might
make use of certain models; in this sense, they pro-
vide a first step from ideal learner analyses to more
realistic settings (Pearl et al., 2011).

Constraints on Online Algorithms In our opin-
ion, a plausible constraint on an online learner is that
it (a) sees each example only once’ and (b) has to

Note that this applies to example tokens. There may well
be multiple tokens of the same example type.

make a learning decision on the basis of one exam-
ple at a time immediately after having seen it, using
a finite amount of computation. While this is cer-
tainly a very strict view, we think it is a plausible
first approximation to the constraints human learn-
ers are subject to, and it is certainly interesting in
and of itself to see how well a learner constrained
in this manner can perform. It will be an interest-
ing question for future research to see how relaxing
these constraints to a certain extent effects the per-
formance of the learner.

Note that our constraints on online learners ex-
clude certain algorithms that have been labelled ‘on-
line’ in the literature. For example, the Online EM
algorithms in Liang and Klein (2009) make local up-
dates but iterate over the whole data multiple times,
thus violating (a). Pearl et al.’s (2011) DMCMC al-
gorithm, discussed in the next section, is able to re-
visit earlier examples in the light of new evidence,
violating thus both (a) and (b).

3 Previous work

Online learning algorithms for Bayesian models are
discussed within both Statistics and Computational
Linguistics but have, to our knowledge, not yet
been widely applied to the specific problem of word
segmentation. Both Brent (1999) and Venkatara-
man (2001) propose heuristic online learning algo-
rithms employing Dynamic Programming that have,
however, been shown to not actually maximize the
objective defined by the model (Goldwater, 2007).
Brent’s algorithm has recently been reconsidered as
an online learning algorithm in Pearl et al. (2011).
It is an instance of the familiar Viterbi algorithm
that efficiently finds the optimal solution to many
problems; not, however, for the word segmentation
models under discussion. The algorithm is “greedy”
in that it determines the locally optimal segmenta-
tion for an utterance given its current knowledge us-
ing Dynamic Programming, adding the words of this
segmentation to its knowledge and proceeding to the
next utterance. Both this Dynamic Programming
Maximization (DPM) algorithm and a slight variant
called Dynamic Programming Sampling (DPS) are
described in detail in Pearl et al., the main difference
between the two algorithms being that the latter does
not pick the most probable segmentation but rather

12

samples a segmentation according to its probability.
Note that DPS is, in effect, a Particle Filter with just
one particle.

Pearl et al. also present a Decayed Markov Chain
Monte Carlo algorithm (Marthi et al., 2002) that is
basically an ‘online’ version of Gibbs Sampling. For
each observed utterance, the learner is allowed to
reconsider any possible boundary position it has en-
countered so far in light of its current knowledge, but
the probability of reconsidering any specific bound-
ary position decreases with its distance from the cur-
rent utterance. In effect, boundaries in recent utter-
ances are more likely to be reconsidered than bound-
aries in earlier ones. While this property is nice in
that it can be interpreted as some kind of memory
decay, the algorithm breaks our constraints on online
learners, as has already been mentioned above: the
DMCMC learner explicitly remembers each train-
ing example, effectively giving it the ability to learn
from and see each example multiple times. It has, in
a sense, “knowledge of ‘future’ utterances when it
samples boundaries further back in the corpus than
the current utterance”, as Pearl et al. point out them-
selves.

As for non-online algorithms, the state of the art
for this word segmentation problem is the adaptor
grammar MCMC sampler of Johnson and Goldwa-
ter (2009), which achieves 87% word token f-score
on the same test corpus as used here. The adaptor
grammar model learns both syllable structure and
inter-word dependencies, and performs Bayesian in-
ference for the optimal hyperparameters and word
segmentation.

4 Model Details

Our models are basically the unigram and bigram
models described in Goldwater et al. (2009) and
quickly introduced above. There is, however, an im-
portant difference with respect to the choice of the
base distribution that we describe in what follows.
Also, our assumption about what constitutes a hy-
pothesis is different from Goldwater et al., which is
why we describe it in some detail.® The mathemati-
cal details are given in figure 1 while in the text, we
focus on a high-level explanation of the ideas.

6 Again, we focus on the Unigram model.

ccsk + ¢

P.(C=k|s,¢) = j h. 3
([5,9) Z - ccs,j + |chars|¢ (j € chars) 3)
PO(W:k13n|S7¢):<H k |S¢) C(#‘Sv¢) (4)
P if t € s and wo is the label of ¢
Padd(<w0,t> ‘ S,Ol) = o 5)
W if t is a new table.
Py(o | s,a) = Paada(o1 | 5,0) X - -+ X Padd(on | sUo1 U---Uon_1) (0)
Qo(o | s,0) = HPadd(a'i |'s,0) ™
=1
o 8
1+1NQ0(| 8;750it1,0) 3
sy =5 Joll ©)
l 1 l
w® (z)P 0i+1 |51+1»0¢)P(5421 | sV a) ® P(0i+1, ! 7.+1 s, @)
z+1 - z
Qs | s, 0141,) Qo(0) [5, 0i41,0)
l 1
o_ Pe(oils ! 8” @) (10)
' QG(Uﬁzl | Sz 701+17)
0 wii
Wip1 = ﬁ n
Y e
—_— 1
ESS; = (12)

7 @)
Figure 1: The mathematical details needed for implementing the algorithm. cc; j, is the number of times character k
has been observed in the words in labels(s) which, in turn, refers to the words labeling (unigram) tables in model state
s. chars is the set of different characters in the language, including the word-boundary symbol #. ct, ; refers to the
number of customers at table ¢ in model state s, and ct_. refers to the total number of customers in s. A segmentation
o is a sequence of word-table pairs (wo, t) that indicates both which words make up the segmentation and at which
table each word customer is seated. s U o; refers to the model state that results from adding the i** word-table pair
of o to hypothesis s, and the probability of adding this pair is given by P,4q in eq. 5. s|Jo refers to adding all
word-table pairs in o to s. (), is the proposal distribution from which we can efficiently sample segmentations, given
an observation o, i.e. an unsegmented utterance, and a model state s. P, is the true distribution over segmentations
according to which we can efficiently score proposals to calculate (the unnormalized) weights w* using eq. 10. Eq. 8

and eq. 10 can be calculated because Q, (o | s,,0) = Qc(;(’o‘os‘sa‘;) = Qé’((;i’;’)‘), the denominator of which can be
efficiently calculated using the forward-algorithm.
4.1 The Lexical-Model ability distribution over characters:
0 ~ Dir(¢)
Even though Goldwater et al. found the choice of Pe(k) = 0y,
the lexical model to make virtually no difference By integrating out 6, we get a ‘learned’ condi-

for the performance of an unconstrained learner, this tional distribution over characters, and consequently
does not hold for online learners, an observation al- ~ words, given the learner’s lexicon up to that point
ready made by Venkataraman (2001). In the orig- (eq. 3 and eq. 4).

inal model, each character is assumed to have the In addition, we do not fix the probability for the
same probability § = m of being gener- word-boundary symbol, treating it as a further spe-
ated, and words are generated by a zero-order (Un- cial character # that may only occur at the end of a
igram) markov process with a fixed stopping prob- word.”

ability. In contrast, we assume that there is a sym- "While this makes possible in principle the generation of
metric Dirichlet prior with parameter ¢ on the prob- empty words, we are confident that this does not pose a prac-

13

4.2 Probability of a segmentation

Since we are interested in the posterior distribution
over hypotheses given unsegmented utterances, it is
important to be clear about what constitues a hypoth-
esis. At a high level, a hypothesis s can be thought
of as a lexicon that arises from the segmentation de-
cisions made for the observations up to this point.
For example, if the learner previously assumed the
segmentations “a dog” and “a woman”, its lexicon
contains two occurences of “a” and one occurence
of “dog” and “woman”, respectively.

More precisely, a hypothesis is a model state and a
model state is an assignment of observed (or rather,
previously predicted) word ‘customers’ to tables
(see section 2).8 At time k, the model state sy, is the
seating arrangement after having segmented the cur-
rent observation o given the previous model state
sk_1, where each observation is an unsegmented
string. As our incremental learner can only make
additive changes to the ‘restaurant” — no customers
ever leave the table they are assigned to — the hy-
pothesis at time k£ + 1 is uniquely determined by the
seating arrangement at time k and the proposed seg-
mentation for observation oy, as a segmentation
not only indicates the actual words, e.g. “a” and
“dog”, but also the table at which each word should
be seated (which may be a new table). Thus, going
from one model state to the next corresponds to sam-
pling a segmentation for the new observation (eq. 8)
and adding this segmentation to the current model
state (eq. 9). The formulae that assign probabilities
to segmentations are given in eq. 5 to eq. 7.

5 The Particle Filter algorithm

Our algorithm is an instance of a Particle Filter, or
more precisely, of the Sequential Importance Re-
sampling (SIR) algorithm (Doucet et al., 2000). The
idea is to sequentially approximate a target poste-
rior distribution P by N weighted point samples or
particles, updating each particle and its weight in
light of each succeeding observation. Hypotheses

tical problem as we only use the model for inference, not for
generation.

8The reason our description involves an explicit record of
table assignments is that this is needed for the Bigram model.
While actually not needed for the Unigram case, our formula-
tion can be extended to the Bigram model in a straight-forward
way, given the description in Goldwater et al. (2009).

14

that do conform to the data gain weight, mimicking
a kind of a “survival of the fittest” dynamic. No-
tably, the accuracy of the approximation increases
with the number of particles, a result borne out by
our experiments.

At a very high-level, a Particle Filter is very sim-
ilar to a stochastic beam-search in that a number of
possibilities is explored in parallel, and the choice
of possibilities that are further explored is biased to-
wards locally good, i.e. high-probable ones.

At any given stage, the weighted particles give a
finite approximation to the target posterior distribu-
tion up to that point, the weight of each particle rep-
resenting its probability under the approximation.
Therefore, we can use it to approximate any expec-
tation of the posterior, e.g. some measure of its word
segmentation accuracy, as a weighted sum.

5.1 Description of the Algorithm

A formal description of the algorithm is given in Fig-
ure 2 which we explain in more detail here. The al-
gorithm starts at time ¢ = 0 with /V identical model
states (particles) sgn), in our case empty lexicons, or
rather empty restaurants.” At each time step 7 + 1, it
propagates each particle by sampling a segmentation

UZ-(QI for the next observation 0,11 according to the

the current model state sgl) (eq. 8) and adding this
segmentation to it, yielding the updated particle 3521
(eq. 9). Intuitively, at each step the learner predicts a
segmentation for the current observation in light of
what it has learned so far. Adding a segmentation to
a model state corresponds to adding the word cus-
tomers in the segmentation to the corresponding ta-
bles. As there are multiple particles, in principle the
algorithm can explore alternative hypotheses, remi-
niscent of a beam-search.

Not all hypotheses, however, fit the observations
equally well, and as new data becomes available at
each time step, the relative merit of different hy-
potheses may change. This is captured in a particle
filter by assigning weights wgl) to each particle that
are iteratively updated, using eq. 10 and eq. 11. This
update takes both into account how well the particle
fit previously seen data in the form of the old weight,
and how well it fits the last observation in the form

The superscript indexes the individual particles, the sub-
script indicates the time.

of the probability of the proposed segmentation un-
der the current model.

Also, the formula we use for calculating the par-
ticle weights, taken from Doucet et al. (2000), over-
comes a fundamental problem in applying Particle
Filters to this kind of model: we are usually not
able to efficiently sample directly from P, because
P does not decompose in the way required for Dy-
namic Programming (Johnson et al., 2007; Mochi-
hashi et al., 2009). The SIR algorithm, however, al-
lows us to use an arbitrary proposal distribution ()
for the samples. All that is needed is that we can cal-
culate the true probability of each sample according
to P, which is easily done using eq. 6. Our proposal
distribution () ignores the dependencies between the
words within an utterance, as in eq. 7. This can be
thought of as ‘freezing’ the model in order to de-
termine a segmentation, just as in the PCFG pro-
posal distribution of Johnson et al. (2007). Thus,
the proposal segmentations and other quantities re-
quired to calculate the weights and propagate the
particles are efficiently computable using the formu-
lae in Figure 1 and the efficient algorithms described
in detail in Johnson et al. (2007) and Mochihashi et
al. (2009). Interestingly, even though the proposal
distribution is only an approximation to the true pos-
terior, Doucet et. al point out that as the number of
particles goes to infinity, the approximation still con-
verges to the target (Doucet et al., 2000).

Resampling A well known problem with Parti-
cle Filters is that after a number of observations most
particles will be assigned very low weights which
means that they contribute virtually nothing to the
approximation of the target distribution. This is di-
rectly addressed by resampling steps in the SIR al-
gorithm: whenever a quantity known as Effective
Sample Size (ESS), approximated by eq. 12, falls
below a certain threshold, say, % the current set of
particles is resampled by sampling with replacement
from the current distribution over particles defined
by the current weights. This results in high weight
particles having multiple ‘descendants’, and in low
weight particles being ‘weeded out’. We experiment
with two thresholds, N and %

6 Experiments

We evaluate our algorithm along the lines of experi-
ments discussed in Pearl et al. (2011), using Brent’s

15

(1
0

set initial weights w(()l) o %
for example i = 1 — K do

for particlel =1 — N do
O]

i—

(N)

) to So

create N empty models s

sample alw ~Qs(-1]s
l l 1

0= 50, Ul

calculate the unnormalized particle weight w;

end for
calculate the normalized particle weights w

calculate ESS
if ESS <THRESHOLD then
resample all particles according to wgl)
set all weights to ﬁ
end if
end for

1,01',06)
0

O]

i

and

Figure 2: Our Particle Filter algorithm. NN is the number
of particles, K is the number of examples. The formulae
needed are given in Figure 1.

version of the Bernstein corpus (Brent, 1999). Un-
like them, however, we see no reason for actually
splitting the data into training and test sets, follow-
ing in this respect previous work such as Goldwater
et al. (2009) by training and evaluating on the full
corpus.

6.1 Evaluation

Evaluation is done for each learner by ‘freezing’
the model state after the learner has processed all
examples and then sampling a proposed segmenta-
tion for each example o from Q. (- | s, 0,), where
s is the final model state. As we have multiple
weighted final model states, the scores are calcu-
lated by evaluating each model state and then tak-
ing a weighted sum of the individual scores. This
corresponds to taking an expectation over the poste-
rior. Note that under the assumption that at the end
of learning the ‘lexicon’ no longer changes, sam-
pling from @) no longer constitutes an approxima-
tion as the intra-utterance dependencies () ignores
correspond to making changes to the lexicon.

As is common, we calculate precision, recall and
the harmonic mean of the two, f-measure, for tokens,
boundaries and elements in the lexicon. To illus-
trate these scores, assume the learner segmented the
two utterances “the old woman” and “the old man”
into “theold wo man” and “theold man”. It has cor-

rectly identified 1 of the 6 tokens and predicted a
total of 5 tokens, yielding a token recall of 1/6 and a
token precision of 1/5. It has also identified 2 of the
4 boundaries, and has predicted a total of 3 bound-
aries, yielding a precision of 2/3 and a recall of 1/2.
Lastly, it has correctly found only 1 of the 4 word
types and predicted a total of 3 word types, giving
a precision and a recall of of 1/3 and 1/4, respec-
tively. So as to not clutter the table, we only report
f-measure.

6.2 Experimental Results

There are two questions of interest with respect to
the performance of the algorithm. First, we would
like to know how faithful the algorithm is to the
original model, i.e. whether the ‘optimal’ solution
it finds is close to the ‘optimal’ solution according
to the true model. For this, we compare the log-
probability of the training data each algorithm as-
signs to it after learning. Second, we would like to
know how well each algorithm performs in terms of
the segmentation objectives.

For comparison to our Particle Filter algorithm,
we used Pearl et al’s (2011) implementation of
their proposed online learners, the DPM and the
DMCMC algorithm, and their implementation of
a batch MCMC algorithm, a Metropolis Hastings
sampler.'? We set the threshold for resampling to N
and %, ¢ to 0.02 and the remaining model parame-
ters to the values reported in Goldwater et al. (2009):
o 20.0,p 2.0 for the unigram model, and
Qg 100.0,; = 3000.0,pg = 0.5 for the bi-
gram model.!' In addition, we decided to not use
annealing for either of the algorithms to get an idea
of the ‘raw’ performance of their performance and
simply run the unconstrained sampler for 20,000 it-
erations. While this does not reflect a ‘true’ ideal
learner performance, it seems to us to be a reason-
able method for an initial comparision, in particular

"The scores reported in their paper apply only to their
training-test split. We weren’t able to run the DMCMC algo-
rithm for the Unigram setting which is why we omit these scores
— the scores reported for the Unigram learner on a five-fold
training-test split in Pearl et al. are slightly better than for our
best performing particle filter but not directly comparable, and
no log-probability is given.

" pg is the fixed utterance-boundary base-probability, p is the
beta-prior on the utterance-boundary probability in the unigram
model.

16

since we have not yet applied ideas such as anneal-
ing or hyper-parameter sampling to the Particle Fil-
ter.

The particle filter results vary considerably, espe-
cially with small numbers of particles, which is why
we report an average over multiple runs and report
the standard deviation in brackets.'? The results are
given in Table 1.

6.3 Discussion

As could be expected, faithfulness to the original
model increases with larger numbers of particles
— the log-probability of the training-data seems to
be positively related to N, though obviously non-
linearly, and we expect that using even larger num-
bers of particles will bring the log-probability even
closer to that assigned by the unconstrained learner.
Also, the Particle Filters seem to work generally bet-
ter for the Unigram model which is not very sur-
prising, considering that “when tracking bigrams in-
stead of just individual words, the learner’s hypothe-
sis space is much larger” (Pearl et al., 2011), and that
Particle Filters are known to perform rather poorly in
high dimensional state spaces.

In the Unigram setting, the Particle Filter is able to
outperform the DPM algorithm in the 1000 particle /
% threshold setting, both in terms of log-probability
and segmentation scores. With respect to the lat-
ter, it also outperforms the unconstrained learner in
all but lexical f-measure. This is not very surpris-
ing, however, as Goldwater (2007) already found
that sub-optimal solutions with respect to the actual
model may be better with respect to segmentation,
simply because the strong unigram assumption is so
blatantly wrong.

For both the models, using a resampling thresh-
old of % instead of N seems to lead to better perfor-
mance with respect to both measures, in particular in
the Bigram setting. We are not sure how to interpret
this result but have the suspicion that this difference
may disappear as a larger number of particles is used
and that what may be going on is that for ‘small’
numbers of particles, the diversity of samples drops
too fast if resampling is applied after each observa-

2For 1, 50 and 100 particles, we run 10 trials, for 500 and
1000 particles 2 trials. In principle, the unconstrained learners
are also subject to some variance (Goldwater, 2007; Goldwater
et al., 2009) but not to the extent of the particle filters.

Learner TF BF LF log-probx 103
MH-MCMC | 63.11 80.29 59.68 -209.57
DPM 65.65 80.05 44.96 -234.11
1 56.84 (4.36) 74.94 (2.92) 35.34 (3.21) -244.28 (5.56)
Unigram 50 60.33/59.84 77.08/76.98 41.61/41.62 -240.38/-240.58
PF (5.82)/(6.00) (3.68)/(3.75) (3.40)/(3.15) (6.43)/(5.18)
100 | 62.97/61.02 79.05/77.87 43.04/43.61 -238.73/-238.92
(3.21)/(4.94) (2.09)/(3.14) (2.29)/(2.90) (4.64)/(5.69)
500 | 60.81/68.46 77.50/82.27 45.25/47.52 -236.55/-231.85
(7.05)/(1.87) (4.36)/(1.11) (3.67)/(0.23) (6.13)/(2.25)
1000 | 64.11/66.54 79.70/80.99 45.82/47.08 -234.87/-231.93
(4.84)/(5.31) (2.74)/(3.24) (1.36)/(2.90) (3.10)/(3.55)
MH-MCMC | 63.71 79.52 47.45 -240.79
DMCMC | 70.78 83.97 47.85 -244.85
DPM 66.92 81.07 52.54 -250.52
Bigram 1 48.55 (3.04) 71.22 (1.82) 35.02 (2.14) -266.90 (2.40)
50 55.98/57.85 75.21/76.49 43.34/45.21 -258.42/-256.16
PF (2.29)/(3.85) (1.42)/(1.93) (1.76)/(1.79) (2.22)/(4.24)
100 | 57.77/61.55 76.40/78.47 43.77/45.79 -257.93/-254.66
(2.77)/(2.06) (1.45)/(1.30) (1.46)/(1.50) (2.03)/(1.47)
500 | 57.99/63.58 76.33/80.05 44.70/47.82 -256.44/-252.14
(0.59)/(1.73) (0.33)/(0.94) (0.16)/(0.82) (1.01)/(0.46)
1000 | 57.88/61.76 76.55/78.30 46.93/49.33 -254.17/-251.33
(0.48)/(1.11) (0.05)/(1.31) (0.41)/(0.88) (0.92)/(0.03)

Table 1: F-measure and log-probabilities on the Bernstein corpus for Pearl et al.’s (2011) batch MCMC algorithm
(MH-MCMCO), the online algorithms Dynamic Programming Maximization (DPM) and Delayed Markov Chain Monte
Carlo (DMCMC), and our online Particle Filter (PF) with different numbers of particles (1, 50, 100, 500, 1000). TF,
BF and LF stand for token, boundary and lexical f-measure, respectively. For the Particle Filter, numbers left of a ¢/’
report scores for a resampling threshold of IV, those on the right for % Numbers in brackets are standard-deviations
across multiple runs. Numbers in bold indicate the best overall performance, and the best performance of an online

learner (if different from the best overall performance).

tion.

In the Bigram setting, even 1000 particles and a
threshold of % cannot outperform the conceptually
much simpler DPM algorithm, let alone the DM-
CMC algorithm that comes pretty close to the un-
constrained learner. The increased dimensionality
of the state-space may require the use of even more
particles, a point we plan to address in the future by
optimizing our implementation so as to handle very
large numbers of particles.

Also, there is no clear relation between the num-
ber of particles that are used and the variance in the
results, in particular in the Unigram setting. While
we are not sure about how to interpret this result,
again it may have to do with the increased dimen-
sionality: a possible explanation is that in the Un-
igram setting, 500 and 1000 particles already allow
the model to explore very different hypotheses, lead-

17

ing to a larger variance in results, whereas in the Bi-
gram setting, this number of particles only suffices
to find solutions very close to each other.

All in all, however, the results suggest that us-
ing more particles gradually increases the learner’s
performance. This is unconditionally true for both
settings in our experiments with respect to the log-
probability; while this trend is not consistent for
all segmentation scores, this simply reflects that the
relation between log-probability and segmentation
performance is not transparent, even for the Bigram
model, as is clearly seen by the difference between
the DMCMC and the Unconstrained learner.

Finally, we’d like to point out again that the DM-
CMC learner is, strictly speaking, not an online
learner. Its ability to ‘resample the past’ corresponds
closely to he idea of rejuvenation (Canini et al.,
2009) in which each individual particle reconsiders

past examples for a fixed amount of time at certain
intervals and can, in principle, be added to our algo-
rithm, something we plan to do in the future. Also,
while the performance of the DPM algorithm for
the Bigram model is rather impressive, it should be
noted that the DPM algorithm embodies a heuristic
greedy strategy that may or may not work in certain
cases. While it obviously works rather well in this
case, there is no mathematical or conceptual motiva-
tion for it and we can’t be sure that its performance
does not depend on accidental properties of the data.
7 Conclusion and Outlook

We have presented a Particle Filter algorithm for
the Bayesian word segmentation models presented
in Goldwater et al. (2009). The algorithm performs
competitively with other proposed online algorithms
for this kind of model, and as predicted, its perfor-
mance increases with larger numbers of particles.

To our knowledge, it constitutes the first Particle
Filter for this kind of model. Our formulation of
the Particle Filter should extend to similarly com-
plex Bayesian models in Computational Linguistics,
e.g. the grammar models proposed in Johnson et
al. (2007) and Liang et al. (2010), and may serve as
a starting point for applying other Particle Filter al-
gorithms to these models, a point we want to address
in future research.

Also, while the strict online nature is desirable
from a cognitive point of view, for practical pur-
poses variants of Particle Filters that violate these
strong assumptions, e.g. using the idea of reju-
venation that has previously been applied to Parti-
cle Filters for Latent Dirichlet Allocation in Canini
et al. (2009), might offer considerable performance
gains for practical NLP tasks, and we plan to extend
our algorithm in this direction as well.

8 Acknowledgments

We would like to thank the reviewers for their help-
ful comments, and Lisa Pearl and Sharon Gold-
water for sharing the source code for their learn-
ers and their data with us. This work was sup-
ported under the Australian Research Councils Dis-
covery Projects funding scheme (project number
DP110102506).

References

Christopher M. Bishop. 2006. Pattern Recognition and
Machine Learning. Springer.

18

Michael R. Brent. 1999. An efficient, probabilistically
sound algorithm for segmentation andword discovery.
Machine Learning - Special issue on natural language
learning, 34:71 — 105.

Kevin Canini, Lei Shi, and Thomas Griffiths. 2009. On-
line inference of topics with latent dirichlet allocation.
In Proceedings of the Twelfth International Confer-
ence on Artificial Intelligence and Statistics.

Arnaud Doucet, Simon Godsill, and Christophe Andrieu.
2000. On sequential monte carlo sampling meth-
ods for bayesian filtering. Statistics and Computing,
10:197-208.

Sharon Goldwater, Thomas Griffiths, and Mark Johnson.
2009. A bayesian framework for word segmentation:
Exploring the effects of context. Cognition, 112:21-
54.

Sharon Goldwater. 2007. Nonparametric Bayesian Mod-
els of Lexical Acquisition. Ph.D. thesis, Brown Uni-
versity.

Mark Johnson and Sharon Goldwater. 2009. Improving
nonparameteric bayesian inference: experiments on
unsupervised word segmentation with adaptor gram-
mars. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 317-325.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater.
2007. Bayesian inference for pcfgs via markov chain
monte carlo. In Proceedings of NAACL HLT 2007,
pages 139-146.

Percy Liang and Dan Klein. 2009. Online em for unsu-
pervised models. In Proceedings of NAACL 2009.

P. Liang, M. L. Jordan, and D. Klein. 2010. Probabilis-
tic grammars and hierarchical dirichlet processes. In
T. O’Hagan and M. West, editors, The Handbook of
Applied Bayesian Analysis. Oxford University Press.

Bhaskara Marthi, Hanna Pasula, Stuart Russell, and Yu-
val Peres. 2002. Decayed mcmc filtering. In Pro-
ceedings of the Conference on Uncertainty in Artificial
Intelligence, 2002 (UAI-02).

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda.
2009. Bayesian unsupervised word segmentation with
nested pitman-yor language modeling. In Proceedings
of the 47th Annual Meeting of the ACL and the 4th
1JCNLP of the AFNLP, page 100108.

Lisa Pearl, Sharon Goldwater, and Mark Steyvers. 2011.
Online learning mechanisms for bayesian models of
word segmentation. Research on Language and Com-
putation, Special issue on computational models of
language acquisition.

Anand Venkataraman. 2001. A statistical model for
word discovery in transcribed speech. Computational
Linguistics, 27:351-372.

