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Preface

This volume contains the papers accepted for presentation at the Australasian Language
Technology Workshop (ALTA) 2011, held at the Australian National University (ANU), Can-
berra, Australia on December 1-2, 2011. This is the ninth annual instalment of the ALTA
workshop in its most-recent incarnation, and the continuation of an annual workshop series
that has existed in various forms Down Under since the early 1990s.

The goals of the workshop are:

• to bring together the growing Language Technology (LT) community in Australia and
New Zealand and encourage interactions;

• to encourage collaboration within the community and with the wider international LT
community;

• to foster interaction between academic and industrial researchers, to encourage dissemi-
nation of research results;

• to provide a forum for the discussion of new and ongoing research and projects;
• to provide an opportunity for the broader artificial intelligence community to become

aware of local LT research;
• and finally, to increase visibility of LT research in Australia, New Zealand and overseas.

This year’s ALTA Workshop includes 18 peer-reviewed papers, of which 12 have been presented
orally, and 6 have been presented as posters. We received a total of 29 submissions. Each paper
in the ‘peer-reviewed papers’ and the ‘peer-reviewed posters’ section was independently peer-
reviewed by at least two members of an international program committee, in accordance with
the DEST requirements for E1 conference publications. The review process was double-blind:
Great care was exercised to avoid all conflicts of interest whenever an author also served as
program committee/co-chair or the reviewer worked at the same institution as an author. Such
conflicts of interest were resolved by transferring the reviewing task to other members of the
program committee.

The proceedings also include the abstracts of the keynote presentation by Wray Buntine (Na-
tional ICT Australia Ltd – NICTA) and of the special presentation by Dominique Estival
(MARCS Auditory Laboratories) about the Australian Computational Linguistics Olympiad
(OzCLO). There is also description of the second ALTA shared task by Diego Mollá and Abeed
Sarker (Macquarie University).

We would like to thank all the authors who submitted papers to ALTA, the members of
the program committee for the time and effort they put into the review process, the local
organisers for their commitment and work organising this conference, and our invited speaker:
Wray Buntine.

Finally, we would like to thank our sponsors, NICTA, ANU and Appen Butler Hill for sup-
porting the workshop.

Diego Mollá and David Martinez
Program Co-Chairs
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ALTA 2011 Program

Thursday, 1st December 2011

9:00-10:00 Keynote: Discovery in Text: Visualisation, Topics and Statistics by Wray Bun-
tine (NICTA, Canberra)

10:00-10:30 Coffee break

10:30-10:40 ALTA Opening remarks
Session 1 - 10:40 - 12:20

Paper Presentations
10:40-11:05 Benjamin Börschinger and Mark Johnson

A Particle Filter algorithm for Bayesian Wordsegmentation
11:05-11:30 Bevan Jones, Mark Johnson and Sharon Goldwater

Formalizing Semantic Parsing with Tree Transducers
11:30-11:55 Mark Johnson

Parsing in Parallel on Multiple Cores and GPUs
11:55-12:20 Mehdi Parviz, Mark Johnson, Blake Johnson and Jon Brock

Using Language Models and Latent Semantic Analysis to Characterise the N400m
Neural Response

12:45-14:00 Lunch break

Session 2 - 14:00 - 15:15
Paper Presentations

14:00-14:25 Shunichi Ishihara
A Forensic Authorship Classification in SMS Messages: A Likelihood Ratio Based
Approach Using N-gram

14:25-14:50 Su Nam Kim and Lawrence Cavedon
Classifying Domain-Specific Terms Using a Dictionary

14:50-15:15 Stephen Merity and James R. Curran
Frontier Pruning for Shift-Reduce CCG Parsing

15:15-15:45 Coffee break

Session 3 - 15:45 - 16:15
Poster presentations (5 mins per poster)
John Cocks and Te Taka Keegan
A word-based approach for diacritic restoration in Māori
Nobuagi Akagi and Francesco-Alessio Ursini
The Interpretation of Complement Anaphorae: the case of The Others
Francesco-Alessio Ursini and Nobuagi Akagi
The Interpretation of Plural Pronouns in Discourse: The Case of They
Jenny Mcdonald, Alistair Knott, Richard Zeng and Ayelet Cohen
Learning from student responses: A domain-independent natural language tutor
Md. Waliur Rahman Miah, John Yearwood and Sid Kulkarni
Detection of child exploiting chats from a mixed chat dataset as a text classifica-
tion task
Marcin Nowina-Krowicki, Andrew Zschorn, Michael Pilling and Steven Wark
ENGAGE: Automated Gestures for Animated Characters

16:15-17:25 Presenters put up their posters
17:25-18:45 Poster session with ALS (drinks and nibbles provided)
19:30 Dinner with ADCS
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Friday, 2nd December 2011

Session 4 - 9:00 - 10:40
Joint Session with ADCS
Li Wang, Diana Mccarthy and Timothy Baldwin
Predicting Thread Linking Structure by Lexical Chaining
Diego Mollá and Maria Elena Santiago-Martinez
Development of a Corpus for Evidence Based Medicine Summarisation
Mike Symonds, Peter Bruza, Laurianne Sitbon and Ian Turner
Tensor Query Expansion: A cognitively motivated relevance model
Yan Shen, Yuefeng Li, Yue Xu, Renato Lannella, Abdulmohsen Algarni and
Xiaohui Tao
An Ontology-based Mining Approach for User Search Intent Discovery

10:40-11:10 Coffee break

Session 5 - 11:10-12:25
Paper Presentations

11:10-11:35 (best paper award) François Lareau, Mark Dras, Benjamin Börschinger and
Robert Dale
Collocations in multilingual text generation: Lexical Functions meet Lexical
Functional Grammar

11:35-12:00 Abeed Sarker, Diego Mollá and Cécile Paris
Outcome Polarity Identification of Medical Papers

12:00-12:25 Sze-Meng Jojo Wong, Mark Dras and Mark Johnson
Topic Modeling for Native Language Identification

12:25-14:00 Lunch break

14:00-15:00 Prizes and ALTA AGM Meeting
Special presentation - 15:00-15:30

Dominique Estival
OzCLO: The Australian Computational Linguistic Olympiad

15:30-16:00 Coffee break

Special presentation - 16:00-16:45
Diego Mollá and Abeed Sarker
Automatic Grading of Evidence: The 2011 ALTA Shared Task

16:45-17:00 Wrap-up
17:25-18:45 Poster session with ALS (drinks and nibbles provided)
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Discovery in Text: Visualisation, Topics and Statistics

Wray Buntine
NICTA

Canberra, Australia
wray.buntine@nicta.com.au

Abstract

Discovery in or understanding of a text collection can be viewed from many angles: the text aspect of the
data mining paradigm, the discover aspect of the information seeking paradigm, or the text content aspect of
visualisation. This talk will view topic models as a technique within these paradigms. Some visualisations
will be reviewed, as well as a variety of different topic models, and some of the natural language process-
ing issues involved in working with the models. Finally, some of the non-parametric statistical methods
underlying the analysis will be reviewed because they are fascinating as well.

Short Biography

Dr. Wray Buntine joined NICTA in Canberra Australia in April 2007 and is a Principal Researcher work-
ing on applying machine learning and probabilistic methods to tasks such as information access and text
analysis. In 2009 he was co-chair of ECMLPKDD in Bled, Slovenia and in 2011 he co-organised a PAS-
CAL2 Summer School on Machine Learning in Singapore. He reviews for conferences such as ECIR,
CIKM, ECMLPKDD, ICML, KDD, SIGIR, UAI and WWW and is on the editorial board of Data Mining
and Knowledge Discovery. He was previously at University of Helsinki, Helsinki Institute for Information
Technology, NASA Ames Research Center, UC Berkeley, and Google.

Wray Buntine. 2011. Discovery in Text: Visualisation, Topics and Statistics. In Proceedings of Australasian
Language Technology Association Workshop, page 2



OzCLO: The Australian Computational Linguistic Olympiad

Dominique Estival
MARCS Auditory Laboratories
University of Western Sydney
d.estival@uws.edu.au

Abstract

Since 2008 when we organised the First Australian Computation and Linguistic Olympiad (OzCLO), this
high-school competition has become an annual event, with almost 800 participants across Australia in 2011.
For the third time, we sent an Australian team to the International Linguistics Olympiad (ILO) and the
team came back with one silver medal. In this talk, I will give an overview of OzCLO, first presenting
the background and history of the competition internationally and in Australia, then explaining how it is
organised and run in Australia, and finally discussing the impact and importance of reaching out to high-
school students in our discipline.

Short Biography

Dominique Estival received a PhD in Linguistics from the University of Pennsylvania in 1986. Her research
experience in Natural Language Processing has been at the frontier between industry and academia, with
positions at ISSCO, The University of Melbourne, the Defence Science and Technology Organisation and
private language technology companies in the US and Australia. In 2010, she joined the University of West-
ern Sydney to manage AusTalk, the largest Australian audio-visual speech data collection. Her research
interests have included the computational modelling of language change, machine translation, grammar for-
malisms for linguistic engineering, spoken dialogue systems and aviation communication. She co-founded
OzCLO in 2008 and has been the main driving force behind it since then.

Dominique Estival. 2011. OzCLO: The Australian Computational Linguistic Olympiad. In Proceedings of
Australasian Language Technology Association Workshop, page 3



Automatic Grading of Evidence: the 2011 ALTA Shared Task

Diego Molla and Abeed Sarker
Centre for Language Technology

Macquarie Univeristy
Sydney, NSW 2109

{diego.molla-aliod, abeed.sarker}@mq.edu.au

Abstract

The ALTA shared tasks are programming
competitions where all participants attempt to
solve the same problem, and the winner is the
system with the best results. The 2011 ALTA
shared task is the second in the series and it
focuses on trying to automatically grade the
level of clinical evidence in medical research
papers. In this paper we describe the task,
present the results of several baselines, and the
results of our method. We apply a sequence
of high precision machine learning classifiers
with varying feature sets for each. In addi-
tion to using n-grams, we incorporate domain
knowledge by representing specific medical
concepts using their semantic categories. We
also apply a specialised rule-based approach
for automatically identifying the publication
types of articles, which is then used as a fea-
ture set. Our approach obtains an accuracy
of 62.84% which is a significant improvement
over the baselines.

1 Introduction

An important step for physicians who practise Evi-
dence Based Medicine (EBM) is the grading of the
quality of the clinical evidence present in the medi-
cal literature. Evidence grading is a manual process,
and the time required to perform it adds to the al-
ready time-consuming nature of EBM practice. It
has been shown that EBM practitioners often do not
pursue evidence based answers to clinical questions
because of the time required (Ely et al., 1999; Ely
et al., 2005). Therefore, there is a strong motivation

for systems that can automatically appraise the evi-
dence present in medical publications and generate
evidence grades on a specialised scale.

The 2011 ALTA shared task addressed the prob-
lem of automatic evidence grading. The goal of the
task was to build a system that can predict the grade
of evidence given a set of medical publications from
which the evidence has been extracted. This is a dif-
ficult task, and as we show below, machine learning
methods that use simple bag-of-word features do not
perform significantly better than a trivial baseline.
We attempt to solve the problem using supervised
machine learning using features such as abstract and
title n-grams and publication types. We employ a set
of classifiers that utilise the different feature sets and
apply them sequentially to obtain an accuracy value
of 62.84%, which is a significant improvement over
the baseline and also the best result obtained among
all the submissions for the shared task.

In the following sections, we provide a brief back-
ground of EBM, evidence grading, and related work
in this area, followed by a description of our meth-
ods and the final results.

2 Evidence Based Medicine and Evidence
Grading

EBM is the ‘conscientious, explicit, and judicious
use of current best evidence in making decisions
about the care of individual patients’ (Sackett et al.,
1996). Current clinical guidelines urge physicians
to practise EBM when providing care for their pa-
tients. Good practice of EBM requires practitioners
to search for the best quality evidence, synthesise
collected information and grade the quality of the

Diego Mollá and Abeed Sarker. 2011. Automatic Grading of Evidence: the 2011 ALTA Shared Task. In
Proceedings of Australasian Language Technology Association Workshop, pages 4−8



evidence.

2.1 The Strength of Recommendation
Taxonomy

There are over 100 grading scales to specify grades
of evidence in use today. The Strength of Recom-
mendation Taxonomy (SORT) (Ebell et al., 2004)
is one such grading scale. It is a simple, straight-
forward and comprehensive grading system that can
be applied throughout the medical literature. Con-
sequently, it is used by various family medicine and
primary care journals, such as the Journal of Fam-
ily Practice (JFP)1. SORT uses three ratings — A
(strong), B (moderate) and C (weak) — to specify
the Strength of Recommendation (SOR) of a body of
evidence. In SORT, grade A reflects a recommenda-
tion based on consistent and good-quality, patient-
oriented evidence; grade B reflects a recommenda-
tion based on inconsistent or limited-quality patient-
oriented evidence; and grade C reflects a recom-
mendation based on consensus, usual practice, opin-
ion or disease-oriented evidence. This is the chosen
grading scale for the ALTA shared task.

3 Related Work

Related research has focused mostly on automatic
quality assessment of medical publications for pur-
poses such as retrieval and post-retrieval re-ranking,
where approaches based on word co-occurrences
(Goetz and von der Lieth, 2005) and bibliometrics
(Plikus et al., 2006) have been proposed for improv-
ing the retrieval of medical documents. Tang et al.
(2009) propose a post-retrieval re-ranking approach
that attempts to re-rank results returned by a search
engine, which may or may not be published research
work. However, their approach is only tested in a
specific sub-domain (i.e., Depression) of the medi-
cal domain. Kilicoglu et al. (2009) focus on iden-
tifying high-quality medical articles and build on
the work by Aphinyanaphongs et al. (2005). They
use machine learning and obtain 73.7% precision
and 61.5% recall. These approaches rely heavily
on meta-data associated with the articles, making
them dependent on the database from which the ar-
ticles are retrieved. Hence, these approaches would

1http://www.jfponline.com

not work on publications that do not have associated
meta-data.

The definitions of ‘good-quality evidence’ (Ebell
et al., 2004) suggest that the publication types of
medical articles are good indicators of their quali-
ties. Literature in the medical domain consists of a
large number of publication types of varying qual-
ities2. For example, a randomised controlled trial
is of much higher quality than a case study of a
single patient. Evidence obtained from the former
is thus more reliable. Greenhalgh (2006) mentions
some other factors that influence the grade of an ev-
idence, such as the number of subjects included in a
study and the mechanism by which subjects are al-
located (e.g., randomisation/ no randomisation), but
the latter is generally specified by the publication
type (e.g., randomised controlled trial) of the article.
Recently, Sarker and Mollá (2010) emphasised on
the importance of publication types for SOR deter-
mination and showed that automatic identification of
high-quality publication types (e.g., Systematic Re-
view and Randomised Controlled Trial) is relatively
simple.

Factors influencing the automatic detection of ev-
idence grades have been explored by Sarker et al.
(2011). In this research work, information such pub-
lication types, publication years, journal titles, and
article titles were obtained from a specialised corpus
and used as features. Publication types were shown
to be the most useful features giving accuracy values
of approximately 68%. This research work is almost
identical to the shared task. The only difference is
that for the shared task, all features are required to
be generated automatically since information from a
specialised corpus is not available.

4 Methods

4.1 Shared Task Data

The data for the shared task consisted of a set of ‘ev-
idences’ with the SOR grade for each. Each evi-
dence was represented as a list of publications from
which the evidence had been generated. Information
for each publication was provided in the form of an

2A list of publication types used by the US
National Library of Medicine can be found at
http://www.nlm.nih.gov/mesh/pubtypes2006.html. This list is
not exhaustive.
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41711 B 10553790 15265350
53581 C 12804123 16026213 14627885
53583 B 15213586
52401 A 15329425 9058342 11279767

Figure 1: Sample data for the shared task

XML file per publication obtained from PubMed3

and named according to the publication PubMed ID.
This XML file contained bibliographic data (title,
author, etc), the text of the abstract, and additional
annotations provided by PubMed such as the medi-
cal semantic concepts found in the publication. Two
sets of such data were provided initially for training
(677 evidences) and development time testing (178
evidences), and an additional set was used for testing
the final system (183 evidences).

An additional file contains the information related
to the evidences, their SOR grades, and their publi-
cations (Figure 1). Each line represents an evidence.
The first item in the line is the evidence ID. This is
followed by the SOR grade (A, B, or C), and then
the PubMed IDs of the abstracts that form the ev-
idence. Thus, the first evidence listed in Figure 1
contains the abstracts with PubMed IDs 10553790
and 15265350, and is graded with SOR B.

The evidences were obtained from the corpus de-
scribed by Mollá and Santiago-Martı́nez (2011) ,
which in turn uses the references and SOR judge-
ments present in the ‘Clinical Inquiries’ section of
the website from the Journal of Family Practice.4

4.2 Baselines

The most trivial baseline is to classify all of the el-
ements with majority according to the training set,
which is SOR B. With such a baseline, the accuracy
is 48.63% (CI: 41.50-55.83).

A more complex baseline uses a machine learning
classifier based on bag-of-word features. We tried
with several variants. The best-performing system
uses all non-stop n-grams (n = 1, 2, 3) from the
abstract after stemming and lowercasing as the fea-
tures, and Naı̈ve Bayes as the classifier, and achieves
an accuracy of 45.90%. These results appear worse
than the simpler baseline, though the difference is

3http://www.ncbi.nlm.nih.gov/pubmed/
4Data obtained with kind permission from the publishers.

not statistically significant.

4.3 Preliminary Analysis

In our approach, we built on the work by Sarker et
al. (2011). Our preliminary analysis involved using
simple features such as n-grams and various other
information (including publication types) from the
training set data. As noted above, obtaining signifi-
cant improvements over the ‘majority class’ baseline
was extremely difficult using any classifier. Further-
more, the ‘PublicationType’ tags in the PubMed ar-
ticles did not cover important publication types such
as cohort study and systematic review. As a result,
even the use of these tags did not produce accuracies
greater than 60%. We therefore applied a rule-based
approach for identifying publication types of articles
and used them as features.

4.4 Feature Selection

Our final system utilises three feature sets — n-
grams (semantic types replaced), titles, and publi-
cation types5.

4.4.1 N -grams
We generated n-grams (n = 1, 2, 3 and 4) for

each of the abstracts in the training set and replaced
specific medical concepts in the texts with generic
‘sem type’ tags. We used MetaMap6 to identify do-
main specific concepts as defined in the UMLS7

(Unified Medical Language System). The UMLS
provides a vast vocabulary of medical concepts and
also broad semantic groups into which the concepts
can be classified. For example, all disease names
fall under the semantic category Disease or Syn-
drome (dsyn). Replacing each occurrence of a dis-
ease or syndrome name with the generic tag ensures
that the name does not have an influence on the
classifiers used and reduces over-fitting. We used
the same semantic groups as Uzuner et al. (2009):
pathological function, disease or syndrome, mental
or behavioural dysfunction, cell or molecular dys-
function, virus, neoplastic process, anatomic abnor-
mality, acquired abnormality, congenital abnormal-
ity and injury or poisoning. We also preprocessed

5We have experimented with other features but this combi-
nation produced the best results.

6http://metamap.nlm.nih.gov/
7http://www.nlm.nih.gov/research/umls/
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the n-grams by stemming, lowercasing and remov-
ing stop words.

4.4.2 Publication Types
We employed a rule-based approach for automat-

ically identifying publication types of the articles
from their abstracts. It has been shown that such
an approach obtains very accurate results for high
quality publication types (Sarker and Mollá-Aliod,
2010). We extended this approach by creating reg-
ular expressions for identifying publication types
such as cohort studies that are not tagged in the
PubMed XML files. We combined the publication
types identified by our rule-based approach with the
publication types given in the articles. For articles
with multiple publication types, we only kept the tag
that represents the highest quality. For example, if
an article was tagged as a Randomised Controlled
Trial, a Clinical Trial, and a Journal Article, we only
kept the Randomised Controlled Trial tag since it
has the highest quality among the three types. In
this way, we identified the publication types of all
articles (total of 23 publication types) and used them
as features.

4.4.3 Titles
Since titles have been shown to be informative

and to produce better results than baseline in the past
(Sarker et al., 2011), we used them as features as
well. We generated uni- and bi-grams from the ti-
tles, preprocessed them (in the same manner as the
n-grams) and used them as features.

4.5 Classification

We modelled the problem of evidence grading as a
three-way classification problem using the above-
mentioned features. Our preliminary analysis re-
vealed that combining a set of features for a sin-
gle classifier does not produce significant improve-
ments over the baseline. Furthermore, beating the
majority class baseline is difficult itself. We, there-
fore, attempted to develop a sequential approach that
would achieve small improvements in accuracy over
the baseline at each step. Thus, we use a sequence
of classifiers that attempt to separate A and C grade
instances from B with high precision. At each step,
instances classified as A or C are removed and the
rest are passed on to the next step. The sequence in

which the classifiers were applied and specific de-
tails about each of them are as follows:

Step 1: Classify all evidences as grade B (majority
class).

Step 2: SVMs with n-grams (n = 1, 2, 3, 4 and se-
mantic types replaced) as features. Parameters:
cost = 2.0 and γ = 0.0. Attribute selection:
Using the information gain measure to select
the top 400 n-grams.

Step 3: SVMs with publication types as features.
For each instance, the frequency of each pub-
lication type is used. Parameters: cost = 1.0
and γ = 0.0.

Step 4: SVMs with titles as features. Parameters:
cost = 32.0 and γ = 0.002.

The parameters for each of the SVMs were tuned
using the training set for training and the develop-
ment time test set for evaluation. All experiments
were carried out using the software package Weka8.
Each of the above classifiers and their parameters
were chosen based on their precision in classifying
A and C grade evidences. Using this approach, the
classification accuracy increases with each step of
the algorithm as more instances are correctly classi-
fied as A and C.

5 Results and Discussion

For the final evaluation, we trained all our classi-
fiers using the training set and the development test
set, and evaluated the performance using test set in-
stances. Among the 183 instances of the test set,
our classifiers classify 42 as grade A, 124 as grade
B, and 17 as grade C. This achieves an overall ac-
curacy of 62.84%, meaning that 115 instances out
of the 183 were correctly classified. This is signif-
icantly better than the baseline of classifying all in-
stances as grade B, which has an accuracy of 48.63%
(CI: 41.50 – 55.83).

Our results show that extracting specific informa-
tion such as the publication types from text can sig-
nificantly improve accuracy of grading. As Sarker et

8http://www.cs.waikato.ac.nz/ml/weka/
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al. (2011) point out, features such as sizes of stud-
ies and consistency among studies play an impor-
tant role in influencing evidence grades. However,
identifying these factors automatically pose difficult
problems themselves.

6 Conclusion

The 2011 ALTA Shared Task turned out to be a dif-
ficult one. A simple bag-of-word baseline does not
significantly improve the results of a trivial majority-
based baseline, and in fact none of the participants
to the shared task managed to achieve results signif-
icantly better than this trivial baseline except us.

We have approached the problem of evidence
grading as a three-way classification problem. We
use three feature sets — n-grams, publication types,
and titles. For the n-grams, we apply generic tags
for specific medical concepts and we obtain publi-
cation type information using a rule-based approach.
By employing a sequence of classifiers that attempt
to identify A and C grade classes with high preci-
sion, our approach obtains an accuracy of 62.84%,
which is a significant improvement over the base-
line.
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Abstract

Bayesian models are usually learned using
batch algorithms that have to iterate multiple
times over the full dataset. This is both com-
putationally expensive and, from a cognitive
point of view, highly implausible. We present
a novel online algorithm for the word segmen-
tation models of Goldwater et al. (2009) which
is, to our knowledge, the first published ver-
sion of a Particle Filter for this kind of model.
Also, in contrast to other proposed algorithms,
it comes with a theoretical guarantee of opti-
mality if the number of particles goes to infin-
ity. While this is, of course, a theoretical point,
a first experimental evaluation of our algo-
rithm shows that, as predicted, its performance
improves with the use of more particles, and
that it performs competitively with other on-
line learners proposed in Pearl et al. (2011).1

1 Introduction

Bayesian models have recently become quite pop-
ular in Computational Linguistics. One undesir-
able property of many such models is, however, that
the inference algorithms usually applied to them,
in particular popular Markov Chain Monte Carlo
Methods such as Gibbs Sampling, require multi-
ple iterations over the data — this is both compu-
tationally expensive and, from a cognitive point of
view, implausible. Online learning algorithms di-
rectly address this problem by requiring only a sin-
gle pass over the data, thus providing a first step

1The source code for our implementation is available
for download from http://web.science.mq.edu.au/

˜bborschi/

from ‘ideal learner’ analyses towards more realistic
learning scenarios (Pearl et al., 2011). In this paper,
we present a Particle Filter algorithm for the word
segmentation models of Goldwater et al. (2009), to
our knowledge showing for the first time how a Par-
ticle Filter can be applied to models of this kind.
Notably, Particle Filters are mathematically well-
motivated algorithms to produce a finite approxima-
tion to the true posterior of a model, the quality of
which increases with larger numbers of particles and
recovering the true posterior if the number of par-
ticles goes to infinity. This sets them qualitatively
apart from most previously proposed online learners
that usually are based on heuristic ideas.

The structure of the rest of the paper is as fol-
lows. First, we give a high-level description of the
Bayesian word segmentation model our algorithm
applies to and make explicit our notion of an online
learner. Then, we give a quick overview of previous
work and go on to describe the word segmentation
model in more detail, introducing the relevant nota-
tion and formulae. Finally, we give a description of
the algorithm and present experimental results, com-
paring the algorithm with other proposed learning
algorithms for the model and its performance across
different numbers of particles.

2 The Goldwater model for word
segmentation

The model2 assumes that a segmented text is cre-
ated by a random process that generates a sequence

2We only provide a high-level idea of the Bayesian Unigram
model for word segmentation of Goldwater et al. (2009). For
more details and a description of the Bigram model, we refer
the reader to the original paper.

Benjamin Börschinger and Mark Johnson. 2011. A Particle Filter algorithm for Bayesian Wordsegmentation.
In Proceedings of Australasian Language Technology Association Workshop, pages 10−18



of words σ = w1:n which can be interpreted as a
segmentation of the unsegmented text T that is the
result of concatenating these words.3

The first word is generated by a distribution over
possible words, the so-called base distribution P0

that, in principle, can generate words of unbounded
length. We’ll come back to the details of the base
distribution in section 4.1. Each further word is
either generated by ‘reusing’ one of the previously
generated words, or by making a new draw from
the base distribution. This generative process, also
known as the (labelled) Chinese Restaurant Process,
is formally described as:

P (W1=w | α) = P0(w) (1)

P (Wi+1=w |W1:i, α) =
cw(W1:i) + αP0(w)

i+ α
(2)

where P0 is the base distribution over words and
cw(W1:i) is the number of times the wordw has been
observed in the sequenceW1:i. α is the hyperparam-
eter for the process, also known as the concentration
parameter, and controls the probability of generat-
ing previously unseen words by making a new draw
from P0.

This process can be understood in terms of a
restaurant metaphor: each generated word corre-
sponds to the order of a customer in a restaurant, and
each customer who enters the restaurant either sits at
an already occupied table with probability propor-
tional to the number of people already sitting there,
ordering the exact same dish they are already eat-
ing (the label of the table), or sits at a new table
with probability proportional to α and orders a new
dish which corresponds to making a draw from the
base distribution.4 In principle, there is an infinite
number of tables in the restaurant but we only are
interested in those that are actually occupied, allow-
ing us to actually represent the state of this process
with finite means. We will be using the metaphor
of customers and tables in the following, for ease of
presentation and lack of a better terminology.

3We take an expression of the form x1:n to refer to the se-
quence x1, . . . , xn.

4Note that the same word may label several different tables,
as the base distribution may generate the same word multiple
times.

The conditional distributions defined by eq. 1 and
eq. 2 is exchangeable, i.e. every permutation of the
same sequence of words is assigned the same proba-
bility. This allows us to completely capture the state
of the generative process after having generated i
words by a description of the seating for the i cus-
tomers.

2.1 Inference for the model

While this description has focused on the genera-
tive side of the model, probabilistic models like this
are usually not used to generate random sequences
of words but to do inference. In this case, we are
interested in the posterior distribution over segmen-
tations σ for a specific text T , P (σ | T ).

While it is easy to calculate the probability of any
given segmentation using eq. 1 and eq. 2, determin-
ing the posterior distribution or even just finding the
most probable segmentation is computationally in-
tractable. Instead, an approximation to the posterior
can be calculated using, for example, Markov Chain
Monte Carlo algorithms such as Gibbs Sampling.
Going into the details of Gibbs Sampling is beyond
the scope of the paper, and in fact we propose an al-
ternative algorithm here. We refer the reader to the
original Goldwater et al. (2009) paper for a detailed
description of their Gibbs Sampling algorithm and
to Bishop (2006) for a general introduction.

2.2 Motivation for Online Algorithms

Gibbs Sampling is a batch method that requires mul-
tiple iterations over the whole data — in practice, it
is not uncommon to have 20,000 iterations on the
amount of data we are working with here. This is
both computationally expensive and, from a cogni-
tive point of view, highly implausible. Having on-
line learning algorithms is therefore a desirable goal,
and their failure to obtain an optimal solution can be
seen as telling us how a constrained learner might
make use of certain models; in this sense, they pro-
vide a first step from ideal learner analyses to more
realistic settings (Pearl et al., 2011).

Constraints on Online Algorithms In our opin-
ion, a plausible constraint on an online learner is that
it (a) sees each example only once5 and (b) has to

5Note that this applies to example tokens. There may well
be multiple tokens of the same example type.
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make a learning decision on the basis of one exam-
ple at a time immediately after having seen it, using
a finite amount of computation. While this is cer-
tainly a very strict view, we think it is a plausible
first approximation to the constraints human learn-
ers are subject to, and it is certainly interesting in
and of itself to see how well a learner constrained
in this manner can perform. It will be an interest-
ing question for future research to see how relaxing
these constraints to a certain extent effects the per-
formance of the learner.

Note that our constraints on online learners ex-
clude certain algorithms that have been labelled ‘on-
line’ in the literature. For example, the Online EM
algorithms in Liang and Klein (2009) make local up-
dates but iterate over the whole data multiple times,
thus violating (a). Pearl et al.’s (2011) DMCMC al-
gorithm, discussed in the next section, is able to re-
visit earlier examples in the light of new evidence,
violating thus both (a) and (b).

3 Previous work

Online learning algorithms for Bayesian models are
discussed within both Statistics and Computational
Linguistics but have, to our knowledge, not yet
been widely applied to the specific problem of word
segmentation. Both Brent (1999) and Venkatara-
man (2001) propose heuristic online learning algo-
rithms employing Dynamic Programming that have,
however, been shown to not actually maximize the
objective defined by the model (Goldwater, 2007).
Brent’s algorithm has recently been reconsidered as
an online learning algorithm in Pearl et al. (2011).

It is an instance of the familiar Viterbi algorithm
that efficiently finds the optimal solution to many
problems; not, however, for the word segmentation
models under discussion. The algorithm is “greedy”
in that it determines the locally optimal segmenta-
tion for an utterance given its current knowledge us-
ing Dynamic Programming, adding the words of this
segmentation to its knowledge and proceeding to the
next utterance. Both this Dynamic Programming
Maximization (DPM) algorithm and a slight variant
called Dynamic Programming Sampling (DPS) are
described in detail in Pearl et al., the main difference
between the two algorithms being that the latter does
not pick the most probable segmentation but rather

samples a segmentation according to its probability.
Note that DPS is, in effect, a Particle Filter with just
one particle.

Pearl et al. also present a Decayed Markov Chain
Monte Carlo algorithm (Marthi et al., 2002) that is
basically an ‘online’ version of Gibbs Sampling. For
each observed utterance, the learner is allowed to
reconsider any possible boundary position it has en-
countered so far in light of its current knowledge, but
the probability of reconsidering any specific bound-
ary position decreases with its distance from the cur-
rent utterance. In effect, boundaries in recent utter-
ances are more likely to be reconsidered than bound-
aries in earlier ones. While this property is nice in
that it can be interpreted as some kind of memory
decay, the algorithm breaks our constraints on online
learners, as has already been mentioned above: the
DMCMC learner explicitly remembers each train-
ing example, effectively giving it the ability to learn
from and see each example multiple times. It has, in
a sense, “knowledge of ‘future’ utterances when it
samples boundaries further back in the corpus than
the current utterance”, as Pearl et al. point out them-
selves.

As for non-online algorithms, the state of the art
for this word segmentation problem is the adaptor
grammar MCMC sampler of Johnson and Goldwa-
ter (2009), which achieves 87% word token f-score
on the same test corpus as used here. The adaptor
grammar model learns both syllable structure and
inter-word dependencies, and performs Bayesian in-
ference for the optimal hyperparameters and word
segmentation.

4 Model Details

Our models are basically the unigram and bigram
models described in Goldwater et al. (2009) and
quickly introduced above. There is, however, an im-
portant difference with respect to the choice of the
base distribution that we describe in what follows.
Also, our assumption about what constitutes a hy-
pothesis is different from Goldwater et al., which is
why we describe it in some detail.6 The mathemati-
cal details are given in figure 1 while in the text, we
focus on a high-level explanation of the ideas.

6Again, we focus on the Unigram model.
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Pc(C = k | s, φ) = ccs,k + φ∑
j ccs,j + |chars|φ

(j ∈ chars) (3)

P0(W = k1:n | s, φ) =

(
n∏
i=1

Pc(ki | s, φ)

)
× Pc(# | s, φ) (4)

Padd(〈wo, t〉 | s, α) =


cts,t

cts,·+α
if t ∈ s and wo is the label of t

αP0(wo|labels(s),φ)
cts,·+α

if t is a new table.
(5)

Pσ(σ | s, α) = Padd(σ1 | s, α)× · · · × Padd(σn | s ∪ σ1 ∪ · · · ∪ σn−1) (6)

Qσ(σ | s, α) =
n∏
i=1

Padd(σi | s, α) (7)

σ
(l)
i+1 ∼ Qσ(· | s

(l)
i , oi+1, α) (8)

s
(l)
i+1 = s

(l)
i

⋃
σ

(l)
i+1 (9)

w
∗(l)
i+1 = w

(l)
i

P (oi+1 | s(l)i+1, α)P (s
(l)
i+1 | s

(l)
i , α)

Q(s
(l)
i+1 | s

(l)
i , oi+1, α)

= w
(l)
i

P (oi+1, s
(l)
i+1 | s

(l)
i , α)

Qσ(σ
(l)
i+1 | s

(l)
i , oi+1, α)

= w
(l)
i

Pσ(σ
(l)
i+1 | s

(l)
i , α)

Qσ(σ
(l)
i+1 | s

(l)
i , oi+1, α)

(10)

w
(l)
i+1 =

w
∗(l)
i+1∑N

j=1 w
∗(j)
i+1

(11)

ÊSSi =
1∑N

j (w
(j)
i )2)

(12)

Figure 1: The mathematical details needed for implementing the algorithm. ccs,k is the number of times character k
has been observed in the words in labels(s) which, in turn, refers to the words labeling (unigram) tables in model state
s. chars is the set of different characters in the language, including the word-boundary symbol #. cts,t refers to the
number of customers at table t in model state s, and cts,· refers to the total number of customers in s. A segmentation
σ is a sequence of word-table pairs 〈wo, t〉 that indicates both which words make up the segmentation and at which
table each word customer is seated. s ∪ σi refers to the model state that results from adding the ith word-table pair
of σ to hypothesis s, and the probability of adding this pair is given by Padd in eq. 5. s

⋃
σ refers to adding all

word-table pairs in σ to s. Qσ is the proposal distribution from which we can efficiently sample segmentations, given
an observation o, i.e. an unsegmented utterance, and a model state s. Pσ is the true distribution over segmentations
according to which we can efficiently score proposals to calculate (the unnormalized) weights w∗ using eq. 10. Eq. 8
and eq. 10 can be calculated because Qσ(σ | s, α, o) = Q(σ,o|s,α)

Q(o|s,α) = Qσ(σ|s,α)
Q(o|s,α) , the denominator of which can be

efficiently calculated using the forward-algorithm.

4.1 The Lexical-Model

Even though Goldwater et al. found the choice of
the lexical model to make virtually no difference
for the performance of an unconstrained learner, this
does not hold for online learners, an observation al-
ready made by Venkataraman (2001). In the orig-
inal model, each character is assumed to have the
same probability θ0 = 1

|characters| of being gener-
ated, and words are generated by a zero-order (Un-
igram) markov process with a fixed stopping prob-
ability. In contrast, we assume that there is a sym-
metric Dirichlet prior with parameter φ on the prob-

ability distribution over characters:
θ ∼ Dir(φ)
Pc(k) = θk
By integrating out θ, we get a ‘learned’ condi-

tional distribution over characters, and consequently
words, given the learner’s lexicon up to that point
(eq. 3 and eq. 4).

In addition, we do not fix the probability for the
word-boundary symbol, treating it as a further spe-
cial character # that may only occur at the end of a
word.7

7While this makes possible in principle the generation of
empty words, we are confident that this does not pose a prac-
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4.2 Probability of a segmentation

Since we are interested in the posterior distribution
over hypotheses given unsegmented utterances, it is
important to be clear about what constitues a hypoth-
esis. At a high level, a hypothesis s can be thought
of as a lexicon that arises from the segmentation de-
cisions made for the observations up to this point.
For example, if the learner previously assumed the
segmentations “a dog” and “a woman”, its lexicon
contains two occurences of “a” and one occurence
of “dog” and “woman”, respectively.

More precisely, a hypothesis is a model state and a
model state is an assignment of observed (or rather,
previously predicted) word ‘customers’ to tables
(see section 2).8 At time k, the model state sk is the
seating arrangement after having segmented the cur-
rent observation ok given the previous model state
sk−1, where each observation is an unsegmented
string. As our incremental learner can only make
additive changes to the ‘restaurant’ — no customers
ever leave the table they are assigned to — the hy-
pothesis at time k+1 is uniquely determined by the
seating arrangement at time k and the proposed seg-
mentation for observation ok+1, as a segmentation
not only indicates the actual words, e.g. “a” and
“dog”, but also the table at which each word should
be seated (which may be a new table). Thus, going
from one model state to the next corresponds to sam-
pling a segmentation for the new observation (eq. 8)
and adding this segmentation to the current model
state (eq. 9). The formulae that assign probabilities
to segmentations are given in eq. 5 to eq. 7.

5 The Particle Filter algorithm

Our algorithm is an instance of a Particle Filter, or
more precisely, of the Sequential Importance Re-
sampling (SIR) algorithm (Doucet et al., 2000). The
idea is to sequentially approximate a target poste-
rior distribution P by N weighted point samples or
particles, updating each particle and its weight in
light of each succeeding observation. Hypotheses

tical problem as we only use the model for inference, not for
generation.

8The reason our description involves an explicit record of
table assignments is that this is needed for the Bigram model.
While actually not needed for the Unigram case, our formula-
tion can be extended to the Bigram model in a straight-forward
way, given the description in Goldwater et al. (2009).

that do conform to the data gain weight, mimicking
a kind of a “survival of the fittest” dynamic. No-
tably, the accuracy of the approximation increases
with the number of particles, a result borne out by
our experiments.

At a very high-level, a Particle Filter is very sim-
ilar to a stochastic beam-search in that a number of
possibilities is explored in parallel, and the choice
of possibilities that are further explored is biased to-
wards locally good, i.e. high-probable ones.

At any given stage, the weighted particles give a
finite approximation to the target posterior distribu-
tion up to that point, the weight of each particle rep-
resenting its probability under the approximation.
Therefore, we can use it to approximate any expec-
tation of the posterior, e.g. some measure of its word
segmentation accuracy, as a weighted sum.

5.1 Description of the Algorithm

A formal description of the algorithm is given in Fig-
ure 2 which we explain in more detail here. The al-
gorithm starts at time i = 0 with N identical model
states (particles) s(n)0 , in our case empty lexicons, or
rather empty restaurants.9 At each time step i+1, it
propagates each particle by sampling a segmentation
σ
(l)
i+1 for the next observation oi+1 according to the

the current model state s(l)i (eq. 8) and adding this
segmentation to it, yielding the updated particle s(l)i+1

(eq. 9). Intuitively, at each step the learner predicts a
segmentation for the current observation in light of
what it has learned so far. Adding a segmentation to
a model state corresponds to adding the word cus-
tomers in the segmentation to the corresponding ta-
bles. As there are multiple particles, in principle the
algorithm can explore alternative hypotheses, remi-
niscent of a beam-search.

Not all hypotheses, however, fit the observations
equally well, and as new data becomes available at
each time step, the relative merit of different hy-
potheses may change. This is captured in a particle
filter by assigning weights w(l)

i to each particle that
are iteratively updated, using eq. 10 and eq. 11. This
update takes both into account how well the particle
fit previously seen data in the form of the old weight,
and how well it fits the last observation in the form

9The superscript indexes the individual particles, the sub-
script indicates the time.
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of the probability of the proposed segmentation un-
der the current model.

Also, the formula we use for calculating the par-
ticle weights, taken from Doucet et al. (2000), over-
comes a fundamental problem in applying Particle
Filters to this kind of model: we are usually not
able to efficiently sample directly from P , because
P does not decompose in the way required for Dy-
namic Programming (Johnson et al., 2007; Mochi-
hashi et al., 2009). The SIR algorithm, however, al-
lows us to use an arbitrary proposal distribution Q
for the samples. All that is needed is that we can cal-
culate the true probability of each sample according
to P , which is easily done using eq. 6. Our proposal
distributionQ ignores the dependencies between the
words within an utterance, as in eq. 7. This can be
thought of as ‘freezing’ the model in order to de-
termine a segmentation, just as in the PCFG pro-
posal distribution of Johnson et al. (2007). Thus,
the proposal segmentations and other quantities re-
quired to calculate the weights and propagate the
particles are efficiently computable using the formu-
lae in Figure 1 and the efficient algorithms described
in detail in Johnson et al. (2007) and Mochihashi et
al. (2009). Interestingly, even though the proposal
distribution is only an approximation to the true pos-
terior, Doucet et. al point out that as the number of
particles goes to infinity, the approximation still con-
verges to the target (Doucet et al., 2000).

Resampling A well known problem with Parti-
cle Filters is that after a number of observations most
particles will be assigned very low weights which
means that they contribute virtually nothing to the
approximation of the target distribution. This is di-
rectly addressed by resampling steps in the SIR al-
gorithm: whenever a quantity known as Effective
Sample Size (ESS), approximated by eq. 12, falls
below a certain threshold, say, N2 , the current set of
particles is resampled by sampling with replacement
from the current distribution over particles defined
by the current weights. This results in high weight
particles having multiple ‘descendants’, and in low
weight particles being ‘weeded out’. We experiment
with two thresholds, N and N

2 .

6 Experiments

We evaluate our algorithm along the lines of experi-
ments discussed in Pearl et al. (2011), using Brent’s

create N empty models s(1)0 to s(N)
0

set initial weights w(l)
0 to 1

N
for example i = 1→ K do

for particle l = 1→ N do
sample σ(l)

i ∼ Qσ(· | s
(l)
i−1, oi, α)

s
(l)
i = s

(l)
i−1

⋃
σ
(l)
i

calculate the unnormalized particle weight w∗(l)i

end for
calculate the normalized particle weights w(l)

i and
calculate ÊSS
if ÊSS ≤ THRESHOLD then

resample all particles according to w(l)
i

set all weights to 1
N

end if
end for

Figure 2: Our Particle Filter algorithm. N is the number
of particles, K is the number of examples. The formulae
needed are given in Figure 1.

version of the Bernstein corpus (Brent, 1999). Un-
like them, however, we see no reason for actually
splitting the data into training and test sets, follow-
ing in this respect previous work such as Goldwater
et al. (2009) by training and evaluating on the full
corpus.

6.1 Evaluation

Evaluation is done for each learner by ‘freezing’
the model state after the learner has processed all
examples and then sampling a proposed segmenta-
tion for each example o from Qσ(· | s, o, α), where
s is the final model state. As we have multiple
weighted final model states, the scores are calcu-
lated by evaluating each model state and then tak-
ing a weighted sum of the individual scores. This
corresponds to taking an expectation over the poste-
rior. Note that under the assumption that at the end
of learning the ‘lexicon’ no longer changes, sam-
pling from Q no longer constitutes an approxima-
tion as the intra-utterance dependencies Q ignores
correspond to making changes to the lexicon.

As is common, we calculate precision, recall and
the harmonic mean of the two, f-measure, for tokens,
boundaries and elements in the lexicon. To illus-
trate these scores, assume the learner segmented the
two utterances “the old woman” and “the old man”
into “theold wo man” and “theold man”. It has cor-
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rectly identified 1 of the 6 tokens and predicted a
total of 5 tokens, yielding a token recall of 1/6 and a
token precision of 1/5. It has also identified 2 of the
4 boundaries, and has predicted a total of 3 bound-
aries, yielding a precision of 2/3 and a recall of 1/2.
Lastly, it has correctly found only 1 of the 4 word
types and predicted a total of 3 word types, giving
a precision and a recall of of 1/3 and 1/4, respec-
tively. So as to not clutter the table, we only report
f-measure.

6.2 Experimental Results

There are two questions of interest with respect to
the performance of the algorithm. First, we would
like to know how faithful the algorithm is to the
original model, i.e. whether the ‘optimal’ solution
it finds is close to the ‘optimal’ solution according
to the true model. For this, we compare the log-
probability of the training data each algorithm as-
signs to it after learning. Second, we would like to
know how well each algorithm performs in terms of
the segmentation objectives.

For comparison to our Particle Filter algorithm,
we used Pearl et al.’s (2011) implementation of
their proposed online learners, the DPM and the
DMCMC algorithm, and their implementation of
a batch MCMC algorithm, a Metropolis Hastings
sampler.10 We set the threshold for resampling to N
and N

2 , φ to 0.02 and the remaining model parame-
ters to the values reported in Goldwater et al. (2009):
α = 20.0, ρ = 2.0 for the unigram model, and
α0 = 100.0, α1 = 3000.0, p$ = 0.5 for the bi-
gram model.11 In addition, we decided to not use
annealing for either of the algorithms to get an idea
of the ‘raw’ performance of their performance and
simply run the unconstrained sampler for 20,000 it-
erations. While this does not reflect a ‘true’ ideal
learner performance, it seems to us to be a reason-
able method for an initial comparision, in particular

10The scores reported in their paper apply only to their
training-test split. We weren’t able to run the DMCMC algo-
rithm for the Unigram setting which is why we omit these scores
— the scores reported for the Unigram learner on a five-fold
training-test split in Pearl et al. are slightly better than for our
best performing particle filter but not directly comparable, and
no log-probability is given.

11p$ is the fixed utterance-boundary base-probability, ρ is the
beta-prior on the utterance-boundary probability in the unigram
model.

since we have not yet applied ideas such as anneal-
ing or hyper-parameter sampling to the Particle Fil-
ter.

The particle filter results vary considerably, espe-
cially with small numbers of particles, which is why
we report an average over multiple runs and report
the standard deviation in brackets.12 The results are
given in Table 1.

6.3 Discussion

As could be expected, faithfulness to the original
model increases with larger numbers of particles
— the log-probability of the training-data seems to
be positively related to N , though obviously non-
linearly, and we expect that using even larger num-
bers of particles will bring the log-probability even
closer to that assigned by the unconstrained learner.
Also, the Particle Filters seem to work generally bet-
ter for the Unigram model which is not very sur-
prising, considering that “when tracking bigrams in-
stead of just individual words, the learner’s hypothe-
sis space is much larger” (Pearl et al., 2011), and that
Particle Filters are known to perform rather poorly in
high dimensional state spaces.

In the Unigram setting, the Particle Filter is able to
outperform the DPM algorithm in the 1000 particle /
N
2 threshold setting, both in terms of log-probability

and segmentation scores. With respect to the lat-
ter, it also outperforms the unconstrained learner in
all but lexical f-measure. This is not very surpris-
ing, however, as Goldwater (2007) already found
that sub-optimal solutions with respect to the actual
model may be better with respect to segmentation,
simply because the strong unigram assumption is so
blatantly wrong.

For both the models, using a resampling thresh-
old of N2 instead of N seems to lead to better perfor-
mance with respect to both measures, in particular in
the Bigram setting. We are not sure how to interpret
this result but have the suspicion that this difference
may disappear as a larger number of particles is used
and that what may be going on is that for ‘small’
numbers of particles, the diversity of samples drops
too fast if resampling is applied after each observa-

12For 1, 50 and 100 particles, we run 10 trials, for 500 and
1000 particles 2 trials. In principle, the unconstrained learners
are also subject to some variance (Goldwater, 2007; Goldwater
et al., 2009) but not to the extent of the particle filters.
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Learner TF BF LF log-prob×103

Unigram

MH-MCMC 63.11 80.29 59.68 -209.57
DPM 65.65 80.05 44.96 -234.11

PF

1 56.84 (4.36) 74.94 (2.92) 35.34 (3.21) -244.28 (5.56)
50 60.33/59.84

(5.82)/(6.00)
77.08/76.98
(3.68)/(3.75)

41.61/41.62
(3.40)/(3.15)

-240.38/-240.58
(6.43)/(5.18)

100 62.97/61.02
(3.21)/(4.94)

79.05/77.87
(2.09)/(3.14)

43.04/43.61
(2.29)/(2.90)

-238.73/-238.92
(4.64)/(5.69)

500 60.81/68.46
(7.05)/(1.87)

77.50/82.27
(4.36)/(1.11)

45.25/47.52
(3.67)/(0.23)

-236.55/-231.85
(6.13)/(2.25)

1000 64.11/66.54
(4.84)/(5.31)

79.70/80.99
(2.74)/(3.24)

45.82/47.08
(1.36)/(2.90)

-234.87/-231.93
(3.10)/(3.55)

Bigram

MH-MCMC 63.71 79.52 47.45 -240.79
DMCMC 70.78 83.97 47.85 -244.85

DPM 66.92 81.07 52.54 -250.52

PF

1 48.55 (3.04) 71.22 (1.82) 35.02 (2.14) -266.90 (2.40)
50 55.98/57.85

(2.29)/(3.85)
75.21/76.49
(1.42)/(1.93)

43.34/45.21
(1.76)/(1.79)

-258.42/-256.16
(2.22)/(4.24)

100 57.77/61.55
(2.77)/(2.06)

76.40/78.47
(1.45)/(1.30)

43.77/45.79
(1.46)/(1.50)

-257.93/-254.66
(2.03)/(1.47)

500 57.99/63.58
(0.59)/(1.73)

76.33/80.05
(0.33)/(0.94)

44.70/47.82
(0.16)/(0.82)

-256.44/-252.14
(1.01)/(0.46)

1000 57.88/61.76
(0.48)/(1.11)

76.55/78.30
(0.05)/(1.31)

46.93/49.33
(0.41)/(0.88)

-254.17/-251.33
(0.92)/(0.03)

Table 1: F-measure and log-probabilities on the Bernstein corpus for Pearl et al.’s (2011) batch MCMC algorithm
(MH-MCMC), the online algorithms Dynamic Programming Maximization (DPM) and Delayed Markov Chain Monte
Carlo (DMCMC), and our online Particle Filter (PF) with different numbers of particles (1, 50, 100, 500, 1000). TF,
BF and LF stand for token, boundary and lexical f-measure, respectively. For the Particle Filter, numbers left of a ‘/’
report scores for a resampling threshold of N , those on the right for N2 . Numbers in brackets are standard-deviations
across multiple runs. Numbers in bold indicate the best overall performance, and the best performance of an online
learner (if different from the best overall performance).

tion.

In the Bigram setting, even 1000 particles and a
threshold of N

2 cannot outperform the conceptually
much simpler DPM algorithm, let alone the DM-
CMC algorithm that comes pretty close to the un-
constrained learner. The increased dimensionality
of the state-space may require the use of even more
particles, a point we plan to address in the future by
optimizing our implementation so as to handle very
large numbers of particles.

Also, there is no clear relation between the num-
ber of particles that are used and the variance in the
results, in particular in the Unigram setting. While
we are not sure about how to interpret this result,
again it may have to do with the increased dimen-
sionality: a possible explanation is that in the Un-
igram setting, 500 and 1000 particles already allow
the model to explore very different hypotheses, lead-

ing to a larger variance in results, whereas in the Bi-
gram setting, this number of particles only suffices
to find solutions very close to each other.

All in all, however, the results suggest that us-
ing more particles gradually increases the learner’s
performance. This is unconditionally true for both
settings in our experiments with respect to the log-
probability; while this trend is not consistent for
all segmentation scores, this simply reflects that the
relation between log-probability and segmentation
performance is not transparent, even for the Bigram
model, as is clearly seen by the difference between
the DMCMC and the Unconstrained learner.

Finally, we’d like to point out again that the DM-
CMC learner is, strictly speaking, not an online
learner. Its ability to ‘resample the past’ corresponds
closely to he idea of rejuvenation (Canini et al.,
2009) in which each individual particle reconsiders
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past examples for a fixed amount of time at certain
intervals and can, in principle, be added to our algo-
rithm, something we plan to do in the future. Also,
while the performance of the DPM algorithm for
the Bigram model is rather impressive, it should be
noted that the DPM algorithm embodies a heuristic
greedy strategy that may or may not work in certain
cases. While it obviously works rather well in this
case, there is no mathematical or conceptual motiva-
tion for it and we can’t be sure that its performance
does not depend on accidental properties of the data.
7 Conclusion and Outlook
We have presented a Particle Filter algorithm for
the Bayesian word segmentation models presented
in Goldwater et al. (2009). The algorithm performs
competitively with other proposed online algorithms
for this kind of model, and as predicted, its perfor-
mance increases with larger numbers of particles.

To our knowledge, it constitutes the first Particle
Filter for this kind of model. Our formulation of
the Particle Filter should extend to similarly com-
plex Bayesian models in Computational Linguistics,
e.g. the grammar models proposed in Johnson et
al. (2007) and Liang et al. (2010), and may serve as
a starting point for applying other Particle Filter al-
gorithms to these models, a point we want to address
in future research.

Also, while the strict online nature is desirable
from a cognitive point of view, for practical pur-
poses variants of Particle Filters that violate these
strong assumptions, e.g. using the idea of reju-
venation that has previously been applied to Parti-
cle Filters for Latent Dirichlet Allocation in Canini
et al. (2009), might offer considerable performance
gains for practical NLP tasks, and we plan to extend
our algorithm in this direction as well.
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Abstract

This paper introduces tree transducers as a
unifying theory for semantic parsing models
based on tree transformations. Many exist-
ing models use tree transformations, but im-
plement specialized training and smoothing
methods, which makes it difficult to mod-
ify or extend the models. By connecting
to the rich literature on tree automata, we
show how semantic parsing models can be de-
veloped using completely general estimation
methods. We demonstrate the approach by
reframing and extending one state-of-the-art
model as a tree automaton. Using a variant of
the inside-outside algorithm with variational
Bayesian estimation, our generative model
achieves higher raw accuracy than existing
generative and discriminative approaches on a
standard data set.

1 Introduction

Automatically interpreting language is an important
challenge for computational linguistics.Semantic
parsing addresses the specific task of learning to
map natural language sentences to formal represen-
tations of their meaning, a problem that arises in de-
veloping natural language interfaces, for example.
Given a set of (sentence, meaning representation)
pairs like the example below, we want to to learn a
map that generalizes to previously unseen sentences.

1. Sentence: what is the capital of texas ?
Meaning: answer(capital1(stateid(texas)))

Researchers have formalized the learning prob-
lem in various ways, with approaches including

string classifiers (Kate and Mooney, 2006), syn-
chronous grammar (Wong and Mooney, 2006),
combinatory categorial grammar (Zettlemoyer
and Collins, 2005; Kwiatkowski et al., 2010),
and PCFG-based approaches (Lu et al., 2008;
Borschinger et al., 2011). Each approach has re-
quired its own custom algorithms, which has made
model development and innovation slow. Never-
theless, there are many similarities between the
approaches, which all exploit parallels between the
structure of the meaning representation and that of
the natural language. The meaning representation,
as a context-free formal language, has an obvious
tree structure. Trees are also widely used to describe
natural language structure. Consequently, the
semantic parsing problem can be generally defined
as learning a mapping between trees, one of which
may be latent. This mapping can be expressed as a
tree transducer, a formalism from automata theory
that maps input trees to output trees or strings. Tree
transducers have well understood properties and
algorithms, and a rich literature, making them a
particularly appealing model class.

Although some previous approaches strongly re-
semble tree transducers, to our knowledge, we are
the first to explicitly formulate the problem in this
way. We argue that connecting semantic parsing
to the tree automata literature will free researchers
from devising custom solutions and allow them to
focus on studying and improving their models and
developing more general learning algorithms.

To demonstrate the effectiveness of the approach,
we choose one state-of-the-art model, the hybrid tree
(Lu et al., 2008), translate it into the tree transducer

Bevan Jones, Mark Johnson and Sharon Goldwater. 2011. Formalizing Semantic Parsing with Tree
Transducers. In Proceedings of Australasian Language Technology Association Workshop, pages 19−28



Figure 1: An extended left hand side, root-to-frontier, lin-
ear, non-deleting, tree-to-tree transducer (a) and an ex-
ample derivation (b). Numbered arrows in the derivation
indicate which rules apply during that step. Rule [1] is
the only rule with an extended left hand side.

framework, and add a small extension, made easy by
the framework. We also update a standard tree trans-
ducer training algorithm to incorporate a Variational
Bayes approximation. The result is the first purely
generative model to achieve state-of-the-art results
on a standard data set.

2 Extended, root-to-frontier, linear,
non-deleting tree transducers

Tree transducers (Rounds, 1970; Thatcher, 1970)
are generalizations of finite state machines that take
trees as inputs and either output a string or another
tree. Mirroring the branching nature of its input,
the tree transducer may simultaneously transition to
any number of successor states, assigning a separate
state to process each sub-tree. Although they were
originally conceived of by Rounds (1970) as a way
to formalize tree transformations in linguistic theory,
they have since received far more interest in theoret-
ical computer science. Recently, however, they have
also been used for syntax-based statistical machine
translation (Graehl et al., 2008; Knight and Greahl,
2005).

Figure 1 presents an example of a tree-to-tree
transducer. It is defined using tree transformation
rules, where the left hand side identifies a state of
the transducer and a fragment of the input tree, and
the right hand side describes a fragment of the output
tree. Variablesxi stand for entire sub-trees. There
are many classes of transducer, each with its own se-
lection of algorithms (Knight and Greahl, 2005). In
this paper we restrict consideration primarily to the
extended left hand side, root-to-frontier, linear, non-
deleting tree transducers (Maletti et al., 2009), and

we particularly make use of tree-to-string transduc-
ers.

Formally, an extended left hand side, root-
to-frontier, tree-to-tree transducer is a 5-tuple
(Q,Σ,∆, qstart,R). Q is a finite set of states,Σ
and∆ are the input and output tree alphabets,qstart
is the start state, andR is the set of rules. We de-
note a pair of symbols,a andb by a.b, and the cross
product of two setsA andB by A.B. LetX be the
set of variables{x0, x1, ...}. Finally, letTΣ(A) be
the set of trees with non-terminals from alphabetΣ
and leaf symbols from alphabetA. Then, each rule
r ∈ R is of the form[q.t → u].v, whereq ∈ Q,
t ∈ TΣ(X), u ∈ T∆(Q.X) such that everyx ∈ X

in u also occurs int, andv ∈ ℜ≥0 is the weight of
the rule.

We sayq.t is the left hand side of the rule andu
is the right hand side. The transducer islinear iff no
variable appears more than once on the right hand
side. It isnon-deletingiff all variables on the left
hand side also occur on the right hand side. Iff every
treet on the left hand side is of the formσ(x0, ...xn),
whereσ ∈ Σ (i.e., it is a tree of depth≤ 1), then the
transducer is simply root-to-frontier, otherwise we
say it has anextended left hand sidewith the added
power to look a bounded depth into the tree at each
step. Finally, for atree-to-stringtransducer,∆ is an
alphabet, and the right hand sides of the rules consist
of finite tuples of elements taken from∆ ∪Q.X.

A weighted tree transducer may define a probabil-
ity distribution, either a joint distribution over input
and output pairs or a conditional distribution of the
output given the input. Here, we will use joint dis-
tributions, which can be defined by ensuring that the
weights of all rules with the same state on the left-
hand side sum to one. In this case, it can be helpful
to view the transducer as simultaneously generating
both the input and output, rather than the usual view
of reading inputs and writing outputs.

3 Semantic parsing and meaning
representation languages

The goal of semantic parsing is to assign formal
meanings to natural language (NL) sentences, re-
quiring a formal meaning language. Some systems
use lambda expressions; others use variable free log-
ical languages or functional languages (such as that
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of example 1 in the introduction). Here we deal with
meaning representations (MRs) of the latter form
where the bracketing makes the tree structure ob-
vious 1 We refer to functions and predicates in the
MR as either symbols or entities. Since MRs are
trees, the language can be defined by a Regular Tree
Grammar (a kind of CFG that generates trees). We
refer to this grammar as themeaning representation
grammaror MR grammar. Figure 3 shows a frag-
ment of such a grammar and an MR parse. The
parse is just the MR with each symbol labeled with
its grammar rule. Like most systems, the MR gram-
mar is one of our inputs.

4 The hybrid tree model

The idea of the hybrid tree model (Lu et al., 2008) is
to start with the MR and apply a series of transfor-
mations to create a kind of parse tree for the NL.
There are two types of transformation. The first
determines word order by simultaneously choosing
where to attach words (but not the particular words)
and whether or not to swap the order of siblings (Fig-
ure 2a). Once the order is determined, word gener-
ating transformations are then applied to insert spe-
cific words in the determined locations (Figure 2b).

The hybrid tree includes parameters for the MR
as well as the transformations in Figure 2 that relate
words to meaning representations. The probability
of each symbol in the MR is conditioned on the MR
grammar rules that derive its parent symbol. Defin-
ing symbol probabilities in terms of their parents’
grammar rules (as opposed to parent symbols as in
a standard PCFG) distinguishes between functions
and predicates with the same name but different se-
mantics (Wong and Mooney, 2006).

To formally define the probability of the MR, let
paths be the set of paths from the root to every node
in the MR where paths are represented using a vari-
ety of Gorn’s notation (Gorn, 1962)2. Let argsi be
the set of indices of the children of the node at pathi;
andRi be the grammar rule that derives the symbol
at i according to the MR parse. Then, the following

1With a pre-parsing step, it may also be possible to represent
lambda expressions with trees (see Liang et al. (2011)).

2I.e., paths are represented by strings where the empty string
ǫ is the path to the root, and ifi is a path andj is the index of a
child of the node ati, i · j is the path to that child.

equation definesP (MR).

P (MR) =P (Rǫ)
∏

i∈paths

∏

j∈argsi

P (Ri·j |j, Ri) (1)

In other words, each node in the tree is generated
according to the probability of the MR rule that de-
rives it conditioned on (1) the MR ruleRi that de-
rives its parent symbol and (2) its positionj beneath
that parent.

The hybrid tree model then re-orders and extends
this basic skeleton to include the NL. The probabil-
ity of this hybrid tree can be formally defined as fol-
lows if we let pati be the word order pattern used
to generate the children of the node at pathi, and
wordsi be the indices of the words attached under
the node ati.

P (NL-MR hybrid) = P (Rǫ)
∏

i∈paths

P (pati|Ri)

·
∏

j∈argsi

P (Ri·j |j, Ri)
∏

k∈wordsi

P (wi·k|Ri)

(2)

Note thatP (pat|R) andP (w|R) correspond re-
spectively to the weights on the word order and word
generation transformations. In fact, equation 2 is a
joint probability over not only theNL andMR pair
but also the actual set of transformations chosen to
produce the particular hybrid tree relating them.

5 Reframing the hybrid tree as a tree
transducer

We now define a tree transducer that simultaneously
generates an MR tree and NL string according to the
joint probability defined by equation 2. We create
separate states for each of the two transformation
types (orderstates for word order selection andword
states for word generation). In order to model the
properties of the MR grammar (necessary for mod-
eling equation 1), we create one additional state type
for selecting MR children (arg states) and embed the
MR grammar rules into the states so that each state
is identified with exactly one grammar rule. Tran-
sitions between transducer states then simulate the
action of the MR grammar as it generates a new MR
tree. Notationally, we employ subscripts to indicate
each state’s basic type (arg, order, or word) and su-
perscripts to indicate the associated MR grammar
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Figure 2: The two transformation types of the hybrid tree model and an example of their application. (a) Word order
transformations simultaneously permute arguments and addW symbols where words should be attached. The dotted
lines indicate thatW symbols may or may not be attached in each of the possible locations, and siblings may or
may not be swapped. Each possible configuration of sibling orderings andW attachments corresponds to a single
transformation. Thus there are 4 different transformations for the case whereA has one child, and 16 for when it has
2. In the case whereA has no children, word attachment is not optional. (b) Word generation replaces eachW symbol
with actual words. (c) The series of transformations from example MRcityid(portland,me)to produce a parse for the
Japanese equivalent of ‘portland, maine’.

rule, so that, for instance, stateqRorder is an order
state associated with MRL grammar ruleR.

Figure 3 presents a graphical representation of the
basic state transitions of the transducer, where the
states for each grammar rule are clustered inside dot-
ted lines beneath its associated grammar rule label.
The transducer begins in anargstate and proceeds as
follows. First, thearg state selects the next child by
transitioning to anorder state corresponding to the
MR rule that generates the appropriate child. The
order state then chooses the appropriate word order
pattern and transitions to thewordandarg states as-
sociated with that same grammar rule3. The word
states proceed to generate words one at a time in a
loop and finally terminate the string. Then thearg
state begins the cycle over again by transitioning to
theorderof the next child in the MR tree.

Table 1 lists the actual transducer rule types.
Rule probabilities are conditioned on the state on
the left hand side. Thus, since states identify both
their function and the grammar rule of the current
MR node, rule weights correspond directly to the
terms in equation 2:P (Ri·j |j, Ri), P (pat|R), and

3Note that onlyarg states are permitted to transition to states
for different grammar rules.

P (w|R).

5.1 Source tree language model: P (Ri·j |j, Ri)

Rule type 1 in Table 1 begins the process by tran-
sitioning from start stateqstart to qRorder, where the
grammar ruleR ranges over those rules with the start
symbolS on the left hand side. Choosing exactly
which qRorder to transition to corresponds to the de-
cision of choosing the root symbol of the MR tree
(the symbol generated byR), and these transducer
rules define theP (Rǫ) term in equation 1, i.e., the
probability of the grammar rule corresponding to the
root symbol of the MR tree.

For each pair of MR grammar rulesRp andRc,
we add a transducer rule of the form of rule type 2
that transitions from the states associated withRp

to those forRc if Rc generates a valid child of the
symbol generated byRp. Thus, the choice of state
transition here corresponds to choosing the child of
the last generated symbol of the input tree. State
qR

p

arg,i selects theith argument of the current func-
tion in the MR without generating anything in the
input tree. With rules described in the next section,
stateqR

c

order then writes the symbol to the input tree
specified by MR grammar ruleRc.
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Figure 3: State transitions selecting appropriate grammarrules for generating an MR. Solid arcs indicate a state
transition was taken; dotted lines are alternatives. States are divided up into disjoint sets and associated with a specific
MR rule. Transitioning between state sets implicitly chooses an MR rule. The rules lined up with the MR tree to
the left constitute an MR parse. The bottom right shows the grammar fragment corresponding to this portion of the
transducer.

Since the state on the left encodes the rule of the
parent and the argument number, and the state on the
right the child rule, the weights for transducer rules
of type 2 defineP (Ri·j |j, Ri) in equation 1.

5.2 Order decisions: P (pat|R)

Word ordering decisions are made with the aid of
preprocessing step that addsW symbols to the input
tree wherever words can be attached. These symbols
are just a convenience: it is easier to design rules
where every output structure has a counterpart in the
input. The symbols are removed later in a postpro-
cessing step (also using a tree transducer). Attach-
ment decisions are then made by deciding which of
theseW symbols to replace with the empty string
(no attachment) or a string of words.

We add transducer rules of the form of rule type
3 in Table 1 for each MR grammar ruleRf , to de-
fine the selection of one of the word order patterns

of the hybrid tree. These rules simply enumerate
the conjunction of all the possible word attachment
patterns and argument order decisions. Binary se-
quencei indicates the word attachment portion of
the hybrid tree pattern, where each bit is either 1 in-
dicating an attachment, or 0 for a decision not to at-
tach. For ann argument function, there aren + 1
such choices, requiring ann+1 bit sequence, where
ik is the decision for thekth position. Argument
order is indicated byj, a permutation of the num-
bers0, 1, ...n − 1, andjk is thekth number in the
permutation, indicating which argument appears at
positionk. StateqR

f

words,1 generates the words forf ,

stateqR
f

words,0 replaces the symbolW with the empty

string, and the statesqR
f

arg,k select the grammar rule

with which to generate thekth child. When there
is only a single childW , no decisions about argu-
ment order or child attachment are needed; rule type
4 always generates words for these constants.
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qstart.x0 → qRorder.x0 (1)

qR
p

arg,i.x0 → qR
c

order.x0 (2)

qR
f

order.f(w0, x0, w1, x1, w2, ...xn−1, wn) → qR
f

words,i0
.w0 q

Rf

arg,j0
.xj0 q

Rf

words,i1
.w1 q

Rf

arg,j1
.xj1

qR
f

words,i2
.w2 ... q

Rf

arg,jn−1
.xjn−1

qR
f

words,in
.wn (3)

qR
f

order.f(w0) → qR
f

words,1.w0 (4)

qRwords,1.x0 → wordk qRwords,1.x0 (5)

qRwords,1.x0 → wordk qRwords,0.x0 (6)

qRwords,0.W → ǫ (7)

Table 1: Seven transducer rule types for three classes of transformation. (1)-(2) defineP (Ri·j |j, Ri), (3)-(4) define
P (pat|Ri), and (5)-(7) defineP (w|Ri).

The following input tree and output string pair is
illustrates an intermediate computation produced by
interleaving these two kinds of ordering rules with
the argument selection rules of the previous section,
and applying them to the example in Figure 2:

qR
cityid

order .cityid(W, portland(W ),W,me(W ),W )
∗
⇒

qR
cityid

words,0.W qR
me

words,1.W qR
cityid

words,1.W

qR
portland

words,1 .W qR
cityid

words,0.W

The weights on these rules define the conditional
probabilityP (pat|R), wherepat is one of the pat-
terns of the word transformations illustrated in Fig-
ure 2.

5.3 Word generation: P (w|R)

Rule types 5 and 6 in Table 1 define the conditional
probability of a wordwordk given an MR grammar
rule, and rule type 7 terminates generation by gener-
atingW in the input andǫ in the output. Using the
same example as in the previous section, this yields
5 W symbols in the input tree and the string ‘meen
no porutorando’ in the output.

qR
cityid

words,0.W
∗
⇒ ǫ

qR
me

words,1.W
∗
⇒ ‘meen’ ǫ

qR
cityid

words,1.W
∗
⇒ ‘no’ ǫ

qR
portland

words,1 .W
∗
⇒ ‘porutorando’ǫ

qR
cityid

words,0.W
∗
⇒ ǫ

5.4 Derivation weights and the joint
probability distribution

The transducer applies the rules from the three
classes of transformation in Table 1 to ultimately
produce an MR-NL pair. The probability of this
derivation is essentially the same quantity as that of
the hybrid tree of the original model (shown in equa-
tion 2).

6 An extension: head-switching

Reordering siblings allows the hybrid tree to cap-
ture a large number of word orders, but it is still
constrained by the hierarchy of the tree. This con-
straint reduces the search space but also prevents the
model from learning some word orders. Figure 4 il-
lustrates with trees from the following Japanese sen-
tence meaningwhat’s the highest point in the USA?
(the third line gives the correct alignment of words
to components of the gold MR, which cannot be
learned by the hybrid tree):

beikoku no
america’s
loc(america)

mottomo takai
most high
highest()

chiten
point
place()

wa nan desu ka
what is
answer()

To address this problem, we modify the trans-
ducer to allow it to rotate parents with their chil-
dren in addition to re-ordering siblings. This change
is easy within the transducer framework but would
be difficult in the original implementation, requiring
a complete reworking of the training and decoding
algorithms. In the original transducer, rules oper-
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Figure 4: An example from Japanese illustrating head-switching. The tree on the left attempts (and fails) to generate
the target sentence from the gold meaning representation. Switching highestandplaceallows the correct MR-NL
map.

ate on tree fragments of depth≤ 1. We implement
the change using extended left-hand-side transduc-
ers, which can operate on larger fragments as long
as the depth is bounded (Maletti et al., 2009). In
particular, we introduce rules like the following:

qR
p

order.p(w
p
0
, c(wc

0, x
c
0, w

c
1), w

p
1
) → qR

c

words,i0
.wc

0

qR
p

words,i1
.w

p
0
qR

c

arg,0.x
c
0 q

Rp

words,i2
.w

p
1
qR

c

words,i3
.wc

1

This rule begins the word generation process si-
multaneously for both the parent and child, re-
ordering the words to simulate the new nesting struc-
ture, and then proceeds to choose the child func-
tion’s argument. We add similar rules for the vari-
ous cases where the child and parent have multiple
arguments.

7 Varitional Bayes parameter estimation

Tree transducer derivations are themselves trees,
allowing for the computation of inside and out-
side probabilities much as for the derivation trees
of PCFGs. EM can then be applied in much the
same way as for PCFGs, substituting the tree-to-
string derivation algorithm for standard PCFG pars-
ing (Graehl et al., 2008). Note that while EM maxi-
mizes the likelihood of the training data, items not
observed during training receive zero probability,
limiting the ability of models to generalize to new
data sets. Furthermore, many items that are actu-
ally present in the training data are only seen a very
few times, which can lead to a poor estimate of their
distribution in the target data set. Bayesian estima-
tion techniques such as Variational Bayes (VB) ad-
dress these problems by allowing us to place a prior

probability over the parameters, which particularly
influence parameter estimates for sparse items and,
depending on the choice of prior, may also assign
some non-zero probability to unseen items.

We give a high-level outline of how a Dirichlet
prior can be incorporated into tree transducer train-
ing using Variational Bayes, drawing heavily on the
essential similarity of inside-outside for PCFGs and
training for tree transducers. We direct the reader
to Kurihara and Sato (2006) for the details of PCFG
training using VB, and to Graehl et al. (2008) for
the full treatment of the basic EM algorithm for tree
transducers, on which our VB training algorithm is
closely based. See Bishop (2006) for a general in-
troduction to VB and Beal (2003) for a derivation of
VB as applied to Dirichlet-multinomials.

The objective of training is to find an estimate for
the weightsθ of the transducer rules given some
symmetric Dirichlet prior with hyperparameterα
and observed pairs of natural language sentencesW

and meaning representation treesY .

p(θ|α,W, Y ) =
p(W,Y, θ|α)

p(W,Y |α)
(8)

The tree transducer defines the probability
p(W,X, Y |θ), whereX is a vector of derivations
such thatxi ∈ X is the derivation from MRL tree
yi ∈ Y to NL stringwi ∈ W . We put a symmetric
Dirichlet prior overθ so that the probabilityp(θ|α)
follows directly from the definition of the Dirichlet
distribution. Thus, computing the denominator of
equation 8 involves integrating outθ andX.

p(W,Y |α) =

∫

p(W,X, Y |θ)p(θ|α)dXdθ

25



However, this integral is intractable, so instead,
following from Variational Bayes, we make an ap-
proximation q(X, θ) for the posterior probability
p(X, θ|W,Y, α).

log p(W,Y |α) = log

∫

p(W,X, Y, θ|α)dXdθ

= log

∫

q(X, θ)
p(W,X, Y, θ|α)

q(X, θ)
dXdθ

≥

∫

q(X, θ) log
p(W,X, Y, θ|α)

q(X, θ)
dXdθ

= F

We can minimize the KL divergence between
q(X, θ) and p(W,Y |α) by maximizing the lower
boundF , called the variational free energy. Since
F is a function ofq, this amounts to maximizingq.

Following from Kurihara and Sato (2006)’s treat-
ment of PCFGs, we employ the mean field ap-
proximation that assumes the posterior is well ap-
proximated by a factorized functionq(X, θ) =
q1(X)q2(θ), which treats the derivationsX and the
rule weightsθ as independent. This allows us to
maximizingq by alternately updating parameters for
q1 with q2 fixed, and then updating parameters for
q2 with q1 fixed, essentially in the same manner that
E and M steps alternate in EM. The mathematical
derivation of the modified inside-outside algorithm
then follow directly from Kurihara and Sato (2006).

In practice, VB requires only a slight modifica-
tion to the basic EM algorithm, and we refer the
reader to Graehl et al. (2008) for the details of EM
for tree transducers. As in inside-outside for PCFGs,
the E-step involves computing estimated rule counts,
weighted using inside and outside probabilities. The
M-step resolves to calculating the vector parame-
ters of the multinomial distributions over transducer
rules using these count estimates. That is, ifθs is
a multinomial parameter vector for transducer rules
with states on the left hand side,θs,k is its kth

component (i.e., the weight of thekth rule with s

on the left hand side), andcs,k is the corresponding
expected count, we have the following equation for
straight EM.

θs,k =
cs,k

∑

k′ cs,k′

Incorporating a Dirichlet prior with parameterα
using our VB approximation simply requires replac-

ing this ratio with the following alternative quantity
τ , whereΨ is the digamma function.

τs,k = exp

(

Ψ(cs,k + α)−Ψ

(

∑

k′

cs,k′ + α

))

For each step of EM, the updatedτ vectors from
the previous M-step are then used to compute the
expected countsc during the current E-step.

8 Experimental setup

We use Tiburon (May and Knight, 2006), a tree
transducer toolkit, to train our transducer using 40 it-
erations of its inside-outside-like EM training proce-
dure, and modify it slightly to include the mean field
VB approximation for a symmetric Dirichlet prior
over the multinomial parameters as just described.

Decoding is handled the same by Tiburon for both
training procedures, producing the MR input tree
with the tree transducer derivation that maximizes
the probability over derivations of equation 2.

In keeping with the original hybrid tree, we run
100 iterations of IBM alignment model 1 (Brown
et al., 1993) to initialize the word distribution pa-
rameters. Also in keeping with Lu et al. (2008),
we use the standard noun phrase list from the given
language to help initialize the word distributions for
their counterparts in the meaning representation lan-
guage.

9 Results

To evaluate our models, we use the the GeoQuery
corpus, a standard benchmark data set. The corpus
contains English sentences (questions about U.S. ge-
ography) paired with an MR in a database query lan-
guage, 250 of which were translated into Japanese
(among other languages) yielding two training sets
using the same MRs. For testing we run 10-fold
cross validation, using the standard train and test
splits of Wong and Mooney (2006), and micro-
average our performance metrics across folds.

We measure performance using precision, recall,
and f-score (the harmonic mean of precision and re-
call) as standardly defined in the semantic parsing
literature. Recall is simply the raw accuracy: the
percentage of correct parses found out of all test sen-
tences (where a parse is considered correct if it re-
trieves the same results from the GeoQuery database
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System
English Japanese

Pre. Rec. F1 Pre. Rec. F1
UBL-s 80.8 80.4 80.6 80.6 80.5 80.6
WASP 95.4 70.0 80.8 92.0 74.4 82.9
Lu-uni 80.2 71.2 75.4 79.7 73.6 76.5
Lu-dis 91.5 72.8 81.1 87.6 76.0 81.4
trs 88.3 69.6 77.9 82.4 67.2 74.0
trsVB 82.0 82.0 82.0 78.0 78.0 78.0
hs 89.5 71.6 79.6 84.3 68.8 75.8
hsVB 82.8 82.8 82.8 80.8 80.8 80.8

Table 2: Performance of the various models on the mul-
tilingual section of GeoQuery.

as the gold MR). Precision is the percentage of cor-
rect parses out of all sentences for which we find any
parse at all.

Table 2 compares our models’ performance to
previously published results. We list two versions of
our model: the direct adaptation of the hybrid tree
and the transducer with parent-child swapping rules.
We train each version with both standard EM and the
VB approximation (hyperparameter 0.1). The other
state-of-the-art systems shown are: 1) two versions
of the original hybrid tree (Lu et al., 2008):Lu-uni,
which uses a unigram distribution over words, and is
therefore the most similar to our transducer imple-
mentation, andLu-dis, the best-performing version,
which uses a mixture of unigram and bigram model
with discriminative re-ranking; 2) WASP (Wong and
Mooney, 2006), which uses a synchronous grammar
approach; and 3) UBL-s (Kwiatkowski et al., 2010),
the model with the highest published raw accuracy
(recall).

The transducers are competitive with the state-of-
the-art, especially when using VB. VB smooths the
parameter estimates, so there are no parse failures in
the test set due to unseen words or functions; pre-
cision, recall, and f-score all reduce to raw accu-
racy. The basic transducer with VB has higher accu-
racy (recall) than all other models except for UBL-
s, which does better on Japanese. The head-switch
transducer is better still, with the highest recall on
both languages. Although the improvement over the
basic transducer is small, we anticipate that using the
transducer framework will allow us to easily explore
many other possible extensions that could increase
performance further.

As expected, the basic EM-trained transducer gets
numbers that are similar, though not identical, to Lu-
uni. The main reason for the discrepancy is that
Lu et al. (2008) use custom smoothing methods for
the source tree language model and word probabil-
ities. While these could be emulated in a trans-
ducer, we instead use a more general approach, VB,
with better pay-off. Lu-uni was the simplest model
presented by Lu et al. (2008), yet applying VB to
our transducer implementation yields a fully gen-
erative model whose performance rivals their best-
performing system that uses discriminative rerank-
ing.

10 Conclusion

In this paper, we have shown how to formulate se-
mantic parsing as tree transduction. This formula-
tion is more general than previous approaches and
allows us to exploit the rich literature on transduc-
ers, including theoretical results as well as standard
algorithms and toolkits. We focused here on ex-
tended left hand side, root-to-frontier, linear, non-
deleting, tree-to-string transducers (Maletti et al.,
2009), using them to reformulate and extend an ex-
isting model (Lu et al., 2008). Although we tried
only one simple extension, our purely generative
model already outperforms all previous models on
raw accuracy, with comparable f-score. Since the
transducer framework makes modifications easy, we
anticipate further gains in future, especially if we
add a discriminative reranking step as in Lu et al.
(2008). We also hope to investigate other transducer
classes. Finally, we note that working with a gen-
eral framework encourages the development of algo-
rithms that are widely applicable, even if developed
for a particular application. The VB training algo-
rithm presented here is just one example of such a
contribution.
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Abstract

This paper examines the ways in which par-
allelism can be used to speed the parsing of
dense PCFGs. We focus on two kinds of
parallelism here: Symmetric Multi-Processing
(SMP) parallelism on shared-memory multi-
core CPUs, and Single-Instruction Multiple-
Thread (SIMT) parallelism on GPUs. We de-
scribe how to achieve speed-ups over an al-
ready very efficient baseline parser using both
kinds of technology. For our dense PCFG
parsing task we obtained a 60×speed-up us-
ing SMP and SSE parallelism coupled with a
cache-sensitive algorithm design, parsing sec-
tion 24 of the Penn WSJ treebank in a little
over 2 secs.

1 Introduction

Performance improvements in computing come in-
creasingly through greater parallelism. This paper
studies ways in which this parallelism can be used
to improve the speed of PCFG parsing in computa-
tional linguistics. Although we focus on a particu-
lar task here (constructing the inside chart for dense
PCFGs), we expect the insights to be generally ap-
plicable.

There are three major ways in which computers
are becoming more parallel. At the broadest level, it
is now common to network large numbers of com-
puters together into clusters, which are controlled
by software such as the Message-Passing Interface
(MPI) (Gropp et al., 1999) or Map-Reduce (Lin and
Dyer, 2010).

At a lower level, even commodity computers typ-
ically have multiple processors or cores, which are

connected by a high-speed bus to a shared memory,
enabling Symmetric Multi-Processor (SMP) paral-
lelism. SMP parallelism is typically controlled
by software such as OpenMP (Chapman et al.,
2007) or pThreads. Commodity computers also
possess on-chip parallel floating point vectorised
arithmetic units. The CPUs we used here have
SSE (Streaming SIMD Extensions) vectorised arith-
metic, where SIMD abbreviates “Single-Instruction
Multiple-Data”. SSE is enabled by appropriate com-
piler flags.

Finally, Graphics Processor Units (GPUs) are
increasingly becoming both less specialised and
more powerful (on many commodity machines they
can perform more floating-point operations per sec-
ond than the CPU); as we will see here, a GPU
can yield quite respectable parsing performance.
GPUs are designed for massively parallel Single-
Instruction Multiple-Thread (SIMT) programs; each
GPU thread is comparatively slow, but the GPU can
execute hundreds or thousands of threads in parallel.
GPUs are typically programmed using tools such as
OpenCL or CUDA (Sanders and Kandrot, 2011).

We concentrate on SMP multi-core and GPU par-
allelism in this paper because we expect that com-
munication latencies with conventional network-
ing hardware make parallel parsing with networked
clusters impractically inefficient. Communication
latency is much less of a problem with shared mem-
ory SMP and GPU parallelism as communication
takes place over the machine’s high-speed bus.

A base-line approach for exploiting parallelism
in parsing is simply to parse different sentences in
parallel on separate instances of the parser. This
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is likely to be the best way to exploit parallelism
with networked clusters and SMP multi-core ma-
chines when parsing a large corpus of sentences off-
line. However, there are situations where parsing
must be on-line; e.g., when parsing is a compo-
nent of a system that interacts with users, or with
machine-learning algorithms such as Metropolis-
Hastings Sampling that update after each sentence
is parsed (Johnson et al., 2007).

2 Previous work

Parsing in parallel has been studied for several
decades, and space constraints prevent anything but
a cursory summary here. Hill and Wayne (1991)
identified the basic data dependencies between the
entries in chart cells, and discussed their implica-
tions for parallel parsing. Nijholt (1994) also stud-
ied the order in which chart cells can be filled,
and discusses its implications for a variety of shift-
reduce and chart-based parsing algorithms. Thomp-
son (1994) pointed out that the close relationship be-
tween CKY parsing and matrix multiplication can
be exploited for parsing in parallel; we rely on sim-
iliar observations below. Ninomiya et al. (1997) de-
scribed an agenda-based approach for parallelising
CKY parsing on large SMP machines, while Bor-
dim et al. (2002) describes the implementation of
a CKY parser on Field-Programmable Gate Arrays
(FPGAs). Sandstrom (2004) describes a parallel im-
plementation of Earley’s parsing algorithm. Dun-
lop et al. (2010) stresses importance of minimising
cache misses in the design of efficient parsing algo-
rithms and described how to restructure the CKY al-
gorithm to reduce grammar constant,1 which as we
show below has a dramatic impact on parallel SMP
parsing.

3 The CKY algorithm for dense PCFGs

This section introduces the basic CKY parsing al-
gorithm used below. Here we’re assuming that the
grammar is in Chomsky-Normal Form (CNF), i.e.,
all rules in the grammar are of the form A → BC

1The “grammar constant” refers to the variation in parsing
time as a function of grammar size. Standard analyses study
how parsing time varies as a function of sentence length while
the grammar is held constant; the choice of grammar affects
parsing time in such analyses via a “grammar constant”.

for i in 0, . . ., n−1:
for a in 0, . . ., m−1:

C[i,i+1,a] = T[W[i],a]

for gap in 2, . . ., n:
for i in 0, . . ., n−gap:

k = i+gap
for a in 0, . . ., m−1:

C[i,k,a] = 0
for j in i+1, . . ., k−1:

for b in 0, . . ., m−1:
for c in 0, . . ., m−1:

C[i,k,a] += R[a,b,c]∗C[i,j,b]∗C[j,k,c]

where:
m number of nonterminals in grammar
n length of input string
W [i] word in input string at position i
T [w,A] probability of A→ w
R[A,B,C] probability of A→ BC
C[i, k, A] inside probability of A spanning (i, k)

Figure 1: Pseudo-code for baseline CKY algorithm for
dense PCFG parsing and an explanation of the variables
used in the algorithm. All arrays are in row-major order,
except that the inside chart C uses specialised indexing
to take advantage of the fact that the first string position
index is always less than the second.

30



for i in 0, . . ., n−1:
for a in 0, . . ., m−1:

C[i,i+1,a] = T[W[i],a]

for gap in 2, . . ., n:
for i in 0,..,n−gap:

k = i+gap
BC = Zero
for j in i+1, . . ., k−1:

for b in 0, . . ., m−1:
for c in 0, . . ., m−1:

BC[b,c] += C[i,j,b]∗C[j,k,c]
for a in 0, . . ., m−1:

C[i,k,a] = 0
for b in 0, . . ., m−1:

for c in 0, . . ., m−1:
C[i,k,a] += R[a,b,c]∗BC[b,c]

where:
m number of nonterminals in grammar
n length of input string
W [i] word in input string at position i
T [w,A] probability of A→ w
R[A,B,C] probability of A→ BC
C[i, k, A] inside probability of A spanning (i, k)
BC an m×m scratch array
Zero an m×m array of zeros.

Figure 2: Pseudo-code for the factored CKY algorithm
for dense PCFG parsing.

or A → w, where A, B and C are nonterminals
and w is a terminal (Aho and Ullman, 1972). In
this paper we focus on dense PCFGs, i.e., where
most of the possible rules have positive probability.
Dense grammars with these properties occur in ap-
plications such as unsupervised grammar induction.
While sparse grammars have many important appli-
cations, there are many different possible patterns of
sparsity, and the optimal parsing algorithm may de-
pend on the particular sparsity pattern the grammar
instantiates. Moreover, it is extremely difficult to de-
velop effective search procedures (such as heuristic
A? search) for dense grammars in which most rules
have approximately equal probabilities, so this is a
situation where a brute-force exhaustive calculation
of the kind that the algorithms discussed below may
well be the preferred approach.

We focus on CKY-style pure bottom-up parsing
algorithms here because of their simplicity, and with
dense grammars their performance often equals or
exceeds that of more complex parsing algorithms: if
every possible chart cell will be filled with a non-
trivial probability, a predictive parsing algorithm
(such as the Earley algorithm) will have to instan-
tiate every cell anyway.

We also focus on the construction of the “in-
side chart” here, i.e., P(A ⇒+ wi, . . . , wj−1)
for each nonterminal A and 0 ≤ i < j < n,
where n is the number of words in the input string.
Constructing the inside chart is the crucial O(n3)
step of the Inside-Outside algorithm for estimat-
ing PCFGs (Charniak, 1993), and this computation
is typically the rate-limiting computation in PCFG
sampling algorithms (Johnson et al., 2007) as well.
By replacing a sum with a max, the same algo-
rithms can be used to constuct the Viterbi chart, from
which a most probable parse tree can be extracted in
O(n2) time, so again the Inside computation is the
rate-limiting step. Because our grammar is dense
we used pre-allocated fixed-sized arrays to hold
the grammar rules and the inside chart, thus min-
imising expensive memory management and pointer
arithmetic (in our experience unless great care is
taken while coding, these costs can dominate pars-
ing time).

Figure 1 presents pseudo-code for the baseline
CKY parsing algorithm. The main part of the al-
gorithm consists of six nested loops. All these loops
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except the outermost (over the gap variable) can be
freely reordered without affecting correctness. We
experimented with a large number of reorderings
of these variables; in preliminary experiments we
found that the order presented here resulted in fastest
parsing.2

Dunlop et al. (2010) point out that the algorithm
in Figure 1 requires a grammar rule retrieval for each
mid-point j of each (i, k) span (as well as each com-
bination of nonterminals a, b and c), and show how
to reduce this by factoring the algorithm as shown
in Figure 2. This changes the “grammar constant”
as mentioned above. They point out that this also
improves the cache efficiency on modern CPUs. As
we experimentally confirm below, the improvement
that factoring brings can be dramatic.

4 Multi-core SMP parallelism using
OpenMP

It is straight-forward to parallelise both the base-
line and factored algorithms for multi-core SMP
machines using OpenMP (Chapman et al., 2007).
OpenMP programs are C++ programs with pragmas
that indicate which loops should be parallelised. We
experimented with several alternative reorderings of
the loops and using an optimised matrix-algebra
package (Guennebaud et al., 2010), but these did not
improve parsing speed.

Developing OpenMP versions of the baseline and
factored CKY algorithms is relatively straightfor-
ward. The main technical challenges in parallelising
the CKY algorithm are synchronising the parallel
threads and ensuring that different parallel threads
do not interfere with each other. This is achieved by
using synchronisation constructs with implicit bar-
riers, thread-private temporary variables and con-
structs that ensure that updates to shared variables
occur as atomic operations.

For the baseline CKY algorithm we constructed
three parallel variants by parallelising (i) the outer-
most two for loops (over the i and a variables) us-
ing the OpenMP parallel for construct, (ii) the inner

2These reorderings do not affect the theoretical complexity
of the CFG parsing algorithm; it is still O(n3), where n is the
length of the sentence being parsed. However, the loop ordering
may affect the opportunities for SIMD optimisation and mem-
ory cache efficiency, since reordering the loops affects locality
of memory access.

three loops (over j, b and c) using a parallel for re-
duction into a temporary variable, and (iii) a variant
in which all loops (except the one involving the gap
variable) are parallelised.

For the factored CKY algorithm we constructed
three parallel variants by parallelising (i) the outer-
most for loop (involving the i variable), (ii) the in-
nermost variables (involving the j, b, c and a vari-
ables), and (iii) a variant in which all loops (except
the one involving the gap variable) are parallelised.
Multiple thread-private instances of the BC variable
are required when the outermost loops are paral-
lelised, and we used the OpenMP atomic construct
to synchronise updates to BC when the innermost
loops were parallelised.

5 A CUDA GPU kernel for PCFG parsing

We experimented with several approaches to GPU
parsing based on standard GPU matrix algebra pack-
ages (NVIDIA Corporation, 2010) but results were
extremely disappointing; the resulting code ran or-
ders of magnitude slower than the baseline CPU-
based parser above. In order to obtain results com-
petitive with the multi-core SMP algorithms de-
scribed above we developed custom GPU programs.
Our GPU subroutines or kernels were written in
CUDA, which is a C++ dialect for specifying pro-
grams consisting of CPU code and GPU kernels
(Sanders and Kandrot, 2011).

We focused on developing a CUDA implementa-
tion of the factored CKY algorithm here. CUDA
programming is considerably more complicated
than OpenMP programming, and we don’t claim to
have produced an optimal program here; additional
experimentation could yield further speed improve-
ments.3

A straight-forward translation into CUDA kernels
of the baseline and factored algorithms above pro-
duced disappointing results: it ran approximately
200 times slower than the factored CKY parser de-
scribed above. A quick survey of the CUDA devel-

3We also experimented with CUBLAS, a CUDA implemen-
tation of BLAS (Basic Linear Algebra Subprograms), which
we found yielded performance one to two orders of magnitude
slower than our custom CUDA kernels. However, a new ver-
sion of CUBLAS was released after this paper was submitted;
this new version has several technical improvements that may
enable it to be effective for PCFG parsing.
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oper message boards showed that direct translations
of CPU-based programs often perform poorly, and
for good performance one needs to redesign the al-
gorithms to take advantage of the specialised GPU
hardware.

Computation on NVIDIA GPUs is organised into
blocks of up to 1,024 parallel threads. A single
CUDA launch starts up to hundreds of thousands of
blocks; modern GPUs can execute several hundred
thread blocks in parallel (the remainder are queued).
Just as with SMP programming, the chief techni-
cal challenges in CUDA programming are synchro-
nising the parallel threads and ensuring that differ-
ent parallel threads do not interfer with each other.
CUDA programming is more difficult than SMP
programming because each individual GPU proces-
sor is much less capable than a CPU (CUDA pro-
gramming is done using a restricted subset of C++),
and data access must follow a very tightly prescribed
set of rules if it is to perform reasonably efficiently.

Unlike on a regular CPU, the memory on a GPU
has a complex organisation which the CUDA pro-
grammer must be aware of; the following sketch
omits many details. Global memory is compara-
tively slow but accessible to all threads of all blocks;
it is used to store persistent information and commu-
nicate between threads in different blocks; we store
the inside chart C in global memory. Texture mem-
ory is a kind of global memory that permits more ef-
ficient cached read-only access; we stored the gram-
mar rules R and the terminal probabilities T in tex-
ture memory. Shared memory is local to and acces-
sible to all threads in the same block and is much
faster than global memory; we stored (a local copy
of) the BC array in shared memory. In addition,
we also use thread-local variables to maintain lo-
cal state and accumulate intermediate results within
a single thread.

Our CUDA kernels consist of over 500 lines of
code, so we only sketch them here. Our central data
structures are the chart C, the rule probabilities R
and the lexical probabilities T . Our CUDA imple-
mentation starts by launching a kernel that copies
the terminal probabilities T for each of the words
W into the chart C; this is easily and completely
parallelised, and takes very little time.

Then it computes the chart one diagonal at a time
in parallel. It launches one or more kernels for

each value of gap in 2, . . . , n. If n − gap is small
enough then all of the chart entries C[i, k, ·] (where
k = i + gap) can be computed by a single thread
block, and only one kernel launch is required. But
for larger values of gap we decompose the compu-
tation into multiple thread blocks based on the mid
string position j and store intermediate results in
global memory; a second kernel launch is used to
reduce these into the chart entries C[i, k, ·].

A major goal in designing the CUDA kernel was
to perform the sum

BC[b,c] += C[i,j,b]∗C[j,k,c]

in the factored CKY algorithm as efficiently as pos-
sible. In order to achieve this we first copy all of
the relevant chart entries C[i, j, ·] and C[j, k, ·] from
global memory into the faster shared memory (this
can be done in parallel), and then accumulate the re-
sults into BC, which is also stored in shared mem-
ory. This step can also be done completely in paral-
lel.

Finally, we compute the chart entries C[i, k, a] for
all k = i + gap and all a in parallel. If n − gap is
small enough that the computation can be done in
one thread group then this is done only using shared
memory, otherwise temporary results are stored in
global memory so they are visible to other thread
blocks. The reduction

C[i,k,a] += R[a,b,c]∗BC[b,c]

in the factored CKY algorithm is also tricky, as it
requires a double sum over b and c. In order to do
this we generalised the parallel tree-based reduction
algorithm presented in Harris (2010) to compute all
of the chart entries C[i, k, ·] as a parallel reduction.

6 Evaluation on a dense PCFG

We experimented with a number of different gram-
mars, but because the results were generally similiar,
we only describe one experiment here. The strings
we parsed consist of the yields of the 1,345 trees
in section 24 of the Penn WSJ treebank. Any word
that did not appear 5 or more times in sections 2–21
was replaced with ?UNC?. We constructed a dense
PCFG with 32 non-terminals (i.e., 32,768 binary
rules) and random rule probabilities, which might
be typical of the initial grammar in an unsupervised
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Figure 3: Parsing times as a function of sentence length on 1,345 sentences from section 24 of the Penn WSJ treebank
for the baseline CYK parser, the baseline parser with SMP parallelism (outer loops parallelised), the factored CKY
parser, the factored CKY parser (outer loops parallelised), and the CUDA implementation of the factored CKY parser.
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Parser Sentences/sec Speed-up
Baseline 11 1.0

(i) outer parallel 84 7.5
(ii) inner parallel 11 1.0
(iii) both parallel 29 2.6

Factored 122 11.0
(i) outer parallel 649 60.0
(ii) inner parallel 27 2.4
(iii) both parallel 64 5.7

CUDA 206 18.4

Table 1: Parsing speeds of the various algorithms on
1,345 sentences from section 24 of the Penn WSJ tree-
bank. Speed-up is relative to the baseline parser.

PCFG induction system using the Inside-Outside al-
gorithm or a Metropolis-Hastings sampler. We used
single-precision floating-point arithmetic in all ex-
periments, and multiplied the terminal rule proba-
bilities A→ w by 104 to avoid underflow.

We ran our experiments on a single node of
an SGI Altix XE 320 cluster with two quad-
core 3.0GHz Intel Harpertown CPUs, a 1600MHz
front side bus, 16GB DDR2-800 memory and two
NVIDIA Fermi s2050 GPUs, each with 448 CUDA
cores running at 1.15GHz (we only used one GPU
here). We used the CUDA 3.2 toolkit and gcc 4.4.4.
We selected compiler flags that enabled full opti-
misation, including enabling SSE3 SIMD floating-
point vector subsystem, as prior experiments showed
that this significantly speeds all calculations.

Table 1 presents the results of our experiments.
We repeated all of our experiments twice in succes-
sion and report the time of the second run here; how-
ever, run-times varied by less than 1% between the
two runs. Figures 3 and 4 depict parsing time and
speed-up as a function of sentence length respec-
tively (in order to avoid overloading the graphs, they
only show a subset of the results). It’s important to
recognise that even our baseline parser is very fast
(averaging 11 sentences/second), and both our SMP
and GPU implementations were significantly faster.

7 Conclusions

We obtained large speedups over an already very
fast baseline parser using both multi-core SMP and
CUDA parallelism. Parallelising the outer loops

in the multi-core SMP algorithms seems to be ex-
tremely effective; we see speed-ups close to the
theoretical maximum of 8 times for both the base-
line and factored algorithms. Parallelising the in-
ner loops is devastating to performance, perhaps be-
cause it interfers with cache optimisation and SSE3
SIMD vectorisation (turning off the SSE SIMD vec-
torisation in these cases did not improve perfor-
mace). The factored algorithm with parallelised
outer loops performed fastest in our experiments, but
the CUDA implementation was next best, parsing
faster than all of the parallelised baseline algorithms.

As Figure 4 makes clear, the speed-up obtained
by both the CUDA and factored algorithm with par-
allelised outer loops relative to the baseline increases
with sentence length (with the CUDA speed-up in-
creasining fastest), which suggests that parallelisa-
tion helps most where it is most needed, i.e., on
longer sentences.

It is surprising that the CUDA implementation did
not outperform the best SMP implementation. Per-
haps this is because our SMP implementation uses
highly-optimised, OpenMP/SSE3-parallelised code
and can exploit the powerful Xeon CPUs. It is also
possible that our dense PCFG parsing task is “too
easy” to take full advantage of the power of the
GPU; the entire corpus of 1,345 sentences took just a
few seconds to parse, and it’s possible that initialisa-
tion and data-transfer from the host machine to the
GPU imposed a significant overhead. It would be
interesting to repeat the experiments described here
with a grammar that is one or two orders of magni-
tude larger.

In fact, as Figures 3 and 4 make clear, the CUDA
implementation is comparatively slow on short sen-
tences; for sentences of length 5 or less, the CUDA
implementation is slower than even the baseline
parser, which is consistent with the hypothesis that
initialisation and data-transfer are imposing signif-
icant performance costs. It would be interesting to
repeat these experiments on a larger corpus with
larger and perhaps sparser grammars. It also might
be more efficient to parse more than one sentence in
parallel on a single GPU, which might keep more of
the CUDA cores busy more of the time, although we
did not try this here.

There are several lessons to draw from these re-
sults. First, parallelisation does not always produce
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speed-ups; indeed parallelising the inner loops did
not improve performance on either the baseline or
factored algorithms. Second, parsing algorithms that
perform well on conventional CPUs may need con-
siderable redesign in order to produce good results
on GPUs. Third, as the impressive performance of
the factored algorithm shows, good algorithm design
is of crucial importance.

Finally, this is an area where both the hardware
and software are still rapidly improving. The num-
ber of cores in a single multi-core processor is likely
to increase rapidly; already it is possible to obtain
commodity machines with 24 cores. The improve-
ment in GPU technology is if anything even more
dramatic: as well as increasing the number of pro-
cessors, new GPUs are equipped with more flexi-
ble buses that permit more complex kinds of data
parallelism and ease programming. On the software
side, up-coming versions of OpenMP will permit a
greater range of efficient reduction constructs, which
may permit us to avoid using the relatively expen-
sive atomic synchronisation primitive. For GPUs,
upcoming versions of CUDA will provide a vari-
ety of parallel programming libraries (including for
sparse matrix algebra), which may make it easier to
write considerably more efficient parallel parsing al-
gorithms. Thus it is reasonable to expect a dramatic
improvement in parallel parsing in the near future.
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Abstract

The N400 is a human neuroelectric response
to semantic incongruity in on-line sentence
processing, and implausibility in context has
been identified as one of the factors that influ-
ence the size of the N400. In this paper we in-
vestigate whether predictors derived from La-
tent Semantic Analysis, language models, and
Roark’s parser are significant in modeling of
the N400m (the neuromagnetic version of the
N400). We also investigate significance of a
novel pairwise-priming language model based
on the IBM Model 1 translation model. Our
experiments show that all the predictors are
significant. Moreover, we show that predictors
based on the 4-gram language model and the
pairwise-priming language model are highly
correlated with the manual annotation of con-
textual plausibility, suggesting that these pre-
dictors are capable of playing the same role
as the manual annotations in prediction of the
N400m response. We also show that the pro-
posed predictors can be grouped into two clus-
ters of significant predictors, suggesting that
each cluster is capturing a different character-
istic of the N400m response.

1 Introduction

There is increasing interest in using computational
models to help understand on-line sentence process-
ing in humans. New experimental techniques in
psycholinguistics and neurolinguistics are produc-
ing rich data sets that are difficult to interpret us-
ing standard techniques, and it is reasonable to ask
if the statistical models developed in computational
linguistics can be helpful here (Keller, 2010).

The N400 is a human brain response to se-
mantic incongruity or implausibility that has been
widely studied in psycholinguistics and neurolin-
guistics. A large set of factors has been shown
to influence the strength of the N400, including
intra- and extra-sentential context (Kutas and Fed-
ermeier, 2000; Van Petten and Kutas, 1990). Here
we study the strength of the N400 as measured by
magnetoencephalography (MEG) (so the signal we
study is sometimes called the N400m) on sentence-
final words in a variety of “constraining” and “non-
constraining” sentential contexts (Kalikow et al.,
1977). For example, Her entry should win first
prize is an example of a constraining-context sen-
tence, while We are speaking about the prize is a
non-constraining context sentence (target words are
underlined in this paper).

This paper shows that language models of the
kind developed in computational linguistics can be
used to help identify the factors that determine the
strength of the N400. We investigate a number of
different kinds of predictors constructed from a va-
riety of language models and Latent Semantic Anal-
ysis (LSA) to determine how well they describe the
N400. The first set of predictors is derived from
LSA, which is a method for analysing relationships
between a set of documents and the terms they con-
tain (Mitchell et al., 2010). LSA has been success-
fully applied in similar research areas such as eye-
movements and word-by-word reading times. Our
experiments show that these predictors are signif-
icant in modeling the N400m response. The sec-
ond set of predictors is that proposed by Roark et
al. (2009), which is derived from the Roark (2001)
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parser and designed to be useful in psycholinguistic
modeling. While one of these predictors is statisti-
cally significant (lexical entropy), we observe that
many of the prime-target word pairs appearing in
our experimental sentences do not appear in the 1-
million word Wall Street Journal - Penn Treebank
(WSJ-PTB) corpus that this parser is trained on, so
this model cannot capture the association between
these words. This leads us to experiment with lan-
guage models trained on larger corpora.

Using the SRI-LM toolkit (Stolcke, 2002) we
construct a 4-gram language model based on the Gi-
gaword corpus (Graff et al., 2005), and show that
predictors based on it are also statistically significant
predictors of the N400m. However, we go on to ob-
serve that many of the prime-target word pairs in our
experimental sentences are separated by more than 3
words, so there is no way that a 4-gram language can
capture the relationship between these words.

This leads us to develop a “pairwise-priming” lan-
guage model that captures longer-range dependen-
cies between pairs of words. This pairwise priming
model is based on the IBM Model 1 machine transla-
tion model (Brown et al., 1993), and trained using a
similar EM-procedure. We train this model on Giga-
word, and show that predictors based on this model
are also statistically significant.

Finally, we compare the predictors from the vari-
ous language models with the original manual clas-
sification of the experimental sentences into “con-
straining” or “non-constraining” contexts given by
Kalikow et al. (1977). We show that the predictor
based on LSA is statistically significant even when
the human “constraining” annotations are present as
a factor. We also find out that the 4-gram model
and the pairwise-priming model are highly corre-
lated with this manually-annotated context predic-
tor. These findings suggest that the predictors can
be grouped into two clusters i.e., one that contains
the LSA predictor, and another one that contains the
manually-annotated context predictor, the pairwise-
priming predictor, the 4-gram language model pre-
dictor, and the lexical entropy predictor.

2 Related work

One recent strand of work uses machine-learning to
perform “mind reading”, i.e., predicting what a sub-

ject is seeing or thinking based on information about
their neural state. Mitchell et al. (2008) have trained
a classifier that identifies the word a subject is think-
ing about from input derived from fMRI images of
the subject’s brain, and Murphy et al. (2009) have
constructed a similar classifier that takes EEG sig-
nals as its input. Abstractly then, this work uses
classifiers that take as input information about a sub-
ject’s brain state to predict the (linguistic or visual)
stimulus the subject is exposed to.

A more traditional line of research tries to identify
factors that cause particular psycholinguistic or neu-
rolinguistic responses. For example, Hale (2001),
Bicknell and Levy (2009) and many others show
that predictors derived from on-line parsing mod-
els can help explain eye-movements and word-by-
word reading times. Abstractly, this work involves
building statistical models which take as input prop-
erties of the stimuli presented to the subject (i.e., the
sentence they are hearing or reading) to predict their
psychological or neural responses. The goal of this
line of research is to establish which properties of
the input sentence or the parsing model’s state de-
termine the psychological or neural responses, rather
than just predicting these responses as accurately as
possible.

The work that is perhaps most closely related to
this paper is by Bachrach (2008), who tries to iden-
tify which factors are responsible for specific activa-
tion patterns in fMRI brain images of subjects read-
ing natural texts. He found that predictors derived
from the Roark (2001) parser were most explana-
tory. Roark et al. (2009) have subsequently iden-
tified a number of such predictors; we investigate
these in our analysis below.

3 Experimental data

The N400 is a component of time-locked EEG sig-
nals known as event-related potentials (ERP) that
occurs in sentences containing semantically unex-
pected or anomalous words (Kutas and Hillyard,
1980). It is so-called because it is a negative-going
deflection that peaks around 400 milliseconds post-
stimulus onset. There has been considerable re-
search into the factors that influence the strength of
the N400. Inverse word frequency and contextual
unpredictability (e.g., as quantified by Cloze prob-
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ability) are both significant predictors of the N400
(Van Petten and Kutas, 1990). The strength of the
N400 is sometimes taken to be a measure of the “ef-
fort” required for “semantic integration” in on-line
sentence processing.

For example, there is a much stronger N400 at the
target word building in the sentence a sparrow is a
kind of building than there is at the word bird in A
sparrow is a kind of bird. Interestingly, while the
N400 is sensitive to the global context in which the
target word is located, the N400 does not seem to be
directly sensitive to the truth conditions of the sen-
tence (Kutas and Federmeier, 2000). Thus sentential
negation does not seem to directly affect the strength
of the N400. For example, a strong N400 occurs in
A sparrow is not a kind of building, as compared to
A sparrow is not a kind of bird.1 This observation in-
spired the pairwise-priming model discussed below.

As previously mentioned, N400s are usually stud-
ied using EEG. In this work we use magnetoen-
cephalography (MEG) to study the N400; the signal
we analyse here is sometimes called the N400m to
indicate its provenance. We used MEG because this
study is the first step in a project to use statistical
models to study the neural mechanisms involved in
language processing, and MEG seems ideally suited
to this work.

MEG is a non-invasive technique for imaging
electrical activity in the brain by measuring the mag-
netic fields it produces using arrays of SQUIDs (su-
perconducting quantum interference devices). It has
a number of potential advantages over competing
technologies such as fMRI and EEG. For example,
MEG has a much faster response latency than fMRI
because MEG directly measures electrical activity
while fMRI measures the hemodynamic response
caused by that activity. Because magnetic fields are
less distorted than electric fields by the scalp and the
skull, MEG has a better spatial resolution than EEG,
which should help us localise neural processes more
accurately.

However in this first study we do not exploit these
advantages of MEG, but just average the signals col-
lected by 12 MEG sensors over a time window con-

1The fact that the conditional probability of a word in a sen-
tence does not depend on that sentence’s veracity may be rele-
vant here.

taining the target word. This produces a single nu-
meric value for each trial which we call the N400m,
which we model below.

Stimuli consisted of 180 sentences drawn from
the list published by Kalikow et al. (1977) and
synthesized using TextAlound (NextUp, Clemmons,
NC). They were presented to 22 listeners via in-
sert earphones (Etymotic Research Inc. Model ER-
30, Elk Grove Village, IL). There were 90 exam-
ples of “constraining context” sentences, i.e., with
predictable endings (e.g. He got drunk in the local
bar) and 90 examples of “non-constraining context”
sentences, i.e., with unpredictable endings (e.g. He
hopes Tom asked about the bar). Each target word
appears both in a constraining context sentence and
in a non-constraining context sentence. To maintain
vigilance during the experiment, there were 10 catch
trials consisting of sentences containing the word
mouse, where subjects were required to press a but-
ton. The three types of sentences were presented in
randomized order.

MEG amplitudes were extracted from a cluster
of 12 sensors over the left hemisphere where the
largest N400m responses were obtained over sub-
jects. Amplitudes in femto-Tesla were averaged
over these sensors and over a time window of 400-
600 ms. MEG data was digitized with a sample rate
of 1000 Hz and were filtered offline with a bandpass
of 0.1 to 40 Hz. Data was epoched relative to the
onset of the terminal word of each sentence using a
1200 ms window (-200 to 1000 ms).

4 Hypothesis-testing

Our goal in this paper is to identify the factors that
significantly influence the N400m, rather than pre-
dicting the N400m responses as accurately as possi-
ble. We use statistical methods for hypothesis test-
ing (e.g., likelihood ratio tests) to do this. The next
two paragraphs explain why we use these methods
rather than the held-out test set methodology usually
used in computational linguistics.

The goal of most statistical modeling in compu-
tational linguistics is prediction, which in turn in-
volves generalisation to previously-unseen contexts,
and the held-out test set methodology measures the
ability of a model to generalise correctly. One might
attempt to identify significant predictors by build-
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ing the best machine learning model of the N400m
one can, and see which features that model incor-
porates. However, many state-of-the-art machine
learning methods are capable of exploiting very
large sets of possibly redundant features and con-
trol over-learning via regularisation. The fact that
such a method includes a particular predictor as a
feature does not mean that this predictor is signifi-
cant; e.g., the method may assign the feature a very
small (but non-zero) weight. Intuitively, the goal of
a machine-learning method is to make the most ac-
curate prediction possible, not to identify the signif-
icant predictors.

Instead, we formulate the problem as one of hy-
pothesis testing. The statistical techniques used
to do this involve the construction of linear mod-
els similar to those used in some machine-learning
methods, but they also permit us to perform hypoth-
esis testing and posterior inference. For example,
by computing confidence intervals on a predictor’s
weight in such a model we can see whether that con-
fidence interval contains zero, and hence whether the
predictor is significant. We also use likelihood-ratio
tests below to assess the significance of predictors.

We used a quantile plot to identify outliers in
the N400m data; four responses were removed, and
one response value was unavailable, producing five
missing values for the N400m in total. The N400m
data range from -1,054 to 1,362 with a mean of 14,
a variance of 172 and an interquartile range of (-
68,100). We normalised the N400m responses by
subtracting the per-subject mean and then dividing
by the per-subject standard deviation. The N400m
responses are the values of the Response variable
in the models below.

4.1 Parser-based predictors

The Roark (2001) parser is an incremental syntac-
tic parser based language model that uses rich lex-
ical and syntactic contexts as features to predict its
next moves. It uses a beam search to explore the
space of partial parse trees. Bachrach (2008) found
that predictors derived from the incremental state of
the Roark parser were highly significant in models
of their fMRI data; this work motivated us to ex-
plore predictors like lexical entropy and lexical sur-
prisal based on the Roark parser here. Roark et al.
(2009) describes in detail how a variety of predictors

can be extracted from the Roark parser. We used
Roark’s parser to compute these predictors for the
target words in all 180 of the experimental sentences
used here.

4.2 4-gram language model predictors

We used the Gigaword corpus which contains
1.5 billion words in 82 million sentences (Graff et
al., 2005). We trained a 4-gram language model with
Kneser-Ney smoothing and unigram caching using
the SRI-LM toolkit (Stolcke, 2002). We used this
language model to estimate the conditional proba-
bilities of the target words given the words in their
preceding context in all of the experimental sen-
tences. These probabilities are often very close to
zero, can vary by many orders of magnitude, and
may be highly skewed. In order to mitigate the ef-
fect of these properties we used log ratio of these
probabilities to the unigram probabilities of the tar-
get words as predictors. This is called the P4 pre-
dictor below.

4.3 Pairwise-priming predictors

By definition, a 4-gram language model only cap-
tures dependencies between words within a 4 word
window. However, many of the experimental sen-
tences contain dependencies between words that are
more than 3 words apart. For example, in “con-
straining context” sentences such as The steamship
left on a cruise or We camped out in our tent, the
priming words steamship and camped do not appear
in the 4 word window containing the target words
cruise and tent, but these priming words are intu-
itively responsible for making the corresponding tar-
get words more likely.

It is plausible that “trigger” language models can
capture these kinds of longer-range dependencies
(Goodman, 2001). There are a wide variety of such
models, and it would be interesting to see which of
them are most useful for constructing N400 predic-
tors. Rather than using an existing trigger language
model, we develop our own “pairwise-priming” lan-
guage model here. This model is especially designed
to identify longer-range interactions between pairs
of words, which we believe is consistent with the
description given by Kutas and Federmeier (2000)
of the factors influencing the strength of the N400.
This model is also especially simple to estimate us-
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ing a variant of the EM training procedure for IBM
Model 1.

The model is a simple additive mixture model.
Each word wi in a sentence is associated with a con-
text Ci which is used to predict wi. The context Ci

is a bag containing the words that precede wi in the
sentence and that also belong to a 60,000 word vo-
cabulary W, plus 5 instances of a special null word
token.2 The vocabulary consists of the most frequent
words in the Gigaword corpus, from which 60 open-
class stop words have been removed. Our model
is parameterised by a matrix θ, where θwi|wj

is the
probability of generating wi given that wj is in the
contextCi. The probability P(wi | Ci) of generating
wi in the context Ci is approximated by an additive
mixture:

P(wi | Ci) =
1

|Ci|
∑

wj∈Ci

θwi|wj
.

This is a conventional generative model in which
each word wi is generated from the words in its
context Ci, and it is straightforward to estimate the
pairwise-priming parameters θ using a variant of
the IBM Model 1 EM training procedure. This
EM procedure computes a sequence of estimates
θ(1),θ(2), . . . that approximate the maximum likeli-
hood estimate θ̂ for θ. The M-step computes θ(t+1)

from the expected pairwise counts obtained using
θ(t):

θ
(t+1)
w′|w =

Eθ(t) [nw′,w]∑
w′′∈W Eθ(t) [nw′′,w]

.

The E-step calculates the expected counts
Eθ(t) [nw′,w] given the current parameters θ(t):

Eθ(t) [nw′,w] =
∑

i :wi=w′

j :wj=w,wj∈Ci

θ
(t)
w′|w∑

w′′∈Ci
θ
(t)
w′|w′′

In the E-step we skip the first four wi words of
every sentence because we think their contexts Ci

2The null word token plays the same role here as it does
in the IBM Model 1 machine translation model (Brown et al.,
1993). Moore (2004) points out that including multiple null
word tokens reduces the tendency of the IBM Model 1 to find
spurious low-frequency associations; we found here that while
including multiple null word tokens in the Ci is important, the
results do not depend strongly on the number of null word to-
kens used.

are likely to be too small to be useful, but we did
no experiments to test this. We initialised with the
uniform distribution (by using an argument analo-
gous to the one for IBM model 1 it is easy to show
the log-likelihood surface is convex), and ran 10 EM
iterations on the Gigaword corpus to estimate θ̂.

Just as for the 4-gram models, we used the pair-
wise priming model to compute the conditional
probability of the target words in the experimental
sentences. Like the 4-gram models, we used log ra-
tio of these probabilities to the probabilities of the
target words as predictors. This is called the Pq pre-
dictor below.

4.4 Latent semantic analysis predictors

Another predictor used in applications such as mod-
eling eye-movements and word-by-word reading
times, is Latent Semantic Analysis (LSA). The ba-
sic idea of the LSA model is to create a “meaning
representation” for words from a term-document co-
occurrence matrix. Here we construct the model
based on the co-occurrence of vocabulary and
content-bearing words in a fixed-sized window of
the Gigaword corpus (Graff et al., 2005). We used
the 2,000 most-frequent words in the corpus as the
content words and the 50,000 most-frequent words
as the vocabulary. Each row in the matrix represents
a vocabulary word, each column represents a content
word, and each entry is the co-occurrence count ni,j
of the ith vocabulary word and the jth content word
within a window with 15 words length. The co-
occurrence counts are normalised by dividing each
ni,j by the sum of all the counts in the correspond-
ing column:

wi,j =
ni,j∑
k nk,j

LSA performs dimensionality reduction using Sin-
gular Value Decomposition (SVD). In order to re-
tain 99% of the total variance, we used 795 right
eigenvectors of the normalised co-occurrence ma-
trix. Following Mitchell et al. (2010), we used the
LSA model to generate a numerical value indicating
the ”similarity” of the target word to the words in
its preceding context as follows: Let W1, W2, · · · ,
Wn denote vectors representing the context words
and let Wt denote a vector representing the target in
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a given sentence.

W1 W2 · · · Wn Wt
w1,1

w1,2
...

w1,m



w2,1

w2,2
...

w2,m

 · · ·

wn,1

wn,2
...

wn,m



wt,1

wt,2
...

wt,m


We multiply the context-word vectors element-wise
to produce a single vector H representing the con-
text as follows:

hi =
n∏

j=1

wj,i

Then the similarity of a target word to the context
words is given by the cosine of the angle between H
and Wt, i.e.:

sim(H,Wt) =
HTWt

‖H ‖‖Wt‖

We call sim(H,Wt) the LSA predictor below.

5 Experimental Results

We normalised the N400m responses by subtract-
ing the per-subject mean and then dividing by the
per-subject standard deviation. Similarly, we nor-
malised the values of predictors. We used the
non-linear regression package mgcv v1.7-6 (Wood,
2006; Wood, 2011) distributed with the R statis-
tical environment to predict the N400m response.
We used the manually-annotated context predictor
(Context) as a linear parametric predictor, and all
the other types of predictors i.e., the 4-gram lan-
guage model predictor (P4), the pairwise priming
predictor (Pq), the LSA predictor, and the predictors
based on Roark’s parser, as penalized cubic spline
functions (up to 20 degrees of freedom).

5.1 Models with one predictor
We first start with models with one predictor to find
out which predictors are significant. Table 1 lists
the significant predictors, where significance is de-
termined by a likelihood ratio test. Of all the pre-
dictors described by Roark et al. (2009) only the
LexH predictor (lexical entropy) is a significant pre-
dictor according to a likelihood-ratio test. Perhaps it

Predictor Df p-value
Context 1 1.53e-11 ***
Pq 2.3479 4.84e-10 ***
P4 2.067 5.30e-10 ***
LexH 3.2197 1.75e-04 ***
LSA 1.6707 5.28e-04 ***

Table 1: P-values and degrees of freedom as determined
by likelihood ratio test for non-linear regression models
with only one predictor

Context Pq P4 LexH
Pq -0.76∗∗∗

P4 -0.76∗∗∗ 0.96∗∗∗

LexH 0.41∗∗∗ -0.38∗∗∗ -0.38∗∗∗

LSA -0.15∗ 0.09 0.10 -0.06

Table 2: Correlation matrix of different types of predictor

should not be surprising that lexical entropy strongly
predicts the N400m response; the lexical entropy is
a measure of the predictive uncertainty of the target
word, and the N400 is strongest in less predictive
contexts.

5.2 Combining predictors

In this section, we combine all the predictors to cre-
ate a single model. From the correlation matrix
of the predictors (Table 2), we can see that some
of these predictors are highly correlated. Not sur-
prisingly, when we combined all the predictors we
discovered that some of predictors are redundant.
We performed backwards selection using p-values
to drop insignificant predictors (Wood, 2011). In
backwards selection, first we construct a model with
all the predictors, then we drop the single predic-
tor with the highest non-significant p-value from the
model. We repeat re-fitting, dropping insignificant
predictors until all remaining predictors are signifi-
cant. The results of performing backwards selection
show that only the manually-annotated context pre-
dictor and the LSA predictor are significant (Table
3):

Response ∼ Context + LSA

In order to construct a model without the
manually-annotated context predictor, we removed
the manually-annotated context predictor from the
model and re-performed backwards selection. The
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Predictor Df p-value
Context 1 2.34e-10 ***
LSA 2.779 0.0186 *

Table 3: P-values and degrees of freedom of the predic-
tors in the combined model after performing backwards
selection

Predictor Df p-value
LSA 3.165 0.00405 **
Pq 1.987 0.01817 *
P4 2.158 0.04340 *

Table 4: P-values and degrees of freedom of the pre-
dictors in the combined model without the manually-
annotated context predictor after performing backwards
selection

results show that the combination of the pairwise
priming predictor, the 4-gram language model pre-
dictor, and the LSA predictor are significant (Table
4):

Response ∼ LSA + Pq + P4

In order to minimise the effect of collinearity of
predictors, we applied PCA to find principal com-
ponents of the predictors’ space. In Table 5, the ma-
trix of eigenvectors is shown. Treating the principal
components as predictors, we performed backwards
selection to find a set of significant principal com-
ponents. In Table 6 the p-values of all the principal
components are presented. After performing back-
wards selection, only the first two principal compo-
nents are significant (Table 7):

Response ∼ PC1 + PC2

As can be seen, in the first principal component
(PC1) Context, Pq and P4 are dominant, while in
the second principal component LSA is dominant.
We can conclude that proposed predictors can be
grouped into two clusters; one that contains the LSA
predictor, and another that contains the manually-
annotated context predictor, the pairwise-priming
predictor, the 4-gram language model predictor, and
the lexical entropy predictor.

Hierarchical clustering also suggests that the set
of predictors cluster into two groups. Figure 1 de-
picts a hierarchical clustering of the predictors based
on Spearman’s rank correlation (Myers and Well,
2003). As this figure shows, the similarity between

PC1 PC2 PC3 PC4 PC5
Context 0.52 -0.01 0.10 0.85 0.01

Pq -0.55 -0.09 -0.24 0.36 0.71
P4 -0.55 -0.07 -0.24 0.37 -0.71

LexH 0.33 0.05 -0.94 -0.10 -0.00
LSA -0.10 0.99 0.01 0.07 0.01

Eigenvalue 2.92 0.98 0.76 0.29 0.04

Table 5: The principal components of the predictors’ cor-
relation matrix

Df p-value
PC1 1.000 2.23e-10 ***
PC2 5.230 0.00627 **
PC3 1.445 0.85781
PC4 1.000 0.59922
PC5 2.412 0.21918

Table 6: P-values and degrees of freedom for the princi-
pal components in the combined model before perform-
ing backwards selection

the LSA predictor and other predictors is close to
zero.

6 Conclusions and future work

This paper has studied a variety of predictors of the
N400m response derived from an incremental pars-
ing model (Roark et al., 2009), from Latent Se-
mantic Analysis, and from two language models
trained on the Gigaword corpus (Graff et al., 2005).
We found that many of the predictors derived from
these models were significant, suggesting that these
kinds of models may be useful for understanding the
N400m response. We also examined combining pre-
dictors to build a single model.

We can summarize our results as follows:

• A wide range of predictors are significant pre-
dictors of the N400m response on their own:
-the manually-annotated context predictor,
Context
-the LSA predictor, LSA
-the lexical entropy predictor, LexH, based on
Roark’s parsing model
-the 4-gram language model predictor, P4, and
-the pairwise-priming predictor, Pq

• These predictors can be grouped into two
clusters:
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Df p-value
PC1 1.188 5.78e-14 ***
PC2 4.848 0.0052 **

Table 7: P-values and degrees of freedom for the princi-
pal components in the combined model after performing
backwards selection
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Figure 1: Hierarchical clustering of predictors, using
square of Spearman’s rank correlation as similarity mea-
sure

-1: The manually-annotated context predictor
(Context), the 4-gram language model
predictor (P4), the pairwise-priming predictor
(Pq), and the lexical entropy (LexH), and
-2: The Latent Semantic Analysis predictor
(LSA)

This latter result suggests that these two groups
of predictors are capturing separate factors of the
N400m response. Of course this work just scratches
the surface in terms of possible applications of sta-
tistical language models to neurolinguistics. Clearly
it would be interesting to apply a much wider va-
riety of statistical models to the N400 data. Per-
haps parsing models would do better if they could
be trained on Gigaword-sized corpora. As we noted
above, MEG is capable of producing rich temporal
and spatial information about neural processes, pre-

senting new opportunities for using statistical lan-
guage models to help understand how language is
instantiated in the human brain.
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Abstract

Due to its convenience and low–cost, short
message service (SMS) has been a very popu-
lar medium for communication for quite some
time. Unfortunately, however, SMS messages
are sometimes used in illicit acts, such as com-
munication between drug dealers and buyers,
extortion, fraud, scam, hoax, false reports of
terrorist threats, and many more. This study is
a forensic study on the authorship classifica-
tion of SMS messages in the Likelihood Ra-
tion (LR) framework with the N–gram mod-
elling technique. The aims of this study are
to investigate 1) how accurately it is possible
to classify the authors of SMS messages; 2)
what degree of strength of evidence (LR) can
be obtained from SMS messages and 3) how
the classification performance and the LRs are
affected by the sample size for modelling. The
resultant LRs are calibrated by means of the
logistic regress calibration technique. The re-
sults of the classification tests will be rigor-
ously assessed from different angles, using
the techniques proposed for automatic speaker
recognition and forensic voice comparison.

1 Introduction

We often come across news stories on so–called cy-
ber crimes which take advantage of the high visual
anonymity of, for example, email and SMS mes-
sages. In order to combat these cyber crimes, the
Australian Government is currently trying to pass
the Cybercrime Legislation Amendment Bill 2011
(hereafter, Cyber Law). This Cyber Law was in-
troduced and read for the first time at the House

of Representatives in June, 2011.1 This legislation
will enable police and intelligence agencies to in-
struct phone companies and internet carriers not to
destroy sensitive information, such as text messages
or emails from terrorists or criminals, that is impor-
tant for investigations and prosecutions. This leg-
islation also set the framework for Australia to join
the Council of Europe Convention on Cybercrime,
which more than 40 nations have joined or plan to
join.

Needless to say, SMS messages, which are the fo-
cus point of the current study, hold a very impor-
tant position in the above–mentioned legislation. As
Grant (2007, p2) states “[o]ver recent years there has
been considerable and growing interest in forensic
authorship analysis”, it is predicted that SMS mes-
sages will be increasingly used as evidence in Aus-
tralian courts and in national and international secu-
rity contexts (Coulthard and Johnson, 2007).2 The
fact that the use of mobile phones has been increas-
ing exponentially and that the SMS is becoming a
more and more common medium of communication,
is apparently a strong driving force and motivation
for the above–mentioned legislation and the conduct
of fundamental research on SMS messages as scien-
tific evidence.

Having said that, there is a large amount of re-
search on authorship attribution in general (Thisted
and Efron, 1987; Pennebaker and King, 1999; Dod-
dington, 2001; Woolls, 2003; Slatcher et al., 2004)

1http://www.aph.gov.au/house/committee/jscc/cybercrime bill/
2Some actual cases where authorship attribution was per-

formed on SMS and email messages are given in Grant (2007)
and Mohan et al. (2010).
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and on individual linguistic idiosyncrasies (Webber
et al., 2002; Shriberg and Stolcke, 2008; Ishihara,
2010) whereas studies specifically focusing on the
authorship of SMS messages in forensic contexts are
conspicuously sparse (cf. Mohan et al. 2010).

A possible scenario in which SMS messages can
be used as evidence of an incriminating act is as fol-
lows: the police authority obtained a set of incrimi-
nating messages written by a criminal while another
set of messages were obtained from a suspect. The
relevant parties would like to know whether these
two sets of messages were actually written by the
same author or different authors. We simulate this
scenario in our study.

This study adopts the approach used in other
forensic fields, such as DNA and speaker recog-
nition, the Likelihood Ratio (LR)–based evidence
evaluation (Aitken and Stoney, 1991; Aitken, 1995;
Robertson and Vignaux, 1995; Aitken and Taroni,
2004). As we know, SMS messages are usually
(very) short while the ways people write their mes-
sages are unique (e.g. the use of acronyms, short-
hand, etc) (Tagg, 2009). However, to the best of our
knowledge, there have not been any empirical stud-
ies on the authorship classification of SMS messages
in the framework of the LR (cf. Grant, 2007; Mohan
et al., 2010) . Thus, we cannot answer even some
fundamental questions, such as “How well can we
correctly identify two groups of messages that were
written by the same author as being written by the
same author, and mutatis mutandis, by different au-
thors?” and “What is the degree of strength of evi-
dence (= LR) that we are likely to obtain from SMS
messages?”. We attempt to provide some answers
to these questions by conducting a series of simple
authorship classification tests in the LR framework.

Thus, more precisely, the aims of this study are
to investigate 1) how accurately it is possible to
classify the authors of SMS messages; 2) what de-
gree of strength of evidence (LR) can be obtained
from SMS messages; and 3) how the performance
of the authorship classification and the strength of
evidence are influenced by the sample size for mod-
elling. The resultant LRs are calibrated by means of
the logistic regress calibration technique (Brümmer
and du Preez, 2006). The results of the classifica-
tion tests are evaluated by means of the techniques
originally proposed for automatic speaker recog-

nition and forensic voice comparison (Gonzalez–
Rodriguez et al., 2007). The effect of the calibration
on the LRs obtained from the SMS messages will
also be discussed.

2 Likelihood Ratio–based Approach

2.1 Likelihood Ratio

In the Bayesian analysis of evidence, opinions about
the hypotheses are expressed in the form of poste-
rior probabilities (or the posterior odd which is the
ratio of the two conditional probabilities) as shown
in (1), where Hp = prosecution hypothesis; Hd =
alternative or defence hypothesis; E = forensic ev-
idence. In the context of the forensic authorship
classification of SMS messages, E will be the simi-
larities/differences between the offender and defen-
dant SMS messages. Thus, the posterior odd is the
ratio between the probability that the same author
hypothesis (or the prosecution hypothesis) is true
(p(Hp|E)) and the probability that the different au-
thor hypothesis (or the defence hypothesis) is true
(p(Hd|E)), given the evidence (E).

p(Hp|E)
p(Hd|E)︸ ︷︷ ︸

posterior odds

(1)

The solution to (1) is Bayes’ theorem as the pos-
terior odds is the product of the prior odds (province
of the court) and the likelihood ratio (province of the
forensic scientist) as shown in (2).

p(Hp|E)
p(Hd|E)︸ ︷︷ ︸

posterior odds

=
p(Hp)
p(Hd)︸ ︷︷ ︸

prior odds

∗ p(E|Hp)
p(E|Hd)︸ ︷︷ ︸

likelihood ratio

(2)

It has been stressed that the task of the forensic
expert is to provide the court with a strength–of–
evidence statement by estimating the LR, and that
they should NOT be asked their opinion about the
probabilities given the evidence (= posterior odds)
(Aitken and Stoney, 1991; Aitken, 1995; Robertson
and Vignaux, 1995; Aitken and Taroni, 2004).

The likelihood ratio (LR) is the probability that
the evidence would occur if an assertion is true, rel-
ative to the probability that the evidence would oc-
cur if the assertion is not true (Robertson and Vig-
naux, 1995, p17). For forensic authorship classifica-
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tion, it will be the probability of observing the dif-
ference between the group of messages written by
the offender and that written by the suspect if they
have come from the same author (i.e. if the prose-
cution hypothesis is true) relative to the probability
of observing the same evidence if they have been
produced by different authors (i.e. if the defence hy-
pothesis is true). Thus, LR can be expressed in (3).

LR =
p(E|Hp)
p(E|Hd)

(3)

The relative strength of the given evidence sup-
porting the hypothesis is reflected in the magnitude
of the LR. The more the LR deviates from unity
(LR = 1; logLR = 0), the greater support for either
the prosecution hypothesis (LR > 1; logLR > 0) or
the defence hypothesis (LR < 1; logLR < 0). It is
also common practice to express the LR logarithmi-
cally, in which case the neutral value is 0. Unless
specifically expressed, log10LR values are used in
this study.

Although the value of LR quantifies the strength
of evidence, the value is not readily interpretable to
the court. Thus, in order to aid the court to interpret
LR values, some verbal interpretations of the ranges
of LR values have been proposed. The one proposed
by Champod and Evett (2000) is given in Table 1.
In this study, whenever appropriate, we verbally ex-
press the strength of evidence based on Table 1.

2.2 Likelihood Ratios in Forensic Science
LRs show many advantages for evidence evaluation
and presentation (Robertson and Vignaux, 1995,
p21). Firstly, the majority of evidence submitted to
the court is by nature only indicative, not determi-
native. For the indicative nature of evidence, which
means, in other words, forensic evidence has an un-
certain nature, probability is ideal to use in the infer-
ence process in a scientific way.

Another reason is that the role of forensic experts
is clearly defined in the legal system, with the de-
cision on whether or not the defendant is guilty not
being left to the forensics experts: this is the job of
juries (or judges in some judicial systems). Thus,
as expressed in §2.1, the task of the forensic expert
is NOT to provide their opinion about the source
of evidence, but to estimate and give the court the
strength of the evidence in the form of an LR.

Besides the appropriateness for the legal system
as explained above, LRs have another advantage in
evidence presentation: they allow evidence from dif-
ferent sources (e.g. voice, blood-stain) to be com-
bined to give an overall LR in support of a hypothe-
sis.

According to Daubert,3 any scientific and techni-
cal evidence needs to satisfy certain criteria to be ad-
mitted in court. These criteria can be summarised as
the issues of transparency and testability. It has been
well discussed that the use of LR for evidence eval-
uation and presentation is appropriate from the view
points of transparency and testability (Gonzalez–
Rodriguez et al., 2007).

3 Authorship Classification Tests:
Methodology

3.1 Database

In this study, we use the SMS corpus compiled by
the National University of Singapore (the NUS SMS
corpus).4 A new version of the NUS SMS cor-
pus has been released almost monthly, and we use
version 2011.05.11 which contains 38193 messages
collected from 228 authors. The top three countries
that contributed the most to the NUS SMS corpus
by the number of messages are Singapore, India and
the USA. 69% of the total messages were written by
native speakers of English; 30% by non–native; 1%
unknown. Male authors account for 71%; female
for 16%; unknown for 13%. The average length of a
message is 13.8 words with punctuations (sd = 13.5;
max = 231; min = 1).

3.2 Selection of Messages

In authorship classification tests, two types of au-
thor pairs—same author pairs and different author
pairs—are compared and evaluated using an LR
as discriminant function. The former same author
pairs are used for so–called Same Author Compari-
son (SA comparison) where two groups of messages
produced by the same author need to be correctly
identified as the same author whereas the latter dif-
ferent author pairs are for mutatis mutandis, Differ-
ent Author Comparison (DA comparison). Thus, we

3Daubert v. Merrel Dow Pharmaceuticals Inc., 509 US 593
(1993).

4http://wing.comp.nus.edu.sg:8080/SMSCorpus/
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LR Log10 equivalent Possible verbal equivalent
> 10000 > 4 Very strong . . .
1000 to 10000 3 to 4 Strong . . . support for the
100 to 1000 2 to 3 Moderately strong . . . prosecution
10 to 100 1 to 2 Moderate . . . hypothesis
1 to 10 0 to 1 Limited . . .

1 to 0.1 0 to -1 Limited . . .
0.1 to 0.01 -1 to -2 Moderate . . . support for the
0.01 to 0.001 -2 to -3 Moderately strong . . . defence
0.001 to 0.0001 -3 to -4 Strong . . . hypothesis
< 0.0001 < -4 Very strong . . .

Table 1: Verbal equivalents of LRs and Log10LRs (Champod and Evett, 2000).

need two groups of messages from each of the au-
thors in authorship classification tests.

As explained in §1, one of the aims of this study
is to investigate how the performance of the author-
ship classification and the strength of evidence are
influenced by the sample size, i.e. the number of
message words used for modelling. It can be safely
predicted that the more messages we can use, the
better the performance will be. However, each SMS
message is essentially short, and it is forensically un-
realistic to conduct experiments using thousands of
messages to model an author’s attribution. Thus, as
shown in Table 2, we created 15 different datasets
(DS) in which the number of words appearing in
each message group is different (N = 200, 400, . . .
2800, 3000 words).

For DS200, each message group contains a to-
tal of approximately 200 words. Since we cannot
control the number of the words appearing in one
message, it needs to be approximately 200 words.
In order to compile a message group of about 200
words, we added one message by one message from
the chronologically sorted messages to the group un-
til the word number reached more than 200 words.
As explained earlier, we need two groups of mes-
sages from the same author. For one message group,
we started from the top of the chronologically sorted
messages while for the other of the same author,
from the bottom so that the two groups of messages
from the same author are non–contemporaneous.
Thus, the topics of the messages belonging to one
group are likely to be different from those belonging
to the other.

It should be noted that the number of messages

DS+N auths. SA DA
DS200 85 85x2 14280x2
DS400 68 68x2 9112x2
DS600 56 56x2 6160x2
DS800 49 49x2 4704x2
DS1000 43 43x2 3612x2
DS1200 41 41x2 3280x2
DS1400 38 38x2 2812x2
DS1600 37 37x2 2664x2
DS1800 35 35x2 2380x2
DS2000 34 34x2 2244x2
DS2200 31 31x2 1848x2
DS2400 28 28x2 1512x2
DS2600 25 25x2 1200x2
DS2800 24 24x2 1104x2
DS3000 24 24x2 1104x2

Table 2: Dataset (DS) configurations: sample size (N)
= the number of words included in each message group;
auths. = the number of authors appearing in the DS; SA
= number of SA comparisons; DA = number of DA com-
parisons.

which were contributed by each author to the NUS
SMS Corpus is not the same: some contributed hun-
dreds of messages, but some just one. Thus, some
authors may not have enough messages to create
two groups of messages as specified by the sample
size. The second column of Table 2 shows the num-
ber of authors included in each DS. According to
the second column, the number of authors included
in the DSs decreases as the sample size increases.
For example, as for DS3000, two sets of 3000 word
messages can be created only from 24 authors. For
DS3000, 24x2 same author (SA) comparisons and
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1104x2 different author (DA) comparisons are pos-
sible.

3.3 Tokenisation and N-grams

The SMS messages were tokenised using the Sim-
pleTokenizer function of the opennlp-tools version
1.5.05 without any stemming algorithms. The Sim-
pleTokenizer provides simple tokenisation based on
space and punctuations.

In some cases, it is difficult to automatically lo-
cate a sentence boundary in SMS messages as the
use of upper/lower cases, punctuation, space, etc
do not always conform to the standard orthographic
rules. Therefore, the words appearing in the same
message were treated as a sequence of words, with-
out parsing them into sentences in this study.

We use the ngram-count and ngram functions
of the Speech Technology and Research Labora-
tory Language Modelling Toolkit (SRLM)6 in this
study. As explained in §3.2, we need to compare two
groups of messages many times. The ngram–count
function is used to build an N–gram language model
for a group of messages (model group). The resul-
tant N–gram language model should represent the
characteristics of this particular group of messages.
The ngram function is used to calculate log probabil-
ities between the N–gram language model of a given
group of messages (model group) and another given
group of messages (test group). The log probabili-
ties calculated by the ngram function show the de-
gree of similarities/differences between the former
group of messages which were modelled in the form
of the N–grams (model group) and the latter group
of messages (test group). The backoff technique was
used for the calculation of log probabilities (Jurafsky
and Martin, 2000).

An ‘open–vocabulary’ N–gram language model
(N = 1,2,3) was built for each group of messages.
The minimal count of N–grams was set as > 9,
which is the default setting of the SRLM toolkit.
Thus, all N–grams with frequency of < 9 was dis-
counted to 0. This is based on the results of some
test experiments, in which the classification perfor-
mance did not significantly improve with the thresh-
old being set as ≥ 5. The default Good–Turing dis-

5http://incubator.apache.org/opennlp/
6http://www.speech.sri.com/projects/srilm/

counting was used for smoothing.

3.4 Likelihood Ratio Calculation
There are some different formulae proposed for cal-
culating LRs (Lindley, 1977; Doddington, 2001;
Aitken and Lucy, 2004). In this study, a con-
ventional log10LR was estimated using the formula
given in (4) (Doddington, 2001).

LRi,j =
log10

Λi
author(j)

Λbackground(j)

Nj
(4)

Thus, the LRi,j of the test message group (j)
against the model message group (i) is defined to
be the log ratio of the similarity between the test
message group (j) and the author model (Λi

author) of
the model message group (i) to the typicality of the
test message against the background author model
(Λbackground), normalised by the number of words ap-
pearing in the test message group (Nj). The back-
ground author model was built in the cross–validated
manner, using all messages appearing in the NUS
SMS corpus, except those in comparison. The con-
figurations of the N–grams for the background au-
thor model are the same as those used for the model
message group.

The calculated raw LRs were calibrated using lin-
ear logistic regression using the FoCal toolkit7. Cal-
ibration is an affine transformation to a set of scores
(e.g. LRs) which involves a linear monotonic shift-
ing and scaling to the scores relative to a decision
boundary in order to minimise the magnitude and
incidence of scores which are known to mislead-
ingly support the incorrect hypothesis (Morrison et
al., 2011).

3.5 Evaluation
In this study, the results of the authorship classifi-
cation tests are rigorously assessed using the equal
error rate (EER), the Tippett plot, and the log–
likelihood–ratio cost or Cllr matrices (Brümmer and
du Preez, 2006). Using LR values as discriminant
scores, we can measure the accuracy of the author-
ship classification systems in terms of EER. EER is
a good indicator of the overall accuracy of a system,
but does not refer to how good the LR values are.
An LR is an estimate of the degree of support for a

7http://www.dsp.sun.ac.za/ nbrummer/focal/
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hypothesis against its alternative. Thus, the value of
an LR itself is very important.

The Tippett plots show the distributions of the
LRs given the prosecution hypothesis and the de-
fence hypothesis, respectively together. Useful in-
formation that the Tippett plots can graphically pro-
vide is not only how strongly the LRs support the
correct hypotheses but also how strongly the LRs
support the incorrect hypotheses. More detailed ex-
planations will be given about the Tippett plots when
the results of the classification tests are presented in
§4.

In short, the Tippett plots are graphical represen-
tations of the ‘goodness of LRs’ (Brümmer and du
Preez, 2006). However, they do not give a scalar
value of this goodness. The solution for this prob-
lem is the log–likelihood–ratio cost function or Cllr

(5), which is a measure proposed in the area of auto-
matic speaker recognition (Brümmer and du Preez,
2006),

Cllr =
1
2

(
1

NHp

NHp∑

iforHp=true

log2

(
1 +

1
LRi

)
+

1
NHd

NHd∑

jforHd=true

log2

(
1 + LRj

))

(5)

where NHp and NHd
are the number of LR values

in the evaluation set for the prosecution hypothesis
Hp being true or the defence hypothesis Hd being
true. As can be seen from (5), incorrect LR val-
ues (i.e. same author comparisons with LR < 1;
logLR < 0 and different author comparisons with
LR > 1; logLR< 0) will have a strong penalty (high
Cllr) and vice versa. The lower the Cllr value is, the
better the performance of the system is. Cllr can
be split into a discrimination loss (Cmin

llr )—which
is the value achievable after the application of a
calibration procedure—and a calibration loss (Ccal

llr )
(Cllr = Cmin

llr +Ccal
llr ). Thus, the Cllr can provide an

overall evaluation of a system while the Cmin
llr and

Ccal
llr can specifically show how the discrimination

loss and the calibration loss contributed to the over-
all performance of the system. The FoCal toolkit is
used to calculate Cllr in this study.

4 Authorship Classification Tests: Results
and Discussions

The results of the authorship classification tests with
different sample sizes are given in Table 3 in terms
of EER, Cllr, Cmin

llr and Ccal
llr .

DS+N EER Cllr Cmin
llr Ccal

llr

DS200 0.40 1.29 0.96 0.33
DS400 0.39 1.14 0.93 0.21
DS600 0.37 1.08 0.90 0.18
DS800 0.36 1.04 0.87 0.16
DS1000 0.32 0.99 0.84 0.14
DS1200 0.30 0.97 0.82 0.15
DS1400 0.30 0.94 0.78 0.15
DS1600 0.30 0.93 0.77 0.15
DS1800 0.28 0.90 0.78 0.12
DS2000 0.23 0.87 0.72 0.14
DS2200 0.20 0.86 0.68 0.17
DS2400 0.21 0.84 0.65 0.18
DS2600 0.20 0.81 0.67 0.14
DS2800 0.20 0.82 0.67 0.15
DS3000 0.20 0.80 0.62 0.17

Table 3: The results of the authorship classification tests
are given in terms of EER, Cllr, Cmin

llr , Ccal
llr with 15 dif-

ferent sample sizes (N).

With respect to EER, Cllr and Cmin
llr , the results

of the authorship classification tests improve as the
sample size increases. However, the Ccal

llr values do
not show much improvement after a sample size of
400. When the sample size is greater than 400, the
Ccal

llr values fluctuate between 0.12 and 0.18. That
is, the degree of calibration is more or less stable
with a sample size of 600 or greater, and the Cllr

values improve as the sample size increases because
the discrimination (not calibration) performance im-
proves. The Ccal

llr values given in Table 3 are fairly
small, even with a sample size of 200. That means
that the LRs obtained from SMS messages are well
calibrated.

The accuracy of the authorship classification in-
creases from c.a. 60% with a sample size of 200
words to c.a. 80% with a sample size between
2200∼3000 words. As can be judged from these
accuracies, SMS messages carry some idiosyncratic
information about the authors. The best result was
achieved with a sample size of 3000 in terms of Cllr

52



(0.80).
To the best of our knowledge, Mohan et al.

(2010) is the only study on authorship attributions
of SMS messages, having an application to foren-
sics in mind. They reported in their study, in which
the NUS SMS corpus and an N–gram technique
were also used, that the author of an SMS mes-
sage could be correctly predicted with an accuracy
of 65%∼70%. Their reported accuracy is compara-
ble with that of the current study. However, what
their study lacks is the reference to the strength of
evidence (or LRs) as they did not employ the likeli-
hood ratio based approach.

Figure 1 contains the Tippets plots of the LRs ob-
tained with a sample size of 200 (panel 1), 1000 (2),
2000 (3) and 3000 (4). Figure 1 graphically shows
how the ‘goodness of the LRs’ changes with the in-
crease in sample size. The LRs, which are equal
to or greater than the value indicated on the x-axis,
are cumulatively plotted separately for the SA com-
parisons (black) and the DA comparisons (grey). In
Figure 1, both uncalibrated (dotted curves) and cal-
ibrated (solid curves) LRs are included. The cali-
brated LRs were obtained by the logistic–regression
calibration procedure which is a linear monotonic
transformation, using the FoCal toolkit. Calibration
aims to present the relevant information in such a
way that the fact finder makes appropriate decisions
(Ramos–Castro, 2007).

It can be observed from Figure 1 that before cal-
ibration, the crossing points of the SA and DA LRs
(dotted curves) are slightly off from log10LR = 0,
whereas, after calibration, the crossing points (solid
curves) are right on Log10LR = 0. Theoretically
speaking, the crossing point of the SA and DA LRs
should align with log10LR = 0 even before calibra-
tion.

The logistic–regression calibration brought differ-
ent effects on the LR values. When the sample size
is small (i.e. 200 and 1000), the calibration has re-
sulted in a major reduction in LR values (both cor-
rect and incorrect LRs). This major reduction of the
LRs resulted in the calibrated LRs being not very
meaningful as evidence. The ranges of the calibrated
LRs are from -0.220 to 0.439 for the SA compar-
isons and from -0.281 to 0.443 for the DA compar-
isons with a sample size of 200 (Figure 1–1). Ac-
cording to Table 1 in which the verbal interpretations

of LR values are given, the LRs between 0 and 1 for
the SA comparisons and those between -1 and 0 for
the DA comparisons provide only “limited” support
for the prosecution and defence hypothesis, respec-
tively.

Even with a sample size of 1000 (Figure 1–2), al-
most all of the calibrated LRs fall in the range of
between -1 and 1. That is, again, the calibrated LR
values give only “limited” support for either hypoth-
esis.

With a sample size of 3000 (Figure 1–4), the cal-
ibration leads to the enhancement of the LRs: the
ranges of the calibrated LRs are 2.868 (from -0.657
to 2.211) and 4.711 (from -2.735 to 1.976) for the
SA and DA comparisons, respectively, which are
much larger than the ranges of the uncalibrated LRs:
1.606 (from -0.184 to 1.422) and 2.640 (-1.349 to
1.291) for the SA and DA comparisons, respectively.
The strongest calibrated LR values are 2.211 and
-2.735 for the SA and DA comparisons, respectively.
These values can be quoted as showing “moderately
strong” support for the same and different author hy-
pothesis, respectively.

Approximately 10% of the same author LRs
“moderately” or “moderately strongly” support the
same author hypothesis and approximately 65%
have only “limited” support for the same author hy-
pothesis. Likewise, approximately 15% of the dif-
ferent author LRs have “moderate” or “moderately
strong” support for the different author hypothesis
and approximately 60% have only “limited” support
for the different author hypothesis.

The downside of this enhancement in LR values
with a large sample size (i.e. 3000 words) is that
the misleading LRs also increased their values after
calibration. For example, the most misleading un-
calibrated LR value for the DA comparisons is LR
1.291, which is incorrectly in favour of the same au-
thor hypothesis. After calibration, this misleading
LR was intensified to LR 1.976. This value could be
presented in court by a forensic expert as “moder-
ately” supporting the same author hypothesis. This
is a grave concern.

Considering the fact that SMS messages are usu-
ally (very) short, it may not be forensically realistic
to be able to use as many as 3000 words for SMS
authorship classification. Please note that the aver-
age length of a message is 13.8 words in the NUS
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Figure 1: Tippet plots showing uncalibrated (solid curves and calibrated (dotted curves) LRs for the sample size (N)
of 200 (panel 1); 1000 (2); 2000 (3) and 3000 (4). Grey = same author (SA) comparisons; black = different author
(DA) comparisons.

SMS corpus, and therefore about 218 messages are
required to be equivalent to 3000 words. However,
our results demonstrated that if the sample size is
small (≤ 1000), having real cases in mind, the ob-
tained LRs only give “limited” support for either hy-
pothesis.

5 Conclusions

We found out that 1) the classification accuracy
reaches c.a. 80% when we use a sample size of
2200 words or more; 2) the calibrated LR values
are very weak, in particular when the sample size is

small (≤ 1000), in that the LR values provide only
“limited” support for either hypothesis; 3) when we
use a large sample size (i.e. 3000), the approxi-
mately 10∼15% of the calibrated LR values provide
“moderately strong” support for either of the correct
hypotheses whereas the calibration undesirably in-
creases the values of the misleading LRs as well.

6 Future Studies

The techniques we employed are rather simple and
standard. Therefore, there is some room whereby
the classification accuracy and the magnitude of the
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LRs can improve even with a small set of messages
if we apply different techniques. For this purpose,
we should try different techniques at all different
stages of the authorship classification (i.e. focus
on specific words/expressions which are high in id-
iosyncrasy, pre–process of messages prior to mod-
elling, different modelling techniques, different LR
calculation techniques) to see how much we can im-
prove the results of the authorship classification.

In order to estimate the strength of evidence
as an LR, a background sample from the relevant
population—in other words, the potential popula-
tion of offenders—is essential. The SMS messages
included in the NUS SMS Corpus are largely from
Singaporeans. If we know that the offender is Singa-
porean, the SMS messages which were contributed
by Singaporeans are appropriate as a background
population data and desirable to estimate the accu-
rate strength of evidence in LRs. However, if we
know that the criminal is an Australian person, the
use of this corpus is not suited in order to estimate
the strength of evidence. Thus, in order to operate
a forensic SMS authorship classification analysis in
real cases, and calculate an LR as accurately as pos-
sible, the choice of appropriate population data is
important. However, it goes without saying that this
is difficult in many cases due to the lack of appro-
priate corpora. In the context of Australia, we lack
a corpus of SMS messages written by Australians,
which prevents forensic scientists from using SMS
messages as evidence and limits the fundamental
forensic studies on authorship classification in SMS
messages. Thus, a compilation of a relevant corpus
is an urgent task in Australia.
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Abstract

Automatically building domain-specific on-
tologies is a highly challenging task as it re-
quires extracting domain-specific terms from
a corpus and assigning them relevant domain
concept labels. In this paper, we focus on the
second task: i.e., assigning domain concepts
to domain-specific terms. Motivated by pre-
vious approaches in related research (such as
word sense disambiguation (WSD) and named
entity recognition (NER)) that use semantic
similarity among domain concepts, we ex-
plore three types of features — contextual,
domain concepts, topics — to measure the
semantic similarity of terms; we then assign
the domain concepts from the best matching
terms. As evaluation, we collected domain-
specific terms from FOLDOC, a freely avail-
able on-line dictionary for the the Comput-
ing domain, and defined 9 domain concepts
for this domain. Our results show that be-
yond contextual features, using domain con-
cepts and topics derived from domain-specific
terms helps to improve assigning domain con-
cepts to the terms.

1 Introduction

Domain-specific terms are terms that have signif-
icant meaning(s) in a specific domain. For exam-
ple, terms such as Gulf and Kuwait are associated
with the domain of oil due to their frequent appear-
ances in contexts related to oil although they indi-
cate geographical areas. In some resources, domain-
specific terms are further categorized in terms of
their domain concepts (i.e., semantic labels/classes).

For example, Firefox belongs to the domain con-
cept Software, while Prolog is associated with the
domain concept Programming. In this paper, we
use the term domain concept for consistency. Note
that in previous work, the meaning of the domain-
specificity is associated with either word senses (e.g.
(Magnini et al., 2002; Rigutini et al., 2005)) or
the statistical use of terms in context (e.g. (Drouin,
2004; Milne et al., 2006; Kida et al., 2007; Park
et al., 2008; Kim et al., 2009; Vivaldi and Rodr-
guez, 2010)). In WordNet, the domain concept
is assigned based on the word senses. Similarly,
WordNet Domain has terms with domain con-
cepts per sense. However, most work previously
conducted work used domain-specificity is based on
statistical use. In this paper, we follow the latter def-
inition, i.e., domain-specificity associated with the
statistical use of the term.

Domain-specificity of terms has been leveraged
in various natural language processing (NLP) and
related tasks, such as word sense disambiguation
(WSD) (Magnini et al., 2002), named entity recog-
nition (NER) (Kazama and Torisawa, 2007), and
query expansion (Rigutini et al., 2005). Resources
containing domain information fall into two groups:
the list of domain-specific terms without domain
concepts (e.g. Agrivoc, EUROVOC, ASFA The-
saurus); and with domain concepts (e.g. WordNet,
WordNet Domain, Unified Medical Language Sys-
tem (UMLS)). Although there have been efforts de-
veloping such knowledge resources, the task has
been generally carried out by hand, requiring high
cost and time. Further, even hand-crafted resources
are often limited in terms of quality and quantity.
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Moreover, the content needs to be constantly up-
dated/maintained as new words are added. As a re-
sult, there has been recent work on automatic on-
tology builders (e.g. OntoLearn, Text2Onto)
that work by extracting domain-specific terms and
tagging domain-concepts to build such resources.

Building a domain-specific ontology requires two
main tasks — extracting domain-specific terms and
assigning the domain concept(s). There have been
several methods proposed for each task and also as a
complete ontology builder—we describe such work
in Section 2. In this paper, our interest lies on assign-
ing domain concepts to the existing domain-specific
resources. In one sense our task can be viewed as
building a taxonomy from dictionaries (Rigau et al.,
1998) and/or a semantic class labelling task (Punuru
and Chen, 2007). Since some resources are already
publicly available (despite shortcomings), utilizing
these resources reduces the time for manually devel-
oping training data, and should lead to robust sys-
tems due to consistent labeling. In addition, such
resources are reusable for enlarging the existing re-
sources or creating new semantic resources.

Our basic approach is to use semantic similar-
ity between domain-specific terms. Contextual fea-
tures have often been employed for semantic sim-
ilarity in various tasks, such as text categoriza-
tion (Joachims, 1998) and dialogue act classification
(Ivanovic, 2005). Thus, we also explore using con-
text as base features. Furthermore, we explore the
use of rich semantic features. That is, we employ
the domain concepts and topics derived from known
domain-specific terms over the same resource as ad-
ditional features. We detail our rich semantic fea-
tures in Section 4.2 and 4.3. In evaluation, we ap-
plied our approaches to the domain Computing, as
the interest in this domain is growing due to the large
volume of web corpora, including social media such
as web forums and blogs.

In the following sections, we describe related
work and the existing resources in Section 2 and 3.
We then describe our features in Section 4, and eval-
uate our methods in Section 5. We summarize our
work in Section 6.

2 Related Work

There are two individual sub-tasks that deal with
domain-specific terms — extraction/identification
and labeling domains/concepts. Further, extract-
ing domain-specific terms is combined with tech-
nical term extraction in order to extract candidates,
while identification of domain-specific terms is a bi-
nary decision (i.e., with a given term, determining
whether it is domain-specific to the target domain).

A number of extraction methods have been pro-
posed (Drouin, 2004; Rigutini et al., 2005; Milne
et al., 2006; Kida et al., 2007; Park et al., 2008;
Kim et al., 2009; Vivaldi and Rodrguez, 2010).
Most used supervised approaches while (Park et
al., 2008; Kim et al., 2009; Vivaldi and Rodr-
guez, 2010) undertook the task in an unsupervised
manner. In addition, (Rigutini et al., 2005) used
sense-based domain-specificity, while others used
statistical use-based measures to determine domain-
specificity of the candidate terms. (Rigutini et al.,
2005) is motivated by the intuition that, similar to
word sense disambiguation, domain-specificity can
be identified using contextual semantic similarity in
which those terms occur, since domain-specificity
is associated with the word senses. (Milne et al.,
2006) studied Wikipedia entries as domain-specific
terms and crosschecked the terms in Agrivoc with
Wikipedia entries to verify the domain-specificity of
Wikipedia entries. The basic idea in (Kida et al.,
2007) is that a domain can be identified via a list of
known technical domain terms. As unsupervised ap-
proaches, (Park et al., 2008) introduced a probabil-
ity based weighting in order to measure the domain-
specificity of the term over a large corpus. Similarly,
(Kim et al., 2009) used term frequencies across the
documents using modified TF·IDF, which replace a
document with a domain. (Vivaldi and Rodrguez,
2010) made use of Wikipedia categories and page
structures. The intuition is that the Wikipedia cat-
egories are domain-specific, thus, by retrieving the
Wikipedia entries through the category trees starting
with a target domain, the domain-specific terms un-
der the target domain can be automatically retrieved.

The task of domain assignment has some rela-
tionship to the word sense disambiguation (WSD)
and named entity recognition (NER) tasks. While
WSD attempts to assign the correct sense of terms
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from some given repository of senses (typically,
WordNet), assigning domains to domain-specific
terms in our work first requires that we construct the
repository. NER is a subtask of information extrac-
tion that involves finding named entities and assign-
ing each a tag from a predefined set of categories,
such as LOCATION or PERSON. The difference
with our task in this paper is that in both WSD and
NER, the target terms are generally in some use con-
text (i.e., the correct word sense of target term de-
pends on that context), while our targets are isolated,
i.e., appear out of context. In this paper, our ap-
proach is closer to corpus-based WSD which nor-
mally uses co-occurrence of terms between two cor-
pora.

In recent years, there have been systems proposed
to extract terms and to assign semantic labels to
them (Navigli and Velard, 2004; Cimiano and Vlker,
2005; Nicola et al., 2009). OntoLearn (Navigli and
Velard, 2004) has three components. First, it ex-
tracts a domain terminology from Web sites. It
then assigns the domain concepts in order to build
a hierarchical structure of ontologies. The system
uses semantic similarity between WordNet concepts
for component words in a candidate and concep-
tual relations among the concept components based
on word senses. Finally, ontologies in WordNet
are trimmed and enriched with the extracted domain
concepts. Text2Onto (Cimiano and Vlker, 2005) is
another ontology builder and includes three compo-
nents. First, the system represents the knowledge as
metadata in the form of instantiated modeling prim-
itives called Probabilistic Ontology Model, which
is language-independent. Second, the system uses
the user interaction in order to measure the domain-
specificity for candidates. Finally, it accumulates
the ontologies based on previously added ontolo-
gies to overcome computational redundancy over
time when corpus/documents are changed. More
recently, (Nicola et al., 2009) developed an auto-
matic ontology builder by combining Unified Soft-
ware Development Processing (UP) and UML. It
bases its characteristics on UP and uses UML to sup-
port the preparation of the blueprints of the ontology
development.

3 Data

Multiple taxonomy resources such as WordNet and
Wikipedia are available for identifying terms in
the Computing domain. However, not all of these
systematically assign semantic labels to terms. To
determine suitability of popularly used resources for
our task, we first investigated their utility.
WordNet3.0 (Fellbaum, 1998) includes domain

information but the number of terms with domain
information is very limited. Moreover, it does not
include many terms related to the Computing do-
main, and those terms it does include are often
proper nouns (e.g. Firefox) or compound nouns (e.g.
wireless connection). For WordNet Domain,
(Magnini et al., 2002) developed a domain sys-
tem and semi-manually assigned domains to Word-
Net terms in terms of their word senses. Although
the size of the resource with domain information is
larger than WordNet3.0 (i.e., 6,050 nouns with one
sense), it is still a relatively small resource. More-
over, the domain called factotum (i.e., “undecided”)
is used for many terms, which makes it less usable.
Wikipedia1 is the largest folksonomy taxon-

omy. It contains terms (hereafter, entries) and cat-
egories per entry. It also provides hyperlinks be-
tween entries and entry pages. Despite its vast size,
Wikipedia is not designed to be a dictionary, thus
it does not contain definitions entries. Moreover, the
categories are not systematically organized and of-
ten contain noise (which are not relevant to the target
domains).
Wiktionary2, on the other hand, is a grow-

ing online dictionary for all domains. It has char-
acteristics similar to WordNet, such as definitions
and relations (e.g. hypernym, synonym). It also par-
tially contains domain information per word sense.
In addition, it is linked to Wikipedia. However,
since one term could have multiple senses and not
all senses are tagged with a specific domain, it re-
quires a preprocessing step to discover terms re-
lated to the specific domain (for this paper, Com-
puting domain only). The number of unique terms
in Wiktionary is 10,586 without counting indi-
vidual word senses.

1http://en.wikipedia.org/wiki/Main Page
2http://en.wiktionary.org/wiki/dictionary
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The final resource we consider is FOLDOC3.
FOLDOC is the (so far) largest handcrafted on-line
dictionary for the Computing domain. It also con-
tains definitions and sub-domains such as hardware
and operating system, and provides hyperlinks to
other dictionary terms in the definition and links
to Wikipedia and OneLook dictionary search4.
Unlike Wiktionary, only word senses of terms
related to Computing are listed, thus, all terms in
the dictionary are relevant to the Computing do-
main. For these reasons, as well as the size of the
resource being sufficient to evaluate our method, we
decided to use FOLDOC for our purposes. To un-
derstand FOLDOC better, we checked the overlaps
between it and other resources in Table 1. Note that
all resources were retrieved in March 2011.

Source WikiDic Wikipedia WordNet
Instance 10,586 10,863,326 117,798
Overlap 1,682 9,917 2,756

Table 1: Overlap between the FOLDOC dictionary and
other resources.

FOLDOC contains 14,826 unique terms with mul-
tiple senses, resulting in 16,450 terms in total.
13,072 and 3,378 terms are direct and redirect, re-
spectively (the concept of direct and redirect is the
same as that in Wikipedia). Among direct terms,
8,621 terms have manually assigned domain con-
cept(s). The total number of domain concepts in
the dictionary is 188. Finally, we manually mapped
188 onto 9 domain concepts which are super-labels.
For example, labels in FOLDOC, security, specifi-
cation, Unix are mapped on to Networking, Doc-
umentation, OS, respectively. Note that, based on
our observations, we found many of the labels de-
fined in FOLDOC are too fine-grained, and some are
used only for 1 or 2 terms. Furthermore, the labels
are not hierarchically structured. In addition, simi-
lar to the trade-off between fine-grained vs. coarse-
grained word senses, we believe coarse-grained la-
bels would be more usable (e.g. document classifi-
cation using coarse-grained labels of terms), thus,
we used 9 super-labels in this work.

Table 2 shows the final domain concepts we used

3http://foldoc.org/
4http://www.onelook.com/

and the number of instances in each domain concept.
Note that since one term can have multiple semantic
labels, the total number of instances with one label
is 10,147. Table 3 shows the number of terms with
multiple senses and multiple domain concepts.

Domain (Terms) Domain (Terms)
CS (755) Documentation (1,906)
HW (1,490) Jargon (298)
Networking (1,220) OS (363)
Programming (3,042) SW (144)
Other (929)
Total 10,147(8,621)

Table 2: Data Size per Domain Concept. 8,621 is the
number of word types, where CS, HW, OS, SW indicate
computer science, hardware, operating system, and soft-
ware, respectively.

Info. 1 2 3 4 5 6 7
Label 7172 1353 79 8 – – –
Sense 7957 475 124 41 11 2 2

Table 3: Terms with multiple labels and senses.

4 Methodology

4.1 Feature Set I: Bag-of-Words
n-gram-based bag-of-words (BoW) features are one
of the most broadly applied features to measure the
semantic similarity between two terms/texts. This
has been used in various tasks such as document
classification (Joachims, 1998), dialogue act clas-
sification (Ivanovic, 2005) and term classification
(Lesk, 1986; Baldwin et al., 2008).

As shown in (Hulth and Megyesi, 2006), key-
words along the contextual features (i.e., simple 1-
grams) are useful in identifying semantic similar-
ity. However, keywords are often multi-grams such
as 2-grams (e.g. Fast Ethernet, optical mouse) and
3-grams (e.g. 0/1 knapsack problem, Accelerated
Graphics Port). Sharing the same intuition, some
previous work (Ivanovic, 2005) employed not only
1-grams but also 2-grams for the classification task.
Similarly, we also observed that terms are often
multi-grams. Thus, in this work, we also explored
various n-grams. In evaluation, we tested 1- and 2-
grams individually as well as the combination of 1-
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and 2-grams together (i.e., 1+2-grams). Note that
since previous work has shown that the use of lem-
mas performed better than raw words, we chose to
use lemmas as features. We also tested BoWs from
nouns and verbs only. As feature weights, we tested
simple Boolean and TF·IDF. In evaluation, the fea-
tures are filtered with respect to the frequency of in-
dexing words. That is, we tested three different term
frequencies (i.e., frequency ≥ 1, 2, and 3) in order
to select the indexing terms as BoW features.

4.2 Feature (II): Domain Concepts of
Domain-Specific Terms

BoW features are useful for measuring the seman-
tic similarity between two targets. However, we ob-
served that since the number of terms in the dic-
tionary definition is small, there will be a lack of
context (similar to shortcomings reported in (Lesk,
1986) for WSD using dictionary definition). On the
other hand, we noticed that a term’s definition of-
ten contains terms which belong to the same domain
concepts. For example, the target term Ethernet be-
longs to the domain concept Networking, and its
definition is “A local area network first described
by . . .”. Local area network in the definition also
belongs to the same domain concept Networking.
Hence, we use the domain concept(s) of dictionary
terms found in the definition of the target term as a
feature.

We also extend the target’s definition with its dic-
tionary terms. To overcome the pitfall of the algo-
rithm in (Lesk, 1986) due to lack of terms in the def-
inition, (Baldwin et al., 2008) utilized the extended
definition from the dictionary terms found in the tar-
get’s definition. Similarly, instead of the definition
of dictionary terms in the target’s definition (i.e., ex-
tended definition), we used the domain concept(s) of
dictionary terms in the extended definition. We hy-
pothesised that using these domain concepts would
provide more direct information about domain con-
cepts of the target term.

In Table 4, we demonstrate how and what to ex-
tract as domain concepts for the target database.
The definition of the target database contains dic-
tionary terms database, table, flat file, comma-
separated values. Since database is the target term
itself and comma-separated values is not found in
the dictionary, we use the domain concepts from ta-

ble and flat file only, which include CS, and OS,
HW. Note that some terms have multiple labels as
described in Section 3. We also extend table and
flat file to obtain the extended domain concepts from
the extended definition. Finally, we accumulated do-
main concepts, CS, Programming, Documenta-
tion from records, CS from relational database and
Documentation from flat ASCII from the extended
definitions.

4.3 Feature (III): Topics of Domain-Specific
Terms

Topic modeling (Blei et al., 2003) is an unsuper-
vised method to cluster documents based on con-
text information. As it is not a classification method,
the topics produced by the topic modeling algorithm
are abstract, thus not directly associated with prede-
fined semantic labels. However, we observed that
topic terms for each topic are generally associated
with the domain concepts. From our observation, we
hypothesized that (ideally) one topic is associated
with one domain concept (although some may con-
tain multiple domain concepts same as multi-sensed
words). As such, we assigned topic ID(s) per dic-
tionary terms using topic modeling software5, then
used this as an additional feature with BoWs. Like-
wise, we also obtained topic ID(s) for dictionary
terms found in the definition of the target term. Note
that depending on the features used to obtain topics,
the association between topic IDs and our 9 domain
concepts would change. Table 5 demonstrates the
topics and how we extract the Topic and extended
Topic features using the same example use above.
database is tagged with topic ID = 1,2,4 while table
has topic ID = 4. We represented features by accu-
mulating the topic IDs over 9 topic IDs which are
the same number of our domain concepts.

5 Experiments

For our evaluation, we first replaced the email ad-
dresses, numbers, urls with their category EMAIL,
NUMBER, URL, respectively. We then per-
formed POS tagging and lemmatization using
Lingua::EN::Tagger and morph tools (Min-
nen et al., 2001), respectively. For learning, we

5The topic modeling tool we used can be downloaded from
http://www.ics.uci.edu/ newman/code/
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Term Label Definition
Target Term, “database” and its Domain Concept and Definition
database CS A database containing a single tableCS, stored in a single flat fileOS,HW,

often in a human-readable format such as comma-separated values or fixed-
width columns.

Extending Definitions of Dictionary Terms found in Target’s Definition
table CS A collection of recordsCS,Programming,Documentation in a

relational databaseCS.
flat file OS, HW A single file containing flat ASCIIDocumentation representing or encoding

some structure, e.g. a database, tree or network.

Table 4: Extracting domain concepts of dictionary terms in definitions.

Type Value Topics
T1 T2 T3 T4 T5 T6 T7 T8 T9

Target Term database 1 1 0 1 0 0 0 0 0
Dictionary Term table 0 0 0 1 0 0 0 0 0

in Target Definition flat file 0 1 0 0 1 0 0 0 1
Feature Direct 1 1 0 1 0 0 0 0 0

representation Extended 1 2 0 2 1 0 0 0 1

Table 5: Extracting topics for target terms and dictionary terms.

simulated our method by both supervised and semi-
supervised approaches. We used SVM (Joachims,
1998)6 for supervised learning and SVMlin (Sind-
hwani and Keerthi, 2006)7 for semi-supervised
learning. For supervised learning, we performed 10-
fold cross-validation over 8,621 terms which have
manually assigned labels in FOLDOC. For semi-
supervised learning, we used the same data for test
and training and 4,451 unlabeled terms in FOLDOC
as unlabeled data. As the baseline system, we used
the feature TF·IDF valued 1-gram from all terms
with frequency ≥ 1. The performances are com-
pared using micro-averaged F-score Fµ.

5.1 Supervised Learning

Table 6 shows performance by supervised learners
with various BoWs. Note that we only report per-
formance using TF·IDF since those using Boolean
weights performed poorly. We also ran the experi-
ments over different frequency which leads to vari-
ous numbers of indexing terms. Finally, we tested
noun- and verb-only features.

6http://www.cs.cornell.edu/People/tj/svm light/svm hmm.html
7http://vikas.sindhwani.org/svmlin.html

Overall, the best performance is produced by us-
ing both 1- and 2-grams with frequency ≥ 1, as
this configuration contains the largest amount of fea-
tures. However, the improvement by adding 2-grams
is not significant (i.e., 52.01% vs. 52.47% in Fµ).
Between using all terms vs. nouns and verbs only,
using all terms performed slightly better. Despite
dominant information derived from nouns and verbs,
other POS tagged words also contributed to distin-
guishing the domain concepts. Likewise, the per-
formances using nouns and verbs only are generally
better when using features with frequency ≥ 1.

Table 7 shows performance using both n-grams
and semantic features. At first, adding rich seman-
tic features (i.e., Domain Concept, Topic) signifi-
cantly improved performance (52.01% vs. 60.62%).
In particular, Topic features helped to improve per-
formance. As we hypothesised, topics are likely
associated with domain concepts which resulted in
performance improvements. Domain concept fea-
tures also helped to gain higher performance, as they
provide more direct semantic information than n-
gram features. Between direct and extended (i.e.,
indirect) semantic features, we noticed that extended
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Feature Indexing Frequency≥1 (F1) Frequency≥2 (F2) Frequency≥3 (F3)
Pµ Rµ Fµ Pµ Rµ Fµ Pµ Rµ Fµ

All 1 56.64 48.07 52.01† 56.64 48.07 52.01 56.56 48.00 51.93
Terms 2 54.42 46.19 49.97 54.42 46.19 49.97 51.68 43.87 47.45

1+2 57.14 48.50 52.47 57.14 48.50 52.47 57.05 48.42 52.38
Noun 1 55.56 47.16 51.02 55.56 47.16 51.02 55.49 47.10 50.95

+ 2 52.39 44.47 48.10 52.39 44.47 48.10 49.30 41.84 45.27
Verb 1+2 56.37 47.85 51.76 56.37 47.85 51.76 56.19 47.69 51.59

Table 6: Performances with BoW Features: Performance of the baseline system is marked with †. The best perfor-
mance is bold-faced. Indexing means n-grams. Indexing value is TF·IDF.

All Words Noun+Verb
Feature Index F1 F2 F3 F1 F2 F3
Domain 1 57.30 57.02 57.20 56.90 56.96 57.51
Concept 2 55.61 55.78 55.22 55.70 55.77 55.54

1+2 56.84 57.16 57.07 56.09 56.57 56.41
Extended 1 55.97 55.86 55.74 55.63 55.13 55.88
Domain 2 53.44 53.98 53.31 53.79 53.82 53.43
Concept 1+2 55.91 55.82 55.50 55.54 55.49 55.30

Topic 1 60.58 60.62 60.50 59.65 59.99 59.75
2 50.94 54.27 53.30 50.99 54.03 52.88

1+2 59.75 60.11 59.82 58.37 59.48 59.20
Extended 1 59.18 59.09 59.10 59.47 59.60 59.40

Topic 2 52.77 53.54 52.11 50.44 51.51 50.03
1+2 58.73 58.98 58.56 56.52 56.85 56.58

Table 7: Performances with Rich Semantic Features in Fµ: The best performances in each group are bold-faced.

features decreased performance as they tend to intro-
duce more erroneous instances. Likewise, using all
words as well as 1-grams performed better among
all various n-grams with few exceptions.

Table 8 and Figure 1 show performance over indi-
vidual classes and detail of predicted labels. This
is the system using TF·IDF valued 1-grams from
all terms with frequency ≥ 2, as this was our best-
performing system. Overall, we found that many do-
main concepts are mislabeled with Programming
and Documentation since they are most often used
concepts and could be a border concept for terms la-
beled with other domain concepts. For example, CS
and Documentation are often labeled as Program-
ming, while Networking is mislabeled as Docu-
mentation.

Finally, we used randomized estimation to calcu-
late whether any performance differences between

methods are statistically significant (Yeh, 2000) and
found all systems exceeding the baseline system had
p-value ≤ 0.05, which indicates significant improve-
ment.

5.2 Semi-supervised Learning

For semi-supervised learning, we evaluated the im-
pact of the size of training data. We observed
that despite increasing training data, performance
does not significantly improve. However, to com-
pare the performance between supervised and semi-
supervised systems, we simulated semi-supervised
system with unused training data from FOLDOC.
Table 9 shows the performance of semi-supervised
learning using two groups of features: 1-gram with
frequency ≥ 1, and 1-gram with frequency ≥ 1 +
Domain Concept. Note that we did not test with
Topic as topic IDs change according to the data.
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G/P CS Document HW Jargon Network OS Program SW Other
CS 435(40.6) 95(8.9) 140(13.1) 9(0.8) 29(2.7) 23(2.1) 297(27.7) 12(1.1) 31(2.9)

Document 74(3.8) 1101(56.3) 151(7.7) 43(2.2) 174(8.9) 33(1.7) 252(12.9) 17(0.9) 111(5.7)
HW 35(3.0) 86(7.4) 850(72.7) 10(0.9) 41(3.5) 18(1.5) 93(8.0) 2(0.2) 34(2.9)

Jargon 23(4.8) 77(16.1) 62(13.0) 145(30.4) 29(6.1) 16(3.4) 74(15.5) 7(1.5) 44(9.2)
Network 19(1.7) 205(18.0) 22(1.9) 12(1.1) 766(67.4) 12(1.1) 58(5.1) 4(0.4) 39(3.4)

OS 14(2.7) 42(8.2) 60(11.7) 11(2.2) 31(6.1) 198(38.7) 130(25.4) 6(1.2) 19(3.7)
Program 51(2.7) 86(4.5) 48(2.5) 24(1.3) 38(2.0) 21(1.1) 1576(83.3) 7(0.4) 42(2.2)

SW 32(4.6) 94(13.4) 48(6.8) 7(1.0) 52(7.4) 27(3.8) 302(43.0) 73(10.4) 67(9.5)
Other 72(5.8) 120(9.7) 109(8.9) 37(3.0) 60(4.9) 15(1.2) 260(21.1) 16(1.3) 542(44.0)

Table 8: Confusion Matrix with Noun+Verb:1-gram+F2+Topic where the proportion is presented in ()
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Figure 1: Performances over individual classes with
Noun+Verb:1-gram+F2+Topic: Proportion means the
amount of instances per domain concept in %.

S Semi-S (Unlabeled Term #)
Fea. 0 1000 2000 3000 4415

1 52.01 56.94 58.05 57.97 58.86
1+D 57.30 59.33 58.02 57.83 57.17

Table 9: Performances by semi-supervised learning in %.
1 is unigram and D means domain concept.

The results show that the use of simple BoWs
improves performance but does not exceed the best
performance produced using BoW+Domain Con-
cept/Topic. On the other hand, adding Domain Con-
cept actually decreases performance when adding
more unlabeled data, except when adding a small
amount (i.e., 1000). We found that Domain Con-
cept is sensitive, thus this decreased the overall per-
formance when it includes more noise by semi-
supervised learning. Previously, the outcomes of

semi-supervised learning have shown that its effec-
tiveness is somewhat dependent on the nature of the
task and aspects of features. There have been mixed
reports on improvement by semi-supervised learn-
ing; some work reported significant improvement
while other showed little or no impact on the task. In
this paper, we observed that semi-supervised learn-
ing would not help improve the performance on clas-
sifying domain concepts. We expect that since the
best performance by the supervised system is not
high enough, adding automatically assigned data as
training data introduces further error.

6 Conclusion

We have proposed an automatic method to assign
domain concepts to terms in FOLDOC using various
contextual features as well as semantic features —
Domain Concept and Topic. We demonstrated that
the system performed best when using rich semantic
features directly derived from dictionary terms. We
also showed that for the target task, semi-supervised
learning did not significantly improve performance,
unlike for other tasks. As future work, we are in-
terested in applying the proposed method to other
existing resources in order to build a larger domain-
specific ontology resource.
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Abstract

We apply the graph-structured stack (GSS) to
shift-reduce parsing in a Combinatory Cate-
gorial Grammar (CCG) parser. This allows
the shift-reduce parser to explore all possible
parses in polynomial time without resorting
to heuristics, such as beam search. The GSS-
based shift-reduce parser is 34% slower than
CKY in the finely-tuned C&C parser. We per-
form frontier pruning on the GSS, increasing
the parsing speed to be competitive with the
C&C parser with a small accuracy penalty.

1 Introduction

Parsing is a vital component of sophisticated natu-
ral language processing (NLP) systems that require
deep and accurate semantic interpretation, including
question answering and summarisation. Unfortu-
nately, the complexity of natural languages results in
substantial ambiguity. For even a typical sentence,
thousands of potential analyses may be considered
by a wide-coverage parser, making parsing imprac-
tical for large-scale applications.

Several methods have been proposed to improve
parsing speed, including supertagging (Bangalore
and Joshi, 1999; Clark and Curran, 2004; Kummer-
feld et al., 2010), coarse-to-fine parsing (Charniak
and Johnson, 2005; Pauls and Klein, 2009), chart
repair (Djordjevic, 2006), chart constraints (Roark
and Hollingshead, 2009), structure caching (Daw-
born and Curran, 2009) and chart pruning (Zhang
et al., 2010). These heuristic methods offer a trade-
off between accuracy and speed. A* parsing (Klein
and Manning, 2003) offers speed increases with no

reduction in accuracy. For parsers optimised for
speed, the overhead required by additional efficiency
techniques can exceed the speed gains they provide
(Dawborn and Curran, 2009). As mistakes made
in the parsing phase propagate to later stages, high
speed but low accuracy parsers may not be useful in
NLP systems (Chang et al., 2006).

In this paper, we modify the C&C (Clark and Cur-
ran, 2007) Combinatory Categorial Grammar (CCG)
parser to enable shift-reduce (SR) parsing. The
Cocke-Kasami-Younger (CKY) algorithm (Kasami,
1965; Younger, 1967) is replaced with the shift-
reduce algorithm (Aho and Ullman, 1972). How-
ever, back-tracking in shift-reduce parsers make
them exponential in the worst case.

To eliminate this duplication of work, a graph-
structured stack (GSS; Tomita, 1988) is employed.
This is the equivalent, for shift-reduce parsing, of
the chart in CKY parsing, which stores all possible
parse states compactly and enables polynomial time
worst-case complexity. Due to the incremental na-
ture of shift-reduce parsing, we can perform prun-
ing of the parse state in the process of considering
the next word (the frontier). Our frontier pruning
model is an averaged perceptron trained to recognise
the highest-scoring derivation that the C&C parser
would have selected. By eliminating unlikely
derivations , we substantially decrease the amount
of ambiguity that the parser is required to handle.

The GSS SR parser considers all the derivations
that the C&C parser would consider, but is 34%
slower. When frontier pruning is applied, incremen-
tal parsing speed is improved by 39% relative to the
GSS parser with a negligible impact on accuracy.

Stephen Merity and James R. Curran. 2011. Frontier Pruning for Shift-Reduce CCG Parsing . In Proceedings
of Australasian Language Technology Association Workshop, pages 66−75



2 CCG Parsing

Combinatory Categorial Grammar (CCG; Steedman,
2000) is a lexicalised grammar formalism that incor-
porates both constituent structure and dependency
information into its analyses.

In CCG, each word is assigned a category which
encodes sub-categorisation information. Categories
may be atomic, such as N and S ; or complex, such
as NP/N for a word that requires an N to the right
to produce an NP . Similarly, S\NP is an intran-
sitive verb and produces a sentence when an NP is
found to the left. Finally, a transitive verb receives
(S\NP)/NP as it consumes an NP on the right,
producing a verb phrase. Figure 1 shows two exam-
ples of CCG derivations with lexical categories as-
signed to each word. Both examples also provide
the word saw with the (S\NP)/NP category.

Lexicalised grammars typically have a small set
of rules (the combinatory rules in CCG) and instead
rely on categories that describe a word’s syntactic
role in a sentence. In Figure 1, the word with con-
tains two separate categories indicating whether it
modifies saw (first example) or John (second exam-
ple). In a highly lexicalised grammar, a parser may
need to explore a large search space of categories in
order to select the correct category for each word.

Bangalore and Joshi (1999) proposed supertag-
ging, where each word is assigned a reduced set of
categories by a sequence tagger, rather than all of
the categories previously seen with that word. Our
supertags are CCG categories, and so are much more
detailed than POS tags. By limiting the number of
supertags for each word, there is a massive reduc-
tion in the number of derivations. The effectiveness
of supertagging (Clark and Curran, 2004) demon-
strates the influence of lexical ambiguity on parsing
complexity for lexicalised grammars.

Hockenmaier and Steedman (2007) developed
CCGbank, a semi-automated conversion of the Penn
Treebank (Marcus et al., 1993) to the CCG formal-
ism. A number of statistical parsers (Hockenmaier
and Steedman, 2002; Clark et al., 2002) have been
created for CCG parsing using CCGbank.

2.1 The C&C Parser

Clark and Curran (2007) describe the three stages of
the high-performance C&C CCG parser. First, the

I saw John with binoculars
NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP

> >
S\NP (S\NP)\(S\NP)

<
S\NP

<
S

I saw John with binoculars
NP (S\NP)/NP NP (NP\NP)/NP NP

>
NP\NP

<
NP

>
S\NP

<
S

Figure 1: Two CCG derivations with PP ambiguity.

supertagger provides each word with a set of likely
categories, reducing the search space considerably.
Second, the parser combines the categories, using
the CKY chart-parsing algorithm and CCG’s combi-
natory rules, to produce all derivations that can be
constructed with the given categories. Finally, the
decoder finds the best derivation from amongst the
spanning analyses in the chart.

The C&C parser uses a maximum-entropy model
to score each derivation, using a wide range of fea-
tures defined over local sub-trees in the derivation,
including the head words and their POS tags, the lo-
cal categories, and word-word dependencies. We
use the default normal-form mode with the deriva-
tions decoder (Clark and Curran, 2007) and a maxi-
mum of 1,000,000 categories in the chart.

Clark and Curran (2004) describe the role of su-
pertagging in the C&C parser and its impact on
parser speed. The supertagger initially assigns as
few supertags as possible per word. If the parser is
unable to provide a spanning analysis, the parser re-
quests more supertags for each word. By restricting
the number of supertags considered, this provides
substantial pruning at the lexical level. Recent work
by Kummerfeld et al. (2010) has shown that by train-
ing the supertagger on parser output, the parser’s
speed can be substantially increased whilst achiev-
ing the same accuracy as the baseline system. This
exploits the idea that the only supertags the parser
needs are those used by the highest-scoring deriva-
tion, reducing the search space even more than tra-
ditional supertagging.

Whilst the approach we present here focuses on
CCG parsing, the techniques apply equally to any
other binary branching or binarised grammars.
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∅ NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP

S\NP (NP\NP)/NP (S\NP)\(S\NP)

S S\NP

S

I saw John with binoculars

PRP VBD NNP IN NNS

Figure 2: A graph-structured stack (GSS) representing an incomplete parse of the sentences found in Figure 1. The
nodes and lines in bold were provided by the supertagger, whilst the non-bold nodes and lines have been created during
parsing. The light gray lines represent what reduce operation created that lexical category.

3 Shift-Reduce Parsing

In its deterministic form, a shift-reduce parser per-
forms a single left-to-right scan of the input sen-
tence, selecting one or more actions at each step.
The current state of the parser is stored in a stack,
where the partial derivation is stored and the pars-
ing operations are performed. For the actions, either
we shift the current word onto the stack or reduce
the top two (or more) items at the top of the stack
(Aho and Ullman, 1972). As the scoring model can
be defined over actions, this can allow for highly
efficient parsing through greedy search (Sagae and
Lavie, 2005). This has made shift-reduce parsing
popular for high-speed dependency parsers (Yamada
and Matsumoto, 2003; Nivre and Scholz, 2004).

Unfortunately, a deterministic shift-reduce parser
cannot handle ambiguity because it only considers
a single derivation. A simple extension is to elim-
inate determinism and perform a best-first search,
backtracking if the parser reaches a dead end. This
backtracking leads to duplicate construction of sub-
structures and complete exploration is exponential in
the worst case. Beam search has been used to han-
dle this exponential explosion by discarding a large
portion of the search space.

In Zhang and Clark (2011), a direct comparison
is made between their shift-reduce CCG parser and
the chart-based C&C parser. As CCG allows for
a limited number of unary rules, specifically type-
changing and type-raising, Zhang and Clark extend

the shift-reduce algorithm to consider unary actions.
In order to handle the exponential search space,
their parser performs beam search, only keeping
the top 16 scoring states. Whilst this approximate
search may potentially lose the best scoring parse,
they achieve competitive accuracies compared to the
C&C chart parser.

3.1 Advantages of Semi-Incremental Parsing

Shift-reduce parsing allows for fully incremental
parsing that does not require the full sentence.
Whilst the C&C parser could be modified to perform
in this fashion, POS tagging and supertagging accu-
racy would likely decrease, leading to lower overall
parsing accuracy as mistakes propagate up the pars-
ing pipeline.

Semi-incremental parsing can still be advanta-
geous compared to non-incremental parsing. By us-
ing features to provide a partial understanding of
the sentence structure to components not tradition-
ally integrated with the parser, such as the POS tag-
ger and supertagger, improved accuracy is possible.
This is because these components currently only use
the orthographic properties of the input text as fea-
tures, with no understanding of how each word may
be potentially used during parsing. In Merity (2011),
we have begun exploring tightly integrating parsing
and tagging, specifically for POS tags and supertags,
by using semi-incremental parsing and shown im-
proved tagging accuracy is possible.
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3.2 Graph-Structured Stack

Back-tracking shift-reduce parsers are worst case
exponential, preventing a full exploration of the
search space. A graph-structured stack (GSS) is a
general structure that allows for the efficient han-
dling of non-determinism in shift-reduce parsing
(Tomita, 1988). The GSS allows for polynomial time
non-deterministic shift-reduce parsing and has been
shown to be highly effective for dependency pars-
ing (Huang and Sagae, 2010). The use of GSS al-
lows for the incremental construction of the parse
tree without being forced to discard large segments
of the search space.

Here we will show an example of using a GSS to
augment shift-reduce parsing and then show how it
can be applied to CCG parsing. In the example gram-
mar below, all three reduction rules are possible on
the given stack. By performing backtracking and
pursuing all possible reductions, shift-reduce pars-
ing becomes worst-case exponential as previous re-
sults must be re-computed.

∅ A B C D E

Reduction Rules
F ← D E
G ← D E
H ← C D E

The GSS solves this by storing multiple possible
derivations in a single structure. Note that all pos-
sible rules have been applied and are now stored
in the GSS. These reduce operations are also non-
destructive, leaving the original structure from the
above figure in place. Thus, the GSS can store mul-
tiple possible derivations. Note that there is only a
single bottom node, ∅, representing an empty stack.

F

G

∅ A B C D E

H

When a new node is pushed onto the stack, we
combine it with the heads of all of the existing stacks

stored in the GSS. This means that only a single shift
action is necessary for the GSS instead of one for
each possible derivation.

F

G

∅ A B C D E I

H

Finally, to prevent an exponential explosion due
to local ambiguity, we check if a new partial deriva-
tion is equivalent to any existing partial derivations.
If it is, we keep track of the ways the given node
can be generated and then merge them into a single
node. This is referred to as local ambiguity packing
by Tomita (1988) and allows shift-reduce parsing to
be performed in polynomial time. In the example
below, the new reduction rules result in two new J
nodes. These two nodes are merged to form a single
node as they are equivalent.

F

G J

∅ A B C D E I

H

Reduction Rules
J ← F I
J ← G I

When parsing an n word sentence, there are n
possible stages in the GSS. We refer to these stages
as frontiers, with the kth frontier containing all par-
tial derivations that contain a total span of k. In CKY

chart terms, a frontier can be considered as repre-
senting all cells on the diagonal from the top left to
the bottom right, as seen in Figure 3.

Figure 2 represents an incomplete sentence
processed using a GSS-based shift-reduce CCG

parser. The frontier for the word with con-
tains two heads, ((S\NP)\(S\NP))/NP and
(NP\NP)/NP . When the CCG category for the
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Figure 3: An illustration of the relation between the chart
in CKY and the graph-structured stack in SR

word binoculars is shifted on to the GSS, it connects
to both of the previous heads. As the category for
the word binoculars is an NP , we can then reduce
the stack by applying combinatory rules from CCG

to both of the heads found in the previous frontier.
In light gray, we show the full derivation for “John
with binoculars”.

During the parsing process, we start with an
empty GSS. During the shift step, we add all the
possible CCG categories provided by the supertagger
for the kth word to the GSS and connect each cate-
gory to all of the head categories on the GSS. Next,
we attempt all possible reduce operations on the par-
tial derivations in the current frontier. In CCG shift-
reduce parsing, these reduce operations are the CCG

combinatory rules. If a reduction is possible, we cre-
ate a new top partial derivation from the result and
place it in the kth frontier.

4 Frontier Pruning

The purpose of frontier pruning is to cut down the
search space of the parser by only considering par-
tial derivations that are likely to be in the highest-
scoring derivation. Like adaptive supertagging, it
exploits the idea that the only partial derivations
the parser needs to generate are those used by the
highest-scoring derivation. The model is trained us-
ing the parser’s initial unpruned output and aims
to distinguish between partial derivations that are
necessary and those that are not. By eliminating
a large number of those unnecessary partial deriva-

tions, parsing ambiguity is significantly decreased.
This approach is similar to beam search as frontier

pruning removes partial derivations once it is likely
they will not be used in the highest-scoring deriva-
tion. Beam search prunes nodes that are below a
multiple (β) of the highest-scoring node in the fron-
tier. For certain instances, such as n-best re-ranking,
beam search would be preferred as derivations with-
out the highest score are still useful in the parsing
process. For one best parsing, however, the parser
may waste time generating these additional deriva-
tions when it could be known in advanced that they
will not be used. This could occur during attach-
ment ambiguity where, although the parser is guar-
anteed to select one attachment, the other attachment
may be constructed as it is valid and still competitive
when considered by beam search’s criteria.

5 Experiments

The only modifications are to the core parsing al-
gorithm, which involves replacing CKY with SR,
and to the parsing process via pruning. As the de-
coder and base models used for selecting the best-
scoring derivation remain unchanged, any improve-
ments seen are from an improved parsing process.

The C&C code base has been optimised for CKY

parsing and we have made only limited attempts to
optimise specifically for the shift-reduce approach.
Due to this, the speed of the SR parser is 34% slower
than the CKY parser. As the frontier pruning is im-
plemented on the SR parser, all speeds will be rela-
tive to the SR baseline. For the frontier pruning SR

parser to be competitive with the CKY parser, a speed
improvement of 34% or more must be achieved.

5.1 Training and Processing

We train a binary averaged perceptron model
(Collins, 2002) on parser output generated by the SR

C&C parser using the standard parsing model. Once
the base parser has successfully processed a sen-
tence, all partial derivations that lead to the highest-
scoring derivation are marked. For each partial
derivation in the GSS, the perceptron model attempts
to classify whether it was part of the marked set. If
the classification is incorrect, the perceptron model
updates the weights appropriately.

During processing, pruning occurs as each fron-
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Feature Type Example
Category S\NP

Binary Composition (S\NP)/NP and NP
Forward Application True

Head Word saw
Head POS VBD

Previous Frontier NP
Next Frontier ((S\NP)\(S\NP))/NP
Next Frontier (NP\NP)/NP

Table 1: Example features extracted from S\NP in the
third frontier of Figure 2. For the frontier features, bold
represents the highest-scoring feature selected for contri-
bution to the classification decision.

tier is developed. For each partial derivation, the per-
ceptron model classifies whether the partial deriva-
tion is likely to be used in the highest-scoring deriva-
tion. If not, the partial derivation is removed from
the frontier, eliminating any paths that the partial
derivation would have generated. Perfect frontier
pruning would allow only a single derivation, specif-
ically the highest-scoring one, to develop.

5.2 Model Features

For frontier pruning to be effective, the model must
be able to accurately distinguish between partial
derivations that will be used in the highest-scoring
derivation and those that shall not. As the features
of the C&C parser dictate the highest-scoring deriva-
tion, the features used for frontier pruning have been
chosen to be similar. For a full description of the
features used in the C&C parser, refer to Clark and
Curran (2007).

Each partial derivation is given a base set of fea-
tures derived from the current category. The initial
features include a NULL which all categories re-
ceive, the CCG category itself and whether the cat-
egory was assigned by the supertagger. There are
also features that encode rule instantiation, includ-
ing whether the category was created by type rais-
ing, a lexical rule, or any CCG combinatory rule. If
the category was created by a CCG combinatory rule,
the type of rule (such as forward/backward applica-
tion and so on) is included as a feature.

Features representing the past decisions the parser
has made are also included. Note that current rep-

resents the current category and left/right is the cur-
rent category’s left or right child respectively. For
unary categories, a tuple of [current,current→left] is
included as a feature. For binary categories, a tu-
ple of [current→left, current, current→right] is in-
cluded. If a category is a leaf, then two features [cur-
rent, word] and [current, POS] are included. Features
representing the root category of the partial deriva-
tion are also included, encoding the category head’s
word and POS tag.

Finally, additional features are added that repre-
sent the possible future parsing decisions. This is
achieved by adding information about the remain-
ing partial derivations on the stack (the past fron-
tier) and the future incoming partial derivations (the
next frontier). These do not exist in the C&C parser
and are only possible due to the implementation of
the GSS. For each category in the previous fron-
tier, a feature is added of the type [previous, cur-
rent]. For the next frontier, which is only composed
of supertags at this point, the feature is [current,
next]. These features allow the pruning classifier to
determine whether the current category is likely to
be active in any other reductions in future parsing
work. As we only want to score the optimal path us-
ing the previous and next features, only the highest
weighted of these features are selected. The rest of
the previous and next features are discarded and do
not contribute to the classification.

An example of this can be seen in Table 1, where
the features for the partial derivation of S\NP are
enumerated.

These features differ to the traditional features
used by shift-reduce parsers due to the addition of
the GSS. As traditional shift-reduce parsing only
considers a single derivation at a time, it is trivial
to include history further back than the current cat-
egory’s previous frontier. As GSS-based shift-reduce
parsing encodes an exponential number of states,
however, the overhead of unpacking these states
into a feature representation is substantial. Our ap-
proximation of selecting the highest weighted previ-
ous and next frontier features approximates the non-
deterministic shift-reduce solution.

5.3 Improving Marked Set Recall
Compared to the unmarked set, the marked set of
partial derivations used to create the highest-scoring
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derivation is small. If a single CCG category from
the marked set is pruned accidentally, the accuracy
may be negatively impacted. The loss of a single
category may even mean it is impossible to form a
spanning analysis.

To prevent this loss of accuracy and coverage, the
recall of the marked set needs to be improved. This
can be achieved by biasing the binary perceptron al-
gorithm towards a certain class, trading precision for
recall. Traditionally, a binary perceptron classifier
returns true if w · x > 0, else false, with w being a
vector of weights for each feature and x being a bi-
nary vector indicating whether a feature was active.

By providing a manual bias λ, w · x > λ, we can
bias the classifier towards a class. The value of λ
modifies the perceptron threshold level, allowing us
to improve the recall of the marked set by lowering
the precision. The value for λ is obtained manually
through the use of a development set.

Identifying the optimal threshold value is impor-
tant. Too high a recall value would prevent pruning
any parts of the parse tree whilst too low a threshold
reverts back to traditional unpruned parsing. Due to
the overheads involved in the frontier pruning pro-
cess, ineffective frontier pruning may also be slower
than traditional parsing, especially for an optimised
parser such as the C&C parser. This value is deter-
mined experimentally using a development dataset.

5.4 Balancing Pruning Features and Speed
For frontier pruning to produce a speed gain, enough
of the search space must be pruned in order to com-
pensate for the additional computational overhead of
the pruning step itself. This is a challenge as the
C&C parser is written in C++ with a focus on effi-
ciency and already features substantial lexical prun-
ing due to the use of supertagging.

For this reason, there were instances where ex-
pressive features needed to be traded for simpler fea-
tures in the frontier pruning process. Whilst these
simpler features may not prune as effectively, they
take far less time to compute and result in higher
speed gains than complex features with a further re-
duced search space. The complexity of the frontier
pruning features may be dictated by the speed of the
core parser itself, with more expressive features be-
ing possible if the core parser is slower.

The implementation of these features also had

to focus on efficiency. To decrease the stress and
improve memory locality of the hash table storing
the feature weights, only a subset of features were
stored. This feature subset was obtained from the
gold standard training data as it contains far less am-
biguity than the same training data which uses lexi-
cal categories supplied by the supertagger.

Hash tables were used for storing the relevant fea-
ture weights. Simple hash based feature representa-
tion were used for associating features with weights
to reduce the complexity of equivalence checking.
The hash values of features that were to be reused
were also cached to prevent recalculation, substan-
tially decreasing the computational overhead of fea-
ture calculation.

6 Evaluation

Our experiments are performed using CCGbank
which was split into three subsets for training (Sec-
tions 02-21), development (Section 00), and the final
evaluation (Section 23). The performance is mea-
sured in terms of sentence coverage, accuracy and
parsing time. The accuracy is computed as F-score
over the extracted labeled and unlabeled CCG de-
pendencies found in CCGbank. All unmarked ex-
periments use gold standard POS tags whilst experi-
ments marked Auto use automatically assigned POS

tags using the C&C POS tagger.

7 Results

7.1 Training the Frontier Pruning Algorithm
To establish bounds on the potential search space re-
duction, the size of the marked set compared to the
total tree size was tracked over all sentences in the
training data. This represents the size of the tree af-
ter optimal pruning occurs. Two figures are pre-
sented, one with gold supertags and the other with
supertags supplied by the C&C supertagger. Gold
represents the reduction in search space possible
when only the correct CCG categories are used to
parse the sentence. In contrast, the C&C supertag-
ger may apply multiple CCG categories to improve
supertagging accuracy, resulting in higher ambigu-
ity and greater potential search space reductions.

As can be seen in Table 2, the size of the marked
set is 10 times smaller for gold supertags and 15
times smaller for automatically supplied supertags.
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Task Acc.
Marked set recall (gold supertags) 84.4%
Marked set recall 72.9%
Average pruned size (gold supertags) 9.6%
Average pruned size 6.7%

Table 2: Recall of the marked set from the frontier prun-
ing algorithm across all trees and the size of the pruned
tree compared to the original tree.

This places an upper-bound on the potential speed
improvement the parser may see due to aggressive
frontier pruning.

The recall of the marked set was low for both gold
supertags and automatically assigned supertags.
This suggests the need for a modified perceptron
threshold level in order to increase the recall of the
marked set.

7.2 Tuning the Perceptron Threshold Level

Tuning the perceptron threshold level, as described
in the previous section, has an important impact on
frontier pruning. If the baseline parser cannot form
a spanning analysis with the supertags initially sup-
plied by the supertagger, it requests more supertags.
Aggressive frontier pruning may counter-intuitively
result in a slower parser as the parser spends more
time attempting to unsuccessfully parse the sentence
with an increasingly large number of supertags. By
tuning the perceptron threshold level we can prevent
potential slow-downs caused by aggressive pruning.

To optimise the threshold level, experiments were
performed on the development portion of CCGbank,
Section 00. The results are shown in Table 3. De-
creasing the perceptron thresholds level (λ) is shown
to decrease the speed of the parser substantially
without increasing the accuracy. For extremely low
values of λ, frontier pruning will keep partial deriva-
tions previously discarded as the perceptron classi-
fier becomes biased towards recall. For a sufficiently
low value, the accuracy would reach the same levels
as the CKY and SR C&C parsers, but the speed would
be far too slow due to the computational overhead of
frontier pruning added to the small reduction in the
search space. More work on fine-tuning the feature
representation and allowing for more expressive fea-
tures in a faster manner will be required.

Model Coverage lf. uf. Speed
(%) (%) (%) (sents/sec)

CKY C&C 99.01 86.37 92.56 55.6
SR C&C 98.90 86.35 92.44 48.6
FP λ = 0 99.01 86.11 92.25 61.1
FP λ = −1 99.06 86.16 92.23 56.4
FP λ = −2 99.01 86.13 92.19 53.9
FP λ = −3 99.06 86.15 92.21 49.0
CKY C&C Auto 98.90 84.30 91.26 56.2
SR C&C Auto 98.85 84.27 91.10 47.5
FP λ = 0 Auto 98.80 84.09 90.97 60.0

Table 3: Comparison to baseline parsers and analysis of
the impact of threshold levels on frontier pruning (FP).
The perceptron threshold level is referred to as λ. All
results are against the development dataset, Section 00 of
CCGbank, which contains 1,913 sentences.

For λ = 0, however, frontier pruning increases the
parser’s speed by 25.7% compared to the baseline
GSS-based SR parser on which the frontier pruning
operates. There is also a small 9.8% speed increase
compared to the CKY baseline parser. The F-score
for both labeled and unlabeled dependencies is neg-
atively impacted though.

7.3 Speed Improvements during Evaluation
Table 4 reports the impact frontier pruning has on
speed compared to the baseline CKY and SR C&C
parsers. Frontier pruning has improved the speed of
the GSS-based SR C&C parser by 39%, an improve-
ment over the speed increase seen during evaluation.
Longer sentences seem to have a higher impact on
the speed of the frontier pruning algorithm due to the
increased computational complexity of feature gen-
eration. This indicates that implementing a form of
beam search on top of this may be beneficial, keep-
ing on the top k scoring states in a frontier. Cur-
rently all partial derivations that are greater than the
perceptron threshold level λ are kept.

8 Discussion and future work

As the C&C parser is already highly tuned and thus
extremely fast, the optimal balance between feature
expressiveness and accurate pruning is difficult to
achieve. However, there was still room for improve-
ment. This suggests that on slower parsers than the
C&C parser, frontier pruning may have a much more
substantial impact on parsing speeds.
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Model Coverage lf. uf. Speed
(%) (%) (%) (sents/sec)

CKY C&C 99.34 86.79 92.50 96.3
SR C&C 99.58 86.78 92.41 71.3
FP λ = 0 99.38 86.51 92.25 95.4
CKY C&C Auto 99.25 84.59 91.20 82.0
SR C&C Auto 99.50 84.53 91.09 61.2
FP λ = 0 Auto 99.29 84.29 90.88 84.9

Table 4: Final evaluation on Section 23 of CCGbank
for the top performing models from Table 3, containing
2,407 sentences.

More work needs to be done on reducing the
number of computationally intensive feature look-
ups and calculations. Even when using the gold-
standard subset of the features, the feature look-up
process accounts for the majority of the slow-down
that the frontier pruning algorithm causes.

The C&C code has been highly optimised to suit
CKY parsing. It should be possible to improve
the GSS parser to be directly competitive with the
CKY implementation. The frontier pruning provides
speed increases for the GSS parser, allowing it to be
competitive with the original CKY parser, but with
an improved GSS parser, we could expect further im-
provements over the original CKY parser.

Finally, we are still using the separate maximum
entropy model and decoder to find the best deriva-
tion. If we add more features to the perceptron
model, it may be possible to use it for frontier prun-
ing and finding the best derivation.

9 Conclusion

We present a shift-reduce CCG parser that can
explore all possible analyses in polynomial time
through the use of a graph-structured stack (GSS).
Whilst this parser is 34% slower than the CKY parser
on which it is based, it can parse 60 sentences per
second whilst exploring the full search space. We
show that by performing frontier pruning on the GSS

and reducing this search space, the speed of the GSS

parser can be improved by 39% whilst only incur-
ring a small accuracy penalty. This allows for shift-
reduce parsing to attain speeds directly competitive
with the CKY parser, whilst allowing all the potential
advantages of a semi-incremental parser.

We have also shown that whilst pruning is occur-

ring at the lexical level due to supertagging, substan-
tial speed-ups are still possible by performing prun-
ing during the parsing process itself. This has also
illustrated the difficulty in balancing expressive fea-
tures and feature calculations overhead that frontier
pruning needs to achieve.

Our approach uses the output of the original C&C
parser as training data, and so we can use any
amount of parser output to train the system. This
self-training has been shown to be highly effective
in adaptive supertagging for increasing parser speed
(Kummerfeld et al., 2010). The final result will be
a substantially faster wide-coverage CCG parser that
can be used for large-scale NLP applications.
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Abstract

Web user forums are valuable means for
users to resolve specific information needs,
both interactively for participants and stati-
cally for users who search/browse over histor-
ical thread data. However, the complex struc-
ture of forum threads can make it difficult for
users to extract relevant information. Thread
linking structure has the potential to help tasks
such as information retrieval (IR) and thread-
ing visualisation of forums, thereby improv-
ing information access. Unfortunately, thread
linking structure is not always available in fo-
rums.

This paper proposes an unsupervised ap-
proach to predict forum thread linking struc-
ture using lexical chaining, a technique which
identifies lists of related word tokens within a
given discourse. Three lexical chaining algo-
rithms, including one that only uses statistical
associations between words, are experimented
with. Preliminary experiments lead to results
which surpass an informed baseline.

1 Introduction

Web user forums (or simply “forums”) are online
platforms for people to discuss and obtain informa-
tion via a text-based threaded discourse, generally in
a pre-determined domain (e.g. IT support or DSLR
cameras). With the advent of Web 2.0, there has
been rapid growth of web authorship in this area,
and forums are now widely used in various areas
such as customer support, community development,
interactive reporting and online education. In ad-
dition to providing the means to interactively par-

ticipate in discussions or obtain/provide answers to
questions, the vast volumes of data contained in fo-
rums make them a valuable resource for “support
sharing”, i.e. looking over records of past user inter-
actions to potentially find an immediately applica-
ble solution to a current problem. On the one hand,
more and more answers to questions over a wide
range of domains are becoming available on forums;
on the other hand, it is becoming harder and harder
to extract and access relevant information due to the
sheer scale and diversity of the data.

Previous research shows that the thread linking
structure can be used to improve information re-
trieval (IR) in forums, at both the post level (Xi et
al., 2004; Seo et al., 2009) and thread level (Seo et
al., 2009; Elsas and Carbonell, 2009). These inter-
post links also have the potential to enhance thread-
ing visualisation, thereby improving information ac-
cess over complex threads. Unfortunately, linking
information is not supported in many forums. While
researchers have started to investigate the task of
thread linking structure recovery (Kim et al., 2010;
Wang et al., 2011b), most research efforts focus on
supervised methods.

To illustrate the task of thread linking recovery,
we use an example thread, made up of 5 posts from
4 distinct participants, from the CNET forum dataset
of Kim et al. (2010), as shown in Figure 1. The link-
ing structure of the thread is modelled as a rooted di-
rected acyclic graph (DAG). In this example, UserA
initiates the thread with a question in the first post,
by asking how to create an interactive input box on
a webpage. This post is linked to a virtual root with
link label 0. In response, UserB and UserC pro-
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HTML Input Code
...Please can someone tell me how to create an input 
box that asks the user to enter their ID, and then allows 
them to press go. It will then redirect to the page ...

User A
Post 1

User B
Post 2

User C
Post 3

Re: html input code
Part 1: create a form with a text field. See ... Part 
2: give it a Javascript action

asp.net c\# video
I’ve prepared for you video.link click ...

Thank You!
Thanks a lot for that ... I have Microsoft Visual 
Studio 6, what program should I do this in? Lastly, 
how do I actually include this in my site? ...

A little more help
... You would simply do it this way: ... You could 
also just ... An example of this is ...

User A
Post 4

User D
Post 5

Ø
0

1

1

2

3 4

Figure 1: A snippeted CNET thread annotated with link-
ing structure

vide independent answers. Therefore their posts are
linked to the first post, with link labels 1 and 2 re-
spectively. UserA responds to UserC (link = 1) to
confirm the details of the solution, and at the same
time, adds extra information to his/her original ques-
tion (link = 3); i.e., this one post has two distinct
links associated with it. Finally, UserD proposes a
different solution again to the original question (link
= 4).

Lexical chaining is a technique for identifying
lists of related words (lexical chains) within a given
discourse. The extracted lexical chains represent the
discourse’s lexical cohesion, or “cohesion indicated
by relations between words in the two units, such as
use of an identical word, a synonym, or a hypernym”
(Jurafsky and Martin, 2008, pp. 685).

Lexical chaining has been investigated in many
research tasks such as text segmentation (Stokes et
al., 2004), word sense disambiguation (Galley and
McKeown, 2003), and text summarisation (Barzi-
lay and Elhadad, 1997). The lexical chaining al-
gorithms used usually rely on domain-independent
thesauri such as Roget’s Thesaurus, the Macquarie
Thesaurus (Bernard, 1986) and WordNet (Fellbaum,
1998), with some algorithms also utilising statisti-
cal associations between words (Stokes et al., 2004;
Marathe and Hirst, 2010).

This paper explores unsupervised approaches for
forum thread linking structure recovery, by using
lexical chaining to analyse the inter-post lexical co-
hesion. We investigate three lexical chaining algo-
rithms, including one that only uses statistical asso-
ciations between words. The contributions of this
research are:

• Proposal of an unsupervised approach using
lexical chaining to recover the inter-post links
in web user forum threads.

• Proposal of a lexical chaining approach that
only uses statistical associations between
words, which can be calculated from the raw
text of the targeted domain.

The remainder of this paper is organised as fol-
lows. Firstly, we review related research on fo-
rum thread linking structure classification and lex-
ical chaining. Then, the three lexical chaining al-
gorithms used in this paper are described in detail.
Next, the dataset and the experimental methodology
are explained, followed by the experiments and anal-
ysis. Finally, the paper concludes with a brief sum-
mary and possible future work.

2 Related Work

The linking structure of web user forum threads can
be used in tasks such as IR (Xi et al., 2004; Seo et
al., 2009; Elsas and Carbonell, 2009) and thread-
ing visualisation. However, many user forums don’t
support the user input of linking information. Au-
tomatically recovering the linking structure of fo-
rum threads is therefore an interesting task, and has
started to attract research efforts in recent years.
All the methods investigated so far are supervised,
such as ranking SVMs (Seo et al., 2009), SVM-
HMMs (Kim et al., 2010), Maximum Entropy (Kim
et al., 2010) and Conditional Random Fields (CRF)
(Kim et al., 2010; Wang et al., 2011b; Wang et
al., 2011a; Aumayr et al., 2011), with CRF models
frequently being reported to deliver superior perfor-
mance. While there is research that attempts to con-
duct cross-forum classification (Wang et al., 2011a)
— where classifiers are trained over linking labels
from one forum and tested over threads from other
forums — the results have not been promising. This
research explores unsupervised methods for thread
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linking structure recovery, by exploiting lexical co-
hesion between posts via lexical chaining.

The first computational model for lexical chain
extraction was proposed by Morris and Hirst (1991),
based on the use of the hierarchical structure of Ro-
get’s International Thesaurus, 4th Edition (1977).
Because of the lack of a machine-readable copy
of the thesaurus at the time, the lexical chains
were built by hand. Research in lexical chain-
ing has then been investigated by researchers from
different research fields such as information re-
trieval, and natural language processing. It has
been demonstrated that the textual knowledge pro-
vided by lexical chains can benefit many tasks, in-
cluding text segmentation (Kozima, 1993; Stokes et
al., 2004), word sense disambiguation (Galley and
McKeown, 2003), text summarisation (Barzilay and
Elhadad, 1997), topic detection and tracking (Stokes
and Carthy, 2001), information retrieval (Stairmand,
1997), malapropism detection (Hirst and St-Onge,
1998), and question answering (Moldovan and No-
vischi, 2002).

Many types of lexical chaining algorithms rely
on examining lexicographical relationships (i.e. se-
mantic measures) between words using domain-
independent thesauri such as the Longmans Dictio-
nary of Contemporay English (Kozima, 1993), Ro-
get’s Thesaurus (Jarmasz and Szpakowicz, 2003),
Macquarie Thesaurus (Marathe and Hirst, 2010) or
WordNet (Barzilay and Elhadad, 1997; Hirst and St-
Onge, 1998; Moldovan and Novischi, 2002; Galley
and McKeown, 2003). These lexical chaining algo-
rithms are limited by the linguistic resources they
depend upon, and often only apply to nouns.

Some lexical chaining algorithms also make use
of statistical associations (i.e. distributional mea-
sures) between words which can be automatically
generated from domain-specific corpora. For exam-
ple, Stokes et al. (2004)’s lexical chainer extracts
significant noun bigrams based on the G2 statistic
(Pedersen, 1996), and uses these statistical word
associations to find related words in the preced-
ing context, building on the work of Hirst and St-
Onge (1998). Marathe and Hirst (2010) use distri-
butional measures of conceptual distance, based on
the methodology of Mohammad and Hirst (2006)
to compute the relation between two words. This
framework uses a very coarse-grained sense (con-

cept or category) inventory from the Macquarie The-
saurus (Bernard, 1986) to build a word-category co-
occurrence matrix (WCCM), based on the British
National Corpus (BNC). Lin (1998a)’s measure of
distributional similarity based on point-wise mutual
information (PMI) is then used to measure the asso-
ciation between words.

This research will explore two thesaurus-based
lexical chaining algorithms, as well as a novel lexi-
cal chaining approach which relies solely on statis-
tical word associations.

3 Lexical Chaining Algorithms

Three lexical chaining algorithms are experimented
with in this research, as detailed in the following sec-
tions.

3.1 ChainerRoget

ChainerRoget is a Roget’s Thesaurus based lexical
chaining algorithm (Jarmasz and Szpakowicz, 2003)
based on an off-the-shelf package, namely the Elec-
tronic Lexical Knowledge Base (ELKB) (Jarmasz
and Szpakowicz, 2001).

The underlying methodology of ChainerRoget is
shown in Algorithm 1. Methods used to calculate
the chain strength/weight are presented in Section 5.
While the original Roget’s Thesaurus-based algo-
rithm by Morris and Hirst (1991) proposes five types
of thesaural relations to add a candidate word in a
chain, ChainerRoget only uses the first one, as is
explained in Algorithm 1. Moreover, while Jarmasz
and Szpakowicz (2003) use the 1987 Penguin’s Ro-
get’s Thesaurus in their research, the ELKB package
uses the Roget’s Thesaurus from 1911 due to copy-
right restriction.

3.2 ChainerWN

ChainerWN is a non-greedy WordNet-based chain-
ing algorithm proposed by Galley and McKeown
(2003). We reimplemented their method based on
an incomplete implementation in NLTK.1

The algorithm of ChainerWN is based on the as-
sumption of one sense per discourse, and can be de-
composed into three steps. Firstly, a “disambigua-
tion graph” is built by adding the candidate nouns of

1http://people.virginia.edu/˜ma5ke/
classes/files/cs65lexicalChain.pdf

78



Algorithm 1 ChainerRoget
select a set of candidate nouns
for each candidate noun do

build all the possible chains, where each pair of
nouns in each chain are either the same word
or included in the same Head of Roget’s The-
saurus, and select the strongest chain for each
candidate noun.

end for
merge two chains if they contain at least one noun
in common

the discourse one by one. Each node in the graph
represents a noun instance with all its senses, and
each weighted edge represents the semantic relation
between two senses of two nouns. The weight of
each edge is calculated based on the distances be-
tween nouns in the discourse. Secondly, word sense
disambiguation (WSD) is performed. In this step, a
score of every sense of each noun node is calculated
by summing the weight of all edges leaving that
sense. The sense of each noun node with the highest
score is considered as the right sense of this noun
in the discourse. Lastly, all the edges of the disam-
biguation graph connecting (assumed) wrong senses
of every noun node are removed, and the remain-
ing edges linking noun nodes form the lexical chains
of the discourse. The semantic relations exploited
in this algorithm include hypernyms/hyponyms and
siblings (i.e. hyponyms of hypernyms).

3.3 ChainerSV

ChainerSV , as shown in Algorithm 2, is adapted
from Marathe and Hirst (2010)’s lexical chain-
ing algorithm. The main difference between
ChainerSV and the original algorithm is the
method used to calculate associations between
words. Marathe and Hirst (2010) use two differ-
ent measures, including Lin (1998b)’s WordNet-
based measure, and Mohammad and Hirst (2006)’s
distributional measures of concept distance frame-
work. In ChainerSV , we use word vectors from
WORDSPACE (Schütze, 1998) models and apply
cosine similarity to compute the associations be-
tween words. WORDSPACE is a multi-dimensional
real-valued space, where words, contexts and senses
are represented as vectors. A vector for word w is

derived from words that co-occur with w. A di-
mensionality reduction technique is often used to
reduce the dimension of the vector. We build the
WORDSPACE model with SemanticVectors (Wid-
dows and Ferraro, 2008), which is based on Ran-
dom Projection dimensionality reduction (Bingham
and Mannila, 2001).

The underlying methodology of ChainerSV is
shown in Algorithm 2. This algorithm requires a
method to calculate the similarity between two to-
kens (i.e. words): simtt(x, y), which is done by
computing the cosine similarity of the two tokens’
semantic vectors. The similarity between a token ti
and a lexical chain cj is then calculated by:

simtc(ti, cj) =
∑
tk∈cj

1

lj
simtt(ti, tk)

where lj represents the length of lexical chain cj .
The similarity between two chains ci and cj is then
computed by:

simcc(ci, cj) =
∑

tm∈ci,tn∈cj

1

li × lj
simtt(tm, tn)

where li and lj are the lengths of ci and cj respec-
tively.

As is shown in Algorithm 2, ChainerSV has two
parameters: the threshold for adding a token to a
chain, thresholda; and the threshold for merging
two chains, thresholdm. A larger thresholda leads
to conservative chains where tokens in a chain are
strongly related, while a smaller thresholda results
in longer chains where the relationship between to-
kens in a chain may not be clear. Similarly, a larger
thresholdm is conservative and leads to less chain
merging, while a smaller thresholdm may create
longer but less meaningful chains. Our initial exper-
iments show that the combination of thresholda =
0.1 and thresholdm = 0.05 often results in lex-
ical chains with reasonable lengths and interpreta-
tions. Therefore, this parameter setting will be used
throughout all the experiments described in this pa-
per.

4 Task Description and Dataset

The main task performed in this research is to
recover inter-post links within forum threads, by
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Algorithm 2 ChainerSV
chains = empty
select a set of candidate tokens
for each candidate token ti do
max score = maxcj∈chains(simtc(ti, cj))

max chain = argmaxcj∈chains(simtc(ti, cj))

if chains = empty or max score <
thresholda then

create a new chain ck containing ti and add
ck to chains

else if more than one max chain then
merge chains if the two chains’ similarity is
larger than thresholdm, and add ti to the re-
sultant chain or the first max chain

else
add ti to the max chain

end if
end for
return chains

analysing the lexical chains extracted from the posts.
In this, we assume that a post can only link to an ear-
lier post (or a virtual root node). Following Wang
et al. (2011b), it is possible for there to be multiple
links from a given post, e.g. if a post both confirms
the validity of an answer and adds extra information
to the original question (as happens in Post4 in Fig-
ure 1).

The dataset we use is the CNET forum dataset of
Kim et al. (2010),2 which contains 1332 annotated
posts spanning 315 threads, collected from the Oper-
ating System, Software, Hardware and Web Devel-
opment sub-forums of CNET.3 Each post is labelled
with one or more links (including the possibility of
null-links, where the post doesn’t link to any other
post), and each link is labelled with a dialogue act.
We only use the link part of the annotation in this
research. For the details of the dialogue act tagset,
see Kim et al. (2010).

We also obtain the original crawl of CNET fo-
rum collected by Kim et al. (2010), which contains
262,402 threads. To build a WORDSPACE model
for ChainerSV as is explained in Section 3, only
the threads from the four sub-forums mentioned

2Available from http://www.csse.unimelb.edu.
au/research/lt/resources/conll2010-thread/

3http://forums.cnet.com/

above are chosen, which consist of 536,482 posts
spanning 114,139 threads. The reason for choos-
ing only a subset of the whole dataset is to maintain
the same types of technical dialogues as the anno-
tated posts. The texts (with stop words and punctua-
tions removed) from the titles and bodies of the posts
are then extracted and fed into the SemanticVectors
package with default settings to obtain the semantic
vector for each word token.

5 Methodology

To the best of our knowledge, no previous research
has adopted lexical chaining to predict inter-post
links. The basic idea of our approach is to use lex-
ical chains to measure the inter-post lexical cohe-
sion (i.e. lexical similarity), and use these similarity
scores to reconstruct inter-post links. To measure the
lexical cohesion between two posts, the texts (with
stop words and punctuations removed) from the ti-
tles and bodies of the two posts are first combined.
Then, lexical chainers are applied over the combined
texts to extract lexical chains. Lastly, the following
weighting methods are used to calculate the lexical
similarity between the two posts:

LCNum: the number of the lexical chains which
span the two posts.

LCLen: find the lexical chains which span the two
posts, and use the sum of tokens contained in
each as the similarity score.

LCStr: find the lexical chains which span the two
posts, and use the sum of each chain’s chain
strength as the similarity score. The chain
strength is calculated by using a formula sug-
gested by Barzilay and Elhadad (1997):

Score(Chain) = Length×Homogeneity

where Length is the number of tokens in the
chain, and Homogeneity is 1− the number
of distinct token occurrences divided by the
Length.

LCBan: find the lexical chains which span the two
posts, and use the sum of each chain’s balance
score as the similarity score. The balance score
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is calculated by using the following formula:

Score(Chain) =

{
n1/n2 n1 < n2
n2/n1 else

where n1 is the number of tokens from the
chain belonging to the first post, and n2 is the
number of tokens from the chain belonging to
the second post.

6 Assumptions, Experiments and Analysis

The experiment results are evaluated using micro-
averaged Precision (Pµ), Recall (Rµ) and F-score
(Fµ: β = 1), with Fµ as the main evaluation met-
ric. The statistical significance is tested using ran-
domised estimation (Yeh, 2000) with p < 0.05.

As our baseline for the unsupervised task, an in-
formed heuristic (Heuristic) is used, where all first
posts are labelled with link 0 (i.e. link to a virtual
root) and all other posts are labelled with link 1 (i.e.
link to the immediately preceding post).

As is explained in Section 4, it is possible for there
to be multiple links from a given post. Because these
kinds of posts, which only account for less than 5%
of the total posts, are sparse in the dataset, we only
consider recovering one link per post in our exper-
iments. However, our evaluation still considers all
links (meaning that it is not possible for our meth-
ods to achieve an F-score of 1.0).

6.1 Initial Assumption and Experiments
We observe that in web user forum threads, if a post
replies to a preceding post, the two posts are usually
semantically related and lexically similar. Based on
this observation, we make the following assumption:

Assumption 1. A post should be similar to the pre-
ceding post it is linked to.

This assumption leads to our first unsupervised
model, which compares each post (except for the
first and second) in a given thread with all its pre-
ceding posts one by one, by firstly identifying the
lexical chains using the lexical chainers described in
Section 3 and then calculating the inter-post lexical
similarity using the methods explained in Section 5.
The experimental results are shown in Table 1.

From Table 1 we can see that no results surpass
the Heuristic baseline. Further investigation re-
veals that while Assumption 1 is reasonable, it is

Classifier Weighting Pµ Rµ Fµ
Heuristic — .810 .772 .791
ChainerRoget LCNum .755 .720 .737

LCLen .737 .703 .720
LCStr .802 .764 .783
LCBan .723 .689 .706

ChainerWN LCNum .685 .644 .660
LCLen .676 .651 .667
LCStr .718 .685 .701
LCBan .683 .651 .667

ChainerSV LCNum .648 .618 .632
LCLen .630 .601 .615
LCStr .627 .598 .612
LCBan .645 .615 .630

Table 1: Results from the Assumption 1 based unsu-
pervised approach, by using three lexical chaining algo-
rithms with four different weighting schemes.

not always correct —i.e. similar posts are not always
linked together. For example, an answer post later
in a thread might be linked back to the first question
post but be more similar to preceding answer posts,
to which it is not linked, simply because they are
all answers to the same question. The initial exper-
iments show that more careful analysis is needed to
use inter-post lexical similarity to reconstruct inter-
post linking.

6.2 Post 3 Analysis
Because Post 1 and Post 2 are always labelled with
link 0 and 1 respectively, our analysis starts from
Post 3 of each thread. Based on the analysis, the
second assumption is made:

Assumption 2. If the Post 3 vs. Post 1 lexical simi-
larity is larger than Post the 2 vs. Post 1 lexical sim-
ilarity, then Post 3 is more likely to be linked back to
Post 1.

Assumption 2 leads to an unsupervised approach
which combines the three lexical chaining algo-
rithms introduced in Section 3 with the four weight-
ing schemes explained in Section 5 to measure Post
3 vs. Post 1 similarity and Post 2 vs. Post 1 similar-
ity. If the former is larger, Post 3 is linked back to
Post 1, otherwise Post 3 is linked back to Post 2. As
for the other posts, the link labels are the same as the
ones from the Heuristic baseline. The experimen-
tal results are shown in Table 2.

From the results in Table 2 we can see that
ChainerSV is the only lexical chaining algorithm
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Classifier Weighting Pµ Rµ Fµ
Heuristic — .810 .772 .791
ChainerRoget LCNum .811 .773 .791

LCLen .811 .773 .791
LCStr .810 .772 .791
LCBan .813 .775 .794

ChainerWN LCNum .806 .768 .786
LCLen .806 .769 .787
LCStr .806 .769 .787
LCBan .809 .771 .789

ChainerSV LCNum .813 .775 .794
LCLen .813 .775 .794
LCStr .816 .778 .797
LCBan .818 .780 .799

Table 2: Results from the Assumption 2 based unsu-
pervised approach, by using three lexical chaining algo-
rithms with four different weighting schemes.

that leads to results which are better than the
Heuristic baseline. Analysis over the lexical
chains generated by the three lexical chainers shows
that both ChainerRoget and ChainerWN extract
very few chains, most of which contain only repe-
titions of a same word. This is probably because
these two lexical chainers only consider nouns,
and therefore have limited input tokens. Espe-
cially for ChainerRoget which uses an old dic-
tionary (1911 edition) that does not contain mod-
ern technical terms, such as Windows, OSX and
PC. While ChainerWN uses WordNet which has
a larger and more modern vocabulary, the chainer
considers very limited semantic relations (i.e. hy-
pernyms, hyponyms and hyponyms of hypernyms).
Moreover, the texts in forum posts are usually rela-
tively short and informal, and contain typos and non-
standard acronyms. These factors make it very dif-
ficult for ChainerRoget and ChainerWN to extract
lexical chains. As for ChainerSV , because all the
words (except for stop words) are considered as can-
didate words, and relations between words are flexi-
ble according to the thresholds (i.e. thresholda and
thresholdm), relatively abundant lexical chains are
generated. While some of the chains clearly capture
lexical cohesion among words, some of the chains
are hard to interpret. Nevertheless, the results from
ChainerSV are encouraging for the unsupervised
approach, and therefore further investigation is con-
ducted using only ChainerSV .

Because the experiments based on the Assump-

Classifier Weighting Pµ Rµ Fµ
Heuristic — .810 .772 .791
Heuristicuser — .839 .800 .819
ChainerSV LCNum .832 .793 .812

LCLen .832 .793 .812
LCStr .831 .793 .812
LCBan .836 .797 .816

Table 3: Results from the Assumption 3 based unsu-
pervised approach, by using ChainerSV with different
weighting schemes

tion 2 derive promising results, further analysis is
conducted to enforce this assumption. We notice
that the posts from the initiator of a thread are often
outliers compared to other posts — i.e. these posts
are similar to the first post because they are from the
same author, but at the same time an initiator rarely
replies to his/her own posts. This observation leads
to a stricter assumption:

Assumption 3. If Post 3 vs. Post 1 lexical similarity
is larger than Post 2 vs. Post 1 lexical similarity and
Post 3 is not posted by the initiator of the thread,
then Post 3 is more likely to be linked back to Post 1.

Based on Assumption 3, experiments are car-
ried out using ChainerSV with different weight-
ing schemes. We also introduce a stronger base-
line (Heuristicuser) based on Assumption 3, where
Post 3 is linked to Post 1 if these two posts are from
different users and all the other posts are linked as
Heuristic. The experimental results are shown in
Table 3.

From Table 3 we can see that while all the re-
sults from ChainerSV are significantly better than
the result from the Heuristic baseline, with the
LCBan weighting leading to the best Fµ of 0.816,
these results are not significantly different from the
Heuristicuser baseline. It is clear that the improve-
ments attribute to the user constraint introduced in
Assumption 3. This observation matches up with
the results of supervised classification from Wang et
al. (2011b), where the benefits brought by text sim-
ilarity based features (i.e. TitSim and PostSim) are
covered by more effective user information based
features (i.e. UserProf).
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Feature Weighting Pµ Rµ Fµ
Heuristic — .810 .772 .791
Heuristicuser — .839 .800 .819
NoLC — .898 .883 .891
WithLC LCNum .901 .886 .894

LCLen .902 .887 .894
LCStr .899 .884 .891
LCBan .905 .890 .897

Table 4: Supervised linking classification by applying
CRFSGD over features from Wang et al. (2011b) with-
out (NoLC) and with (WithLC) features extracted from
lexical chains, created by ChainerSV with different
weighting schemes

6.3 Lexical Chaining for Supervised Learning

It is interesting to see whether our unsupervised ap-
proach can contribute to the supervised methods by
providing additional features. To test this idea, we
add a lexical chaining based feature to the classifier
of Wang et al. (2011b) based on Assumption 3. The
feature value for each post is calculated using the
following formula:

feature =

{
sim(post3,post1)
sim(post2,post1) Post3

0 NonPost3

where sim is calculated using ChainerSV with dif-
ferent weighting methods.

The experimental results are shown in Table 4.
From the results we can see that, by adding the ad-
ditional feature extracted from lexical chains, the
results improve slightly. The feature from the
ChainerSV with LCBan weighting leads to the best
Fµ of 0.897. These improvements are statistically
insignificant, possibly because the information in-
troduced by the lexical chaining feature is already
captured by existing features. It is also possible that
better feature representations are needed for the lex-
ical chains.

These results are preliminary but nonetheless sug-
gest the potential of utilising lexical chaining in the
domain of web user forums.

6.4 Experiments over All the Posts

To date, all experiments have been based on just the
first three posts in a thread, where the majority of
our threads contain more than just three posts. We
carried out preliminary experiments over full thread

data, by generalising Assumption 3 to Post N for
N ≥ 3. However, no significant improvements were
achieved over an informed baseline with our unsu-
pervised approach. This is probably because the sit-
uation for later posts (after Post 3) is more compli-
cated, as more linking options are possible. Relax-
ing the assumptions entirely also led to disappoint-
ing results. What appears to be needed is a more
sophisticated set of constraints, to generalise the as-
sumptions made for Post 3 to all the posts. We leave
this for future work.

7 Conclusion

Web user forums are a valuable information source
for users to resolve specific information needs.
However, the complex structure of forum threads
poses a challenge for users trying to extract relevant
information. While the linking structure of forum
threads has the potential to improve information ac-
cess, these inter-post links are not always available.

In this research, we explore unsupervised ap-
proaches for thread linking structure recovery, by
automatically analysing the lexical cohesion be-
tween posts. Lexical cohesion between posts
is measured using lexical chaining, a technique
to extract lists of related word tokens from a
given discourse. Most lexical chaining algorithms
use domain-independent thesauri and only consider
nouns. In the domain of web user forums, where
the texts of posts can be very short and contain vari-
ous typos and special terms, these conventional lexi-
cal chaining algorithms often struggle to find proper
lexical chains. To address this problem, we proposed
the use of statistical associations between words,
which are captured by the WORDSPACE model,
to construct lexical chains. Our preliminary exper-
iments derive results which are better than an in-
formed baseline.

In future work, we want to explore methods which
can be used to recover all the inter-post links. First,
we plan to conduct more detailed analysis over inter-
post lexical cohesion, and its relationship with inter-
post links. Second, we want to investigate human
linking behaviour in web user forums, hoping to find
significant linking patterns. Furthermore, we want
to investigate more methods and resources for con-
structing lexical chains, e.g. Cramer et al. (2012).
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On top of exploring these potential approaches, it is
worth considering stronger baseline methods such as
using cosine similarity to measure inter-post similar-
ity.

The ChainerSV , as described in Section 4, is
built on a WORDSPACE model learnt over a sub-
set of four domains. It is also worth comparing with
a more general WORDSPACE model learnt over the
whole dataset.

As for supervised learning, it would be interest-
ing to conduct experiments out of domain (i.e. train
the model over threads from one forum, and clas-
sify threads from another forum), and compare with
the unsupervised approaches. We also hope to in-
vestigate more effective ways of extracting features
from the created lexical chains to improve super-
vised learning.
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Abstract

In this paper we introduce some of the key
NLP-related problems related to the practice
of Evidence Based Medicine and propose the
task of multi-document query-focused sum-
marisation as a key approach to solve these
problems. We have completed a corpus for the
development of such multi-document query-
focused summarisation task. The process to
build the corpus combined the use of auto-
mated extraction of text, manual annotation,
and crowdsourcing to find the reference IDs.
We perform a statistical analysis of the corpus
for the particular use of single-document sum-
marisation and show that there is still a lot of
room for improvement from the current base-
lines.

1 Introduction

An important form of medical practice is based
on Evidence Based Medicine (EBM). (Sackett et
al., 1996; Sackett et al., 2000). Within the EBM
paradigm, the physician is urged to consider the best
available evidence that is relevant to the patient at
point of care. However, the physician is currently
overwhelmed with the large volumes of published
text available. For example, the US National Library
of Medicine offers PubMed1, a database of medical
publications that comprises more than 19 million ab-
stracts. The median time spent to conduct a clinical
systematic review is 1,139 hours (Allen and Olkin,
1999). In contrast, the average time that a physician
spends searching for a topic is two minutes (Ely et

1http://www.ncbi.nlm.nih.gov/pubmed

al., 1999). In practice, the physician would typically
try to keep up to date by reading systematic reviews.
However, systematic reviews are generic studies that
may or may not be applicable to the particular case
that the physician is concerned with. When there
are no appropriate systematic reviews, the physician
will need to search over the research literature, find
the relevant information, and appraise it in terms of
quality of the results and applicability to the patient
(Sackett et al., 2000).

There is a range of NLP tasks that have been
attempted on this area, but so far not much work
has been done on multi-document query-based sum-
marisation. We argue that this task would greatly
help the physician but the lack of appropriate cor-
pora has hindered the development and testing of
such query-based summarisers for this domain. In
this paper we present such a corpus, show some
characteristics of the corpus, and advance some spe-
cific tasks that the corpus is suited for.

Section 2 introduces EBM and its connection with
tasks related to multi-document query-based sum-
marisation. Section 3 describes the corpus. Sec-
tion 4 details how the corpus was built. Section 5
gives an indication of the use of the corpus for the
specific task of single-document summarisation. Fi-
nally, Section 6 concludes the paper.

2 Evidence Based Medicine and
Summarisation

In this section we introduce EBM and present work
related to the use of NLP for EBM.

Diego Mollá and Maria Elena Santiago-Martinez. 2011. Development of a Corpus for Evidence Based Medicine
Summarisation. In Proceedings of Australasian Language Technology Association Workshop, pages 86−94



2.1 Evidence Based Medicine

There are two key components in EBM: clinical ex-
pertise and external clinical evidence (Sackett et al.,
1996). Clinical expertise is gained through clini-
cal experience and clinical practice, whereas exter-
nal clinical evidence needs to be obtained by con-
sulting external sources. Systematic reviews enable
physicians to quickly acquire the best evidence for a
selection of topics. Such reviews are written by do-
main experts and are found at libraries such as the
Cochrane Library2 and UpToDate3, to name two of
the better known ones. However, EBM guides are
quick to point out that there is not always a system-
atic review that addresses the specific topic at hand
(Sackett et al., 2000) and then a search on the pri-
mary literature becomes necessary.

Ely et al. (Ely et al., 2002) highlight the follow-
ing six obstacles for investigators and physicians to
search and find the evidence: (1) the excessive time
required to find information; (2) difficulty to mod-
ify the original question; (3) difficulty selecting an
optimal strategy to search for information; (4) fail-
ure of a seemingly appropriate resource to cover the
topic; (5) uncertainty about how to know when all
the relevant evidence has been found; and (6) inad-
equate synthesis of multiple bits of evidence into a
clinically useful statement. In this paper we will ad-
dress the specific NLP technologies that can be used
to overcome these obstacles, with special emphasis
on summarisation technology.

The standard recommendation within EBM is to
search the literature by determining specific infor-
mation according to the PICO mnemonic (Arm-
strong, 1999). PICO highlights four components
that reflect key aspects of patient care: primary
Problem or population, main Intervention, main in-
tervention Comparison, and Outcome of interven-
tion.

PICO helps determining what terms are important
in a query and therefore it helps building the query,
which is sent to the search repositories. Once the
documents are found, they need to be read by a per-
son who eliminates irrelevant documents.

The retrieved documents need then to be ap-
praised according to the strength of the evidence

2http://www.thecochranelibrary.com/
3http://www.uptodateonline.com/

of the information reported in them. A num-
ber of guidelines for appraisal have been estab-
lished. The Strength of Recommendation Taxon-
omy (SORT) (Ebell et al., 2004) is one of the better
known ones and it specifies a scale of three grades
based on the quality and type of evidence:

A Grade Consistent and good-quality patient-
oriented evidence.

B Grade Inconsistent or limited-quality patient-
oriented evidence.

C Grade Consensus, usual practice, opinion,
disease-oriented evidence, or case series for
studies of diagnosis, treatment, prevention, or
screening.

Patient-oriented evidence relates to the impact in
the patient (e.g. effect in mortality or in their qual-
ity of life), as opposed to disease-oriented evidence
(e.g. lowering of blood pressure or blood sugar).
Quality of evidence is assessed by the type of study
(diagnosis, treatment, prevention, prognosis) and
relevant variables for assessing the quality of evi-
dence are the size and randomisation of the subjects
and the consistency of the results.

As a final step, the physician still needs to lo-
cate the specific information presented in the doc-
uments. Current resources offer an array of presen-
tation methods ranging from a list of bibliographic
data (title, authors, publication details) sorted by
date in PubMed to the clustering of information ac-
cording to fields such as treatments, causes of con-
dition, complications of condition, and pros & cons
of treatment in HealthBase.4

2.2 Summarisation for Evidence Based
Medicine

An important amount of research has been carried
out on many aspects of medical support systems
(Demner-Fushman et al., 2009; Zweigenbaum et al.,
2007). In this section we present some of the NLP
research that is relevant to EBM, with special em-
phasis on tasks that are related to multi-document
query-based summarisation.

Much of the current work in NLP for EBM can
be categorised as aiming to retrieve the evidence.

4http://healthbase.netbase.com
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Recent studies aiming at increasing recall show that
both Boolean and ranked retrieval have their limi-
tations (Karimi et al., 2009). Using the Cochrane
systematic reviews and their queries as sample data,
Karimi et al. (Karimi et al., 2009) show that a
combination of Boolean and ranked retrieval meth-
ods outperforms each of them individually but re-
call is still under 80% and precision is as low as
2.7% (Karimi et al., 2009).

The evidence found needs to be ranked by order
of importance. A problem of PubMed is that the re-
sults are not presented in order of relevance or of
importance. It is telling that, for example, generic
search engines often find and present the correct in-
formation in a more prominent rank than specialised
search engines like PubMed do, though the source
of the information from where the answer is found
is often questionable (Berkowitz, 2002; Tutos and
Mollá, 2010). This has been addressed by PubFo-
cus, which incorporates ranking functionality based
on bibliometric data (Plikus et al., 2006).

Judging the quality of the evidence is one of the
principal steps in EBM practice, and we advance
that a good EBM summariser should provide in-
formation about the quality of the evidence sum-
marised. Berkowitz (2002) mentioned that Google
did “surprisingly well [in his study], but [it showed]
low validity overall.” If the information given is not
from a reliable source it is not usable. PubMed ab-
stracts contain meta-data information including the
study type (e.g. “meta-analysis”, “review”) that can
be used to filter the search results. This information
is used by published search strategies (e.g. (Shojania
and Bero, 2001; Haynes et al., 1994; Haynes et al.,
2005)). Current implementations incorporating ap-
praisal of the quality use information based on word
co-occurrences (Goetz and von der Lieth, 2005) and
bibliometrics (Plikus et al., 2006). More closely re-
lated to EBM are attempts to grade papers according
to SORT or similar taxonomies (Tang et al., 2009;
Sarker et al., 2011).

Question Answering (QA) technology is naturally
suitable for the task of finding the required informa-
tion, and in fact Zweigenbaum (2003) has argued for
the use of the resources available in the medical do-
main to implement QA systems. However, the ques-
tions addressed by current QA technology seek sim-
ple answers. Whereas QA technology has tradition-

ally focused on seeking names, lists, and definitions,
EBM seeks more complex information that includes
the type and quality of evidence.

Some QA systems for clinical answers are
based on the PICO information. Those question-
answering systems presume a preliminary process-
ing stage that clearly identifies each component of
PICO so that it can be processed by the computer,
such as EPoCare’s QA system (Niu et al., 2003) and
CQA-1.0 (Demner-Fushman and Lin, 2007). Both
EPoCare and CQA-1.0 follow specialised strategies
to identify information addressing each field of the
PICO query.

Some QA systems focus on specific kinds of
questions. MedQA5 (Yu et al., 2007) focuses on def-
initional questions. It accepts unstructured questions
and integrates technology including question anal-
ysis, information retrieval, answer extraction and
summarisation techniques (Lee et al., 2006). The
work by Leonhard (2009), in contrast, focuses on
comparison questions.

It has been shown that physicians want help to lo-
cate the information quickly by using lists, tables,
bolded subheadings and by avoiding lengthy, unin-
terrupted prose (Ely et al., 2005). One of the find-
ings by Ely et al. (2002) is the difficulty to syn-
thesise the multiple bits of evidence into a clini-
cally useful statement, which is the task of sum-
marisation technology. The survey by Afantenos
et al. (2005) presents various approaches to sum-
marisation, including multi-document summarisa-
tion, from medical documents. Of particular interest
are the context-based multi-document summarisa-
tion approaches such as CENTRIFUSER (Elhadad
et al., 2005), which builds structured representations
of the documents as source for the summaries.

SemRep (Fiszman et al., 2004) provides abstrac-
tive summarisation of biomedical research literature
by producing a semantic representation based on the
UMLS concepts and their relations as found in the
text. The semantic representation is a set of predica-
tions (concept)-relation-(concept) that is presented
graphically to the user.

Clustering methods can also help present the in-
formation. The Trip database,6 for example, clus-

5This system is integrated in AskHERMES,
http://www.askhermes.org/

6http://www.tripdatabase.com/
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ters the search results by publication type and in-
corporates a sliding control to filter out publication
types associated with lesser quality. The system by
Demner-Fushman and Lin (2006) clusters the re-
sults by the intervention component of PICO. Us-
ing UMLS as a resource, interventions mentioned in
the text are grouped into common categories and the
clusters are presented labelled with the intervention
type. The resulting system outperformed PubMed in
their evaluations.

All of the techniques mentioned above are related
to summarisation technology in one or another form,
or are actual summarisation systems. By working
on query-based multi-document summarisation for
EBM we are contributing to some of the above re-
search areas, and we are aiming at helping the physi-
cian practice EBM efficiently.

3 Source and Structure of the Corpus

Mollá (2010) argues that there is no corpus avail-
able for the development and testing of summarisa-
tion techniques in the EBM domain. We are pro-
viding such a corpus. The corpus is sourced from
the Journal of Family Practice (JFP)7 and uses the
“Clinical Inquiries” section. A key advantage of us-
ing the “Clinical Inquiries” section of JFP instead
of full systematic reviews such as the Cochrane Re-
views8 is that the text in each inquiry is much more
compact but it still has the links to the references in
case the physician needs more information. In other
words, the text looks very much like what a sum-
mariser should deliver.

For each question, the corpus contains the follow-
ing information:

1. The URL of the clinical inquiry from which the
information has been sourced.

2. The question, e.g. What is the most effective
treatment for tinea pedis athlete’s foot?

3. The evidence-based answer. The answer may
contain several parts, since a question may be
answered according to distinct pieces of evi-
dence. For each part, the corpus includes a
short description of the answer, the Strength of

7http://jfponline.com/
8http://www.cochrane.org/cochrane-reviews

Recommendation (SOR) grade of the evidence
related to the answer, and a short description
that explains the reasoning behind allocating
such a SOR grade.

4. The answer justifications. For each of the parts
of the evidence-based answer there is one or
more justifications describing the actual find-
ings reported in the research papers supporting
the answer.

5. The references. Each answer justification in-
cludes one or more references to the source
research paper. Each reference includes the
PubMed ID and the full abstract information as
encoded in PubMed, if available.

4 Creation of the Corpus

The conversion of the corpus from the original text
in JFP to the machine-processable form followed
several steps involving automatic extraction and
conversion of text, manual annotation, and crowd-
sourcing annotation.

4.1 Extracting Questions and Answers

The process to extract the questions and answers
was relatively straightforward. We obtained permis-
sion from the publishers to download all the freely
available clinical inquiries. All of the inquiries were
downloaded in their original HTML format, and a
Python script was used to take advantage of the
relatively uniform format that marks up the ques-
tions and answers in the source. We found that the
markup had changed several times (the documents
date from 2001 to 2010), so we had to accommodate
all changes of format. The resulting information was
stored in a local database.

The question corresponds with the title of the clin-
ical inquiry, which is formulated as a question.

The answer parts are clearly marked in the origi-
nal text. Each part (called “snip” in the corpus) con-
tains the text, SOR grade, and criteria for the SOR
grade.

4.2 Annotating Answer Justifications

The answer justifications were detected automati-
cally. However, the source text did not match each
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Figure 1: Screen shots of the annotation tool

justification to the specific answer snip. We there-
fore had to do the matching manually.

We created a web-based annotation tool that dis-
plays the question and each of the answer parts.
Each answer part has associated empty slots where
the annotator could copy and paste the answer justi-
fication. Figure 1 shows screen-shots of the annota-
tion tool.

The total number of pages to annotate was dis-
tributed among three annotators. The annotators
were members of the research team. A small per-
centage of the pages was annotated by all annotators
(the annotators did not know beforehand which of
the pages were annotated by all), to check for in-
consistencies. The annotation process was done in
several stages, with periodic checks on the common
pages to detect and solve systematic inconsistencies
in the annotation criteria. During those checks the
annotators agreed on a set of criteria, an extract of
which is:

1. Remove phrases connecting to text outside the
answer justification and modify anaphora to
make the text self-contained. For example,
change In another study to In a study or The
second study to A study.

2. Remove all general, introductory text.

3. If a justification has several references, split

it into separate justifications whenever possi-
ble. In the process, some of the text may need
to be copied so that each justification is self-
contained.

4. If a paragraph does not have any references,
check if it can be added to the previous or the
next paragraph.

These criteria mostly addressed the need for each
answer justification to be self-contained, and to
match an answer justification to one reference only
whenever possible. After inspection of a random
sample of the common pages, the annotators agreed
that the variations in the annotations are acceptable.

4.3 Crowdsourcing for Extracting Reference
Information

Text formatting in the source text allowed the easy
detection of references. To improve the usefulness
of these references, we added the PubMed ID of
those references found in PubMed.

We first tried to identify the PubMed ID automat-
ically by searching on PubMed using information
extracted from the reference text. The text was pre-
processed by removing all the information about au-
thors and pagination. We noted that if the authors
or pagination items are present in the reference, they
rarely appear in any other positions than first and last
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respectively. We also noted that authors and pagi-
nation are easy to find and ignore: authors contain
initials and capital case surnames; while pagination
always contains numbers and punctuation such as
semi-colon, colon or hyphen.

Publication names such as the names of journals
and books were more difficult to detect and to nor-
malise. We decided, instead of trying to detect them,
to run a list of searches containing all combinations
of remaining sentences. For example, if after remov-
ing author and pagination information there are three
sentences S1, S2, S3, the following searches were
made: S1-S2-S3, S1-S2, S1-S3, S2-S3, S1, S2,
S3. These individual searches were sent to PubMed
via its “Entrez Utilities” interface. The ID of the
search whose returned title had the largest substring
overlap with the original string was selected. As
a last resort, if no searches returned an ID, a final
search was made with the complete reference text.

Manual inspection of a small random sample re-
vealed, however, that this method often did not find
the correct ID. We therefore created a crowdsourc-
ing task using Amazon Mechanical Turk.

An initial pilot experiment was made with 30 ref-
erences grouped in sets (“hits”) of 10 references.
Each hit was allocated to three Turkers. The Turk-
ers were asked to check the ID using PubMed, and
correct it if necessary. If no ID was available, the
Turkers were asked to enter “nf”. We later checked
the Turkers’ annotations by searching PubMed using
the provided IDs and found an error rate of 18% (17
out of the total of 90 were incorrect). We examined
the errors and concluded that:

1. Most workers got straight to work without
reading the instructions provided. For exam-
ple, they typically used the ID code “0” instead
of “nf” when they could not find an ID.

2. We needed an automatic (or semi-automatic)
way of judging whether the workers were
cheating: manual checks were too time con-
suming.

3. There should be a threshold for approval of
work. We decided to set the threshold to 2/10
wrong annotations per page to reject cheaters.

With these findings we performed the final Me-
chanical Turk task. Each hit had 10 references and

was sent to five Turkers. The Turkers were asked to
read the instructions and were asked to do an auto-
mated test with three references. After they passed
the test they were given a passcode that was required
to submit the work. Each hit included two “trick”
questions with known answers. The following auto-
mated tests were done on each hit:

1. Did the user answer the known references cor-
rectly?

2. Is the ID valid? A script sent each ID to
PubMed and checked whether it existed.

3. Is the ID correct? The automated test checked
whether the percentage of matching between
the reference title and the title returned by ID
was beyond a threshold of 50%.

4. Did the Turker agree with the majority? Ma-
jority was 3 or more Turkers. This test was
cancelled if the ID of majority was wrong or
invalid (as determined by the other tests), or in
the specific case that three Turkers agreed on
one ID and two Turkers agreed on another ID
(we just thought that this was too a close call).

The output of the automated test was visually in-
spected, and those Turker jobs with two or more
errors were rejected. This was done by scrolling
through the errors reported by the automatic tests,
finding the disputed PubMed ids, manually checking
the PubMed database to decide which one is “cor-
rect” and which one is “wrong” and then changing
the tags if necessary.

The final accuracy of the annotation task was
manually checked on a random sample of 100 ref-
erences and double-checking them. No errors were
detected.

Finally, once all IDs were found, the abstracts
were automatically downloaded from PubMed and
added to the corpus. We chose to download the
XML format, which contains useful metadata that
markups the bibliography details, the abstract text,
and additional annotations such as classification tags
and MeSH terms.

5 Utility of the Corpus

The final statistics of the corpus are: 456 questions
(called “record” in the corpus), 1,396 answer parts
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(called “snip”), 3,036 answer justifications (called
“long”), and 2,908 references. There is an average
of 3.06 answer parts per question, 2.17 answer jus-
tifications per answer part, and 1.22 references per
answer justification. There is an average of 6.57 ref-
erences per question.

The distribution of SOR grades is: 345 for A, 535
for B, 330 for C, 15 for D,9 and 171 without grade.

We envisage the use of this corpus for the follow-
ing tasks:

Evidence-based summarisation. This is the main
use of the corpus. It can be used to develop and
test single-document summarisation by using
the questions and original abstracts as the input
source, and the answer justifications as the tar-
get summaries. Alternatively, it can be used to
develop and test multiple-document summari-
sation by using the answer parts as the target
summaries. Parts of the corpus have already
been used for this purpose (Mollá, 2010).

Appraisal. The SOR grades can be used to test the
ability to appraise the quality of the system.
Appraisal can be done in the ranking compo-
nent of a retrieval system, or as a separate clas-
sification task. Parts of the corpus have already
been used for this purpose (Sarker et al., 2011).

Clustering. Given the natural grouping of refer-
ences to form parts of the answer, the corpus
can be used to develop query-focused cluster-
ing of the retrieved references.

Retrieval. The corpus references can be used as the
target results of an information retrieval sys-
tem. The usefulness of this corpus for assess-
ing retrieval, however, is likely to be limited,
given the findings by Dickersin et al. (1994)
that between 20% and 30% of relevant litera-
ture present in MEDLINE is not present in sys-
tematic reviews.

In the remainder of this section we focus on the
task of query-focused single-document summarisa-
tion, where the task is to summarise the abstract of a
paper within the context of the question. The target

9SORT has only grades A, B, and C, but apparently some
authors used one more level D to indicate very poor evidence.

summary is the answer justification, and the evalua-
tion metric is ROUGE-L with stemming (Lin, 2004),
a very popular metric used in the evaluation of sum-
marisation systems.

For every answer justification/reference pair, we
extracted all combinations of three sentences from
the abstract and computed their ROUGE-L scores
against their answer justification. With this informa-
tion we computed the ROUGE-L boundary points
of the document deciles. For example, the bound-
ary points of the first decile of a document indicate
the minimum and maximum values of the 10% pro-
portion of combinations of 3-sentences with lowest
ROUGE-L scores. Then we aggregated the decile
boundaries of all documents to create the set of doc-
ument decile boundaries according to the formula

Boundary[i] = {boundary[i](x)|x ∈ D}

where boundary[0](x) is the minimum ROUGE-
L score of the first decile of document x,
boundary[1](x) is the maximum ROUGE-L score
of the first decile of document x, and so on. The
resulting boxplot is shown in Figure 2. The means
and standard deviations are listed in Table 1. This
information shows that, in order to perform better
than simple random choice of sentences, we need to
obtain a ROUGE-L score of at least 0.188. For ref-
erence, a simple baseline that returns the last three
sentences obtains a ROUGE-L score of 0.193, and
the best system configuration that uses information
of the abstract structure of those described by Mollá
(2010)10 achieves a ROUGE-L score of 0.196 when
applied to our corpus. We can see that these base-
lines are in the range between 50% and 60% per-
centiles.

6 Conclusions

We have presented a corpus for the development of
research in NLP in medical texts. The corpus was
sourced from the Clinical Inquiries section of the
Journal of Family Practice, and the process involved
a set of manual and automatic methods for the ex-
traction and annotation of information. We also de-
scribe a process of crowdsourcing that was used to
find the PubMed IDs of the references.

10This is the system configuration that uses abstract structure
but does not use question information.
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Boundary 0 1 2 3 4 5 6 7 8 9 10

Mean 0.094 0.136 0.153 0.164 0.176 0.188 0.200 0.213 0.229 0.249 0.299
Std Dev 0.060 0.062 0.065 0.067 0.070 0.073 0.076 0.081 0.087 0.094 0.112

Table 1: Statistics of the decile boundaries of ROUGE-L data

Figure 2: ROUGE-L boxplots for all decile boundaries

The emphasis of this corpus is the development
and testing of query-focused multi-document sum-
marisation systems for Evidence Based Medicine,
but we envisage its use in other tasks such as text
classification, and clustering.

We have shown a set of statistics of the ROUGE-
L scores of the abstracts within the context of doc-
ument summarisation. The data show that current
baselines do not perform much better than simple
random choice and there is still much room for im-
provement. The challenge is up for researchers to
take.

Further work includes the use of this corpus for
some of the tasks described above. We are also
studying the possibility of including additional an-
notation of the specific abstract sentences that are
found to be most relevant to the answer justifica-
tions. This information could be used to perform
pyramidal-style evaluation such as the one described
by Dang and Lin (2007).
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Abstract

In a collocation, the choice of one lexical item
depends on the choice made for another. This
poses a problem for simple approaches to lex-
icalisation in natural language generation sys-
tems. In the Meaning-Text framework, recur-
rent patterns of collocations have been char-
acterised by lexical functions, which offer an
elegant way of describing these relationships.
Previous work has shown that using lexical
functions in the context of multilingual natural
language generation allows for a more efficient
development of linguistic resources. We pro-
pose a way to encode lexical functions in the
Lexical Functional Grammar framework.

1 Introduction

Natural Language Generation (NLG) is the gener-
ation of natural language text from some underly-
ing representation: numerical data, knowledge bases,
predicate logic, and so on. Multilingual Natural
Language Generation (MNLG) is NLG where the
output is in more than one language. Most NLG
systems are in some way modular (see Reiter and
Dale (2000) for a discussion of typical architectures);
one advantage to modularity is the scope for sepa-
rating language-independent components from those
which are language-dependent, making it possible to
add multilinguality with much less work than would
be involved in building a new system from scratch
(Bateman et al., 1999). Such claims have been made
since the very first MNLG systems; the FoG system
generating weather forecasts in English and French
(Bourbeau et al., 1990) is a case in point.

Consequently, MNLG has been applied for a large
number of text types: government statistics reports
(Iordanskaja et al., 1992), technical instruction man-
uals (Paris et al., 1995), fairy tales (Callaway and
Lester, 2002), museum tours (Callaway et al., 2005),
medical terminology (Rassinoux et al., 2007), codes
of practice (Evans et al., 2008), and so on.

Marcu et al. (2000), in reviewing some of the ear-
lier work, comment that MNLG systems need to ab-
stract as much as possible away from the individual
language generated:

If an [MNLG] system needs to develop
language dependent knowledge bases, and
language dependent algorithms for con-
tent selection, text planning, and sentence
planning, it is difficult to justify its eco-
nomic viability. However, if most of
these components are language indepen-
dent and/or much of the code can be re-
used, an [MNLG] system becomes a viable
option.

Bateman et al. (1999) similarly emphasise the impor-
tance of reducing language dependence.

One kind of abstraction generalises across
language-specific collocations: for example, we
might note that heavy rain, strong wind or intense
bombardment all refer to the intensification of some
phenomenon, as similarly does the French pluie bat-
tante (‘beating rain’), but the particular intensifier
used is determined by collocational appropriateness.
These kinds of collocations are modeled within the
Meaning-Text Theory (MTT) framework via lexical
functions (LFs) (Mel’čuk, 1995); for some lexeme
L, the above semantic notion of intensification or
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strength is represented by Magn(L). MTT-based
MNLG systems, from the early works of Heid and
Raab (1989) and Iordanskaja et al. (1992) onwards,
have used LFs to abstract away from the specific
collocational phenomena of individual languages.

In terms of resources developed and applications
within the computational linguistics community, how-
ever, MTT has not been very prominent outside of
NLG. In work that is more geared towards natural
language understanding, other formalisms such as
Lexical Functional Grammar (LFG) (Bresnan, 2001),
Head-driven Phrase Structure Grammar (HPSG) (Pol-
lard and Sag, 1994), Tree Adjoining Grammar (TAG)
(Joshi and Schabes, 1997) and Combinatory Catego-
rial Grammar (CCG) (Steedman, 2000) have received
much more attention. Of course, all of these frame-
works have also been applied in NLG. LFG, for
example, has a sophisticated grammar development
environment called Xerox Linguistic Environment
(XLE) (Maxwell and Kaplan, 1993) for both parsing
and generation, with wide-coverage grammars for a
number of languages such as English and German
(Butt et al., 2002), and advanced statistical models
for tasks such as realisation ranking (Cahill et al.,
2007).

The existence of a wide-coverage English LFG
grammar for XLE convinced us to build our resources
on this platform for the MNLG project described be-
low. However, LFG comes from a tradition quite
different from MTT, and has no concept that cor-
responds to MTT’s LFs. In this paper, we demon-
strate that LFs cannot be straightforwardly introduced
into the LFG formalism via direct manipulation of
f-structures, and then show how glue semantics (Dal-
rymple, 2001) can incorporate them in an elegant
way.

We first describe our MNLG system to provide a
contextual background for the problem (§2), along
with some basic notions on LFG (§3). We then de-
scribe LFs in more detail, and discuss how they have
been used in other MNLG systems (§4), along with
how they would fit into our system. We then return
to LFG and glue semantics (§5), and present our
proposal for incorporating LFs into LFG, using a
running example (§6).

2 Our System

The context for this work is a project involving
an MNLG system for generating commentary-style
textual descriptions of Australian Football League
(AFL) games, in both English and the Australian
Aboriginal language Arrernte. A typical sentence
in a human-authored commentary for a game might
look as follows:

Led by Brownlow medallist Adam Goodes
and veteran Jude Bolton, the Swans kicked
seven goals from 16 entries inside their
forward 50 to open a 30-point advantage at
the final change—to that point the largest
lead of the match.

For the games we want to describe, there is a cor-
responding database which contains quantitative
and other data regarding the game: who scored
which goal when, from where, and so on. The
system will use handwritten grammars in the LFG
formalism—for English, there is an already-existing
wide-coverage one developed for XLE as part of
the ParGram project (Butt et al., 2002)—and the re-
search around the grammar development will have
a number of foci. In particular, we are interested in
exploring how to handle morphologically rich non-
configurational languages such as Arrernte, which
are not usually tackled in the field of language tech-
nology; these exhibit a number of interesting and
complicated phenomena, as outlined by, for example,
Austin and Bresnan (1996) or Nordlinger and Bres-
nan (2011). Given the radical language differences
between such languages and those which are more
typically the focus of NLG projects, we are particu-
larly interested in investigating the possible extent of
language independence (see §4 for a discussion). LFs
are an important facet of the semantic abstractions
we require. For example, in the short text cited above,
the expression kick a goal would be rendered in Ar-
rernte as goal arrerneme, where arrerneme literally
means ‘put’. We view kick and arrerneme as sup-
port verbs in these expressions.1 These collocations
exhibit the same syntactic structure, and express the
same meaning; they are instances of the same pattern

1Note that in AFL one can only score goals by kicking the
ball, so in this context, the semantic contribution of kick is weak;
we believe that for practical purposes it can be viewed as empty.
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Figure 1: System architecture

of collocation, which is described in MTT by the LF
Oper1(L). We will return to this example in §4.

Our system more or less follows the “consensus
architecture” of Reiter and Dale (2000), as schema-
tised in Figure 1. Data is selected using domain-
specific knowledge and statistical methods, to pro-
duce a collection of facts to be expressed. These facts
are organised into a document plan, which is then
passed to a deep realiser that produces one or more
f-structures for each sentence of the text (cf. §3). This
is then passed to XLE, which uses linguistic knowl-
edge to produce ordered lexical items with attached
morphemes. This is finally passed to a two-level mor-
phology model compiled with the Xerox Finite-State
Tool (XFST) system, which produces fully inflected
text. The double-headed arrows in Figure 1 indicate
non-deterministic output; a stochastic reranking tech-
nique is used to select between alternative results.

The module which is the focus of the present dis-
cussion is the deep realiser, which maps a semantic
representation to one or more f-structures, for which
in turn XLE will produce textual realisations. It is not
our purpose in this paper to discuss the technical de-
tails of the implementation of this component; rather,
we focus on the mapping between semantic represen-
tations and f-structures from a theoretical point of
view. To explain the approach, and to motivate the
need for glue semantics, we now present an outline
of LFG.

3 Lexical Functional Grammar

LFG is a formalism for a non-derivational theory
of linguistic structure that posits at least two lev-
els of representation: c(onstituent)-structure and

f(unctional)-structure.2 Mappings specify the rela-
tionship between the different levels of structure. C-
structure is represented by phrase-structure trees, cap-
turing hierarchical relationships between constituents
and surface phenomena such as word order; while
f-structure is represented by attribute–value matri-
ces, describing more abstract functional relationships
such as subject and object (indeed, syntactic depen-
dencies). LFG assumes that these functional syntac-
tic concepts are universally relevant across languages
(Dalrymple, 2001, p. 3), and “so may be regarded as a
major explanatory source of the relative invariance of
f-structures across languages” (Bresnan, 2001, p 98).
As an illustration, the c- and f-structures for the sen-
tence (1) below are given in Figure 2.

(1) Bradshaw kicked a beautiful goal.

The mapping between f- and c-structures is given by
annotations on phrase structure and lexical rules as
in (2) and (3) below.

(2) S → NP
(↑SUBJ)=↓

VPall
↑=↓

(3) kicked V (↑PRED)=‘kick〈(↑SUBJ),(↑OBJ)〉’
(↑TENSE)=past

Lexical entries such as (3) are in fact only a differ-
ent notation used for terminal nodes in c-structures;
this could be written instead as in (4).

(4) V → kicked
(↑PRED)=‘kick〈(↑SUBJ),(↑OBJ)〉’

(↑TENSE)=past

2See Dalrymple (2001) or Bresnan (2001) for extensive dis-
cussions of LFG; here, we provide only the basic essentials
required to understand our treatment.
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Figure 2: c-structure (left) and f-structure (right) for Bradshaw kicked a beautiful goal

The symbol ↑ is a metavariable representing the f-
structure of the parent of a node in the c-structure,
and ↓ the f-structure of that node itself. These can
be followed by a sequence of attributes that specify
a path to an element in the f-structure. For example,
in rule (2), the annotation on the NP means that the
SUBJ of the f-structure corresponding to the node
above it in the c-structure (S) is the f-structure cor-
responding to this NP (in plain English: this NP is
the subject of the sentence). The annotation on the
VPall node means that it shares the same f-structure
as its mother (i.e., it is the head of S). In the lexical
rule for kicked (3), the annotation (↑OBJ) inside the
PRED attribute refers to the f-structure numbered 2
in Figure 2, which represents goal. A less common
way of referring to elements of an f-structure, albeit
one that is necessary in a number of cases, is “inside-
out” function application, where the ↑ or ↓ follows
an attribute sequence. An annotation such as (OBJ↑)
refers to the f-structure of which the current one is
the OBJ.

First-order predicate logic is often used as the fun-
damental meaning representation in LFG, although
other more expressive representations are also pos-
sible, such as intensional logic or Discourse Repre-
sentation Theory. The issue then is how to relate
the core LFG structures above to this meaning repre-
sentation. Dalrymple (2001, p. 217) notes that early
work in LFG took the f-structure element PRED to
represent the locus of the semantics, with the PRED

in fact originally being referred to as the semantic
form. If our meaning representation for (1) were as in
(5a) (ignoring here tense and number), the mapping
to the f-structure in the right of Figure 2 would be



PRED ‘SV 〈 1:Bradshaw, 2:goal 〉’
TENSE past

OBJ

2



PRED ‘goal’
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[
DET

[
PRED ‘a’

]]
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{[
PRED Good

]}
PERS 3
NUM sg



SUBJ

1

PRED ‘Bradshaw’
PERS 3
NUM sg




Figure 3: ‘Quasi-’f-structure with variables

straightforward: the basic hierarchical structure of
the f-structure is preserved, although predicativity is
reversed in the case of the adjunct.

(5) a. kick(bradshaw, beautiful(goal))

b. good(goal(bradshaw))

However, simple semantic forms like this cannot
represent many aspects of semantics, such as scope
of modifiers or quantification. More particularly for
our purposes, if we start from a semantic represen-
tation that abstracts away from the collocationally
determined use of beautiful to characterise the goal,
or from the collocational use of kick to refer to the
goal event,3 a suitable starting meaning representa-
tion might be as in (5b); what the mapping should
look like is then much less clear.

A (quasi-)f-structure corresponding to this might
be as in Figure 3. The top-level PRED could be a
variable (SV) that would have to be instantiated to

3We might think of this as the action of “goaling”; another
possible supporting verb would then be score.
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a collocationally appropriate support verb; alterna-
tively, for some types of action, it could indicate that
both the top-level PRED and its object could be re-
alised as a single verb through some kind of structure
merging.4 The adjunct PRED could similarly be a
variable (Good) whose value is a word that retains
the desired semantics but is collocationally deter-
mined. However, it is not possible for f-structures to
have variable predicates, or to be of indeterminate
structure, because of their role in ensuring the LFG
wellformedness conditions of Coherence and Com-
pleteness; in addition, the mapping between meaning
representation and f-structure is less straightforward,
with quite different hierarchical relations.

In §6, we show how the mapping of such abstract
meaning representations to f-structures can be done
in an elegant way using glue semantics. First, we
present more formally the MTT notion of LFs that
these quasi-f-structure “variables” of Figure 3 are
trying to capture, and we then give a brief description
of glue semantics.

4 Lexical Functions and MNLG

An important step in the NLG task of surface reali-
sation is lexicalisation, where specific lexemes are
chosen to express the content of a message. Most
of the time, this can be achieved by mapping either
concepts or language-specific meanings to lexemes
in a straightforward way. For example, the concept
RAIN can be mapped to the lexemes rain (English),
pluie (French), lluvia (Spanish), and so on. Often,
however, concepts are lexicalised in a different way
depending on the lexemes they appear with, as with
our example from §3 above. Consider for exam-
ple the phrases strong preference, intense flavour,
heavy rain and great risk. While the lexemes pref-
erence, flavour, rain and risk are chosen freely ac-
cording to their meaning, the lexemes strong, intense,
heavy and great are not. They have roughly the same
meaning of intensification, but their choice is tied
to the lexeme they modify. Such collocations pose
a non-trivial problem for lexicalisation in NLG sys-
tems. Under the MTT framework these are modeled

4This kind of structure merging has not, to our knowledge,
been implemented in LFG. In practice, it could be carried out by
mapping from one f-structure to another, using the sort of mech-
anism found in XLE for use in machine translation. However, it
would inelegantly add an unprincipled layer to the formalism.

ATTENTION [of X to Y ]

Magn close/whole/complete/undivided ∼
Func2 X’s ∼ is on Y
nonFunc0 X’s ∼ wanders
Oper12 X gives his/pays ∼ to Y
Oper2 Y attracts/receives/enjoys X’s ∼
Oper2+Magnquant-X Y is the center of ∼ (of many Xs)
IncepOper12 X turns his ∼ to Y
IncepOper2 Y gets X’s ∼
ContOper2 Y holds/keeps X’s ∼
CausFunc2 Z draws/calls/brings X’s ∼ to Y
LiquFunc2 Z diverts/distracts/draws X’s ∼

from Y

Figure 4: Dictionary entry for attention

via LFs. Collocations are viewed as instances of
recurrent patterns of semantico-syntactic mappings,
described in terms of functions (in a mathematical
sense) between lexemes. Hence, these four collo-
cations can be described in terms of a function f
such that f (preference)=strong, f (flavour)=intense,
etc. Over the years, more than fifty basic recur-
rent functions of this type, and hundreds of com-
plex ones, have been identified across languages and
given names; the one discussed above has been called
Magn. Detailed descriptions of these functions can
be found elsewhere (Mel’čuk, 1995; Wanner, 1996;
Kahane and Polguère, 2001; Apresjan et al., 2002).

The use of LFs allows the handling of lexicalisa-
tion in two steps. In the first step, unbound lexemes
are chosen, and collocation patterns identified, while
the actual value of the LF is only computed in the
second step: INTENSE+RAIN → Magn(rain)+rain
→ heavy+rain.

The values for these functions are stored in the
dictionary; for example, the entry for attention must
contain the information in Figure 4. We will not
discuss each of these functions here; the key point
is that LFs offer a very efficient way of describing a
wide range of collocations.

Each pattern must be defined in the grammar, but
this is done only once for all languages and domains.
We discuss in §6 how this can be done in LFG. The
fact that the patterns must be defined only once for all
languages makes this technique a cost-efficient way
of developing MNLG resources by sharing parts of
the grammar across languages, as advocated notably
by Bateman et al. (1991), Bateman et al. (1999) and

99



Cahill et al. (2000). This was the approach taken
by Lareau and Wanner (2007) for the system MAR-
QUIS, which generated air quality reports in eight Eu-
ropean languages (Catalan, English, Finnish, French,
German, Polish, Portuguese and Spanish). Their use
of LFs was an important factor that contributed to the
low number of language-specific rules they reported
for the deeper modules of their grammars, making
the addition of new languages in their framework
relatively cheap. It is LFs such as these that we wish
to incorporate into LFG.

5 Glue Semantics

In the context of LFG, there have been several ap-
proaches to developing a compositional notion of
semantics derived from the f-structure; one that is
well developed, and is the basis of our work, is glue
semantics (Dalrymple, 2001; Andrews, 2010). We
give only a brief summary here; for a full treatment,
see Dalrymple (2001).5

Glue semantics is based on linear logic. This dif-
fers from classical logic in its resource-sensitivity,
in that premises are treated as resources that can be
kept track of. For example, consider the statements
If you have $1, you can get an apple and You have
$1. In classical logic, you can deduce that you can
get an apple, but the original premises would still
be true, i.e. you would still have $1, and you could
still get an apple. In linear logic, these premises
are resources that will be consumed in the process
of deduction, and therefore not available for further
proof;6 notationally, the implication above in linear
logic is written $1 ( apple.

This resource-sensitivity is particularly appropriate
when we are concerned with the linguistic expression
of semantic content: the contribution of each word
and phrase to the meaning of a sentence is unique,
and there should be no missing or redundant words
in terms of the meaning to be expressed.

We illustrate how this works by showing the more
straightforward mapping between our example sen-
tence (1) and its literal meaning representation (5a).
The lexical item representing Bradshaw is given be-
low in (6). The first line contains the wordform,

5It should be noted that the current version of XLE cannot
directly handle glue semantics.

6Somewhat counterintuitively, even the premise If you have
$1, you can get an apple is consumed.

its part of speech, and an annotation asserting that
the f-structure corresponding to the N node imme-
diately dominating the lexical item has an attribute
PRED whose value is the semantic form ‘Bradshaw’.
The second line (Bradshaw : ↑σ) contains what is
termed the meaning constructor, as it gives instruc-
tions on how to construct meanings. These are pairs:
the lefthand (meaning) side represents the meaning,
and the righthand (glue) side represents a logical for-
mula over semantic structures corresponding to those
meanings.

(6) Bradshaw N (↑PRED)=‘Bradshaw’
Bradshaw : ↑σ

The present example is trivial: it should be read as
the semantic projection of the mother node is the
meaning Bradshaw. A σ subscript indicates the se-
mantic projection of a node, so the notation ↑σ gives
the corresponding element of the semantics via the
projection of the mother node to the semantics. The
element goal is similar:

(7) goal N (↑PRED)=‘goal’
goal : ↑σ

The verb kick is transitive, so it will have the fol-
lowing form.

(8) kicked V (↑PRED)=‘kick〈(↑SUBJ),(↑OBJ)〉’
(↑TENSE)=past
λX.λY.kick(X,Y ) :

(↑SUBJ)σ ( [(↑OBJ)σ ( ↑σ]

In the meaning constructor, the semantics of the ac-
tion of kicking is represented by a lambda term, on
the left; the righthand glue side is given in terms
of the linear logic implication operator (. The
first implication says that if (↑SUBJ)σ is available
(i.e., if we have already built the semantic projection
for the verb’s subject—in our example, Bradshaw),
it will be consumed and will saturate the first vari-
able of the lambda expression, to produce the new
premise that follows the first ( symbol, leaving us
with λY .kick(Bradshaw,Y ) : (↑OBJ)σ ( ↑σ. This
in turn consumes the semantic projection for the ob-
ject (in our case, goal) to reduce the lambda term,
and produces the semantic resource ↑σ, i.e., the se-
mantic projection for the verb and its complements,
kick(Bradshaw,goal).
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For the remaining two elements, we would have
the following.

(9) beautiful A (↑PRED)=‘beautiful’
λX.beautiful(X) :

(ADJ ∈ ↑)σ ( (ADJ ∈ ↑)σ

(10) a D (↑PRED)=‘a’
λX.X : (DET ↑)σ ( (DET ↑)σ

For beautiful in (9), the notation (ADJ ∈ ↑)σ differs
in two ways from that introduced earlier. First, it
uses an “inside-out” function to refer to the semantic
structure of the phrase it modifies; and second, it uses
set membership notation, as modifiers are typically
represented by sets (as in the f-structure of Figure 2).
The expression thus refers to the semantic structure
corresponding to the f-structure in which ↑ appears
as a member of the modifier set. In terms of the
glue side, all modifiers have this structure: they take
and return the same type of element. We treat the
determiner in (10) similarly; further, it does not add
any meaning element.7

All these combined together, then, give the literal
semantics of (5a). Such mechanics are more com-
plicated than is necessary for this simple example,
which was used only for illustrative purposes here.
However, they can equally well provide the more
abstract semantics of (5b), as we show in §6.

6 Adding Lexical Functions to LFG

There are a number of changes necessary to incorpo-
rate LFs, both in a less straightforward use of glue
semantics and in other aspects of the definitions of
lexical entries. The lexical entry for the proper noun
Bradshaw still has the same simple meaning con-
structor as above in (6). By contrast, goal in (11), is
a unary predicate: λX.goal(X), i.e., ‘X goals’, so to
speak. However, in the construction under considera-
tion here, its semantic predicativity is not echoed in
syntax, since there is no verb to goal in standard En-
glish. This is precisely why a support verb is needed
in the first place: kick ties the noun goal to its se-
mantic argument Bradshaw. This is rendered in the
lexical entry in (11) below with a meaning construc-
tor that checks that there is a meaning available for
the subject of the verb of which goal is the object.

7The determiner could be considered as a quantifier, which
would require a much more sophisticated treatment.

(11) goal N (↑PRED)=‘goal’
λX.goal(X) :

((OBJ↑) SUBJ)σ ( ↑σ

The lexeme kick serves only as a support verb to
turn Bradshaw’s goal into a verbal expression, so
that it forms a clause. It is a collocation of goal that,
in the context of football match summaries, does not
contribute to the meaning of the sentence in a sig-
nificant way. Hence, X kicks a goal means nothing
more than λX.goal(X), that is, the verb kick simply
recopies its object’s meaning, with the constraint that
its object is the lexeme goal in (12):

(12) kicked V (↑PRED)=‘kick〈(↑SUBJ),(↑OBJ)〉’
(↑OBJ PRED)=c‘goal’
(↑TENSE)=past
λX.X : (↑OBJ)σ ( ↑σ

In this example, the second line is a constraining
equation, which is LFG’s way of handling colloca-
tional constraints; it specifies that this rule can only
be applied if the predicate of the object of kick is goal.
And just as for the determiner in (10), the meaning
side adds nothing to the overall semantics.

We note here that the semantic description pro-
vided by glue semantics does not render obsolete the
PRED function. It is still needed to encode purely
syntactic information: the name of the lexeme and
its sub-categorisation. The verb kick could control its
own collocations, so we need to have access to the
name of the lexeme.

Beautiful, in (1), could be replaced with spectacu-
lar or brilliant, for instance. In these kinds of texts,
the semantic difference between these expressions is
not significant. The adjectives beautiful, brilliant and
spectacular, when they modify goal, merely denote
a positive appreciation: λX.good(X).

(13) beautiful A (↑PRED)=‘beautiful’
((ADJ ∈ ↑) PRED)=c‘goal’
λX.good(X) :

(ADJ ∈ ↑)σ ( (ADJ ∈ ↑)σ

The second line is again an LFG constraining equa-
tion, which specifies that this rule can only be applied
if beautiful modifies the lexeme goal; the semantic
element λX.good(X) will be realised in other ways
in different contexts.
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The extra lines in the lexical entries are regular,
and can be captured using templates, which are the
XLE instantiation of LFG’s lexical rules. These in
fact then correspond very closely to MTT’s LFs. For
example, for the LF Oper1(L), which represents the
use of support verbs in contexts such as that of kick
in our examples, the following template could be
defined:

(14) @OPER1(L)=
(↑PRED)=‘%stem〈(↑SUBJ),(↑OBJ)〉’
(↑OBJ PRED)=c‘L’
λX.X : (↑OBJ)σ ( ↑σ

The constraining equation on the second line restricts
the support verb to the particular lexical element with
which it is invoked. The third line constructs the
meaning by just passing along the meaning of the
existing components with no additions. The template
is then invoked in the dictionary:

(15) kick V @(OPER1 goal)
suffer V @(OPER1 loss)
have V @(OPER1 cold)

Such templates need only be described once for all
languages. For example, the Arrernte dictionary con-
tains the following entry for the expression goal ar-
rerneme (literally ‘put (a) goal’):

(16) arrerneme V (OPER1 goal)

One problem with this approach is that colloca-
tions must be described in the collocate’s entry, which
is not very elegant and obfuscates the lexicographer’s
work. Indeed it is a lot easier, for example, to answer
the question “how do you intensify smoker?” than
“what lexemes can heavy intensify?”. However, this
problem can easily be resolved by writing the dictio-
nary in the format of Figure 5 (similar to the attention
example in Figure 4), where all collocations are listed
under their base headword, and using a compiler to
build the corresponding XLE lexical entries.

goal [of X]

Bon beautiful/spectacular/brilliant ∼
Oper1 X kicks/scores/gets/makes a ∼

Figure 5: Dictionary entry for goal

In the example we have considered so far, the En-
glish expression kick a goal and its Arrernte equiva-
lent goal arrerneme have the same structure. How-
ever, this need not be the case. For example, consider
the contrast between the following two sentences:

(17) John abandons the baby.

(18) John-le
John-ERG

ampe-Ø
baby-NOM

ipmentye-Ø
abandonment-NOM

iwe-me
leave-N.PST

‘John abandons the baby’

Both sentences express the meaning aban-
don(John,baby), but in English, the predicate is
expressed by a single verb, while in Arrernte it
is expressed by a noun with a support verb. This
construction corresponds to an LF called Labor12,
which denotes a support verb that takes as its
subject the first semantic argument of the base of the
collocation (here, John), the second argument as its
direct object (baby), and the base itself as its second
object (ipmentye).8 The template for Labor12
would look like this:

(19) @LABOR12(L)=
(↑PRED)=‘%stem〈(↑SUBJ),(↑OBJ),(↑OBJ2)〉’
(↑OBJ2 PRED)=c‘L’
λX.X : (↑OBJ2)σ ( ↑σ

And just as we did for goal in (11), we also need a
specific entry for ipmentye that reflects its behaviour
in this collocation, as well as an entry for iweme that
says it is the Labor12 of ipmentye:

(20) ipmentye N
(↑PRED)=‘ipmentye’
λXλY.abandon(X,Y ) :

((OBJ2↑) SUBJ)σ (
[((OBJ2↑) OBJ)σ ( ↑σ]

iweme V @(LABOR12 ipmentye)

Hence, given the same meaning as input, the gram-
mar produces different structures, as appropriate for
the language being processed.

8Since both ampe and ipmentye are in the nominative form,
it is hard to determine which is the first and which is the second
object, but this question is largely irrelevant here.

102



Of course, LFs have their limitations too. In the
context of MNLG, there are two problems related to
lexicalisation that are worth mentioning here. One
is that languages sometimes diverge at the semantic
level. For example, there is no direct equivalent to
the verb teach in Arrernte; one has to say akaltye
antheme, literally ‘give knowledge’. This is a col-
location of the noun akaltye ‘knowledge’ that can
be captured by an LF; but the problem here lies in
the fact that the semantic input in Arrernte should
be cause(X,know(Y ,Z)), while in English it would
be teach(X,Y ,Z). This is different from the aban-
donment case discussed above: there, one language
uses a straightforward realisation, while the other
uses a light verb, but there is no need to decompose
the meaning of these expressions to see that they
are identical; they both have the same semantic rep-
resentation. For teach∼akaltye antheme, the two
languages do not conceptualise the world in the same
way, and these conceptual/semantic differences must
be dealt with early in the generation process; the deep
realiser must produce different semantic representa-
tions depending on the language. At this stage, LFs
are irrelevant because we are operating on concepts
rather than at the lexical level, where LFs come into
play.

Another limitation is that LFs are designed to de-
scribe recurrent patterns of collocations. Although
most collocations found in languages are instances
of a few common patterns, there are many that ei-
ther express unusual meanings, or that exhibit a very
peculiar syntactic or morphological structure. For
example, the expression winning goal could be de-
scribed as a collocation. However, the meaning ex-
pressed here by winning is very specific to this do-
main, and it cannot be reduced to a recurrent pattern
across languages (beyond the equivalent expressions
for winning goal). Ad hoc LFs can still be defined
for such collocations, but their use will only be a
viable solution in the context of an application within
a restricted domain (such as ours).

7 Conclusion

We have proposed a technique for the description of
collocations in LFG based on MTT’s concept of LFs,
in order to solve the problem of complex lexicali-
sation in NLG. We showed that a direct treatment

within LFG’s f-structure is not possible because it
would require variable values for the attribute PRED,
which is not allowed. Also, the semantics of support
verbs in particular is tricky and cannot be captured
satisfactorily with a PRED attribute. We proposed a
treatment using glue semantics, which handles more
elegantly the complex correspondence between the
semantics and syntax of collocations. The rules that
describe collocates use constraining equations so that
they apply only in the context of the base of a colloca-
tion. We also showed how templates could be used in
XLE to define recurrent patterns, effectively defining
any given LF once for all languages. The result is
an elegant way of describing collocations within the
LFG framework. This technique simplifies the task
of preparing resources for MNLG by sharing these
patterns across languages.
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Abstract

A medical publication may or may not present
an outcome. When an outcome is present,
its polarity may be positive, negative or neu-
tral. Information about the polarity of an out-
come is a vital one, particularly for practi-
tioners who use the outcome information for
decision making. We model the problem of
automatic outcome polarity identification as
a three-way document classification problem
and attempt to solve it via supervised machine
learning. We combine domain knowledge and
linguistic features of medical text, and apply
natural language processing to extract features
for the chosen classifiers. We introduce two
novel features — Relative Average Negation
Count and Sentence Signature — and show
that they are effective in improving classifica-
tion accuracy. We also include features, such
as n-grams and semantic orientation of terms,
that have been used for similar text classifica-
tion problems in other domains. Using these
features, we obtain a maximum accuracy of
74.9% for the classification problem. Our ex-
periments suggest that through careful feature
selection, machine learning can be used to
solve this problem.

1 Introduction

The phenomenal growth of biomedical literature has
presented medical practitioners, particularly those
practicing Evidence Based Medicine (EBM), with
the problem of information overload. The popu-
lar practice of EBM requires practitioners to review
medical literature before making clinical decisions
(Sackett et al., 1996; Greenhalgh, 2006). When

reviewing medical publications, EBM practitioners
are mostly interested in identifying the outcomes
presented and their polarities. The polarity of an
outcome can be positive (e.g. the study shows that
drug X is useful for patients suffering from condition
Y), negative (e.g. the study suggests that drug X is
not recommended for patients suffering from condi-
tion Y) or the publication may present a neutral out-
come or may not present an outcome at all (e.g. the
study does not produce conclusive results regarding
the efficacy of drug X for condition Y). Manually as-
sessing the outcomes presented by multiple medi-
cal papers on a given topic is a time-consuming task
and often cannot be efficiently performed at point of
care (Ely et al., 1999). Hence, there is a strong need
for automatic outcome polarity identification tech-
niques to aid the decision making process of practi-
tioners.

1.1 Motivation

In order to appease the problem of information over-
load faced by medical domain experts, research has
focused on information retrieval, automatic sum-
marisation and question answering of medical doc-
uments (Lin and Demner-Fushman, 2007; Fiszman
et al., 2009). Intelligent text processing systems
that perform automatic summarisation and question
answering for this domain can benefit significantly
from techniques that can automatically detect the
polarity of outcomes presented in documents. Such
techniques will be particularly useful for multidocu-
ment summarisation, where the detection of contra-
dictory or consistent outcomes presented in separate
documents is vital. Furthermore, recent research on
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quality assessment of evidence presented in multiple
medical documents has also acknowledged the im-
portance of automatic polarity detection techniques
for measuring consistency of outcomes in medical
articles (Sarker et al., 2011). The research presented
in this paper is motivated by these factors.

1.2 Contribution

We present a supervised learning approach to solve
the problem of outcome polarity identification of
medical publications. We focus particularly on med-
ical publication types that are popularly used in
EBM practice and model the problem as a three-way
classification problem by separating outcomes pre-
sented in medical articles into three classes - Posi-
tive, Negative and No Outcomes. Despite the strong
motivation behind automatic polarity identification
of medical documents, there has not been any con-
crete research work attempting to solve this prob-
lem. We therefore approach this problem by build-
ing on and combining previously applied approaches
for text classification, sentiment analysis, negation
detection and polarity identification. One of the in-
tents of this research work is to explore how the
above mentioned approaches can be applied to the
medical domain. We also present some novel feature
selection ideas and show that some of these features
increase classification accuracy.

2 Related Work

Research work related to ours has taken place un-
der various umbrella terms (depending on the do-
main): sentiment analysis (Pang et al., 2002; Pang
and Lee, 2004), semantic orientation (Turney, 2002),
opinion mining (Pang and Lee, 2008), evidential-
ity (Chafe and Nichols, 1986), subjectivity (Lyons,
1981; Langacker, 1985) and many more. All these
terms refer to the general method of extracting sub-
jectivity or polarity from text (Taboada et al., 2010).
A pioneering work in the area of sentiment anal-
ysis was performed by Pang et al. (2002), who
attempted to automatically classify movie reviews
as positive or negative. The authors applied three
machine learning algorithms – Naive Bayes, Maxi-
mum Entropy and Support Vector Machines (SVMs)
– and using features such as unigrams, bigrams,
part-of-speech tags and adjectives, obtained a max-

imum average accuracy of 82.9% (over three-fold
cross-validations). In their work, the best average
accuracy was produced by the use of unigrams as
features only. Turney’s (2002) work was similar
and involved the use of an unsupervised learning
technique based on the mutual information (seman-
tic orientation) between document phrases and the
words ‘excellent’ and ‘poor’. The semantic orienta-
tion of phrases were automatically computed using
a search engine. His approach classified reviews as
positive if they had a positive average semantic ori-
entation and negative otherwise, achieving accura-
cies between 66% and 84% for different data sets.
Following on from these works, research in this area
has mostly focused on the binary polarity classifica-
tion problem from opinionated pieces of text. Simi-
lar approaches have been applied for classifying the
polarities of product reviews, political speeches and
news. Pang and Lee (2008) provide an in-depth sur-
vey of approaches in this research area. Although
similar in nature, the research work described in this
paper differs significantly from approaches applied
to sentiment analysis approaches for several rea-
sons. The key reason is the complex nature of text in
the medical domain with its domain specific termi-
nologies and semantic relationships between terms
(Athenikos and Han, 2010).

Research work closely related to ours in the med-
ical domain is that by Niu et al. (2005; 2006). In
their work, they perform polarity classification of
sentences, obtained from medical article abstracts,
using machine learning. The authors collect the
abstracts from MEDLINE1 and manually annotate
each sentence into four classes – positive, negative,
no outcome and neutral. Besides using unigrams and
bigrams, the authors also use negations and seman-
tic categories of medical concepts, and introduce
Change Phrases – phrases that indicate the increase
or decrease of a good or bad thing – as features. Pre-
cision and recall are shown to be approximately 79%
over the four classes, using a data set of 1509 sen-
tences and SVMs for learning. Change Phrases in-
dicate the polarity of sentences and the concept is
similar to contextual valence shifters (Polanyi and
Zaenen, 2006; Kennedy and Inkpen, 2006) that have
been successfully applied to sentiment classification

1http://www.nlm.nih.gov/databases/databases medline.html
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research.
We attempt to classify polarities at the document

level, rather than at the sentence level. Our survey
of literature in this domain did not reveal any work
that attempts to address this specific problem despite
its possible usefulness. The task itself is particularly
challenging because each document may, and usu-
ally does, contain multiple sentences with differing
polarities. Additionally, unlike the binary classifica-
tion problem that sentiment analysis is usually mod-
eled as, our work models the problem as a three-way
classification (which, we believe, is the minimum
number of classes required in the case of medical
documents). Machine learning algorithms have been
applied to solve various text classification problems,
including those in the medical domain — such as
identifying high quality medical articles (Kilicoglu
et al., 2009). Among machine learning algorithms,
SVMs (Vapnik, 1995) have clearly been the most
popular for text classification, particularly because
of their ability to robustly handle large feature sets
and find globally optimum solutions (Uzuner et al.,
2009; Taboada et al., 2010). We apply SVMs in our
experiments and compare its performance with some
other popular classifiers.

Another important aspect of our work is negation
detection. Negated terms in medical text usually in-
dicate the presence or absence of specific medical
findings. Additionally, they may also indicate the
polarity of the outcome presented in a medical arti-
cle (e.g., drug X shows no improvement for patients
suffering from condition Y). Recent research work
has shown that information on the polarity of phrase-
level assertions does not improve performance in
a document level classification task (Goldstein and
Uzuner, 2010). However, statistics based on the
presence/absence of negations have not been incor-
porated for text classification in this domain. Nega-
tion identification has shown to markedly improve
performance of medical information retrieval sys-
tems. Therefore, there has been a significant amount
of work on automatic negation detection techniques
in the medical domain, such as the works of Elkin
et al. (2005) and Huang et al. (2007) . Rokach et
al. (2008) provides a detailed survey of negation de-
tection techniques for the medical domain. A popu-
lar and simple negation detection approach is NegEx
(Chapman et al., 2001). It is a powerful, regular-

expression-based algorithm and uses a list of phrases
which, when present in the same sentence as disease
names or findings, are indicative of negation. NegEx
has been translated to other languages due to its ef-
fectiveness. We use a modified version of NegEx for
negation detection in our experiments.

3 Data and Annotation

3.1 Data Collection

When collecting data, our focus was on articles that
are commonly used for EBM. NLP research in the
domain of EBM has shown that despite the pres-
ence of a large number of study types (also referred
to as publication types) in the domain, only spe-
cific study types are commonly used in the prac-
tice2. These study types include Systematic Re-
views, Meta-analyses, Clinical Trials (mostly Ran-
domised Controlled Trials) and Cohort Studies. Al-
though these are the preferred types of studies, Con-
sensus Guidelines, Expert Opinion and Case Studies
are also used in EBM practice when higher quality
articles are not available on a specific topic. Sarker
et al. (2011) provides an analysis of how publication
types are distributed in real-life EBM practice.

To collect our data, we initially identified med-
ical publications, which have been used in EBM
practice, from the ‘Clinical Inquiries’ section of the
Journal of Family Practice3 (JFP). This section of
JFP contains question-answer type evidence based
reviews of specific medical topics that are generated
by experts. The reviews also provide references to
research articles from which the reviews are gener-
ated. We manually obtained a random sample of the
abstracts of these references from MEDLINE using
the PubMed4 interface. We wanted to add diver-
sity to our data set by incorporating article abstracts
that do not belong to the Family Practice domain but
have the potential to be used for EBM. To achieve
this, we collected a sample of article abstracts be-
longing to the study types commonly used in EBM
(mentioned above) directly from MEDLINE using
the PublicationType filter.

2A list of publication types used by PubMed can be found at
http://www.nlm.nih.gov/mesh/pubtypes.html

3http://www.jfponline.com
4http://www.ncbi.nlm.nih.gov/pubmed/
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3.2 Annotation

We manually classified all the collected abstracts
into three classes – Positive, Negative and No Out-
come. During annotation, we use the following def-
initions for the three classes:

Positive: There is a clear indication that a medi-
cal process or intervention produces an outcome that
is beneficial and/or serves its purpose; or a medical
process or intervention is considered to be benefi-
cial overall despite minor adverse effects; or when
comparisons are made between two or more inter-
ventions or processes and the one that is the focus of
the study is mentioned to be better. The following
are two examples of positive outcomes:

‘Depression scores on the Hamilton Rat-
ing Scale for Depression and Clinical
Global Impressions-Severity scale signif-
icantly improved during the bupropion
treatment phase.’

‘In a group of asymptomatic patients with
first episode psychosis and at least one
year of previous antipsychotic drug treat-
ment, maintenance treatment with queti-
apine compared with placebo resulted in
a substantially lower rate of relapse dur-
ing the following year.’

Negative: There is a clear indication that an inter-
vention or process produces an outcome that is not
beneficial at all and/or is clearly not recommended;
or when comparisons are made between two or more
interventions or processes, the one that is the focus
of the study is not mentioned to be the preferred
choice. An example is as follows:

‘There is a suggestion that routine sur-
gical interference may be harmful by in-
creasing the risk of caesarean section, and
this agrees with data from other trials.’

No Outcome: The outcome is neither positive nor
negative or no outcome is specified at all. The latter
can happen for systematic reviews or non-systematic
reviews that do not present a single polarised answer.
Also, when multiple comparisons are made without
a final indication that a single process or intervention
is preferred. The following is an example:

‘There is not an important difference in
the effects of bed rest compared with ex-
ercises in the treatment of acute low back
pain, or seven days compared with two to
three days of bed rest in patients with low
back pain of different duration with and
without radiating pain.’

Our final test data set consists of 520 medical arti-
cle abstracts, containing 9,221 sentences and 61,579
tokens (6,601 types). Among the 520 documents,
199 are annotated as positive, 161 as negative and
160 as no outcome instances. Approximately one-
fourth of our data set consists of articles identified
from JFP, while the rest were collected directly from
MEDLINE using the approach described above.

The annotation was performed by four annotators
(three medical domain experts and one computer
scientist). There was about 40% overlap of the data
among annotators and we computed Fleiss’ Kappa
(κ) to measure the extent of agreement among an-
notators. The formula for this statistic is given by:

κ =
PO − PE

1− PE
(1)

where PO is the observed agreement and PE is the
agreement expected by chance. The κ value we ob-
tained is 70.6%, which falls within the range of val-
ues that is usually termed as “good agreement be-
yond chance”.

3.3 Preliminary Analysis
We perform preliminary manual analysis on a small
data set (separate from the 520 documents men-
tioned above) collected and annotated in the same
fashion. Our analysis suggests that certain phrases
play an important role in polarity determination. For
example, ‘significantly improves’, ‘no difference’,
‘no result’, ‘side effects’, ‘no improvement’ and sim-
ilar phrases occur frequently in our data set and pro-
vide strong indications regarding the polarity. Simi-
larly, negations also provide cues about the polarity
at a document level, e.g., ‘not recommended’. How-
ever, a full abstract may, and usually does contain
multiple occurrences of such phrases and therefore
the presence or absence of these terms in a single
sentence may not be indicative of overall polarity.
Furthermore, our analysis also suggests that the se-
mantic orientation of words in each abstract may
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have a correlation with the polarity of the outcome
presented. For example, terms such as ‘excellent’
tend to occur frequently in positively polarised doc-
uments, while terms such as ‘unsuccessful’ are more
likely to occur in negatively polarised documents. In
our experiments, we explore all these possibilities.
We attempt to combine various sentence level in-
formation to determine overall document polarities.
Specific details about our preliminary analysis are
provided in the next section, where we provide elab-
orate details about our feature selection techniques.

4 Methods

We model the problem of document level outcome
polarity identification as a three-way classification
problem. In this section we describe the features
we use for classification, the feature selection tech-
niques and provide justifications behind the choice
of the selected features. We also attempt to explain
how our feature selection ideas have been influenced
by related research work.

4.1 Feature Sets
4.1.1 N-grams.

Word n-grams have been shown to be very impor-
tant features in text classification problems (Taboada
et al., 2010). We therefore use n-grams (n=1,2,3 and
4) from the article abstracts as our first feature set
for experimentation. We experiment both with n-
gram frequencies and presence. We also experiment
with various combinations of n-grams. During pre-
processing of the texts, we remove stop words and
numbers, stem the individual words using the Porter
stemmer and only keep n-grams with frequencies of
greater than 4 over the whole data set.

We experiment with two further variations of n-
gram feature sets. In the first variation, we only
use n-grams from the conclusion sections of the ab-
stracts. Our preliminary analysis suggests that sen-
tences in the conclusion section of documents are
most informative regarding the overall outcomes.
For abstracts without explicit section headings, we
use the last three sentences.

In our last variation, we replace specific medi-
cal concepts with a generic ‘sem type’ tag. We use
MetaMap5 to identify domain specific concepts as

5http://metamap.nlm.nih.gov/

defined in the UMLS6 (Unified Medical Language
System). The UMLS provides a vast vocabulary of
medical concepts and also broad semantic groups
into which the concepts can be classified. For ex-
ample, all disease names fall under the semantic cat-
egory Disease or Syndrome (dsyn). Replacing each
occurrence of a disease or syndrome name with the
generic tag ensures that the name does not have an
influence on the classifiers used and reduces over-
fitting. Furthermore, it also enables the identifica-
tion of specific term patterns in text that can be used
for classification (explained later). Generic repre-
sentations of medical problems have been used in
text classification tasks in this domain before, and
for our task, we use the same semantic groups as
Uzuner et al. (2009): pathological function, dis-
ease or syndrome, mental or behavioral disfunction,
cell or molecular dysfunction, virus, neoplastic pro-
cess, anatomic abnormality, acquired abnormality,
congenital abnormality and injury or poisoning.

4.1.2 Relative Average Negation Count
As already mentioned, our preliminary analysis

suggests that negations provide cues about the over-
all polarity of an abstract, but the presence of nega-
tion in a single sentence may not determine docu-
ment polarity. Our analysis also suggests that the to-
tal number of negations, or the negation count, over
the whole document is generally greater for docu-
ments presenting a negative outcome than those pre-
senting a positive outcome (the number of negations
in documents presenting no outcomes vary signifi-
cantly). At the same time, the negation count also
tends to increase with the length of the abstracts
and negations towards the end of the abstracts tend
to have greater impact on the final outcome. We
therefore use the Relative Average Negation Count
(RANC) for each document as a feature and define
it as follows:

RANCd =

∑l
i=1(ni ×

i
l )

l
(2)

where d is a medical abstract containing l sentences
in total and ni is a negation detected in sentence i of
the document. The equation shows that each nega-
tion is weighted by its relative position and the sum
of all the weighted negations is divided by the length

6http://www.nlm.nih.gov/research/umls/
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of the document to give RANC. We experimented
with other representations of negations, such as us-
ing a vector of negation terms for each document,
but found RANC to be the most effective.

To count the number of negations in a document,
our algorithm uses a list of negation phrases based
on the list used by NegEx (Chapman et al., 2001).
In particular, NegEx attempts to identify negations
in clinical narratives, and our modifications include
adding negation phrases that commonly appear in
published papers but are not included in NegEx’s
original list (e.g. ‘not statistically’). To calculate
RANC, our algorithm searches each sentence of an
abstract for the presence of any of the terms in our
list. All the matches are summed using equation 2
to give the total negation count.

4.1.3 Semantic Orientation
We add a feature set to assess the effect of the se-

mantic orientation of words on overall document po-
larity. We collect lists of positive and negative words
from the General Inquirer dictionary (Stone et al.,
1966)7. As this list is not specific to the medical
domain, we manually modify both lists by remov-
ing terms that occur frequently in medical domain
texts and whose semantic orientation should not be
taken into account when identifying document po-
larities in this domain. These include terms such
as ’disease’, ’sickness’, ’intervention’, ’death’ and
’discharge’. We have to rely on this time-consuming
strategy since there are no such existing lists for
the medical domain. For each document, we cal-
culate its average semantic orientation, by counting
the number of positive terms and the number of neg-
ative terms, subtracting the latter from the former
and then dividing by the document length.

4.1.4 Change Phrases and Sentence Signatures
We use an approach similar to Niu et al. (2005;

2006) to identify sentence patterns or change
phrases. In their work, the authors use a manually
created list of good, bad, more and less words to
identify patterns in sentences. The authors argue that
the (sentence level) polarity of an outcome is often
determined by how change happens (e.g., a good or
bad thing is increased or decreased). For example,
consider the following sentence:

7Available from http://www.wjh.harvard.edu/ĩnquirer/.

In these three postinfarction trials ACE
inhibitor versus placebo significantly re-
duced mortality.

In the sentence, the word reduce is a less word
while the word mortality is a bad word. Thus the
sentence will have the pattern less-bad indicating
that the sentence has a positive polarity. Similarly
a sentence having the pattern more-good is likely to
have a positive polarity while a sentence with the
pattern more-bad or less-good is likely to have a
negative polarity. In our work, we extend the idea of
change phrases by including negations and medical
semantic types in the patterns. Our intuition is that
negations or semantic types can also significantly in-
fluence the polarity of sentences. For example, con-
sider the following sentence (modified from the pre-
vious one):

In these three postinfarction trials ACE in-
hibitor versus placebo did not reduce mor-
tality.

The change phrase pattern for this sentence would
still be less-bad despite the presence of the negation.
A more correct pattern for the sentence should be
neg-less-bad which incorporates the negation. Sim-
ilarly, the following sentence:

... increased the probability of heart fail-
ure.

has a more-semtype pattern which may be indicative
of negative polarity.

We generate two-term and three-term patterns
from each sentence of each abstract and use them
as a feature set. We call this feature set Sentence
Signatures (SS).

4.2 Classification
Using the four feature sets mentioned in this section,
we test the accuracy of four machine learning clas-
sifiers on our test data set. The four chosen classi-
fiers are — Naive Bayes, Bayes Net, SVMs and C4.5
Decision Tree. Due to the relatively small amount
of annotated data available to us, we perform 10-
fold cross-validation in our experiments. We use
the default implementations of all these classifiers
in the software package Weka8. For the Bayes Net

8http://www.cs.waikato.ac.nz/ml/weka/
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classifier, we use the K2 search algorithm for local
score metrics and the simple estimator for estimating
conditional probability tables. For SVMs, we use
an RBF kernel and John Platt’s sequential minimal
optimisation algorithm (Platt, 1999); and solve our
multi-class problem using pairwise (1-vs-1) classi-
fication. Further details of these classifiers can be
found in the documentation provided with the soft-
ware package.

5 Results and Discussion

Table 1 presents the results of the four classifiers
over various combinations of features. The horizon-
tal lines of the table divide the features into groups
and the best accuracy obtained for a specific group
is shown in bold. The results indicate that the n-
grams play an important role in the classification
problem, which is consistent with findings in other
domains. More specifically, use of uni-, bi- and tri-
grams as features show clear improvements in clas-
sification but adding longer n-grams does not ap-
pear to be beneficial. The results of classification
using n-grams only also show that classification ac-
curacies are not significantly different between the
use of word frequencies (F) and presence (P). Using
n-grams from full abstracts always performs better
than using n-grams from conclusion sentences (C)
only. Replacing medical terms belonging to specific
semantic categories with a generic tag (M) also tends
to give better classification accuracies.

Introduction of RANC and SS as features has a
positive impact on classification accuracies. The
increase in accuracies for our tree-based classifier
(C4.5) upon the addition of RANCs as features is
particularly significant, which is a clear indication
of the importance of this feature set. The highest
accuracy we obtain is 74.9% using SVMs for classi-
fication and n-grams (n=1,2,3), RANCs and SSs as
features. SVMs consistently outperform other clas-
sifiers in all the experiments we present, which is
what we expected based on the success of SVMs in
text classification tasks.

The use of SO as a feature set does not seem
to have a positive effect on classification accura-
cies. This, however, may be due to the absence of
a domain-specific dictionary for semantic orienta-
tion of terms. Despite our modifications of the list

of positive and negative words, this feature set does
not play a role in determining polarity. A more in-
depth analysis of domain specific terms is required
to assess the applicability of this feature set.

Manual analysis of the mis-classified instances re-
veals a number of key reasons behind the classifica-
tion errors. Many systematic and non-systematic re-
views in our data set present outcomes from multiple
trials or studies of both polarities (which is a com-
mon feature of this publication type). Manual anno-
tation of these abstracts is easier because the annota-
tors can take the context of the articles into account
and identify the overall message represented in the
text. When multiple comparisons are presented in
a review without a final polarised outcome, we an-
notated that review as no outcome. However, the
n-grams generated by such articles have similarity
to articles from the positive and negative classes and
are therefore hard to separate automatically.

Furthermore, while RANC plays an important
role in identifying negative polarities, introduction
of this feature also causes some instances, particu-
larly those with no outcomes, to have large RANCs.
This happens when negations occur in multiple
places of the abstract text, but none is associated
with the final outcome. Negation phrases such as
‘no outcome’ and ‘no result’ are common in the No
Outcome class while various forms of negations are
present in articles belonging to the Negative class
(e.g, ‘not recommend’). A deeper analysis of nega-
tions to see which terms occur more frequently in
each of the two classes may reduce this problem.

Finally, the structure and content of the article ab-
stracts vary significantly depending on the type of
study. For example, a meta-analysis is consider-
ably different from a randomised controlled trial. A
more elaborate approach involving identification of
publication types prior to classification and training
and testing classifiers on texts belonging to specific
study types would perhaps yield better results. In-
creasing the size of the training set is also likely to
result in improved accuracy. However, that will also
require significant time contribution for annotation.

6 Conclusion and Future Work

In this work we show that the problem of medical
document polarity identification can be treated as a
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Features Naive Bayes BayesNet SVM C4.5

Unigrams (P) 65.2 62.3 67.7 55.0
Unigrams (F) 65.2 62.3 68.3 55.0
Unigrams (P, C) 61.3 60.8 62.5 53.7
Unigrams (F, C) 61.3 60.8 62.5 53.7
Unigrams (M, P) 66.3 62.7 67.9 55.2
Unigrams (M, F) 66.3 62.7 69.4 55.2
Unigrams (M, P, C) 62.5 60.8 62.9 53.7
Unigrams (M, F, C) 62.5 60.8 62.9 53.7

Unigrams + bigrams (P) 70.4 63.8 72.7 62.3
Unigrams + bigrams (F) 70.4 63.8 72.9 62.3
Unigrams + bigrams (P, C) 66.0 62.7 69.8 60.5
Unigrams + bigrams (F, C) 65.9 62.7 70.0 60.3
Unigrams + bigrams (M, P) 70.1 63.5 73.9 63.7
Unigrams + bigrams (M, F) 66.3 62.7 68.3 60.4
Unigrams + bigrams (M, P, C) 63.1 60.8 65.6 59.0
Unigrams + bigrams (M, F, C) 63.0 61.1 66.3 58.1

N-grams (n=1,2 and 3)(P) 70.6 62.7 74.0 60.6
N-grams (n=1,2 and 3)(F) 70.6 62.7 73.9 60.6
N-grams (n=1,2 and 3)(M, P) 70.8 62.7 74.2 61.3
N-grams (n=1,2 and 3)(M, F) 70.8 62.6 74.0 61.3

N-grams (n=1,2,3 and 4)(P) 70.8 62.3 73.0 61.5
N-grams (n=1,2,3 and 4)(F) 70.8 62.3 72.6 61.5
N-grams (n=1,2,3 and 4)(M, P) 70.8 62.7 72.9 61.3
N-grams (n=1,2,3 and 4)(M, F) 70.6 61.9 72.3 61.3

Unigrams + bigrams + RANC (M, P) 72.1 68.1+ 73.3 70.1+
N-grams (n=1,2 and 3) + RANC (M, P) 71.7 67.3 74.4 68.6

Unigrams + bigrams + RANC + SO(M, P) 71.5 66.7 73.3 67.5
N-grams (n=1,2 and 3) + RANC + SO (M, P) 71.6 66.5 74.4 67.9

Unigrams + bigrams + RANC + SS(M, P) 72.3+ 67.3 73.6 66.5
N-grams (n=1,2 and 3) + RANC +SS (M, P) 72.3+ 66.9 74.9* 68.9

N-grams (n=1,2 and 3) + RANC + SO + SS(M, P) 71.7 67.1 74.7 68.0

Table 1: Classifier accuracies for various combinations of features. (P) represents word presence, (F) represents word
frequencies, (M) indicates medical terms replaced from the text using the generic tag, (C) indicates only conclusion
sentences used. RANC – Relative Average Negation Count, SO – Semantic Orientation, SS – Sentence Signatures.
Best result produced by a combination of features shown in bold. Best overall accuracy indicated by *. Best accuracy
achieved by a specific classifier indicated by +.
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classification problem and machine learning algo-
rithms can be used to solve this problem. Our work
is the first of its kind in this domain and therefore
we incorporate relevant techniques from related re-
search work. Using carefully extracted linguistic
features and domain knowledge, we obtain 74.9%
accuracy on a data set that contains a variety of med-
ical publication types. Post-classification analysis of
our data reveals a number of possible research tasks
that can be performed to further improve classifica-
tion accuracies. Some classification errors can be
attributed to subtle weaknesses in our automatic fea-
ture generation techniques and also the similarity in
content among documents of differing classes.

Incorporating accurate, automatic outcome polar-
ity detection techniques can considerably benefit au-
tomatic summarisation and question answering sys-
tems in this domain. This will require improving the
accuracy of our classifiers and we will address some
possibilities in our future work.

One possibility is to automatically identify the
context when extracting features such as words,
phrases, negations and signatures. Our analysis
showed that in EBM practice, the same article may
have different polarities depending on the query
posed by the practitioner. The context may also be
given by the topic of the article.

Our approach of using conclusion sentences can
be improved through the use of classifiers that can
identify conclusion/outcome sentences from medi-
cal abstracts automatically. Such a classifier has re-
cently been presented by Kim et al. (2011) and it has
been shown to be highly accurate at identifying sen-
tences presenting medical outcomes. Future work
will therefore involve the use of this method of sen-
tence classification and use only sentences classified
as ‘outcomes’.

Since the content of publications in this domain
vary with the publication types, an approach that
automatically detects the publication types followed
by the application of customized feature extraction
techniques is likely to be more accurate. Careful
analysis and ranking of the semantic orientation of
words in this domain can also be effective in obtain-
ing higher classification accuracies.

Finally, it is likely that performance can be im-
proved by using a larger data set. This will also
make it possible to use separate training and test sets

so that the parameters of the classifiers can be opti-
mised based on the training data and then be tested
on the test data.

We will attempt to incorporate all the above-
mentioned ideas in our future work. Considering
the strong motivation behind an approach for auto-
matic polarity detection, improvements in classifi-
cation accuracy will be extremely beneficial for var-
ious automatic text processing applications in this
domain.
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Abstract

Native language identification (NLI) is the
task of determining the native language of an
author writing in a second language. Several
pieces of earlier work have found that fea-
tures such as function words, part-of-speech
n-grams and syntactic structure are helpful in
NLI, perhaps representing characteristic er-
rors of different native language speakers.
This paper looks at the idea of using Latent
Dirichlet Allocation as a feature clustering
technique over lexical features to see whether
there is any evidence that these smaller-scale
features do cluster into more coherent latent
factors, and investigates their effect in a clas-
sification task. We find that although (not un-
expectedly) classification accuracy decreases,
there is some evidence of coherent clustering,
which could help with much larger syntactic
feature spaces.

1 Introduction

Native language identification (NLI), the task of de-
termining the native language of an author writing in
a second language, typically English, has gained in-
creased attention in recent years. The problem was
first phrased as a text classification task by Koppel et
al. (2005), using a machine learner with fundamen-
tally lexical features — function words, character n-
grams, and part-of-speech (PoS) n-grams. A number
of subsequent pieces of work, such as that of Tsur
and Rappoport (2007), Estival et al. (2007), Wong
and Dras (2009) and Wong and Dras (2011), have
taken that as a starting point, typically along with a
wider range of features, such as document structure
or syntactic structure.

Wong and Dras (2011) looked particularly at syn-
tactic structure, in the form of production rules and
parse reranking templates. They noted that they
did not find the expected instances of clearly un-
grammatical elements of syntactic structure indicat-
ing non-native speaker errors; instead there were
just different distributions over regular elements of
grammatical structure for different native languages.
Our intuition is that it is several elements together
that indicate particular kinds of indicative errors,
such as incorrect noun-number agreement; and from
this, that there might be coherent clusters of corre-
lated features that are indicative of a particular native
language. In this preliminary work, we investigate
this using the basic lexical features of the original
Koppel et al. (2005) model.

Latent Dirichlet Allocation (LDA) — a genera-
tive probabilistic model for unsupervised learning
— was first introduced by Blei et al. (2003) to dis-
cover a set of latent mixture components known as
topics which are representative of a collection of
discrete data. The underlying idea of LDA is that
each document from a text corpus is constructed ac-
cording to a specific distribution of topics, in which
words comprising the document are generated based
on the word distribution for each selected topic; a
topic is typically represented by a set of words such
as species, phylogenetic, evolution and so on. Such
a model allows multiple topics in one document as
well as sharing of topics across documents within
the corpus.

LDA can be viewed as a form of dimensionality
reduction technique. In this paper, we intend to ex-
ploit LDA to discover the extent to which a lower
dimension of feature space (i.e. a set of potentially
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useful clusters of features) in each document affects
classification performance. Here we are mapping
clusters of features as ‘topics’ in typical LDA mod-
els and the posterior topic distributions inferred are
to be used for classifying the native language of the
authors against baseline models using the actual fea-
tures themselves. We are particularly interested in
whether the topics appear at all to form coherent
clusters, and consequently whether they might po-
tentially be applicable to the much larger class of
syntactic features.

The remainder of this paper is structured as fol-
lows. In Section 2, we discuss some related work
on the two key concepts of this paper: first relevant
work in NLI, and then a brief description of LDA
with its application to classification. We then de-
scribe both the topic models and the classification
models used for the corpus to be examined, in Sec-
tion 3. Section 4 presents classification results, and
is followed by discussion in Section 5.

2 Related Work

2.1 Native Language Identification

Most of the existing work on native language identi-
fication adopts the supervised machine learning ap-
proach to classification. Koppel et al. (2005) is the
earliest work in this classification paradigm using
as features function words, character n-grams, and
PoS bi-grams, together with some spelling mistakes.
They used as their corpus the first version of Inter-
national Corpus of Learner English (ICLE), select-
ing authors writing in English who have as their na-
tive language one of Bulgarian, Czech, French, Rus-
sian, or Spanish. Koppel et al. (2005) suggested
that syntactic features (specifically errors) might be
potentially useful, but only explored this idea at a
rather shallow level by characterising ungrammati-
cal structures with rare PoS bi-grams. This work
of Koppel et al. (2005) was then investigated by
Tsur and Rappoport (2007) to test their hypothesis
that the choice of words in second language writ-
ing is highly influenced by the frequency of native
language syllables, through measuring classification
accuracy with only character bi-grams as features.

Another work with a similar goal, of developing
profiles of authors, is that of Estival et al. (2007).
They used a variety of lexical and document struc-
ture features over a set of three languages — En-

glish, Spanish and Arabic — also looking at pre-
dicting other demographic and psychometric author
traits in addition to native language.

Wong and Dras (2009) first replicated the work
of Koppel et al. (2005) with the three types of
lexical feature as mentioned above and then ex-
tended the classification model with three syntac-
tic errors commonly observed in non-native English
users — subject-verb disagreement, noun-number
disagreement and misuse of determiners — which
had been identified as being influenced by the na-
tive language based on ‘constrative analysis’ (Lado,
1957). Although the overall classification did not
improve over the lexical features alone, an ANOVA
analysis showed that there were significant differ-
ences amongst different groups of non-native En-
glish users in terms of the errors made. In this work
the classification task was carried out using the sec-
ond version of ICLE (Granger et al., 2009), across
seven languages (those of Koppel et al. (2005) with
the two Asian languages Chinese and Japanese).

The later work of Wong and Dras (2011), on the
same data, further explored the usefulness of syn-
tactic features in a broader sense by characterising
syntactic errors with cross sections of parse trees
obtained from statistical parsing. More specifically,
they utilised two types of parse tree substructure to
use as classification features — horizontal slices of
the trees as sets of CFG production rules and the fea-
ture schemas used in discriminative parse reranking
(Charniak and Johnson, 2005). It was demonstrated
that using these kinds of syntactic features performs
significantly better than lexical features alone.

One key phenomenon observed by Wong and
Dras (2011) was that there were different propor-
tions of parse production rules indicative of particu-
lar native languages. One example is the production
rule NP → NN NN, which appears to be very com-
mon amongst Chinese speakers compared with other
native language groups; they claim that this is likely
to reflect determiner-noun agreement errors, as that
rule is used at the expense of one headed by a plural
noun (NP → NN NNS). Our intuition here is that
there might be coherent clusters of related features,
with these clusters characterising typical errors or
idiosyncrasies, that are predictive of a particular na-
tive language. In this paper we use LDA to cluster
features, although in this preliminary work we use
only the simpler lexical features of Wong and Dras
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(2011).

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation is a Bayesian probabilis-
tic model used to represent collections of discrete
data such as text corpora, introduced by Blei et
al. (2003). It addressed limitations of earlier tech-
niques such as probabilistic latent semantic index-
ing, which is prone to overfitting and unable to gen-
eralise to unseen documents. LDA is a relaxation
of classical document mixture models in which each
document is associated with only a single topic, as
it allows documents to be generated based on a mix-
ture of topics with different distributions. We dis-
cuss the basic details of LDA, and our particular rep-
resentation, in Section 3.1.

LDA has been applied to a wide range of tasks,
such as building cluster-based models for ad hoc
information retrieval (Wei and Croft, 2006) or
grounded learning of semantic parsers (Börschinger
et al., 2011). Relevant to this paper, it has been ap-
plied to a range of text classification tasks.

The original paper of Blei et al. (2003) used LDA
as a dimensionality reduction technique over word
unigrams for an SVM, for genre-based classification
of Reuters news data and classification of collabora-
tive filtering of movie review data, and found that
LDA topics actually improved classification accu-
racy in spite of the dimensionality reduction. This
same basic approach has been taken with other data,
such as spam filtering of web text (Bı́ró et al.,
2008), where LDA topics improved classification f-
measure, or finding scientific topics from article ab-
stracts (Griffiths and Steyvers, 2004), where LDA
topics appear to be useful diagnostics for scientific
subfields.

It has also been augmented in various ways: su-
pervised LDA, where topic models are integrated
with a response variable, was introduced by Blei and
McAuliffe (2008) and applied to predicting senti-
ment scores from movie review data, treating it as a
regression problem rather than a classification prob-
lem. Work by Wang et al. (2009) followed from that,
extending it to classification problems, and applying
it to the simultaneous classification and annotation
of images. An alternative approach to joint models
of text and response variables for sentiment classifi-
cation of review texts (Titov and McDonald, 2008),
with a particular focus on constructing topics related

to aspects of reviews (e.g. food, decor, or service for
restaurant reviews), found that LDA topics were pre-
dictively useful and seemed qualitatively intuitive.

In all of this preceding work, a document to be
classified is represented by an exchangeable set of
(content) words: function words are generally re-
moved, and are not typically found in topics useful
for classification. It is exactly these that are used in
NLI, so the above work does guarantee that an LDA-
based approach will be helpful here.

Two particularly relevant pieces of work on using
LDA in classification are for the related task of au-
thorship attribution, determining which author wrote
a particular document. Rajkumar et al. (2009) claim
that models with stopwords (function words) alone
are sufficient to achieve high accuracy in classifi-
cation, which seems to peak at 25 topics, and out-
perform content word-based models; the results pre-
sented in Table 2 and the discussion are, however,
somewhat contradictory. Seroussi et al. (2011) also
include both function words and content words in
their models; they find that filtering words by fre-
quency is almost always harmful, suggesting that
function words are helping in this task.1

In this paper we will explore both function words
and PoS n-grams, the latter of which is quite novel to
our knowledge in terms of classification using LDA,
to investigate whether clustering shows any potential
for our task.

3 Experimental Setup

3.1 Mechanics of LDA

3.1.1 General Definition
Formally, each document is formed from a fixed

set of vocabulary V and fixed set of topics T (|T | =
t). Following the characterisation given by Griffiths
and Steyvers (2004), the process of generating a cor-
pus of m documents is as follows: first generate a set
of multinomial distributions over topics θj for each
document Dj according to a T -dimensional Dirich-
let distribution with concentration parameter α (i.e.
θj ∼Dir(α)); then generate a set of multinomial dis-
tributions φi over the vocabulary V for each topic i
according to a V -dimensional Dirichlet distribution
with concentration parameter β (i.e. φi ∼ Dir(β));

1They note that for function words the term ‘latent factor’ is
more appropriate than ‘topic’, with its connotation of semantic
content.
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and finally generate each of the nj words for docu-
ment Dj by selecting a random topic z according
θj and then drawing a word wj,k from φz of the
selected topic. The overall generative probabilistic
model can be summarised as follows:

θj ∼ Dir(α) j ∈ 1, ...,m
φi ∼ Dir(β) i ∈ 1, ..., t
zj,k ∼ θj j ∈ 1, ...,m, k ∈ 1, ..., nj

wj,k ∼ φzj,k
j ∈ 1, ...,m, k ∈ 1, ..., nj

From the inference perspective, given a corpus of
m documents with nj words each, the task is to es-
timate the posterior topic distributions θj for each
document Dj as well as the posterior word distribu-
tions φi for each topic i that maximise the log like-
lihood of the corpus. As exact inference of these
posterior distributions is generally intractable, there
is a wide variety of means of approximate inference
for LDA models which include approximation algo-
rithms such as Variational Bayes (Blei et al., 2003)
and expectation propagation (Minka and Lafferty,
2002) as well as Markov Chain Monte Carlo infer-
ence algorithm with Gibbs sampling (Griffiths and
Steyvers, 2004).

3.1.2 LDA as PCFG
Johnson (2010) showed that LDA topic models

can be regarded as a specific type of probabilistic
context-free grammar (PCFG), and that Bayesian in-
ference for PCFGs can be used to learn LDA mod-
els where the inferred distributions of PCFGs cor-
respond to those distributions of LDA. A general
schema used for generating PCFG rule instances for
representing m documents with t topics is as fol-
lows:2

Sentence → Doc′
j j ∈ 1, ...,m

Doc′
j → j j ∈ 1, ...,m

Doc′
j → Doc′

j Docj j ∈ 1, ...,m
Docj → Topici i ∈ 1, ..., t; j ∈ 1, ...,m
Topici → w i ∈ 1, ..., t;w ∈ V

Each of the rules in the PCFG is associated with a
Bayesian inferred probability. The probabilities as-
sociated with the rules expanding Topici correspond
to the word distributions φi of the LDA model, and
the probabilities associated with the rules expand-
ing Docj correspond to the topic distributions θj

2It should be noted that each document is given with a docu-
ment identifier in which sentences in the document are prefixed
with j.

of LDA. Similarly, inference on the posterior rule
distributions can be approximated with Variational
Bayes and Gibbs sampling. We use this PCFG for-
mulation of LDA in this work.

3.2 Experimental Models

This section describes both the LDA models and the
corresponding classification models used for our na-
tive language identification task on the ICLE cor-
pus (Version 2) (Granger et al., 2009). Following
Wong and Dras (2011), our experimental dataset
consists of 490 essays written by non-native English
users from seven different groups of language back-
ground — namely, Bulgarian, Czech, French, Rus-
sian, Spanish, Chinese, and Japanese. There are 70
documents per native language.

Unlike the documents often inferred by LDA
topic models which mostly consist of only content
words, we represent our documents with function
words instead, as this is typical for authorship re-
lated tasks, and does not allow unfair clues based
on different distribution of domain discourses. In
addition, we also experiment with documents repre-
sented by another type of lexical features for NLI,
PoS bi-grams.

3.2.1 LDA Models for NLI

For each of the models we describe below, we
experiment with different numbers of topics, t =
{5, 10, 15, 20, 25}. In terms of the total number of
PCFG rules representing each model, there are 490
of the first three rules as shown in the schema (Sec-
tion 3.1.2), 490 × t of the rule expanding Docj →
Topici, and t×v of the rule expanding Topici → w
(see Table 1). All the inferences are performed
with the PCFG-based Gibbs sampler implemented
by Mark Johnson.3

FW-LDA Models The first LDA model is func-
tion word based. The vocabulary used for generating
documents with this model is therefore a set of func-
tion words. We adopt the same set as used in Wong
and Dras (2011) which consists of 398 words. An
instance of the PCFG rule expanding Topici → w
is Topic1 → the; there are 398 such rules for each
topic.

3Software is available at http://web.science.mq.
edu.au/˜mjohnson/Software.htm.
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LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 5,910 10,350 14,790 19,230 23,670
POS-LDA 4,920 8,370 11,820 15,270 18,720

FW+POS-LDA 6,910 12,350 17,790 23,230 28,670

Table 1: Number of PCFG rules for each LDA model
with different number of topics t

POS-LDA Models The second model is PoS bi-
gram based. We choose bi-grams as it has been
shown useful in Tsur and Rappoport (2007), and
was used in Wong and Dras (2009). By tagging the
490 documents with Brill tagger (with Brown cor-
pus tags), we extract the 200 most frequent occur-
ring PoS bi-grams to form the vocabulary for this
model. An instance of the PCFG rule expanding
Topici → w is Topic1 → NN NN; there are 200
such rules for each topic.

FW-POS-LDA Models The third model com-
bines the first two. We note that this is not typical
of topic models: most form topics only over single
types, such as content words.4 The vocabulary then
consists of both function words and PoS bi-grams
with 598 terms in total. Thus, there are 598 instances
of the rule expanding Topici → w for each topic.

3.2.2 Classification Models for NLI
Here we exploit LDA as a form of feature space

dimension reduction to discover clusters of features
as represented by ‘topics’ for classification. Based
on each of the LDA models inferred, we take the
posterior topic distributions to use as features for
classifying into one of the seven native language
classes. All the classifications are performed with a
maximum entropy learner — MegaM (fifth release)
by Hal Daumé III.5

Baselines Each LDA classification model (as de-
scribed in the following) is compared against a cor-
responding baseline model. These sets of model
use the actual features themselves for classification
without feature reduction. There are three base-
lines: function word based with 398 features (FW-
BASELINE), PoS bi-gram based with 200 features
(POS-BASELINE), and the combination of the first
two set of features (FW+POS-BASELINE). For each

4Those that include multiple types typically treat them in
different ways, such as in the separate treatment of content
words and movie review ratings of Blei and McAuliffe (2008).

5MegaM is available at http://www.cs.utah.edu/
˜hal/megam/.

of these models, we examine two types of feature
value — relative frequency and binary.

Function Words Features used in this model (FW-
LDA) are the topic distributions inferred from the
first LDA model. There are five variants of this
based on number of topics (Section 3.2.1). The fea-
ture values are the posterior probabilities associated
with the PCFG rules expanding Docj → Topici

which correspond to the topic distributions θj of the
LDA representation.

PoS Bi-grams Similarly, this set of classification
models (POS-LDA) uses the topic probabilities in-
ferred from the second LDA model as features. Five
variants of this with respect to the different topic
numbers are examined as well.

Combined Features The last set of models com-
bine both the function words and PoS bi-grams as
classification features. The feature values are then
the topic probabilities extracted from the last LDA
model (the combined FW+POS-LDA model).

3.3 Evaluation
Often, LDA models are evaluated in terms of good-
ness of fit of the model to new data, by estimating the
perplexity or similar of unseen held-out documents
given some training documents (Blei et al., 2003;
Griffiths and Steyvers, 2004). However, there are
issues with all such proposed measures so far, such
as importance sampling, harmonic mean, Chib-style
estimation, and others; see Wallach et al. (2009)
for a discussion. Alternatively, LDA models can
be evaluated by measuring performance of some
specific applications such as information retrieval
and document classification (Titov and McDonald,
2008; Wang et al., 2009; Seroussi et al., 2011). We
take this approach here, and adopt the standard mea-
sure for classification models — classification accu-
racy — as an indirect evaluation on our LDA mod-
els. The evaluation uses 5-fold cross-validation.

4 Classification Results

4.1 Baseline Models
Table 2 presents the classification accuracies
achieved by the three baseline models mentioned
above (i.e. using the actual features themselves
without feature space reduction). These results are
aligned with the results presented by Wong and Dras
(2009) in their earlier work where binary feature
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Baselines Relative Freq Binary
FW-BASELINE 33.26 62.45
POS-BASELINE 45.92 53.87

FW+POS-BASELINE 42.65 64.08

Table 2: Classification performance (%) of each baseline
model – feature types of relative frequency and binary

values perform much better in general, although
the results are lower because the calculation was
made under cross-validation rather than on a sep-
arate held-out test set (hence with an effectively
smaller amount of training data). Combining both
the function words and PoS bi-grams yield a higher
accuracy as compared to individual features alone.
It seems that both features are capturing different
useful cues that are predictive of individual native
languages.

4.2 LDA Models
The classification performance for each of the LDA
models is presented in Tables 3 to 5. Three sets
of concentration parameters (Dirichlet priors) were
tested on each of the three models to find the best
fitted topic model: Table 3 contains results for uni-
form priors α = 1 and β = 1 (the default); Table 4
is for α = 50/t and β = 0.01 (as per Steyvers
and Griffiths (2007)); and Table 5 is for α = 5/t
and β = 0.01 (since for us, with a small number
of topics, the α = 50/t of Steyvers and Griffiths
(2007) gives much larger values of α than was the
case in Steyvers and Griffiths (2007)). On the whole,
weaker priors (α = 5/t and β = 0.01) lead to a bet-
ter model as evidenced by the accuracy scores.

As observed in Table 3, the model with 10 topics
is the best model under uniform priors for both the
individual feature-based models (FW-LDA and POS-
LDA) with accuracies of 50.61% and 51.02% respec-
tively, while the combined model (FW+POS-LDA)
performs best at 55.51% with 15 topics. It should be
noted that these are the outcomes of using the topic
probabilities as feature value. (We also investigated
the extent to which binary feature values could be
useful by setting a probability threshold at 0.1; how-
ever, the results are consistently lower.)

By setting a stronger α = 50/t and a much
weaker β = 0.01, the resulting models perform
no better than those with uniform priors (see Ta-
ble 4). The best performing models under this set-
ting are with 25 topics for the individual feature-
based models but with 20 topics for the combined

LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 44.89 50.61 44.29 47.14 49.59
POS-LDA 47.35 51.02 50.00 50.61 49.79

FW+POS-LDA 49.79 54.08 55.51 52.86 53.26

Table 3: Classification performance (%) of each LDA-
induced model (α = 1 and β = 1); feature values of
topic probabilities

LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 32.45 42.45 44.29 45.71 47.35
POS-LDA 44.29 46.53 50.82 48.76 50.82

FW+POS-LDA 47.75 49.39 51.02 54.49 50.81

Table 4: Classification performance (%) of each LDA-
induced model (α = 50/t and β = 0.01); feature values
of topic probabilities

model. This setting of priors was found to work
well for most of the text collections as suggested in
Steyvers and Griffiths (2007). However, given that
our topic sizes are just within the range of 5 to 25,
we also tried α = 5/t. The classification results
based on α = 5/t and β = 0.01 are showed in Ta-
ble 5. This setting leads to the best accuracy (thus
far) for each of the models with 25 topics — FW-
LDA (52.45%), POS-LDA (53.47%), FW+POS-LDA
(56.94%). The overall trajectory suggests that more
than 25 topics might be useful.

Overall, the classification performance for each
of the LDA-induced models (regardless of the pa-
rameter settings) performs worse than the baseline
models (Section 4.1) where the actual features were
used, contra the experience of Rajkumar et al. (2009)
in authorship attribution. The drop is, however, only
small in the case of PoS tags; the overall result is
dragged down by the drop in function word model
accuracies. And comparatively, they are still well
above the majority baseline of 14.29% (70/490), so
the LDA models are detecting something. On the
one hand it is not surprising that reducing a rela-
tively small feature space reduces performance; on
the other hand, other work (as discussed in Sec-
tion 2.2) had found that this had actually helped.
While these results are not conclusive — a more sys-
tematic search might find better values of α and β
— the results of the POS-LDA model suggests some
promise for applying the method to a much larger
feature space of similar terms: this could either be
the unrestricted set of PoS bi-grams, or of syntac-
tic structure features. We investigate this further by
looking more deeply in Section 5 at some of the ‘top-
ics’ (latent factors) found.
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LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 41.63 47.14 48.76 45.51 52.45
POS-LDA 43.47 49.79 51.22 52.86 53.47

FW+POS-LDA 51.84 50.61 53.88 52.62 56.94

Table 5: Classification performance (%) of each LDA-
induced model (α = 5/t and β = 0.01); feature values
of topic probabilities

5 Discussion

Despite the fact that all the LDA-induced models
had lower accuracy scores than the baseline mod-
els, the inferred topics (clusters of related features)
did demonstrate some useful cues that appear to be
indicative of a particular native language. Here we
present a discussion of three of these.

Analysis of FW-LDA It is often noted in the litera-
ture on second language errors that a typical error of
Chinese speakers of English is with articles such as
a, an, and the, as Chinese does not have these. Look-
ing at the best performing FW-LDA model (weak pri-
ors of α = 5/t and β = 0.01; 25 topics), we ob-
served that for the three topics — Topic8 (the 8th
feature), Topic19 (the 19th feature) and Topic20 (the
20th feature) — each of these is associated with a
much higher feature weight for Chinese as compared
to other native language groups (Table 6 shows the
analysis on Topic8). As for the function words clus-
tered under these topics, the appears to be the most
probable one with the highest probabilities of around
0.188, 0.181, and 0.146 for each respectively (i.e.
the PCFG rules of Topic8 → the, Topic19 → the,
and Topic20 → the); this is a higher weighting
than for any other word in any topic. To verify
that the topic model accurately reflects the data, we
found that the relative frequency of the in the doc-
uments produced by Chinese learners is the highest
in comparison with other languages in our corpus.
It seems that Chinese learners have a tendency to
misuse this kind of word in their English construc-
tions, overusing the: this parallels the example given
in Wong and Dras (2011), noted in Section 2.1, of
the overuse of rules like NP → NN NN (rather than
specifically ungrammatical constructions) character-
ising Chinese texts. However, there is no obvious
pattern to the clustering (at least, that is evident to
the authors)—if the clusters were to be grouping fea-
tures in a way representative of errors, one of these
topics might reflect misuse of determiners. But,
none of these appear to: in Topic8, for example, a

Language Feature Weight Relative Freq of the
Bulgarian (relative to Bulgarian) 0.0814

Czech -0.0457 0.0648
French 0.2124 0.0952
Russian 0.0133 0.0764
Spanish -0.0016 0.0903
Chinese 3.2409 0.1256
Japanese 0.4485 0.0661

Table 6: Analysis on FW-LDA for Topic8

Language Feature Weight Relative Freq of NN NN
Bulgarian (relative to Bulgarian) 0.0126

Czech 0.7777 0.0157
French 0.2566 0.0148
Russian 0.0015 0.0129
Spanish 0.0015 0.0142
Chinese 2.4843 0.0403
Japanese 0.4422 0.0202

Table 7: Analysis on POS-LDA for Topic1

appears only in 5th place, and no other determiners
appear at all in the upper end of the distribution.

Analysis of POS-LDA However, there is a differ-
ent story for POS-LDA, in terms of Chinese error
phenomena. As shown in Table 7, Chinese has the
highest feature weight for the first feature, Topic1

(and also for Topic4). To characterise this, we note
that the PoS bi-gram NN NN appears as the top bi-
gram under Topic1 (∼0.18) (and also occurs most
frequently among Chinese learners as compared to
other native language groups). Further, the next four
bi-grams are NN IN, AT IN, IN NN and NN NNS,
the last of which appears to be in complementary
distribution in Chinese errors with NN NN (i.e. Chi-
nese speakers tend to use the singular more often in
compound nouns, when a plural might be more ap-
propriate). This observation also seems to be con-
sistent with the finding of Wong and Dras (2011)
in which the production rule NP → NN NN, re-
flecting determiner-noun disagreement, appears to
be very common amongst Chinese learners. Topic1

thus seems to be somehow connected with noun-
related errors.

Our second instance to look at in some detail is

Language Feature Weight Relative Freq of PPSS VB
Bulgarian (relative to Bulgarian) 0.0111

Czech 0.7515 0.0137
French -0.7080 0.0074
Russian -0.2097 0.0116
Spanish -0.3394 0.0117
Chinese -0.1987 0.0059
Japanese 2.0707 0.0224

Table 8: Analysis on POS-LDA for Topic8
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Native Absolute Frequency
Languages I They Thou We You it she they we you Total
Bulgarian 229 66 0 52 38 1 0 297 338 219 1240
Czech 483 188 0 166 34 1 0 459 348 202 1881
French 161 55 0 71 4 2 0 282 261 90 926
Russian 355 100 1 76 28 1 0 332 286 110 1289
Spanish 157 52 0 49 6 2 1 361 360 107 1095
Chinese 143 52 0 9 2 2 0 259 66 30 563
Japanese 1062 104 0 115 13 4 0 310 473 71 2152

Table 9: Pronoun usage across seven native language groups (absolute frequency of words tagged with PPSS)

for Japanese. Our expectation is that there are likely
to be errors related to pronouns, as Japanese often
omits them. In his comprehensive survey of sec-
ond language acquisition, Ellis (2008) describes four
measures of crosslinguistic influence: error (neg-
ative transfer), where differences between the lan-
guages lead to errors; facilitation (positive transfer),
where similarities between the languages lead to a
reduction in errors (relative to learners of other lan-
guages); avoidance, where constructions that are ab-
sent in the native language are avoided in the second
language; and overuse, where constructions are used
more frequently in an incorrect way in the second
language, because of overgeneralisation.

A priori, it is difficult to predict which of these
types of influence might be the case. The clas-
sic study of avoidance by Schachter (1974) exam-
ines Persian, Arab, Chinese, and Japanese learners
of English, and their performance on using relative
clauses. It found that even though Persian and Ara-
bic have similar (right-branching) relative clauses
to English, and Japanese and Chinese have differ-
ent (left-branching) ones, the Japanese and Chinese
learners made fewer errors; but that that was be-
cause they avoided using the construction. On the
other hand, for a grammatically less complex phe-
nomenon such as article use, several studies such
as those of Liu and Gleason (2002) show that there
can be a developmental aspect to crosslinguistic in-
fluence, with initial errors or avoidance turning to
overuse because of overgeneralisation, which is later
corrected; intermediate learners thus show the great-
est level of overuse.

Looking at Topic8 and Topic20 under the POS-
LDA model, relative to other topics inferred, top-
ranking PoS bi-grams are mostly related to pronouns
(such as PPSS VB, PPSS MD, and PPSS VBD).
Much higher feature weights are associated to these
two topics for Japanese (as seen in Table 8 the

analysis on Topic8). Bi-grams of PPSS VB and
PPSS MD occur much more often in Japanese learn-
ers’ writings, and they are the first and the fifth terms
under Topic8, which seems to capture some of these
phenomena.

To understand what these were saying about
Japanese pronoun usage, we looked at a breakdown
of pronoun use (see Table 9). Most apparently, the
texts by Japanese speakers use more pronouns than
any others. As the texts in the ICLE corpus are writ-
ten by intermediate speakers, this could indicate a
very strong instance of overuse. Looking at the dis-
tribution of pronouns, the Japanese speakers make
much more use of the pronoun I than others: this has
been noted elsewhere by Ishikawa (2011) on differ-
ent corpora, particularly in the use of phrases such
as I think. (The phrase I think is over-represented
among Japanese speakers in our data also.)

Overall, then, POS-LDA seems to provide useful
clustering of terms, while FW-LDA does not. This
accords with the classification accuracies seen.

Analysis of FW+POS-LDA One question about
the combined models was whether topics split along
feature type — if that were the case, for a rough
2:1 ratio of function words to PoS bi-grams under
15 topics, there might be 10 topics whose upper
rankings are dominated by function words, and 5 by
PoS bi-grams. However, they are relatively evenly
spread: for the top 20 words in each topic (uniform
priors; 15 topics), the proportion of function words
varied from 0.22 to 0.44, mean 0.339 and standard
deviation 0.063. The topics thus appear to be quite
mixed.

Looking into the combined model, Topic3 and
Topic11 inferred by this model are amongst the fea-
tures that associated with high feature weights for
Chinese. Coinciding with our expectation, the two
potential terms indicative of Chinese — NN NN and
the — topped the lists of Topic3 and Topic11 re-
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spectively (where the also appears as the second
most probable in Topic3).

6 Conclusion

Although the LDA-induced classification models
with feature space reduction somewhat underper-
formed in relation to the full feature-based models
(the baselines), the ‘topics’ (latent factors) found
appear in fact to be capturing useful information
for individual native languages. Given the perfor-
mance of POS-LDA, and the fact that the cluster-
ing seems more intuitive here, it seems promising
to explore LDAs further with larger class of unre-
stricted PoS bi-grams, or of syntactic features such
as the parse tree substructures used in Wong and
Dras (2011). This could be complemented by using
the adaptor grammars of Johnson (2010) to capture
collocational pairings. Another potential approach
that could be combined with this is to deploy the
supervised LDA proposed by Blei and McAuliffe
(2008), which might produce feature clusters that
are more closely aligned to native language identi-
fication cues.
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Benjamin Börschinger, Bevan K. Jones, and Mark John-
son. 2011. Reducing grounded learning tasks to gram-
matical inference. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1416–1425, Edinburgh, Scotland, July.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting on As-
sociation for Computational Linguistics, pages 173–
180, Ann Arbor, Michigan, June.

Rod Ellis. 2008. The Study of Second Language Acqui-
sition, 2nd edition. Oxford University Press, Oxford,
UK.

Dominique Estival, Tanja Gaustad, Son-Bao Pham, Will
Radford, and Ben Hutchinson. 2007. Author profiling
for English emails. In Proceedings of the 10th Con-
ference of the Pacific Association for Computational
Linguistics (PACLING), pages 263–272.

Sylviane Granger, Estelle Dagneaux, Fanny Meunier,
and Magali Paquot. 2009. International Corpus of
Learner English (Version 2). Presses Universitaires de
Louvain, Louvian-la-Neuve.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences, 101(suppl. 1):5228–5235.

Shun’ichiro Ishikawa. 2011. A New Horizon in Learner
Corpus Studies: The Aim of the ICNALE Project. In
G. Weir, S. Ishikawa, and K. Poonpon, editors, Cor-
pora and Language Technologies in Teaching, Learn-
ing and Research, pages 3–11. University of Strath-
clyde Press, Glasgow, UK.

Mark Johnson. 2010. PCFGs, Topic Models, Adaptor
Grammars and Learning Topical Collocations and the
Structure of Proper Names. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 1148–1157, Uppsala, Sweden, July.

Moshe Koppel, Jonathan Schler, and Kfir Zigdon. 2005.
Automatically determining an anonymous author’s na-
tive language. In Intelligence and Security Informat-
ics, volume 3495 of Lecture Notes in Computer Sci-
ence, pages 209–217. Springer-Verlag.

Robert Lado. 1957. Linguistics Across Cultures: Ap-
plied Linguistics for Language Teachers. University
of Michigan Press, Ann Arbor, MI, US.

Dilin Liu and Johanna L. Gleason. 2002. Acquisition of
the Article the by Nonnative Speakers of English: An
Analysis of Four Nongeneric Uses. Studies in Second
Language Acquisition, 24:1–26.

Thomas Minka and John Lafferty. 2002. Expectation-
propagation for the generative aspect model. In Pro-
ceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence, pages 352–359.

Arun Rajkumar, Saradha Ravi, Venkatasubramanian
Suresh, M. Narasimha Murty, and C. E. Veni Mad-
havan. 2009. Stopwords and stylometry: A la-
tent Dirichlet allocation approach. In Proceedings of
the NIPS 2009 Workshop on Applications for Topic
Models: Text and Beyond (Poster Session), Whistler,
Canada, December.

123



J. Schachter. 1974. An error in error analysis. Language
Learning, 27:205–214.

Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert.
2011. Authorship attribution with latent Dirichlet al-
location. In Proceedings of the Fifteenth Conference
on Computational Natural Language Learning, pages
181–189, Portland, Oregon, June.

Mark Steyvers and Tom Griffiths. 2007. Probabilis-
tic Topic Models. In T. Landauer, D. Mcnamara,
S. Dennis, and W. Kintsch, editors, Handbook of La-
tent Semantic Analysis, chapter 21, pages 427–448.
Lawrence Erlbaum Associates.

Ivan Titov and Ryan McDonald. 2008. A joint model
of text and aspect ratings for sentiment summariza-
tion. In Proceedings of ACL-08: HLT, pages 308–316,
Columbus, Ohio, June.

Oren Tsur and Ari Rappoport. 2007. Using classifier fea-
tures for studying the effect of native language on the
choice of written second language words. In Proceed-
ings of the Workshop on Cognitive Aspects of Compu-
tational Language Acquisition, pages 9–16.

Hanna Wallach, Iain Murray, Ruslan Salakhutdinov, and
David Mimno. 2009. Evaluation Methods for Topic
Models. In Proceedings of the 26 th International
Conference on Machine Learning, Montreal, Canada.

Chong Wang, David Blei, and Fei-Fei Li. 2009. Simul-
taneous image classification and annotation. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1903–1910, June.

Xing Wei and W. Bruce Croft. 2006. LDA-Based Docu-
ment Models for Ad-hoc Retrieval. In Proceedings of
the 29th Annual International ACM SIGIR Conference
(SIGIR’06), pages 178–185.

Sze-Meng Jojo Wong and Mark Dras. 2009. Contrastive
analysis and native language identification. In Pro-
ceedings of the Australasian Language Technology As-
sociation Workshop 2009, pages 53–61, Sydney, Aus-
tralia, December.

Sze-Meng Jojo Wong and Mark Dras. 2011. Exploit-
ing parse structures for native language identification.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1600–1610, Edinburgh, Scotland, July.

124



Peer-reviewed papers: Poster presentations

125



A word-based approach for diacritic restoration in Māori 

 

 

John Cocks Te Taka Keegan 
Department of Computing and Mathematical 

Sciences 

Department of Computing and Mathematical 

Sciences 

University of Waikato University of Waikato 

Waikato, New Zealand Waikato, New Zealand 

chaopay@hotmail.com tetaka1@gmail.com 

 

 
 

 

 

 

Abstract 

This paper describes a supervised 

algorithm for diacritic restoration based on 

naive Bayes classifiers that act at word-

level. Classifications are based on a rich set 

of features, extracted automatically from 

training data in the form of diacritically 

marked text. The method requires no 

additional resources, which makes it 

language independent. The algorithm was 

evaluated on one language, namely Māori 

and an accuracy exceeding 99% was 

observed. 

1 Introduction 

The Māori language, along with other Polynesian 

languages, features a written diacritic mark above 

vowels, signifying a lengthened pronunciation of 

the vowel. Māori texts without diacritics are quite 

common in electronic media. The problem arises 

as most keyboards are designed for English and the 

process of inserting diacritics becomes laborious. 

In all but the most ambiguous cases, a native 

reader can still infer the writer’s intended meaning. 

However, the absence of diacritics can still confuse 

or slow down a reader and it makes pronunciation 

and meaning difficult for learners of the language. 

For other languages using diacritics, such as 

German or French, this problem can typically be 

handled by a simple lexicon lookup procedure that 

translates words without diacritics into the properly 

marked format (Wagachar and Pauw, 2006). 

However, this is not the case for languages such as 

Māori where comprehensive lexicons are not 

publically available. 
 

This paper proposes a machine learning approach 

to diacritic restoration that employs a naive Bayes 

classifier that acts at word-level. The proposed 

algorithm predicts the placement of diacritics on 

the basis of local word context. The algorithm is 

contrasted with a traditional grapheme-based 

algorithm, originally proposed by Scannell (2010), 

showing a significant increase in accuracy for 

diacritic restoration in Māori. 

 

The remainder of the paper is organized as follows: 

In Section 2, previous work on diacritic restoration 

is discussed. Section 3 outlines the use of diacritics 

in Māori. Section 4 describes the dataset used in 

training and testing each model. Section 5 outlines 

the baseline models for diacritic restoration used in 

this paper. Section 6 discusses the Naive Bayes 

classifier. Section 7 and 8 describe the grapheme-

based and word-based models, respectively. 

Section 9 discusses the results obtained from the 

baseline, grapheme-based and word-based models. 

Finally, future work is discussed in Section 10. 

2 Previous Work  

Until recently, the majority of research on diacritic 

restoration was directed at major languages such as 

German and French and less emphasis directed 

towards minority languages. These methods 

typically employ the use of large lexicons which 
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are not publically available for resource scarce 

languages. In recent past, Pauw and Schryver 

(2009) presented a memory-based approach to 

diacritic restoration that act at the level of the 

morpheme for numerous African languages, 

reporting scores exceeding 90%. Scannell (2010) 

describes a similar approach, reporting a high 

degree of accuracy for numerous languages using 

training data in the form of a web-crawled corpus. 

Moreover, the diacritic restoration methods 

presented by Scannell (2010) report a score of 

97.5% for Māori. This can be seen as an increase 

of 1% over the baseline method which chooses the 

most frequent pattern in the training set. In order to 

determine the feasibility of the approach proposed 

in this paper, the experiments outlined by Scannell 

(2010) are reproduced using a large, high quality 

corpus and the scores are contrasted with those 

obtained from the proposed word-level algorithms.  

3 Diacritics in Māori 

The Māori alphabet consists of 15 characters: 10 

consonants and 5 vowels. Vowels in Māori can be 

pronounced both short and long, so in written 

form, long vowels carry a diacritical mark. In 

Māori texts where diacritics have been omitted, 

long vowels are predominately substituted for short 

vowels. Table 1 shows the complete set of vowels 

in Māori. 

 

Short a e i o u 

Long ā ē ī ō ū 
Table 1: Short and long vowels in Māori 

 

During substitution, genuine ambiguity arises 

when two or more distinct words have the same 

base word-form. To exemplify this ambiguity, 

consider the Māori word wāhine (women). The 

base word form after diacritics have been removed 

is wahine (woman – singular of wāhine).  

4 Dataset 

The diacritic restoration algorithms presented in 

this paper were trained and evaluated on a fully 

diacritically marked corpus containing 

approximately 4.2 million words. The corpus was 

compiled from a comprehensive collection of short 

stories, bible verses, dictionary definitions and 

conversational texts. Table 2 displays statistical 

data extracted from the corpus. 
 

1. Words 4,281,708 

2. Words with diacritics 859,083 
(20.06%) 

3. Words with 0 
ambiguity 

1,656,051 
(38.68%) 

4. Words with 1 
ambiguity 

2,346,874 
(54.81%) 

5. Words with 2 
ambiguities 

98,995 
(2.31%) 

6. Words with 3 or 
more ambiguities 

179,788 
(4.20%) 

Table 2: Statistical corpus data 
 

The second statistic shows on average, every fifth 

word in the corpus contains a diacritic. More 

interestingly, the third statistics shows 

approximately 39% of the words have no 

ambiguity and can be correctly restored with a 

simple lookup procedure; whereas an inflated 61% 

of the words are ambiguous, and cannot be 

correctly restored without classification.  

5 Baseline Models 

In order to determine the significance of the word-

based algorithms, two baseline models are defined. 

The first baseline model assumes no diacritic 

markings exist. The second baseline model 

identifies candidate words for diacritic marking, 

and chooses the most frequent pattern observed in 

the training set. Candidate words are identified as 

sharing the same base word-form after diacritics 

have been removed. For example, the words āna, 

ānā and anā share the same base word-form ana. If 

two or more candidate words are observed equally, 

the model randomly chooses a candidate word. 

6 Naive Bayes Classifier 

In spite of their naive design, naive Bayes 

classifiers are widely used in various classification 

tasks in natural language processing. Naive Bayes 

classifiers are a set of probabilistic learning 

algorithms based on applying Bayes’ theorem with 

the naive assumption of independence between 

features. Given a class variable c and a dependent 

feature vector x1 through xn, Bayes’ theorem states 

the following relation: 
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



n

i

P(xi|c)P(c) , ..., xn)P(c|x
1

1                        (1) 

P(c) is interpreted as the conditional probability of 

class c occurring, and P(xi|c) is interpreted as the 

conditional probability of attribute xi occurring 

given class c.  

 

To find the most likely classification cf, given the 

attribute values x1 through xn, equation (1) can be 

rewritten as: 





n

i

cxiPc Pcf
1

)|()(maxarg                         (2) 

In practice, equation (2) often results in a floating 

point underflow as n increases. It is therefore better 

to perform the computation by adding logarithms 

of probabilities instead of multiplying probabilities 

as in (3). 









 



n

i

P(xi|c)P(c) cf
1

loglogmaxarg          (3) 

7 Grapheme-Based Model 

Scannell (2010) employs a naive Bayes classifier 

at the grapheme-level, reporting a high degree of 

accuracy for numerous languages. These classifiers 

are trained using various feature sets, each 

consisting of grapheme-based n-grams relative to 

the target grapheme. Each n-gram is represented by 

the vector (o, n), where o represents the offset of 

the n-gram from the target grapheme, and n 

represents the length of the n-gram. These feature 

sets are outlined below. Note that this paper 

proposes a new grapheme-level feature set: FSG5. 

 

 FSG1: Features (-3, 1), (-2, 1), (-1, 1), (1, 1), 

(2, 1), (3, 1). That is the three monograms on 

either side of the target grapheme. 

 

 FSG2: Features (-5, 1), (-4, 1), (-3, 1), (-2, 1), 

(-1, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1). That 

is the five monograms on either side of the 

target grapheme. 

 

 FSG3: (-4, 3), (-3, 3), (-2, 3), (-1, 3), (0, 3), (1, 

3), (2, 3). That is the two trigrams on either 

side of the target grapheme and the three 

trigrams containing the target grapheme. 

 

 FSG4: (-3, 3), (-1, 3), (1, 3). That is the single 

trigram on either side of the target grapheme 

and the single trigram containing the target 

grapheme. 

 FSG5: (-2, 5), (-3, 5), (-1, 5). That is the n-

grams of length 5 centered on the target 

grapheme, and the two n-grams of length 5 

starting at offsets -3 and -1. 

8 Word-Based Model 

This paper improves upon previously mentioned 

approaches to diacritic restoration by applying 

diacritic classification at the word-level as opposed 

to the grapheme-level. This approach extracts 

word-based n-grams relative to the target word. 

These features are outlined below: 

 

 FSW1: Features (-1, 1). That is the monogram 

preceding the target word. 

 

 FSW2: Features (-2, 2). That is the bigram 

preceding the target word. 

 

 FSW3: Features (-3, 3). That is the trigram 

preceding the target word. 

 

 FSW4: Features (1, 1). That is the monogram 

following the target word. 

 

 FSW5: Features (1, 2). That is the bigram 

following the target word. 

 

 FSW6: Features (1, 3). That is the trigram 

following the target word. 

 

 FSW7: Features (-1, 1), (-2, 2). That is the 

monogram and bigram preceding the target 

word. 

 

 FSW8: Features (1, 1), (1, 2). That is the 

monogram and bigram following the target 

word. 

 

 FSW9: Features (-1, 1), (1, 1). That is the 

monogram on either side of the target word. 

 

 FSW10: Features (-2, 2), (-1, 1), (1, 1), (1, 2). 

That is the monogram and bigram on either 

side of the target word. 
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 FSW11: (-1, 3), (-2, 2), (1, 2), (-1, 4), (-2, 4). 

8.1 Naive Bayes Estimates 

In order to apply a Naive Bayes classifier to the 

task of diacritic restoration, estimates for the 

parameters P(c) and P(xi|c) in equation (3) 

outlined above must be found. Assuming a 

diacritically marked text T is a sequence of words 

wi through wn, where n is the number of words in 

the text, T can be represented as: 

 

, ..., wn, wwT 21                                             (4) 

 

Further, assume each word wi in T has an 

associated base word-form bi, where bi is the result 

of removing all diacritics from wi. Thus a text T 

has a base word-form sequence Tb associated with 

it, which can be written as follows: 

 

, ..., bn, bbTb 21                                              (5) 

 

Let Wd be the set of distinct words in T and let Bd 

be the set of distinct base word-forms in Tb. 

Further, let f : B → Ws be a function that maps a 

base word-form bi to a set of words Ws, where Ws 

is a subset of Wd, and each word in Ws has a 

corresponding base word-form equal to bi. The 

goal is to find, for each base word-form bi in Tb, 

the word w in f(b), such that w maximizes the 

probability for all words in f(b). Using Bayes 

theorem in (3), the prior probability for each word 

w in f(b) can be estimated by: 

 

N

Nw
wP )(                                                         (5) 

Where Nw is the number of occurrences of word w 

in text T, and N is the total number of occurrences 

of each word in f(b) in text T. Further, the 

conditional probability for each word w in f(b) is 

estimated as: 

 

 
nNi

Nwi
wP






1
                                                 (6) 

 

Where Nwi is the number of occurrences of word 

w with feature i in text T, and Ni is the total 

number of occurrences of each word w in f(b) with 

feature i in text T, and n is the number of words in 

f(b). To avoid zero estimates, Laplace smoothing is 

employed. 

9 Evaluation 

To evaluate the accuracy of the algorithms, a 10-

fold cross validation is used. For each experiment, 

the corpus is partitioned into ten subsets where one 

subset is used as test data while the remaining nine 

are used as training data. The experimental results 

shown in table 3 show that the word-based naive 

Bayes models significantly outperform the 

grapheme-based naive Bayes models. Evidently, 

the FSW11 feature set resulted in the highest 

accuracy of 99.01%. This can be seen as an 

increase of 1.9% over the second baseline method 

which chooses the most frequent pattern in the 

training data. 

 
Feature Set Accuracy (%) 

(proportion of words) 

Baseline1 79.94 

Baseline2 97.11 

FSG1 79.94 

FSG2 79.94 

FSG3 84.45 

FSG4 87.02 

FSG5 95.07 

FSW1 98.50 

FSW2 98.33 

FSW3 97.94 

FSW4 98.28 

FSW5 98.34 

FSW6 98.01 

FSW7 98.65 

FSW8 98.54 

FSW9 98.65 

FSW10 98.85 

FSW11 99.01 

Table 3: Accuracy for the baseline, grapheme-

based and word-based algorithms 

 

A paired t-test was performed to determine if the 

increase in accuracy between Baseline2 and 

FSW11 feature set was significant. The mean 

increase in accuracy (M=1.8928, SD=0.0234, 

N=10) was significantly greater than zero, 

t(9)=255.68, two-tail p=1.08989E-18, providing 

evidence that FSW11 had a significant increase in 

accuracy over the Baseline2 feature set. A 95% 

C.I. about mean accuracy increase is (1.8761, 

1.9096). 
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10 Conclusion and Future Work 

This paper presented a method for diacritic 

restoration based on naive Bayes classifiers that act 

at grapheme and word level.  The use of grapheme-

based naive Bayes classifiers in the context of 

diacritic restoration has already been proposed 

earlier by Scannell (2010). The experiments 

presented in this paper extend upon the work by 

Scannell by proposing training naive Bayes 

classifiers at the word-level opposed to the 

grapheme-level. The results show that a word-

based naive Bayes model can significantly 

outperform a grapheme-based naive Bayes model 

for diacritic restoration in Māori. This paper 

provides a case study for other Polynesian 

languages which are closely related to Māori. For 

future work, the algorithms outlined in this paper 

will be evaluated across several of these languages 

where appropriate training data exists in the form 

of diacritically marked text.  
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Abstract

This paper presents an experimental study on
the interpretation of the complement anaphora
the others in inter-sentential discourse. It
aims to offer an answer to the following
two empirical questions. First, how comple-
ment anaphora denote the “complement set”,
a set of referents that includes those referents
not denoted by the matching anaphoric an-
tecedent. Second, what are the exact interpre-
tation principles that govern the anaphoric po-
tential of complement anaphora. The answers
to these two questions shed light on how com-
plement anaphora fit into a broader theory of
anaphora resolution, and what is the most ac-
curate logical and psychological model of this
aspect of grammar.

1 Introduction

Complement anaphora can be seen as a particu-
lar sub-set of natural language anaphora. Noun
phrases (NPs) that act as complement anaphora usu-
ally occur in inter-sentential environments (e.g. dis-
courses). These NPs appear to refer not to the rel-
evant set of discourse referents currently under dis-
cussion1, but rather to the set making up the “rest”
of discourse referents.

∗We would like to thank the participants for their involve-
ment in the experiment. We would also like two thank three
anonymous reviewers for suggestions and comments, which
we think helped in improving the paper. The second author
would like to thank his Princess for the constant support and
encouragement.

1We adopt the standard practice of dynamic semantics ap-
proaches and label as “discourse referents” the individuals in
the Universe of Discourse denoted by NPs (Kartunnen, 1976;

The semantic properties of complement anaphora
were first discussed in Moxey and Sanford (1993),
who investigated these anaphora from an experimen-
tal perspective. They can be illustrated in a simple
and pre-theoretical way via the following examples:

(1) Few children ate their ice-cream. They chose
strawberry flavor

(2) Few children ate their ice-cream. They threw
it around the room instead

(3) Few children ate their ice-cream. The others
threw it around the room instead

Consider the mini-discourses in examples (1)-(3) as
being uttered in a context in which there are nine
children, but only three children ate their ice-cream
out of these nine. The first sentence in each mini-
discourse denotes the set of three children that ate
their ice-cream, and thus focuses on a certain rel-
evant set of children. The anaphoric (pronominal)
NPs they and the others, however, differ with respect
to the anaphoric relation they establish. In (1), they
refers to the three children who ate ice-cream, and
combines with the second verb phrase (i.e. chose
strawberry flavor), which further explains the chil-
dren’s choices. In (2), they refers to those children
who did not eat their ice-cream, but decided to do
something else with it, as the second verb phrase
clarifies (i.e. threw it around the room).

Kamp, 1981; Heim, 1982). We assume that these anaphora
denote “sets” of referents, even if our analysis is compatible
with theories of Plurality, both “static” (Schwarzschild, 1996;
Link, 1998); or dynamic, as in Discourse Representation The-
ory (DRT) (Nouwen, 2003; Kamp, van Genabith and Reyle,
2005; Brasoveanu, 2008).
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The discussion in Moxey and Sanford (1993) also
indirectly mentions that some pronominal NPs may
explicitly refer to this “other” set. This reference to
the set of “ice-cream-throwing children” is made ex-
plicit by the special type of plural pronominal NP the
others, in (3). This plural pronominal NP explicitly
refers to those children who are involved in a differ-
ent event than the one described in the first sentence.
These children form a different, possibly “comple-
mentary” set to the set of (few) ice-cream-eating
children. Although Moxey and Sanford (1993) do
not offer experimental evidence on the others, they
suggest that this NP should explicitly refer to this
“other” set of referents. These findings motivated
Moxey and Sanford (1993) to introduce the term
“complement anaphora”, a type of anaphora that de-
notes some other set of referents than the previously
introduced one(s).

Even if the ability of these anaphora to refer to
this specific set of referents is taken more or less as
uncontroversial, the exact status of this set appears
to be subject to debate. The two goals of this paper
concern some central themes of these debates. A
first goal is to offer experimental evidence regarding
the interpretation of complement anaphora, focus-
ing on the still poorly studied the others2, by native
speakers of English. A second goal is discuss which
of the current approaches to complement anaphora
found in the literature appears to be supported by
the experimental evidence offered in this paper.

So, the general aim of this paper is to shed light
on how different mechanisms of anaphora resolu-
tion proposed in the literature can model comple-
ment anaphora. We will propose that mechanisms
of anaphora resolution behind complement anaphora
are the same as other anaphora, but also that the set
denoted by complement anaphora involves a specific
computation of its members. So, we will suggest
that a logically and psychologically precise model
of anaphora resolution must also incorporate a way
to compute complement anaphora, as anaphora de-
noting “other” sets in discourse.

The paper is organized as follows. The rest of
the introduction presents some background assump-

2We leave aside any discussion on whether NPs are
anaphoric or referential. We will focus on inter-sentential, and
thus anaphoric examples, in this paper Poesio and Vieira (1998);
Elbourne (2005); Schwarz (2009).

tions (section 1.1), and three sets of theories on com-
plement anaphora (section 1.2). Section 2 presents
an experiment that aims to adjudicate between these
competing theories. Section 3 offers some conclu-
sions.

1.1 Background: Generalized Quantifier
Theory

In this section we discuss some notions of Gener-
alized Quantifier Theory (GQ theory) (Barwise and
Cooper, 1981), shared by all approaches to comple-
ment anaphora. We follow a simple presentation of
these core assumptions, offered in Nouwen (2003).

GQ theory assumes that standard declarative sen-
tences of English can be assigned the syntactic struc-
ture [[DetNP ]V P ]. This structure is interpreted as
the relation Det′(A,B). Taking the first sentence
in examples (1)-(3), if Det is a determiner such as
few, then A is the set denoted by the NP in restric-
tor position. The label “restrictor” refers to the role
of an NP as a constituent that restricts the range of
the determiner it combines with. This NP combines
with a determiner (e.g. children, to form the gener-
alized quantifier few children). The set B is the set
denoted by a Verb Phrase (VP) in the nuclear scope
position (e.g. ate their ice-cream). The label “nu-
clear scope” refers to the minimal syntactic unit on
which a Generalized Quantifier scopes over. The in-
terpretation of this structure will amount to a relation
between two sets, plus a condition on the cardinality
of this relation. This is roughly represented by the
relation Few′(A,B), which can be informally read
as: “there are referents that are children, and are eat-
ing ice-cream, and are small in number”.

A key property is conservativity. The proposition
denoted by the first sentence in (1)-(3), which we
represent as Few′(A,B), is equivalent to the propo-
sition represented as Few′(A,A ∩ B). This is the
proposition obtained by “selecting” those elements
of the restrictor set which are also part of the nu-
clear scope set. In words, if few children ate their
ice-cream, then few children were children who ate
their ice-cream.

As Nouwen (2003) discusses, anaphora select
their antecedent among the sets introduced by a pre-
vious sentence or discourse. One set that can act as
an antecedent is the maximal set A, but anaphora can
also refer to the set A ∩ B, known as the reference

132



set. In the previously mentioned scenario, the nine
boys under discussion correspond to the maximal set
A, which is the denotation of the restrictor NP chil-
dren. The reference set A∩B corresponds to the set
of children who are children having eaten ice-cream.
These assumptions are shared by all approaches to
complement anaphora. These approaches differ in
how they explain that they in (2) and the others in
(2) can denote the so-called complement set. We will
discuss these differences, and the nature of this set,
in the next section.

1.2 Three Approaches

1.2.1 The “Complement Set” Approach
The first type of approach stems from the experi-

mental work of Moxey and Sanford (1993); Sanford
et al. (1994), and includes dynamic semantics pro-
posals (Kibble, 1997; Nouwen, 2003). Their shared
assumption is that complement anaphora select the
complement set as their semantic antecedent. This
set is defined below.

Sanford and associates offered this approach be-
cause they investigated the difference in anaphoric
potential between closely related quantifiers, e.g. a
few vs. few, or vs. few of the. The experiments
mainly involved a continuation task. In this task,
participants were offered a paper on which the first
sentence of a mini-discourse, followed by the pro-
noun they, was written. Participants were invited to
continue the mini-discourse by completing the sec-
ond sentence, without any specific restrictions on its
content.

Participants were asked to complete incomplete
mini-discourses such as:

(4) A few children ate their ice-cream. They. . .

(5) Few of the children ate their ice-cream.
They. . .

(6) Few children ate their ice-cream. They. . .

Once participants completed this task, they were
asked to which set of referents they referred to, in
their continuation. Using these examples as a guide,
the five possible answers to this follow-up question
were: children in general, all the children, the chil-
dren who ate ice-cream, the children who did not eat
ice-cream, or none of the above.

The main finding was that, while mini-discourses
such as (4) seldom licensed continuations involving
complement anaphora, mini-discourses such as (5)
and (6) could license continuations involving com-
plement anaphora, as in e.g. (2). When participants
chose a complement anaphora continuation, they de-
fended their choice by claiming that they referred to
those referents that were not involved in the event
described by the previous sentence. The authors
suggested that this set of children corresponded to
the complement set, the set-theoretic difference be-
tween maximal set and the set denoted by the VP,
represented as A − B. So, in the opportune syntac-
tic and discourse-bound context, reference to com-
plement anaphora was possible. Although Sanford
and associates did not investigate the others and sim-
ilar “overt” complement anaphora, they suggested
that the same considerations would hold for these
anaphora.

The proposal in Nouwen (2003) offers a more pre-
cise, dynamic treatment of this phenomenon. Ac-
cording to this treatment, anaphoric relations are
identity relations between sets of referents. Both
they and the others, as anaphoric expressions, es-
tablish an identity between a novel referent set (e.g.
the set C) and a previous referent set. Comple-
ment anaphora differ from other anaphora because
they establish a relation between this novel refer-
ent and the complement set, the identity relation
C = (A − B)3. So, speakers should interpret they
in (2) and (3) as denoting the relation C = (A−B),
according to this proposal.

1.2.2 The “Sloppy Reference” Approach
The second type of approach contends that refer-

ence to the complement set is a consequence of the
possibility that anaphoric elements may have collec-
tive or distributive reference4. An anaphoric pro-
noun may receive either interpretation, depending
on whether it combines with a distributive or col-
lective predicate.

3This notation for anaphora resolution, borrowed from DRT,
is only used in the first two chapters of Nouwen (2003), as a
different approach (and notation) is developed in the remainder
of Nouwen’s work.

4This distinction focuses on whether predicates can apply
to each referent in the denotation of an NP (distributive refer-
ence), or to these referents as “collective” (collective reference)
(Nouwen, 2003; Link, 1998; Winter, 2001).
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Works such as Corblin (1996); Geurts (1997) ob-
served that, under Sanford et al.’s approach, the pro-
noun they appears to violate a general principle of
anaphoric relations. Anaphoric elements must re-
ceive their interpretation from an overt antecedent,
either introduced by a NP in previous discourse, or
accessible from the context (Elbourne, 2005; El-
bourne, 2008). In cases such as (2) and (3), both
they and the others appear to violate this assump-
tion. Their interpretation seems to depend on a ref-
erent not explicitly introduced, but rather “implied”
by few children, the only NP that can act as an
anaphoric antecedent.

As an alternative explanation, Geurts (1997) pro-
poses5 that complement anaphora interpretations
arise when a pronoun refers to the maximal set A.
If P is a predicate (e.g. “eating ice-cream”) then a
combination of pronoun and predicate (P (A)) may
receive a collective interpretation. In this case, the
predicate holds true even if a subset D of A makes it
true (we have D ⊆ A (read: “D is a subset of A”). A
sentence involving a complement anaphora will thus
denote P (D), the contextually salient set of children
eating ice-cream, from which “other” children are
excluded. This account does not treat overt comple-
ment anaphora NPs such as the others and, as Geurts
(1997) concedes, may license that the contextually
salient set may be even empty, given its “sloppy”
reference.

1.2.3 The “Lexicalist” Approach

The third type of approach is exemplified by re-
cent works such as Kotek (2008); Dotlačil (2010).
These approaches assume that the lexical, compo-
sitional semantics of the others determines which
are the referents that make up the complement set.
Three assumptions are relevant.

First, pronouns are considered as semantically
equivalent to definite NPs. Definite NPs are then
assumed to denote the maximal set. So, they and the
others are respectively considered as semantically
equivalent to the children and the other children6.

5Neither Corblin (1996) nor Geurts (1997) offer a formal
analysis of these properties, in their discussion. The proposed
formal analysis is ours, not theirs, but should hopefully make
their claims precise.

6This is a standard assumption in D-type approaches to pro-
nouns Elbourne (2005), Elbourne (2008).

The adjectival element others contributes by com-
bining with an NP and restricting the maximal set A
to a sub-set O that excludes previously mentioned
(sets of) referents. The relation O ⊆ A represents
the relation between this set and the maximal set.

Second, the set O is a disjointed set from the
set denoted by the previous VP (“contrast set”, in
Dotlačil’s terms), a property represented as ¬(O ∩
B). In words, no referent which is part of the others
set is also a referent that ate his ice-cream. So, the
others denotes a sub-set of the maximal set that does
not include previously referred referents, a property
represented as (O ⊆ A ∩ ¬(O ∩B))7.

Third, anaphora are combined and interpreted
with respect to their clause-mate VP. The second
sentence in (3), according to this assumption, de-
notes the set P (O ⊆ A ∩ ¬(O ∩ B)). In words,
the second sentence denotes the set of children that
throw their ice-cream against the wall (i.e. P (O ⊆
A)), and that also do not eat their ice-cream (i.e.
P (¬(O ∩ B)). So, this approach includes both the
“lexical” content of the others and other comple-
ment anaphora, but also its ability to establish an
anaphoric relation in discourse. It captures the intu-
ition that these anaphora denote the complement set
as a result of explicitly individuating this referent in
discourse.

1.2.4 Three Approaches: Predictions
These three types of approaches appear only to

differ with respect to their assumption on the compu-
tation of the complement set, and its resulting deno-
tation. In the opportune context, however, each ap-
proach makes slightly different predictions with re-
spect to the interpretation of complement anaphora.
These predictions are as follows.

The first approach predicts that complement
anaphora denote a set of referents which have not
been involved in previous discourse, the comple-
ment set (i.e. A−B). The second approach predicts
that complement anaphora may denote any “group”
which is part of the maximal set. This group may be
distinct from a previously mentioned set of referents
(i.e. P (D) ⊆ P (A), D being a contextually relevant
sub-set), but holds no “special” status as a comple-

7This is a partial mis-representation of Dotlačil’s approach,
since Dotlačil couches his approach in a lattice-theoretic
perspective.
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ment set. The third approach proposes an interme-
diate position. It predicts that the complement set is
the result of first finding those involved in a “new”
event, and then by excluding previously mentioned
referents in discourse (i.e. P (O ⊆ A∩¬(O ∩B))).

The next section offers an experimental study that
attempts to adjudicate among these three categories.
It does so by studying how speakers interpret the
complement anaphora the others, on which there
is a dearth of empirical evidence (Moxey and San-
ford, 1993). However, the results may be extended
to other complement anaphora, as we discuss in the
conclusions.

2 The study

2.1 Participants

The experiment involved adult participants (N=20).
All participants were native speakers of English and
undergraduate students of Psychology, and received
course credit for their attendance. Between one and
three participants attended a session, for a total of
fifteen minutes of experiment time.

2.2 Procedure

The experiment involved a variant of the Truth-Value
Judgement Task (TVJ task) (Crain and Thornton,
1999). Our choice is based on the following rea-
son. The continuation task used by Sanford et al.
(1994) allowed participants to choose a continuation
of a discourse which, in the opportune conditions,
licensed a complement anaphora reading. However,
the nature of the task would make the testing of the
precise interpretation rather problematic. Since the
task is inherently a production task, it does not al-
low an easy testing of possible differences in com-
prehension among speakers, and thus the testing of
our experimental predictions.

The TVJ task provides a simple way to test speak-
ers’ intuitions and their competence of grammar.
One type of a standard TVJ task, the so-called de-
scription mode, involves two experimenters. One
experimenter acts out the scenario and narrates the
events. The other experimenter controls a hand-
puppet (e.g. Kermit the Frog). At the end of the
story, the puppet offers a yes-no question to the par-
ticipant about the story, which is aimed at testing
whether a participant can interpret a sentence as per

predictions.
After a participant offers an answer, a follow-up

question is usually offered, in order to test whether
his answer is based on a correct understanding of
the events described by the story. When a TVJ task
involves yes-no questions, the story should describe
events in such a way that both a “yes” and a “no” an-
swer should be possible answers. However, only one
answer correctly matches the outcome of the story.
This condition is known as the Condition of Plausi-
ble Dissent (Crain & Thornton 1999: chapter 5).

We briefly describe an example of the TVJ task
used to test speakers’ interpretation of the univer-
sal quantifier every, to elucidate the structure of the
task. In a description mode story, a participant and
Kermit the frog observe a story in which five horses
are involved in a jumping contest. Each of them has
to jump over a fence. Four of them are successful,
but one of them trips before completing the task, so
that he is unsuccessful at it.

At the end of this story, Kermit the frog asks a
sentence like the one in (7):

(7) Has every horse jumped over the fence?

If one assumes that the participant has a interpre-
tation of every as denoting the universal quantifier,
then the participant will offer a “no” as answer, pos-
sibly defending his or her choice by observing that
one horse did not complete the target task. Although
a “yes” answer could have been entertained, at some
point (i.e. when the fallen horse almost completed
the jump), the end result made only the “no” answer
as the correct one.

The TVJ task thus allows to test participants’
comprehension of sentences in a simple and experi-
mentally sound way, whether participants are adults
or children. For the purposes of testing our experi-
mental hypothesis, the following changes to the task,
involving materials and procedure, were made.

First, rather than acting out the task, we prepared a
power-point presentation depicting a story in which
a number of characters were involved. An introduc-
tion preceded this story, in which the main charac-
ters and the instructions were presented to the par-
ticipants.

Second, each slide included a short text that de-
scribed the events in which one or more tank engines
were involved, and which was matched with a pic-
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ture illustrating the described events. Instead of us-
ing a puppet (Kermit the frog) as in the original TVJ
task, we displayed a character known as “Mr. Little
Bears” on the PPT screen. Mr. Little Bears played
the same role as the puppet.

Third, participants received an answer sheet be-
fore the start of the experiment. They were invited to
choose their answer between two different options:
“yes” and “no”. After Mr. Little Bears’ question at
the end of the story, participants were invited to cir-
cle their answer of preference, according to their in-
tuitions. After the experiment, a follow-up question
was offered, by asking participants why they offered
their answer. For each participant, the main experi-
menter wrote each participant’s reason on offering a
“yes” or a “no” answer, on a separate sheet. This
choice allowed participants to defend their choice
by explaining how they “computed” the complement
set.

2.3 Materials

The main characters in the story were Thomas the
tank engine, and nine other characters from the
eponymous toy line. This list of tank engines in-
cluded Thomas, Duncan, Mighty Mac, Spencer,
Arthur, Rosy, Percy, Diesel 10 and Billy. Mr. Lit-
tle Bears was introduced as an amnesiac bear who
would watch the stories with the participants. Be-
cause of his bad memory, Mr. Little Bears had to
ask a question on the story presented to the experi-
menters.

The story presented the following set of events.
The nine tank engines had to perform two inspec-
tions about two alleged ghosts’ infestations: one at
the Smurfs’ castle, one at the Power Puffs’ Hotel8.
Since they had to check two locations, they split
in two groups. One group, composed by Thomas,
Duncan and Mighty Mac went to the Smurfs’ cas-
tle. Another group, composed by the remaining six
tank engines, went instead to the Power Puffs’ Ho-
tel. Thomas was in charge of writing the official re-
port. So, after verifying that there were no ghosts
at the Smurfs’ castle with Galaxy, he also went to
check and sign off the documents with Blossom, the

8The choice of “random” fictional locations has a goal: that
participants may not be biased by real world knowledge (of car-
toons) in their answers, should they have any doubts. See Crain
and Thornton (1999) for discussion.

owner of the Power Puffs’ Hotel. Thus, Thomas
(and Thomas only) visited both locations by the end
of the story.

Each slide depicted one tank engine reaching one
of the two locations. The tank engines that went
to the Smurfs’ castle were introduced first, then the
remaining six that went to the Power Puffs’ Hotel
were introduced. The text below each slide closely
matched the pictures, and stated that which engine
was shown as reaching either location. Thomas was
presented as the last tank engine that reached the
Power Puffs’ Hotel, as he arrived from the Smurfs’
castle. A subsequent slide presented Thomas as
compiling the documents with Blossom, thus con-
cluding the story.

After the story, Mr. Little Bears appeared in a
slide and offered a question to the participants. We
chose the quantified NP few tank engines as a rel-
evant antecedent, for the following reason. As re-
ported by Moxey and Sanford (1993), NPs such
few tank engines almost always license complement
anaphora interpretation, in the right context. We also
chose the pronominal NP the others as a target com-
plement anaphora, since it is the only complement
anaphora discussed in relevant detail by each of the
three types of approach.

The question was:

(8) Few tank engines have gone to the Smurfs’
castle. Have the others gone to the Power
Puffs’ hotel?

Participants were invited to write down their answer
once the question in (8) was presented, as per in-
structions. Once the experiment was over, the main
experimenter asked the follow-up question, on an in-
dividual basis. The answers were then collected and
analyzed. The predictions of the three approaches
discussed in the introduction for this story are as fol-
lows.

The Complement Set approach predicts that par-
ticipants would have answered “no”, since the com-
plement anaphora the others should denote the com-
plement set. The complement set A − B included
the six tank engines that did not go to the Smurfs’
castle, disjointed from the reference set A ∩ B. Its
members were: Spencer, Arthur, Rosy, Percy, Diesel
10 and Billy. Since Thomas was part of this set, but
also of the reference set of engines that went to the
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Power Puffs’ Hotel, the underlying declarative sen-
tence was false. Participants should have defended
their choice by pointing at Thomas as the “offend-
ing” tank engine, in the follow-up question.

The Sloppy Reference approach predicts that par-
ticipants would have answered “yes”, by the end of
the story. That is, the others should denote the set
of tank engines that went to the Power Puffs’ Ho-
tel, taken as a “group”. The complement set is not
computed as a difference between two sets, accord-
ing to this approach. So, participants should have
defended their choice by only mentioning the tank
engines that went to the Power Puffs’ Hotel. The set
P (D), with P (D) ⊆ P (A), included Thomas, as
well as the other six tank engines.

The Lexicalist approach predicts that participants
would have answered “yes”, by the end of the story.
That is, the others in the target question was inter-
preted by first computing the set of tank engines that
went to the Power Puffs’ Hotel. Then, this set was
restricted to the set of engines who also did not go to
the Smurfs’ Castle (we have P (O ⊆ A∩¬(O∩B))).
So, participants should have defended their choice
by pointing out that they excluded Thomas from the
denotation of the others, and then consider the re-
maining six engines as the “other” engines.

2.4 Results and Discussion
The answers to the yes-no were as follows: yes=19,
no=1 (95%/5%). This result is consistent with the
Sloppy Reference and the Lexicalist approach. In
the follow-up question, 16 participants observed that
Thomas went to both locations, but that “the oth-
ers” were the six engines that only went to the Power
Puffs’ Hotel (80% of the total). They explicitly ex-
cluded Thomas from the larger set of engines that
went to the Power Puffs’ Hotel. Three participants
observed that some, but not all engines made the
story true, although they could not recall their iden-
tity (15% of the total). The only participant that
answered “no”, instead, defended his choice by ob-
serving that Thomas had to be included in the rele-
vant “group” of tank engines (5%). So, the underly-
ing declarative sentence was false, according to this
participant.

The follow-up answers offer results that are more
consistent with the Lexicalist approach, rather than
with the Sloppy Reference approach. Most par-

ticipants explicitly mentioned that they excluded
Thomas from a “larger” set, when computing which
engines made the sentence true. This is a fact that
is not predicted by the Sloppy Reference approach.
So, the Lexicalist approach better fits these findings.
The Sloppy Reference approach would need a more
accurate way to account for this process of “elimi-
nation”, instead. One further observation on these
data is the following. Assume that the Lexicalist ap-
proach is a correct model of complement anaphora.
In this case, if we expect a 95% rate of follow-up
answers that excluded Thomas, then a 80% (16/20)
rate is not a statistically significant divergence. The
other two approaches appear not to be suited to ac-
count the combination of yes-no and follow-up an-
swers, given their low “success” rate. These results
invite two important conclusions.

First, complement anaphora appear to be seman-
tically “real”, when the opportune syntactic and se-
mantic requirements are met. Participants inter-
preted the others as denoting a certain set of ref-
erents. These referents were involved in the event
described in the target question, but were not in-
volved in previous events. Participants thus explic-
itly pointed out that the others denoted a distinct
(complementary) set of engines from the one pre-
viously introduced in discourse.

Second, the results support the Lexicalist ap-
proach, and suggest that both the Complement Set
and the Sloppy Reference approach may require fur-
ther revisions. The results suggest that the inter-
pretation of the others in discourse is inherently
anaphoric, and the result of “computing” a certain
referent, which is indirectly introduced by the previ-
ous context.

The first and second conclusions invite a third
“global” conclusion. The interpretation of the oth-
ers, and possibly all complement anaphora, should
be part of a general theory of grammar. So,
anaphoric elements depend on their lexical content
and related predicates for their interpretation, as well
as their ability to establish anaphoric relations. In
the specific case of the described experimental set-
up, the others selected the set of tank engines which
were defined as not involved in an event already in-
troduced in discourse (i.e. going to the Smurfs’ cas-
tle). They were defined as being involved in an-
other (here, complementary) event (i.e. going to the
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Power Puffs’ Hotel). So, participants’ interpretation
of the others was based on the context outlined by
previous discourse (i.e. the presented story). At the
same time, it was also based on the property of this
anaphora to select a “complementary” set of refer-
ents, because of its specific lexical content.

3 Conclusions

This paper offered experimental evidence about the
interpretation of the complement anaphora, and
pronominal NP, the others in multi-sentential dis-
course. Three types of approach on the interpreta-
tion of this anaphora were discussed. The first ap-
proach assumes that the others denotes the comple-
ment set, a set of referents not previously introduced
in discourse, and not introduced by any anaphoric
antecedents to the others. The second approach as-
sumes that the others does not denote the comple-
ment set, but denotes a sub-set of the maximal set
of referents under discussion (here, tank engines),
when defined in discourse. The third approach as-
sumes that the others denotes a sub-set of the max-
imal set of referents, which at the same time is part
of the interpretation of the second sentence, and has
not been introduced in previous discourse.

We carried out an experiment involving adult
speakers of English, in order to adjudicate which
approach correctly predicted the interpretation of
the others. The evidence found suggests that the
Lexicalist approach offers a more appropriate anal-
ysis of the the others, and possibly other comple-
ment anaphora. In our experiment, participants in-
terpreted the others as denoting the set of tank en-
gines who went to the Power Puffs’ Hotel. How-
ever, participants also excluded those engines who
also took part in previous events (i.e. Thomas, who
went to the Smurfs’ Castle), as supported by the an-
swers to the follow-up question.

This result also seems to support a view of the
semantics of anaphora that could be defined as
“truth-conditions plus anaphoric potential”. This
view has been proposed in some dynamic frame-
works (Brasoveanu, 2008), but also in more “static”
frameworks which study in detail the properties of
anaphoric pronouns (Sanford et al., 1994; Dotlačil,
2010). This view suggests that mechanisms of
anaphora resolution have two components. One in-

volves the resolution of an anaphoric relation, and
the other involves the computation of the “content”
of this relation, and how it is computed from the
previous context. So, a logically and psychologi-
cally accurate model of anaphora resolution should
include at least both components, according to our
findings.

This experiment offers an answer to one exper-
imental question, but leaves open several other re-
lated questions. One is whether these findings can
be extended to the interpretation of they as a comple-
ment anaphora, as in sentences such as (2). Again,
Sanford et al. (1994) found that this seems to be the
case, at least indirectly. However, an open question
is whether the use of the TVJ task could confirm
these results, and offer further insights on the nature
of this anaphoric phenomenon. The same reason-
ing can be extended to other complement anaphora,
such as the definite NPs the other tank engines,
which may also receive a “complement set” inter-
pretation.

Another question is whether the nature of the
anaphoric antecedent plays a role in this phe-
nomenon. In this experiment, we only tested one
type of determiner, few, and left open the question
of whether other quantifiers licensed a similar inter-
pretation, when acting as antecedents for the oth-
ers. For instance, Sanford et al. (1994) observed
that the minimally different determiner a few invari-
ably blocks the emergence of complement anaphora.
Similar observations can be extended to both vari-
ants of the same quantifier (i.e. few of the Xs), as
to other quantifiers (e.g. many, no, and so on). Al-
though interesting and important questions for the
topic at hand, both answers will be left for future
investigation.
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Abstract

This paper presents an experimental study on
the interpretation of plural pronoun they in dis-
course, and offers an answer to two questions.
The first question is whether the anaphoric in-
terpretation of they corresponds to that of its
antecedent NP(maximal interpretation), or by
the “whole” previous sentence (reference in-
terpretation). The second question is whether
speakers may access only one interpretation or
both, although at different “moments” in dis-
course. The answers to these questions sug-
gest that an accurate logical and psychologi-
cal model of anaphora resolution includes two
principles. A first principle finds a “default”
interpretation, a second principle determines
when the “alternative” interpretation can (and
must) be accessed.

1 Introduction

There is a general consensus that plural pronouns
denote plural referents1. However, there is little
agreement on their anaphoric potential: how plural
pronouns are interpreted against previous discourse.
The following examples illustrate the nature of this
debate:

∗We would like to thank the participants of these experi-
ments for their involvement. We would also like two thank three
anonymous reviewers for suggestions and comments, which
we think helped in improving the paper. The second author
would like to thank his Princess for the constant support and
encouragement.

1We follow the dynamic semantics literature and label “ref-
erents” the singular and plural individuals denoted by Noun
Phrases (NPs) (Kartunnen, 1976; Heim, 1982; Kamp, 1981;
Kamp and Reyle, 1993).

(1) Some boys are having dinner. They are eat-
ing a pizza

(2) The boys are having dinner. They are eating
a pizza

In (1), the indefinite NP some boys denotes an un-
specified amount of unidentified boys who are hav-
ing dinner. If we have Mario, Luigi and John as boys
in the context, then some boys may denote Mario
and Luigi as a pair, but not John. In (2), the definite
NP the boys denotes the “full” group of boys who
are having dinner: Mario, John and Luigi. In both
cases, NP and determiner combine to denote a refer-
ent which includes more “basic” discourse referents
as its parts.

The crux of the debate lies on how speakers in-
terpret they in these examples. Some approaches as-
sume that only the antecedent NP matters; others,
that the rest of a sentence also contributes to this in-
terpretation. A third group assumes that both options
are available, but determined by Grammar. Few ex-
perimental works offer evidence in favor of one of
these approaches. Studies on singular pronouns in
intra-sentential contexts abound in the literature on
Language Acquisition and Processing (Lukyanenko
et al., 2008; Elbourne, 2005b; Koornereef, 2008),
and in the NLP literature (Branco, 2005). However,
few or no works attempt to study plural pronouns
such as they, especially in inter-sentential contexts.

The main goal of this paper is to offer experi-
mental data on the interpretation of plural pronouns
(e.g. they) in inter-sentential, or anaphoric con-
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texts2. These data, in turn, are used to outline which
models of anaphora resolution, among current ap-
proaches, appear to correctly capture how speak-
ers resolve anaphoric relations in discourse. We fo-
cus on two sub-goals. First, we investigate whether
speakers interpret they in discourse as denoting “all”
or the “relevant” referents denoted by its anaphoric
antecedent. Second, we investigate whether speak-
ers may change their interpretation of they, if the
extra-linguistic context allows this change.

Overall, we address the following general ques-
tion: which is a logical and psychological model of
anaphora resolution, that can predict how speakers
interpret plural pronouns in discourse. Anticipating
matters a bit, we suggest that anaphora resolution in-
volves two components. The first component estab-
lishes the anaphoric relation between a pronoun and
its antecedent, so that a pronoun receives the same
interpretation of its antecedent, whether it is a maxi-
mal or reference one. The second principle allows to
change this relation, when the context of discourse
licenses this change. So, we suggest that theories of
anaphora resolution that include these components
are more accurate than theories that include only one
component.

The paper is organized as follows. We define
some general assumptions on plural NPs and Gen-
eralized Quantifier Theory (section 1.1) shared by
all theoretical approaches. We discuss three theo-
retical approaches to plural pronouns (section 1.2).
We then present the experiment that tests these three
approaches (section 2). We discuss the results, and
their theoretical import, in the conclusions (section
3).

1.1 Background: Plural NPs and Generalized
Quantifier Theory

We start our discussion from theories of Plural
Nouns. Theories of plural NPs assume that these
terms denote mereological structures, power-sets
generated by the set of referents in the denotation
of the corresponding singular NP (Schwarzschild,
1996; Chierchia, 1998; Link, 1998; Winter, 2001).
If a singular NP such as boy denotes Mario, Luigi

2We leave aside referential pronouns, pronouns that appear
without a previous explicit antecedent (e.g. they in they are
eating a pizza, (Elbourne, 2005a; Elbourne, 2005b; Schwarz,
2009).

and John as distinct referents (boy′ = {m, l, j}),
then boys denotes its corresponding power-set
∗boy′, generated by the ∗ (star) operator3.

Each of the sub-sets in the denotation of a plural
can be treated as a distinct referent, since the two
notions are equivalent in a lattice-oriented approach
(e.g. Mario, Mario and Luigi as a pair). Plural pro-
nouns, being morpho-syntactically plural, denote a
plural referent, in part determined by the interpre-
tation of previous plural NPs, and the determiners
they combine with. We turn to GQ to spell out the
relevant details on this latter process.

GQ theory assumes that English sentences can
be assigned the syntactic structure [[DetNP ]V P ]
(Barwise and Cooper, 1981; Nouwen, 2003; Szabol-
czi, 2010). The NP is in the restrictor position, since
it restricts the range of entities quantified over. The
VP is the Nuclear Scope position, since it introduces
the minimal scope of the quantifier. In (1), the first
sentence has the structure [[Some boys] are having
dinner]; boys is NP in the restrictor, are having din-
ner is VP in the nuclear scope.

The relation Det′(A,B) represents the interpre-
tation of this structure. A Determiner denotes a rela-
tion between sets (i.e. Det′), combined with a cardi-
nality condition on this relation. For instance, the re-
lation Some′(A,B) roughly stands for a relation be-
tween A and B, which includes at least one referent
in its denotation. The relation Tℎe′(A,B) roughly
stands for a relation in which there is a unique max-
imal individual in its denotation. While A is the set
of boys, B is the set of eating entities in discourse.

An important property of quantifiers is conser-
vativity. It states that this relation is equivalent to
Det′(A,A∩B): in words and using (1) as an exam-
ple, that some boys are boys who are having dinner.
The set A is known as the maximal set, here the set
of all boys under discussion. The A∩B is known as
the reference set, in this case the set of all boys who
are also having dinner. The three sets of approaches
sketched in the introduction differ on which sets acts
as the anaphoric interpretation of they, as we explain
in the next section. A note: we will respectively call
A and A∩B the maximal referent and the reference

3In extensional format, this set (a full join lattice) is:
∗boy′ = {∅,m, l, j, {m, l}, {j, l}, {m, j}, {m, l, j}}. We fol-
low Landman (2004) and include the empty set in the denotation
of plural terms.
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referent, to keep terminological differences between
frameworks at a minimum. Let us now discuss the
three sets of approaches to plural pronouns and their
anaphoric interpretation.

1.2 Three Sets of Theories

1.2.1 The First Set: Maximal Approaches
The first set includes approaches that treat pro-

nouns as covert definite descriptions. Two variants
of this approach are usually known as the E-type
or D-type approach. They vary in syntactic but not
semantic assumptions, so they can be “merged” in
one approach (Elbourne 2005a, 2008). The basic
intuition behind these approaches is that they in (1)
can be treated as standing for the definite descrip-
tion the boys, which then takes a Quantified NP as
its anaphoric antecedent in previous discourse (e.g.
some boys, the boys).

Given these assumptions, these approaches pre-
dict that they denotes the maximal referent. So, in
(2) they denotes the plural referent A = {j,m, l},
the referent denoted by the boys (Mario, Luigi and
John as a trio). In (1), it denotes the plural refer-
ent A = {m, l}, denoted by some boys (Mario and
Luigi). For this reason, we label these approaches as
the “Maximal” approaches.

1.2.2 The Second Set: Reference Approaches
The second set includes approaches that vary in

syntactic and semantic details, as they either as-
sume that pronouns denote bound variables (Geurts,
1999; Kamp et al., 2005; Kibble, 1997; Heusinger,
2003) or identity functions (Jacobson, 1999; Jacob-
son, 2004). They all converge on one assumption,
that anaphoric pronouns are interpreted as denoting
the reference referent individuated by the previous
sentence. We focus on DRT’s analysis, for the sake
of simplicity.

Let us take (1) as an example. According to these
theories, the pronoun they in (1) denotes a plural
referent. The VP are having dinner restricts the
interpretation of the antecedent of they, the quanti-
fied NP some boys. The whole sentence denotes the
reference referent, the set A ∩ B: the set of boys
who are having dinner. In DRT, this is roughly rep-
resented as the Discourse Representation Structure
(DRS) [{Y, x} : Y = Σx,B(x)], in which a plural
referent “Y ” is identified with another plural refer-

ent, represented as Σx4. In words, the pronoun they
is interpreted as denoting those boys who are having
dinner and are also having a pizza. This is repre-
sented via the anaphoric relation Y = A ∩ B, with
the plural referent Σx standing for A. Given these
assumptions, these approaches predict that they de-
notes the reference referent. For this reason, we la-
bel these approaches as the “Reference” approaches.

1.2.3 The Third Set: Flexible Approaches
The third set includes frameworks that propose

that both the maximal and reference interpreta-
tion are possible, for pronouns (Chierchia, 1995;
Nouwen, 2003; Brasoveanu, 2008)5. Two assump-
tions play a role in determining which interpretation
speakers choose.

First, formal properties of the antecedent NP de-
termine which referent is anaphorically identified
with the interpretation of a plural pronoun. Strong
determiners such as the select the maximal referent
interpretation, weak determiners6 such as some se-
lect the reference referent interpretation.

Second, the “alternative” interpretation of a pro-
noun is accessed when the “default” one cannot be
accessed. One example is the following:

(3) The boys went to the pub, the girls went to
the pool. They took a schooner of Fat Yak

In (3), they refers to both (all) boys and girls, by
default. However, since this interpretation is contra-
dictory, the alternative one is selected; they denotes
the “people” that could actually go to the pub and
grab a schooner. This is possible only if they can be
interpreted as either denoting the maximal or refer-
ence referent, but not if it has a “fixed” interpreta-
tion. For this reason, we use the “Flexible” label for
these approaches.

4Informally, a DRS is a combination of one or more “con-
ditions” (properties such as B(x), relations such as x = y) and
a universe of discourse (the set of referents {Y,x}). Conditions
are interpreted conjunctively. The symbol Σ represents that x
is a mereological sum of referents, i.e. a plural referent. The
notation used here is roughly the one used in Geurts (1999).

5We leave aside a discussion of Centering Theory, which
offers little or no treatment of plural pronouns (Nouwen, 2001;
Poesio et al., 2004).

6Weak determiners are determiners that can occur in there
sentences, while strong determiners cannot (e.g. there is some
boy waiting vs. ∗there is every boy waiting) (Barwise and
Cooper, 1981).
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1.2.4 Three Approaches: The Predictions
The predictions of these approaches on the inter-

pretation of they in discourse can be summed up as
follows. The first set, that of Maximal approaches,
predicts that they always denotes the maximal refer-
ent that is denoted by its antecedent NP. The second
set, that of Reference approaches, predicts that they
always denotes the reference referent, that is denoted
by the previous sentence. The third set, that of Flex-
ible approaches, allows both interpretations. One in-
terpretation acts as the “default” interpretation, and
may be either a maximal or a reference one. The
other is the “alternative” interpretation, and must be
properly licensed in context. The experiment de-
scribed in the next section offers evidence testing
which of these three approaches seems to make the
correct predictions on the interpretation of they.

2 The study

2.1 Participants

The experiment involved adult participants (N=25).
All participants were native speakers of English, un-
dergraduate students of Psychology, and received
course credit for their attendance. Between one and
four participants attended each session, for a total of
twenty minutes of experiment time.

2.2 Procedure

The experiment involved a variant of the Truth-Value
Judgement Task (TVJ task) (Crain and Thornton,
1999). Most experiments involving this test are used
to test children. However, given its flexibility, this
task can be used to also test adults. A brief presen-
tation of the task will help us in offering a reason
for our choice. One type of a standard TVJ task,
the so-called description mode, involves two experi-
menters. One experimenter acts out the scenario and
narrates the events. The other experimenter controls
a hand-puppet (e.g. Kermit the Frog), which is de-
scribed as observing the events of the story with the
participant.

At the end of the story, the puppet asks a ques-
tion about the story to the participant, to be sure that
he has understood the events he has observed, so he
offers a yes-no question to the participant regard-
ing the story. After a participant offers an answer,
a follow-up question is usually offered, in order to

test whether an offered answer is based on a correct
understanding of the events described by the story.

When a TVJ task experiment involves yes-no
questions, the story should describe events in such
a way that both a “yes” and a “no” answer should
be possible answers. However, only one of the an-
swers correctly matches the outcome of the story.
This condition is known as the Condition of Plausi-
ble Dissent (Crain & Thornton 1995: chapter 5).

An example is the following. One experimenter
narrates a story of five horses involved in a jumping
contest. Four horses jump successfully, one trips and
fails. Another experimenter, as Kermit, asks (4):

(4) Has every horse jumped over the fence?

Assume that the participant has a correct interpre-
tation of every as denoting the universal quantifier.
Then, she will likely offer a “no” as answer, since
one horse did not complete the target task. Although
a “yes” answer could have been entertained, at some
point (i.e. the fallen horse almost completed the
jump), the end result made only the “no” answer as
the correct one. The TVJ task thus allows a simple
way to test grammar competence in a relatively sim-
ple and effortless way. The specific nature of our
empirical questions motivated a few changes to the
task. Our changes to the standard task were as fol-
lows.

First, our two experimental questions required
that participants could choose between either inter-
pretation, possibly changing interpretation in the op-
portune context. So, the experiment included a se-
quence of three stories. The first story tested if par-
ticipants could access both interpretations. The sec-
ond story tested if participants could change their
initial interpretation, in an opportune licensing con-
text. The third story tested if participants maintained
the “new” choice, if the context did not license a fur-
ther change of interpretation.

Second, we prepared a power-point presentation
depicting this sequence, instead of acting out the sto-
ries. Each slide depicted a single event involving one
or more characters, with the text accurately describ-
ing this event. At the end of each story Mr. Little
Bears, a character taking the role of Kermit as the
puppet, appeared in a slide and offered a question to
the participants.
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Third, participants received an answer sheet be-
fore the start of experiment, on which they were in-
vited to write down their answer by circling either
a “yes” or “no” answer, for each story. Participants
had to write down an answer after each of Mr. Little
Bears’ questions, story by story. After the exper-
iment, the answers sheets were collected, and two
follow-up questions were offered. A first question
asked why they offered their answer in the first story.
A second question asked why they offered their an-
swer in the second and third story.

There were two reasons for collecting follow-up
answers in this way. A first reason was that, since
participants had three distinct but related answers,
asking a follow-up question after each story would
have likely made the participants aware of their own
choices. This awareness could have biased the re-
sults in one way or another, so we removed this po-
tential source of confounding. A second was that,
via an “open” answer, it was possible to better under-
stand the reasons behind participants’ choices. An-
swers were coded according to the characters that
motivated a given answer. Specific details are of-
fered in the next section.

2.3 Materials
The stories involved five characters from the Thomas
and the tank engines line of toys. This list of tank en-
gines included Thomas, Duncan, Spencer, Diesel 10
and Arthur. The other recurring character, Mr. Little
Bears, was introduced as an amnesiac bear that was
going to watch the stories with the participants. Be-
cause of his bad memory, he had to ask a question
after each story. Other characters were temporar-
ily involved in each story. The five tank engines re-
mained the main characters in all three stories.

The structure of the stories was as follows. In the
first story, the tank engines had to deliver a jewel to
Pikachu the Pokemon, as their first job of the day.
Each of tank engines individually went to Pikachu’s
station but Spencer, during his trip, decided to stop at
the local aquarium and ended up not delivering his
jewel to Pikachu, unlike Thomas, Duncan, Arthur
and Diesel 10.

Mr. Little Bears appeared in the next slide and
offered a question. This question followed a sen-
tence that introduced an anaphoric antecedent for
they. We chose the definite NP the engines as an an-

tecedent, for the following reasons. As a strong de-
terminer, the should license the maximal referent in-
terpretation as a default (Barwise and Cooper, 1981;
Nouwen, 2003). Participants could also have chosen
the reference referent interpretation may also be li-
censed, if they could access the alternative interpre-
tation. Hence, a “yes” or “no” answer easily pointed
out which interpretation participants chose.

The first target question was (5):

(5) “It’s nice to see that the engines are work-
ing hard, but I am not sure about one thing:
Have they gone to the station?”

If participants would have interpreted they as denot-
ing the maximal referent, they would have answered
“no”. One engine, Spencer, did not reach the station.
If participants interpreted they as denoting the refer-
ence referent, they would have answered “yes”. The
the other four tank engines reached the station.

The second story described a similar complex set
of events, although the engine not reaching a given
destination became Arthur, not Spencer. At the end
of this story, Mr. Little Bears offered the second
question, in (6):

(6) The poor engines, their memory is not so
good too! but I am not sure about one thing:
Have they gone to the Power Puffs Hotel?”

So, participants could have changed their initial an-
swer (from instance, from “yes” to “no”). This be-
cause the group of engines that completed the action
changed, and Arthur, not Spencer made the maxi-
mal interpretation false. So, the context licensed a
change from a possible default (maximal) interpre-
tation to an alternative (reference) one.

The third story presented a different set of events,
but the same result. Arthur did not reach the same
destination as the other engines. Mr. Little Bears
then offered the third question, in (7):

(7) “Things have become pretty hectic for the
engines! But I am not sure about one thing:
Have they gone to the engines’ house?”

If a change of interpretation is determined by change
of salient group, then no change in interpretation
should have occurred, since the “offending” engine
was still Arthur.
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Participants were invited to write down their an-
swer, once each question was presented. After the
experiment, they were asked the follow-up ques-
tions, on an individual basis. The specific predic-
tions of the three approaches for these stories are as
follows.

The Maximal approach predicts that partici-
pants interpreted they as always denoting the
maximal referent, the maximal referent (that is,
{t, d, d10, s, a}7). So, participants should have an-
swered “no” in each story. They should have de-
fended this choice because one engine, first Spencer
then Arthur, always failed to reach the target desti-
nation.

The Reference approach predicts that participants
should have interpreted they as always denoting the
reference referent. This referent changed from the
first to the second story (i.e. from {t, d, d10, a} to
{t, d, d10, s}), but in each story “some” or perhaps
“most” engines reached their goal. So, participants
should have always answered “yes”, and defended
this choice, because of this reason.

The Flexible approach predicts that participants
should have interpreted they in a flexible way. In
the first story, the default interpretation of they is
the maximal one. So, first question invited a “no”
answer. In the second and third story, the context
licensed and strongly favoured the alternative, ref-
erence interpretation. So, participants should have
answered first “no”, then “yes” twice, pointing out
that the second and third story were about a salient
group of engines.

2.4 Results and Discussion

The results were the following:

∙ First Story: yes=0, no=25, 0%/100%;

∙ Second Story: yes=23, no=2, 92%/8%;

∙ Third Story: yes=24, no=1, 96%/4%;

These data suggest that the Flexible approach makes
the most accurate predictions on the interpretation
of they. Again, recall that participants could choose
either a “yes” or a “no” answer, after each story. The

7We represent plural referents in a set-theoretic format, with
t for “Thomas”, d for “Duncan”, d10 for “Diesel 10”, s for
“Spencer”, a for “Arthur”.

Maximal and Reference approach do not predict the
change from a “no” to a “yes” answer between first
and second story. Both approaches predict either all
“no” (Maximal approach) or all “yes” answers (Ref-
erence approach), so these results are not entirely
predicted by these two approaches. The Flexible ap-
proach predicts a “no” answer in the first story, and
a “yes” answer in the second and third story. So, this
approach correctly predicts the data. The follow-up
answers offer a more fine-grained perspective.

In the follow-up question time, almost all partic-
ipants defended their choice by arguing that, when
they answered “no” after the first story, they did
so because one tank engine made the underlying
declarative sentence false (i.e. Arthur). For the sec-
ond and the third story, the follow-up questions re-
vealed some interesting results. Most participants
changed interpretation because they observed that in
each story “four”, or most (but not all) of the en-
gines made the story true (22/25 participants). One
participant noted that for a given trio, the story was
always true, although he could not recall their exact
identity. The only participant that answered “no” in
the third story changed his interpretation twice (i.e.
he answered “no-yes-no”), and admitted that he was
confused by the stories. Two participants answered
from “no” to “yes” in the third story, because they
did not notice that the “offending” engine changed
beforehand, from first to second story.

Overall, these answers to the follow-up questions,
combined with the yes-no answers, offer support in
favor of the Flexible approach. They also suggest
that the Maximal and the Reference approach may
require revision. Since these approaches do not pre-
dict that the interpretation of they may change in the
opportune context, they cannot explain the whole
range of findings in our experiment. With these facts
in mind, we shall move to the conclusions.

3 Conclusions

This paper offered experimental evidence on the
interpretation of the plural pronoun they in dis-
course. Three approaches to its interpretation were
discussed and tested. The Maximal approach claims
that plural pronouns denote all the referents denoted
by their antecedent, in the context of discourse. The
Reference approach claims that plural pronouns al-
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ways denote the reference plural referent denoted by
the combination of anaphoric antecedent and clause-
mate VP. The Flexible approach claims that plu-
ral pronouns receive a default interpretation (for in-
stance, the maximal one), but also that the alterna-
tive interpretation may be accessed, if licensed (for
instance, the reference one).

Two questions were addressed: what is the default
interpretation of this they in discourse, and whether
other interpretations are accessible, once the oppor-
tune context licenses them. In order to test these two
hypotheses, we devised a variant of the TVJ Task
that tested both hypotheses in their order of “accessi-
bility”, via the presentation of a sequence of stories.
The findings invite the following conclusions.

The findings of the first story suggest that partic-
ipants interpreted they as denoting the maximal ref-
erent, as per predictions of the Maximal and Flex-
ible approach. Participants interpreted they as de-
noting the plural referent made of the five tank en-
gines involved in the story (Thomas, Duncan, Diesel
10, Arthur, Spencer), and found that Spencer’s ac-
tions made the underlying declarative sentence false.
Hence, they invariably offered “no” as answer, as
they also argued in the follow-up question.

The findings of the second and third story, on the
other hand, suggest that participants would change
their interpretation of they, as denoting a reference
referent, in the opportune context. This is in line
with the predictions of the Flexible approach. Al-
most all participants changed their answer from “no”
to “yes”, from first to second story, since the story
made it clear that not all tank engines were salient,
only a certain group, which however varied across
participants.

Overall, they and perhaps plural anaphora in gen-
eral appear to have an alternative interpretation, be-
cause their interpretation may be changed, if the
context licenses this change. However, as the data
also seem to suggest, this second interpretation is
dependent on discourse context. For instance, if they
has a strong quantifier as its antecedent (e.g. the
boys), it will be interpreted as denoting a maximal
referent (first story). It can be re-interpreted as de-
noting a reference referent, however, if the context
licenses this inference (second, third story). These
facts suggest that the Flexible set of approaches is
on the right track, while the Maximal and the Refer-

ence sets of approaches may need further revisions.
These data also invite the following answer to

our general question: what is an accurate logi-
cal and psychological model of anaphora resolu-
tion. If a model of anaphora resolution must account
how speakers access anaphoric relations and resolve
them in discourse, then such a model must include
two complementary principles. One principle tracks
the interpretation of a pronoun’s antecedent NP, and
assigns it to the pronoun. So, a pronoun receives a
maximal or reference interpretation, depending on
the formal properties of its antecedent. A second
principle tracks whether this interpretation is con-
sistent with rest of the explicit context, the sentence
that the antecedent is part of. So, this principle may
license the change of interpretation to the “other”
type, in the opportune context.

So, a theory of anaphora resolution that correctly
describes and predicts the data at hand must be flexi-
ble enough, that it allows the re-interpretation of plu-
ral pronouns in discourse. This flexibility depends
on the ability for the theory to correctly establish
which is the default interpretation of the antecedent
NP of a pronoun, and which is the alternative inter-
pretation. Further empirical evidence may also elu-
cidate whether these findings can be generalized to
other quantifiers (e.g. some boys) and anaphora. For
the time being, we shall leave such inquiries for fu-
ture research.
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Abstract

Providing timely and individualised feedback
to students in large undergraduate classes is
problematic. In this paper we describe our
approach to creating a simple, surface-based,
domain-independent natural language tutor
which uses simple machine learning tech-
niques as a step towards resolving this issue.
The focus of our efforts was on developing
a high-quality tutorial dialogue plan, creating
well-designed questions, and building a model
of student responses derived from real student
data. We present some early evaluation results
and briefly outline the opportunities that our
approach and the new tutorial dialogue system
present.

1 Introduction

The study this paper describes arose out of a practi-
cal need expressed by one of the coordinators of an
undergraduate first year health sciences course:

For large class sizes of 1500-1800 stu-
dents, is it possible to use technology
to provide timely individualised feedback
to students on their understanding of key
concepts?

Natural language intelligent tutoring systems (ITS)
seemed to offer some promise for supporting and en-
hancing student understanding of key concepts in
this domain. For example, Circsim Tutor (Evens
and Michael, 2006) is a natural language tutor de-
signed expressly to develop health sciences student
understanding of the baroreceptor reflex in humans

(the baroreceptor reflex is one of the mechanisms
for maintaining blood pressure in humans). Nev-
ertheless derision and dismisal of ITS as a failed
enterprise are common views among many educa-
tional researchers and practising teachers, for exam-
ple, Laurillard (2002) and Ramsden (2003). With
a few exceptions, even today, within Higher Educa-
tion, ITS are hardly in widespread practical use for
teaching and learning (Reeves and Hedberg, 2003).
There are some good practical reasons for this. Mur-
ray (1999), in his review of ITS authoring systems,
addresses a key one:

Building an explicit model of anything
is not an easy task, and requires analy-
sis, synthesis, and abstraction skills along
with a healthy dose of creativity. . . . it is
difficult to reduce the entire design task
to low level decisions that yield a quality
product. . . some degree of holistic under-
standing and abstract thinking will even-
tually have to come into play.

Worse still, in practice it is seldom feasible to
adapt a system designed for a specific teaching and
learning context to another. So for example, while
Circsim Tutor deals with the baroreceptor reflex it
deals with it at a level which is too advanced for the
broader introductory-level course on cardiovascular
homeostasis that we were dealing with. Even if this
were not the case, there would likely be differences
in emphasis in terms of the curriculum and adapting
a deep system like Circsim would be a non-trivial
task.
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As the authors’ primary focus is on teaching and
learning development across a tertiary institution,
we required a system that would be both respon-
sive and practical in real class settings and which
could be readily adapted to a wide range of do-
mains. We decided to build a very simple, surface-
based, domain-independent natural language tutor
using simple machine learning techniques, and to
focus our efforts on developing a high-quality les-
son plan. The lesson plan should have two compo-
nents. Firstly, there should be a well-designed set
of questions for the tutor to ask, to probe students’
knowledge of the domain. Secondly, for each ques-
tion there should be a good model of the range of
common answers which students are likely to pro-
vide, so that the tutor can give suitable responses to
each of these, and give students the individualised
feedback which is the key goal of the system.

This development method hinges firstly on in-
depth interactions with the teaching staff of the
course, and secondly on the acquisition of high-
quality training data from actual students. Conse-
quently, there were two stages in the development of
the system. In the first stage, we produced a detailed
set of questions, in close liaison with the teaching
staff, and devised a detailed script, providing for
possible student responses to each question, along
with appropriate tutor actions, and then used an ex-
isting surface-based dialogue engine to put these
questions to students and give responses based on
simple pattern-matching techniques. This stage-one
system was mainly intended as a means for gath-
ering training data for the full system, though of
course we intended it to have some educational merit
as well. In the second stage, we refined the script we
had developed in the first stage to add new response
categories, manually classified student responses to
each question, trained a set of classifiers on the re-
vised set of categories and developed a second dia-
logue manager which deployed these classifiers.

Of the few readily available domain-independent
tutorial dialogue systems, TuTalk from the Learning
Research and Development Centre at the University
of Pittsburgh, is one that provides a relatively easy
way to author dialogues using only a text editor and
scripts can be authored much like writing a natural
one-to-one dialogue. The TuTalk scripting language
represents each tutor turn as a finite state machine

(FSM) and the author can define multiple classes of
student response that lead from the current tutor turn
to the next tutor turn or state. A simple chat-style
interface is all that is required for a user to interact
with the system (Jordan, 2007).

However, TuTalk ‘out of the box’ includes many
features and options that we did not need and added
processing overhead to response times especially for
longer responses. We were also aware that the basic
natural language understanding module that came
with it was fairly rudimentary and yielded poor pre-
cision and recall when classifying most student re-
sponses other than those to simple binary or limited-
option questions. Nevertheless, with the addition of
a web interface, a large cohort of students could po-
tentially access and use the system, and early feed-
back from students indicated that even though their
responses were often not well ‘understood’ they
found the dialogue useful as a study and revision
tool (the default position was always to provide a
model answer): for these reasons we felt that TuTalk
would allow us to rapidly acquire a large corpus of
authentic student responses to questions posed in the
dialogue. Once we had captured this data we could
then proceed to build a very simple, surface-based
natural language dialogue system which retained a
FSM model for representing the dialogue. The large
corpus acquired via the TuTalk system would be
used to both train the new system and to inform re-
vision of the script itself.

In the next section of this paper we describe
collecting the dialogue corpus and evaluating per-
formance. The third section outlines the new di-
alogue system architecture and describes how we
have utilised components from the Natural Lan-
guage Toolkit (Bird, 2006). The fourth section de-
scribes the iterative process we are using to both
develop the script and build a set of classifiers for
student responses based on insights and intuitions
from real student data. In the fifth section we present
some early classifier test results and in the final sec-
tion we discuss the educational research opportuni-
ties that both our approach and new tutorial dialogue
system present.
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Dialogue excerpt
TUTOR: Would you like more practice with the
ideas we’ve discussed so far, before we move on?
STUDENT: yes please
TUTOR: If heart rate drops and stroke volume re-
mains the same, what will happen to cardiac out-
put?
STUDENT: decrease
TUTOR: Well done.
Cardiac Output is determined in part by Stroke
Volume. How do you calculate CO?
STUDENT: co = heart rate x stroke volume
TUTOR: Cool, that’s right. If cardiac output in-
creases and TPR remains the same what will hap-
pen to mean arterial pressure?
STUDENT: increase

Table 1: Tutorial dialogue excerpt

2 Collecting the dialogue corpus

In close consultation with the course lecturers an ini-
tial tutorial script covering the curriculum on cardio-
vascular homeostasis was developed. The script was
written by a medical graduate using lecture notes,
laboratory manuals and self-directed learning ma-
terial from the course and required approval from
the teaching team before it could be deployed for
students. The teaching team wanted to be certain
the script contained no errors of fact and that it had
some educational merit. Table 1 shows an excerpt
from a tutorial dialogue session. The script was
refined by incorporating utterances, captured from
pilot dialogue interactions between the system and
student and staff volunteers (N=34), back into the
script. Incorrect behaviour of the script was dealt
with through adjustments to tutor turns and improve-
ments to script flow was made following feedback
from students and tutors on the course and from
examination of the dialogue transcripts. Feedback
from students and some of the teaching staff indi-
cated to us that the system even without much in
the way of ‘understanding’ still had some value as
a learning and teaching tool because it always pro-
vided model answers to questions.

2.1 Student responses

The cardiovascular homeostasis tutorial was re-
leased to the first year undergraduate class at the be-
ginning of their module on the human cardiovascu-
lar system. Tutorial use was optional. 437 students
accessed the system during the course (total class
enrolment=1800) and produced a total of 532 dia-
logues; several students accessed the dialogue more
than once. However from the total number of dia-
logues, only 242 dialogues were completed through
to the half-way point and only 127 dialogues were
completed to the end. A handful of dialogues were
interrupted because of system-related problems but
the majority that terminated before completion did
so because because the students simply ended their
session. Feedback from course tutors and comments
from the students themselves supported our inuti-
tion that poor system ‘understanding’ of student di-
alogue contributions was probably a key reason for
the fall-off in use. Nevertheless, it served its purpose
in capturing a large quantity of training data which
is mainly what it was for.

3 Dialogue system architecture

Clearly we needed to improve the ‘understanding’
performance of the dialogue system if we were to
hope to provide individualised feedback on free text
input: two options were considered. Either we
could continue to use TuTalk and replace the exist-
ing TuTalk natural language understanding (NLU)
module along with making adjustments to the script
design and dialogue manager (DM) or we could
build another dialogue system from scratch. In the
end we chose to start from scratch for three main
reasons. First, the natural language toolkit (NLTK)
already provided many of the functions required in
a simple dialogue system such as tokenisers, stem-
mers and a range of classifiers. Second, for our pur-
poses, we didn’t require many of the features built
into TuTalk and we had experienced some perfor-
mance issues with the system. Third, a very sim-
ple modular system that could be easily extended or
adapted, and which utilised well established libraries
would provide a solid base from which to do further
work in this area. Fig. 1 provides an overview of our
system architecture.

The dialogue system is written in python and
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Figure 1: Architecture of Dialogue System.

utilises several NLTK libraries, Peter Norvig’s ‘toy’
spell checker, and the Asyncore and Asynchat li-
braries to manage multiple simultaneous client con-
nections. The server can readily communicate
with any web-application front end using XML-
formatted messages. We have also built a java-based
web application through which multiple clients can
connect to the tutorial server (Fig. 2).

The structure of the tutorial dialogue is deter-
mined entirely by the dialogue script. We wanted to
use a FSM model for the dialogue since this permits
an organic authoring process and there is no theoreti-
cal limit to how deep or broad the dialogue becomes.

The script structure itself is based on Core and
Allen’s (1997) dialogue coding scheme and each
dialogue contribution is divided into forward and
backward functional layers. Jumping to alternative
parts of the script is embedded in the forward func-
tion rather than being treated as a separate layer.
This seems to work well with the notion of ‘action-
directive’ functions proposed by Core and Allen. In
effect the forward functions always advance the dia-
logue even if some elements are repeated along the
way. It also seems like a more intuitive and less con-
fusing approach than incorporating special tags in
either the backward layer, or inventing a new layer
to handle them. The script is an XML file which is
defined in our XML schema for the dialogue system
and which essentially comprises a series of dialogue
contributions.

An example of a single dialogue contribution,
called a contribution node is given in Figure 3. In

this example, the unique id of the dialogue contri-
bution is “check-hr”. Apart from the start and end
nodes of the dialogue, every contribution node has
a backward and forward layer. The backward layers
contains responses appropriate to the previous dia-
logue context, for example an utterance to establish
grounding (Clark and Schaefer, 1989), and the for-
ward layer sets up the next dialogue context.

Figure 3: check-hr contribution node

While the tutorial system is primarily designed for
single-initiative dialogue, the opportunity for limited
mixed-initiative is incorporated through classifying
question contributions at any stage of the dialogue
and searching for possible answers within the dia-
logue script. In addition, the script can be designed
to accomodate opportunities for eliciting further ex-
planation where the need is apparent from examina-
tion of previous student responses. (For an explana-
tion of this see Section 4).

Each client connection to the system creates an
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Figure 2: Screenshot of Dialogue System Web Client.

instance of the dialogue manager which sends tutor
contributions to the client according to the preloaded
script and receives student contributions which are
then classified and determine the next tutor contri-
bution. The pseudocode given in Fig. 4 illustrates
how the dialogue manager processes each contribu-
tion node.

The dialogue system is intended to be domain
neutral since the content and structure of the
dialogue is determined solely by the dialogue
script (note that we have yet to demonstrate this
by building scripts outside the domain discussed
in this paper). Scripts are designed according
to the XML schema specified for the dialogue
system. A domain-appropriate dictionary is
required for the spell checker: for our cardio-
vascular homeostasis tutorial we combined the
text from pilot student responses, the script itself,
the relevant section from an accessible human
physiology text (http://en.wikibooks.
org/wiki/Human_Physiology/The_
cardiovascular_system) and the NLTK
plain text ABC science corpus.

4 Building classifiers and revising the
script

Tutorial dialogue script revision and classifier devel-
opment are currently underway. The approach we
have taken is to do these two tasks hand-in-hand.
In this section we describe the rationale for this ap-
proach by way of illustrative examples.

In general, a separate classifier is required for
each dialogue contribution in the script. So for ex-
ample, the dialogue contribution check-hr has its
own classifier. In this case, one of the possible
classes for text classified is correct-simple and this
is specified in the backward class attribute value.

Each backward layer must have a class attribute.
When the previous student dialogue contribution
matches this class, this contribution node becomes
the current node. In the example above, responses to
the parent contribution node check-hr are processed
by a single classifier into one of the classes listed in
Table 2. If classification fails then the dialogue con-
tribution which is specified as the default is chosen.

The process of building a classifier for each di-
alogue contribution requires a number of steps.
First, classification by hand of a training set derived
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Figure 4: Dialogue manager pseudocode

check-hr classifier
correct
correct-simpler
question
incomplete

Table 2: Possible classes for check-hr

from the student corpus. The XML schema of the
NPSChat corpus provided with the NLTK was a use-
ful model for us to follow in marking-up the corpus
and allowed us to use the appropriate NLTK cor-
pus reader directly. The classes used are created
based on inspection of student responses although
the class question and the class correct are used in
each classifier. For example, examination of student
responses to the question:

How would you check what someone’s
HR is?

led to us developing a class correct-simpler given
that a handful of students suggested using an ecg or
blood-pressure cuff and stethoscope. These methods
are not the easiest ways to achieve this but they are
valid answers and lend themselves to seeking a sim-
pler method in order to check student understanding.

This process in turn may require a new dialogue
contribution for the script. For example, the con-

Figure 5: hr-simpler contribution node

tribution node hr-simpler (Fig. 5.) was only cre-
ated after the classifier for check-hr had been built
and then became an addition to the original script.
This is why we suggest script revision and building
of classifiers should be done together.

For each dialogue context a training set is created.
Typically the first 100 student responses for each tu-
tor question are classified by a human marker, al-
though this number may be less where it is clear
that there is little variabiliy in student responses (for
example, in the case of binary questions) or more
where there is a wide range of student responses.
Once a suitable training set is marked up the set
is divided into 5 folds and a Naive Bayes classi-
fier trained on 4/5 folds initially using simple bag
of words as the featureset and then tested on the re-
maining fold. A 5-way cross-validation is carried
out and accuracies for each of the 5 test sets calcu-
lated. The average accuracy across the 5 test sets
and standard deviation is also recorded.

This process is then repeated using different fea-
turesets (for example, bag of words, word length,
first word, with/without stemming, with/without
stopwords etc) until the highest accuracy and least
variability in test set results is achieved. Some fea-
tures are particularly appropriate in a given context.
For example, length of response is a good predic-
tor of an incomplete answer in the check-hr context
above. A student common response in this context
was simply ‘pulse’ and the human classifier had de-
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Question
Type

Example

binary ‘Are you ready?’
limited-
option

‘How would you check somone’s
heart-rate?’

open ‘What is the pulse?’

Table 3: Question Types

cided these responses were incomplete and required,
‘count’ or ‘measure’ or a similar qualifier before ac-
cepting this as a correct answer. Response length
helped to distinguish these responses from correct
responses.

Once the best features for a given dialogue-
contribution classifier have been established the size
of the training set is increased in order to expose the
classifier to a larger number of samples and improve
accuracy. Finally, where uncommon but pedagogi-
cally useful student responses are found, the training
data may be weighted with these in order to increase
the likelyhood that similar responses are correctly
classified.

The classifier is evaluated with previously unseen
data and scored relative to a human marker. The en-
tropy of the probability distribution (E) is calculated
for each unseen response and this is used to deter-
mine appropriate thresholds for classification. For
example, if E is close to zero the classifier confi-
dence is generally very high. E 1 indicates low con-
fidence and less difference between the class rank-
ings.

Finally the classifier is serialised, along with its
associated feaureset parameters and saved for use in
the dialogue system itself.

5 Testing classifiers

In general there are three types of tutor question
in our cardiovascular homeostasis dialogue: binary,
limited-option and open. An example of each is
given in Table 3.

Evaluation of classifiers for binary questions has
resulted in the highest accuracy with the smallest
amount of training data (98-99 percent on training
set size of 200). Typically, for this question type,
there are only two class options plus a third to cater
for a question initiative from the student. In this

section we focus on classifying responses for the
remaining two question types, limited-option and
open, since these tend to be more educationally in-
teresting and relevant, and harder to classify. Data is
presented for an example of each type of question.

1. Limited-option. The check-hr dialogue con-
tribution is a good example. Even with free text,
there is a reasonably limited number of ways to an-
swer the question, ‘How would you check some-
one’s heart-rate?’. Indeed the great majority of stu-
dent responses were of the form count the pulse,
measure the pulse, take the pulse, etc. Best results
were achieved using a combination of the NLTK
Porter stemmer on tokenised words, word length,
first word, and a custom regular expression feature
to pick up reference to ECG or blood pressure. Us-
ing these features, accuracy increased from a best
of 0.72 to 0.90 when training data increased from
a fold size of 19 to a fold size of 204 (Refer Fig.
3). Variability in training set accuracy was reduced
when stopwords were removed from less than 0.03
to less than 0.01.

Evaluation on the trained classifier on a previ-
ously unseen sample of 20 was surprisingly 100 per-
cent with entropy values between 0.00 for a student
response, ‘by measuring their pulse rate’ to 0.81 for
‘by listening to their pulse’.

2. Open. A good example in this case, is the ques-
tion, ‘What is the pulse?’. There is a wide range of
ways in which an answer to this question could be
reasonably expressed. The model answer given is
‘The pulse is a pressure wave or a pulsatile wave
generated by the difference between systolic and di-
astolic pressures in the aorta.’ To give an idea of how
open this type of question is, the following is an al-
ternate but valid expression of the same idea, ‘The
pulse is generated by contraction of the heart during
systole and is transmitted as a wave to the peripheral
arteries.’

Similar to the first case the average accuracy of
the classifier we created for this question plateaued
at 0.89 with a training data fold size of 194, how-
ever it performed far worse on smaller training sets
achieving an average accuracy of only 0.41 with a
training data fold size of 19. The most useful fea-
tures in this case were word stems, word length and
first word. We had a total of 8 classes as there was
a wider range of student responses to the question.
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Figure 6: check-hr Training data. Fold size vs Average accuracy

Two of these classes were needed to deal with com-
monly occuring misconceptions. However one of
the classes is redundant. The incorrect class regu-
larly failed to correctly identify incorrect answers.
The reason for this is likely to be the high degree of
variability in incorrect answers unless they demon-
strate a commonly held misconception. We ex-
pect to achieve better results on our unseen evalua-
tion data after removing the incorrect class from the
training set.

6 Discussion

Our goal was to build a very simple, surface-based,
domain-independent natural language tutor using
simple machine learning techniques, and to focus
our efforts on developing a high-quality lesson plan,
so that the tutor can ask well-designed questions,
and has a good model of the range of possible an-
swers which students will provide for these. Our
development method requires in-depth interactions
with the teaching staff of the course, plus the acqui-
sition of high-quality training data from actual stu-
dents.

In this paper we have focussed particularly on de-
scribing the system and reporting our approach to
building classifiers and script revision in order to
achieve this goal. The results of our early classi-

fier evaluations look promising in terms of the abil-
ity of the system to ‘understand’ student responses
and take appropriate action. Our next task is to eval-
uate our system and revised tutorial script with a new
cohort of first-year health sciences students. We also
plan to compare student learning outcomes against
the same script using a multi-choice selection rather
than free text responses. Previous investigations in
this area have produced equivocal results. For exam-
ple, Corbett et al. (2006).

We see potential for our approach and the sys-
tem in a number of areas: supporting the rapid
capture of tutorial corpora across a range of sub-
ject domains, developing faster and more flexible
approaches to authoring tutorial dialogues and of
course we hope to make headway with the problem
of providing timely and individualised feedback to
students which is so keenly sought by our colleagues
teaching large undergraduate courses.
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Abstract 

Detection of child exploitation in Internet 
chatting is an important issue for the protec-
tion of children from prospective online pae-
dophiles. This paper investigates the 
effectiveness of text classifiers to identify 
Child Exploitation (CE) in chatting. As the 
chatting occurs among two or more users by 
typing texts, the text of chat-messages can be 
used as the data to be analysed by text classi-
fiers. Therefore the problem of identification 
of CE chats can be framed as the problem of 
text classification by categorizing the chat-
logs into predefined CE types. Along with 
three traditional text categorizing techniques a 
new approach has been made to accomplish 
the task. Psychometric and categorical infor-
mation by LIWC (Linguistic Inquiry and 
Word Count) has been used and improvement 
of performance in some classifier has been 
found. For the experiments of current research 
the chat logs are collected from various web-
sites open to public. Classification-via-
Regression, J-48-Decision-Tree and Naïve-
Bayes classifiers are used. Comparison of the 
performance of the classifiers is shown in the 
result. 

1 Introduction 

The online chatting has become a popular tool for 
personal as well as group communication. It is 
cheap, convenient, virtual and private in nature. In 
an online chatting one can hide ones personal in-
formation behind the monitor. This makes it a 
source of fun in one hand but possess threat on the 
other hand. The privacy and virtual nature of this 

medium increased the chance of some heinous acts 
which one may not commit in the real world. 
O’Connell (2003) informs that the Internet affords 
greater opportunity for adults with a sexual interest 
in children to gain access to children. Communica-
tion between victim and predator can take place 
whilst both are in their respective real world homes 
but sharing a private virtual space. Young (2005) 
profiles this kind of virtual opportunist as ‘situ-
ational sex offenders’ along with the ‘classical sex 
offenders’. Both these types of offenders are taking 
the advantages of the Internet to solicit and exploit 
children. This kind of solicitation or grooming by 
the use of an online medium for the purpose of 
exploiting a child may refer to the problem of 
‘online child exploitation’.  

Currently there is no such system that can 
automatically identify the elements of child exploi-
tation in chat text. It is very difficult for parents or 
the members of Law and Enforcement Agency 
(LEA) to watch over the children all the time to 
protect them from online paedophiles loitering 
over the vast space of the Internet. An online 
automatic CE detection system can be useful. Re-
garding offline, most of the chatting programs have 
the options of storing the chat-texts in log-archives. 
According to Krone (2005) and pjfi.org chat-logs 
can be used as evidence to proof a paedophile at-
tempting to exploit children. Therefore after an 
online child exploitation occur; a LEA member can 
retrieve those offline archived chat logs from the 
hard drive of the accused to produce as evidence in 
the court of law. However manual identification of 
the evidence is a tedious and time consuming 
work, as one may have to read hundreds or thou-
sands of pages of chat-texts from different chat-
logs. Thus it is prone to error due to exhaustion. 
Moreover manual process may lead to a biased 
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decision. Therefore a research to develop such an 
automatic system will have a significant contribu-
tion in both the online and offline situation for the 
protection of children from exploitation. 

This paper introduces the results of the prelimi-
nary experiments of an ongoing research aims to 
develop a novel methodology that can automati-
cally identify the child exploitation in chats 
through the analysis of the contents of the chat-
logs using data-mining and machine learning tech-
niques. For the experiments the chat logs are col-
lected from various websites open to public. Three 
classifiers, named Classification-via-Regression, J-
48-Decision-Tree and Naïve-Bayes classifiers are 
used from the WEKA data mining tool. Along with 
term based feature set a new kind of features 
named psychometric and word categorical infor-
mation has been used. The LIWC (Linguistic In-
quiry and Word Count) is used to get this 
information of the chat-terms. The result and per-
formances of the classifiers are compared in the 
experiment and result section. 

The contributions of this paper are many fold. 
First, in the information and language technology 
field currently it is difficult to find a good number 
of researches focusing on the issue of detection of 
internet child exploitation. This paper emphasises 
on this issue and examines the technical aspects of 
chat messages that can be used to find a solution. 
Second, the experiments in the current paper use 
archived chat logs instead of single chat posts. 
Single chat posts contain only a few terms, on the 
other hand a log of chats contain a good number of 
terms which provides more facility for a machine 
learning system to learn the prediction function of 
a class. Third, this research uses psychometric in-
formation for the first time to detect CE chats. No 
other research has been found that is doing the 
same. This psychometric information seems 
enriching the feature set that improves the perfor-
mance of some classifiers. 

The remainder of this paper is organized as fol-
lows. Section 2 reviews the related works. Section 
3 describes the methodology followed in this re-
search. The experimental results are analysed in 
section 4 while section 5 presents conclusion and 
future work. 

2 Related work 

In the recent years, IT research community has 
paid good attention to the chat-text analysis and 
chat-mining. Different applications evolved in this 
area though are not perfect in all situations. Litera-
ture review suggests that most of the existing tech-
niques have good performance only for its specific 
context. The context of the current research is par-
ticularly unique; it focuses on detecting CE chats. 
In addition, it uses archived chat logs instead of 
single chat posts used by others. Therefore the ex-
isting works does not match with the current re-
search problem. As any technique that corresponds 
to the same context is not found, related works on 
chat massages is discussed in this section. 

Following subsections provide a short descrip-
tion of the analysis of unique properties of chat 
messages, psychological aspect of child exploita-
tion and a brief overview of the related existing 
work on chat text.  

 
2.1 Analysis of Chat messages  

The texts in the chat possess some unique charac-
teristics that distinguish them from other literary 
formal texts (Rosa and Ellen 2009; Kucukyilmaz et 
al. 2008). Chat-users suppose to type spontane-
ously and instantly. Therefore the individual post is 
very brief, as short as a word. Frequently it is con-
fined within a couple of words. Generally the chats 
do not follow any grammar rules. Therefore the 
chat-text is grammatically informal and unstruc-
tured. This made them more difficult to process by 
traditional sentence parsers. Chat-users are though 
typing texts, but are actually trying to talk with 
each other through it. So the text is typed very 
quickly, frequently unedited, errors and abbrevia-
tions are more common. For example, “ASL” is a 
common chat abbreviation for Age, Sex and Loca-
tion asked at the introduction stage. “P911” is a 
chatting code used by teenagers. It stands for “Par-
ent Alert!”(teenchatdecoder.com). These kinds of 
previously unseen abbreviations and erroneous 
texts are difficult to be handled by any currently 
available text processing techniques.  

Chatting is a purely textual communication me-
dium. So for transferring emotional feelings like 
happiness, sadness and angers, emoticons (emotion 
+ icon = emoticon; a chat jargon) are widely used. 
These are different sequences of punctuation marks 
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that display graphical representation of different 
emotional feelings. For example, ‘‘:-)” means 
“happy” and ‘‘:-(” represents “sad”. Another way 
of emotion transfer is by emphasizing a word with 
repeating some specific characters. For example, 
“soryyyyyyyyyyyy”. This kind of deliberate mis-
spelling is also frequent in chat text. The emoti-
cons and intentional misspelled words may contain 
valuable contextual information in a chat text. For 
example, in the grooming phase the perpetrator 
may reconstruct relation by an emphasized “sory-
yyyyyyyy” when the child felt threatening by any 
obtrusive language. Another example may be the 
emoticon for “hug (>:d<)” and “kiss (:-*)” for a 
soft introduction of sexual stage. However, pre-
serving such information makes traditional text 
processing methods (e.g., stemming and part of 
speech tagging) unsuitable for processing chat text 
(Kucukyilmaz et al. 2008).  

The concern of the current research is child ex-
ploiting (CE) chats. This kind of chats is done be-
tween an adult perpetrator and a child victim. The 
perpetrator types the text targeting to entice the 
child. Therefore this type of chats can be consid-
ered as a special type of chats inheriting the above 
mentioned general properties as well as having 
special CE properties. Sexually explicit language, 
though not found in the beginning, may be intro-
duced gradually in the text as the conversation 
progresses. Matching those words may show some 
preliminary detection of exploitation, yet this 
raises some confusions. If the perpetrator is an ex-
perienced groomer he may cleverly avoid sexually 
exploiting words. Instead he may use other words 
for gentle and soft pressure on the child’s sexual 
boundaries. On the other hand a chat log between 
two adults, who have sexual relationship, may also 
have sexually explicit languages in their intimate 
private chat sessions. Matching only sexually ex-
plicit words does not solve the problem. A robust 
analysis of the entire chat text is required that may 
detect the particular child exploiting (CE) profile 
in the chat log. 

 
2.2 Psychological information and LIWC 

Rachel O’Connell (2003) identified psychological 
progressive stages in online child exploitation.  
The exploitation does not occur instantly. It starts 
by making an innocent friendship and gradually 
advances towards the stage of exploitation through 

a psychological progression. A perpetrator tends to 
follow the model of luring communication theory, 
proposed by Olson et.al. (2007). According to this 
model a perpetrator builds up a deceptive psycho-
logical trust. This indicates that the terms used in 
the process of exploitation are categorically and 
psychologically different than the terms used in 
general chatting. Therefore analysing the psycho-
logical and categorical information of the chat 
terms would be helpful to learn the psychological 
pattern of the exploitation. To find out the cate-
gorical and psychological properties of terms 
LIWC (Linguistic Inquiry and Word Count) has 
been used in this current research. According to 
Pennebaker et al.(2007) LIWC is a text analysis 
application designed to provide an efficient and 
effective method for studying the various emo-
tional, cognitive, and structural components pre-
sent in the terms of a text.  The LIWC system 
counts the number of structural and psychologi-
cally significant words in the text. For example it 
gives the count of the words that contain the fol-
lowing information: social, family, friend, sexual, 
positive emotion, negative emotion, sad, anger, 
anxiety etc.  

 
2.3 Existing Work on Chat-text  

Wu et al. (2005) applied transformation based 
learning for tagging the chat post. For this purpose 
the authors used templates incorporating regular 
expressions. A tag is the type of the post, for ex-
ample, a statement, a yes no question or a wh-
question. The authors provided a list of 15 prede-
fined tags. However the list of the tags does not 
include any tag that indicate child exploition. 

Adams and Martell (2008) worked on topic de-
tection and topic thread extraction in chat-logs. 
Each chat post or line is treated as a document. The 
typical TF-IDF-based vector space model approach 
along with cosine similarity measure is used. The 
authors used chat text from the Internet public chat 
rooms.  The focus of the paper was conversation 
topic thread detection and extraction in a chat ses-
sion. Attention for the topic of ‘child exploitation’ 
is not provided.  

Text Classification (TC) techniques are used for 
decades for content based document processing 
tasks. Besides these applications in formal literary 
texts, in recent years TC is also been applied into 
the informal texts like chats. Using text classifiers 
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Bengel et al. (2004) developed a system that cre-
ates a concept-based profile that represents a sum-
mary of the topics discussed in a chat room or by 
an individual participant. Vector space classifiers 
are used to categorize the concepts of chat mes-
sage. Though about luring activities in the online 
chat room is mentioned in this paper as an example 
of detection of chat topics but neither specific ex-
perimental result nor any guideline provided. 
Moreover no particular result was provided regard-
ing the accuracy of the system. 

Kucukyilmaz et al. (2008) worked on author-
ship attribution and authorship characterization in 
chat messages. Different supervised classification 
techniques are used for extracting information 
from the chat messages. Both term-based and writ-
ing-style-based approach is used to identify the 
author of the chat message. The chat messages 
were in Turkish instead of English.  

Rosa and Ellen (2009) applied traditional text 
classifiers to categorize military micro-texts. The 
micro-text is like a post (a line) in a chat among 
defence personnel. The posts are categorized into 
different predefined categories of military interest. 
Child sex exploitation was neither any context of 
the categorization nor the authors used any civilian 
chat ; they used only military chat. 

Bifet and Frank (2010) used classifiers to ana-
lyse sentiment in twitter messages. The twitter 
messages are small texts somewhat similar to chat 
messages. Instead of prequential accuracy the au-
thors used Kappa statistics to measure the predic-
tive accuracy of classifiers.  

Focuses of the above mentioned researches are 
different than the focus of current research. There-
fore it is very unlikely that any of these researches 
would be directly applied to solve the problem of 
the detection of CE chats. This research used su-
pervised machine learning methods i.e.  classifiers 
to learn the distinctive features of CE chats and 
then applied for the detection. 

 

3 Methodology 

3.1 Formulation of the Problem of Chat Classi-
fication 

To understand the problem of detection of child 
exploitation (CE) one need to look on chats from 

the CE point of view. In this view, chats can be 
defined into the following three categories: 

1. CE chat: These are Child Exploiting (CE) 
chats. An adult perpetrator is involved in this type 
of chat with a minor. The purpose of the perpetra-
tor is to solicit the child and achieve sexual gratifi-
cation. The exploitation may occur either online or 
a physical meeting is arranged for further abuse.    

2. Near to CE chat: These chats are Sex Fantasy 
(SF) chats between two adults. Sexual gratification 
is one of the common motives in both the CE and 
the SF types of chats. Similar sexually explicit 
terms are present in both of them. They may also 
have similar progression style. As no minor child 
is involved, these chats are not CE. However both 
types have some similarity, so we consider SF 
chats as near to CE type.  

3. Far from CE chat: Other general (GN) type 
of chats which does not have any similarity with 
CE type chats and easy to distinguish from them. 
For example chat between a client and an expert to 
solve a technical problem. 

After defining the categories of chats from the 
CE point of view, the problem of predicting the 
type of a chat is similar to the text classification 
problem with careful consideration of the unique 
characteristics of chat. Using supervised machine 
learning methods a solution to this problem is to 
generate a prediction function (f) that maps each 
chat-log (D) onto one of the class type (C), given 
as CDf →: . In a binary classification the class 
type (C) includes CE type chats and NonCE type 
chats. In the case of multi-class classification the 
suspected CE chats are one of the predefined mul-
tiple types. The prediction function (f) can be 
learned by training classification algorithms over a 
representative set of chat-logs whose types are 
known. In the experiments of current research two 
different types of feature sets are used in the su-
pervised machine learning process. First type is the 
traditional term-based feature set where the voca-
bulary of the message collection in the chat log 
constitutes the feature set. Each term corresponds 
to a feature. For the second type of feature set a 
new approach has been made in this research. The 
word categorical and psychometric information 
from LIWC is used as the feature set. Each chat-
log file is considered as a document. By this for-
mulation, the problem of chat classification is re-
duced to a standard text classification problem.  
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3.2 Procedural Framework 

Figure 1 on the next page illustrates the procedural 
framework followed in the experiments of the cur-
rent research. 
 

 
 

Figure 1: Procedural framework 
 

Development of Chat Dataset: Due to the sexual-
ly explicit nature of the child exploiting chats, and 
the surrounding legal and ethical issues, it is diffi-
cult to find such data in an authenticated academi-
cally available research databases. However, a 
number of such chat-logs are found in the Per-
verted Justice Foundation Incorporated (PJFI) 
website available at http://pjfi.org. The PJFI 
worked with Law and Enforcement Agency (LEA) 
in a covert operation to catch the online paedo-
philes. The chat logs contain chat-text between 
users posing as a child and perpetrators trying to 
procure children over the Internet for exploitation. 
The perpetrators involved in those chats are prose-
cuted according to US law. The chat-texts were 
used as evidence and finally the perpetrators were 
convicted. In absence of chats between a real child 
and a paedophile these chat-texts may work as a 
benchmark because they contain evidence of child 
exploitation and the evidence are established in the 
court of Law. The chat-logs are open for all in the 
World Wide Web. Permission through email from 
the administrator of the website has been received 
to use those chat-logs for the purpose of current 
research.  

For the classification experiments different oth-
er kinds of chats are also needed which include SF 
and GN type chats. Websites like 
http://www.fugly.com and http://chatdump.com 
have a collection of anonymous chats. The chats 
were provided by volunteers making fun with 
people online. Some of the chats can be considered 
as SF type. This type of chats contains elements of 
sex fantasy. However as the main purpose was on-
ly to make fun, in some part of the chat one of the 
user behave weirdly to make fun out of the already 
built sex fantasy. For example, after a considerable 
time of chatting and starting up a romantic rela-
tionship, a user appears to be a different person 
(though he is not) and turns the conversation into a 
different direction other than sex fantasy. An ex-
ample excerpt of a turning point is as bellow: 

Man: Hello?  
Man: Who is this?  
Man: What the hell do you think you're 

doing?  
Man: cybering with my 10 year old son? 
Woman: OMG 
Woman: I didn't know he was 10. I'm 

sooo sorry 
Woman: The Profile said he was 26! 
Man: This is MY account. NOT his. 
 

Figure 2: Example of an edited portion of a SF chat 

We collected the chats and edited this kind of 
direction changing parts to keep it as SF. To test 
the chat-logs are really SF or not, we mixed them 
with some CE type chat logs and some GN type 
chat logs to make a collection of 120 chat logs. 
The collection was sent to an expert researcher of 
psychology to verify the SF types. The researcher 
of psychology identified 73 of the collections as SF 
types.  To increase the number of chats in SF type, 
some of the SF chats are randomly crossed with 
each other. Finally 85 SF type chats are used in the 
experiments. 

The main objective of this experiment is to ob-
serve if the text classifiers are capable of distin-
guishing CE type chats among different other types 
of chats. In the experiments the data set consists of 
text of a number of chat-log files. The logs include 
child exploiting offensive CE chat-logs, general 
non offensive (GN) chat-logs and sex fantasy type 
SF chat-logs. Each log is a member of the data set 
and is considered as an individual instance. The 
instances are divided into three classes; CE, SF and 

Classification 
 

Training 
Testing 

Cross validation 

Preparation and Pre-processing of Data 
 

Cleansing 
Feature Selection 

Development of Chat Data Set 
 

Different types of Chat logs are collected from 
various open websites 
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GN. The total number of instances was 392. 
Among the 392 instances 200 were CE chat-logs, 
85 were SF type and 107 were GN type chat-logs.  

Preparation and Pre-processing of Data: The 
chat log files were pre-processed by cleansing and 
feature selection. In cleansing stage the usernames 
are removed. Then the text is converted into string 
vectors.  

Two types of features are selected for two sets 
of experiments. In one set of experiment the term-
based features are used. The other set of experi-
ment used psychometric and categorical informa-
tion from LIWC. The categorical counts are used 
as features in the classifiers.  

Classification: Three classifiers from WEKA da-
tamining tool are used in the classification experi-
ments. These are Naïve Bayes (NB), J48-Decision 
Tree (J48-DT) and Classification via Regression 
(CvR) classifiers. Training, testing and 10 fold 
cross validations are done. An analysis of the re-
sults is given in the following section.  

4 Experimental Result and Analysis 

4.1 Result 

A number of experiments have been done with 
different combination of the available chat data set. 
The combination of the data set is indicated in the 
corresponding table. The odd numbered tables 
show the confusion matrices of experiments with 
term-based feature set whereas the even numbered 
tables are for experiments with feature set based on 
psychometric and categorical information from 
LIWC.   For example, the Table 1 corresponds to 
the results in the Experiment Set-1. It uses 392 in-
stances of chat logs, where 200 are of CE type, 107 
are of GN type and 85 are of SF type. Table 1.1, 
1.2 and 1.3 show the confusion matrices of the re-
sults from Naïve Bayes (NB), J48-Decision Tree 
(J48-DT) and Classification via Regression (CvR) 
classifiers respectively. In the confusion matrices 
the rows specify true class and columns show the 
prediction of the classifier. Experiment Set-1 does 
not use psychometric information. It uses term-
based feature set. On the other hand, Experiment 
Set-2 uses psychometric and categorical informa-
tion as the feature set with the same chat dataset as 

of Experiment Set-1. The results of Experiment 
Set-2 are in Table 2.  

4.2 Analysis of Result 

From the results it can be seen that psychometric 
and categorical information improves the perfor-
mance of some classifiers. Table 1.1 and 2.1 shows 
the result of for Naïve Bayes (NB) classifier. In 
these tables the correctly detected chats for the CE 
types are increased by 11.3% (from 168 to 187).   
Moreover incorrect classification of the CE type 
chats are decreased by 59.4% (from 28+4=32 to 
7+6=13). Similar improvements are found in all 
results with NB classifiers using psychometric in-
formation. Results of Classification via regression 
(CvR) classifier is also improved in some cases 
(Table 2.3, 4.3 and 8.3) when psychometric infor-
mation feature set is used. In those cases it is de-
tecting more CE chats, however at the same time it 
is predicting more chats as CE which are actually 
not CE. For the J48-Decision Tree (J48-DT), psy-
chometric information does not make any im-
provement. 

Comparing the results of multiclass classifica-
tion with binary classification (Table 2 and 4) it is 
found that the effectiveness of the classifiers are 
almost same in regards of correctly predicting CE 
chats. For example, NB classifier correctly detects 
CE chats 187 times in multiclass classification and 
188 times in binary classification. Regarding the 
false negative case the figure is also very near, 13 
and 12. The other two classifiers are also having 
nearby results.  

The results of Experiment Set-5 and 6 (Table-5 
and 6) and  Experiment Set-7 and 8 (Table 7 and 8) 
shows that classifiers find more difficulties to dis-
tinguish CE vs. SF chats than to distinguish CE vs. 
GN chats. For example, the result of NB using 
LIWC (Table 6.1 and 8.1) shows that, incorrectly 
classified instances in CE vs. SF is 9.8% 
((10+18)/285) which is much higher than 4.5% 
((10+4)/307) in CE vs GN. Results of other clas-
sifiers also support this idea. 

The aim of current research is to detect CE 
chats.  Therefore the classifier should not spare any 
suspected chat-log. It has to be very strict in catch-
ing CE chats even if it makes some incorrect pre-
diction about some other non CE chats. That 
means the classifier can be flexible in Type-I error 

X 
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Tables : Confusion Matrices for different Classification Experiments 

Experiments with 
Term-based feature set 

Experiments with feature set of psychometric  and 
word categorical information from LIWC 

Table 1: Confusion Matrices for  
Experiment Set-1: CE vs. GN vs. SF 

Total Number of Instances 392; 
CE = 200, GN = 107, SF = 85 

Naïve Bayes J48-Decision 
Tree 

Clas. Via 
Regression  

CE GN SF CE GN SF CE GN SF  
168 28 4 181 7 12 188 2 10 CE 

4 103 0 10 77 20 5 91 11 GN 
2 57 26 13 22 50 5 17 63 SF 
Table 1.1 Table 1.2 Table 1.3   

Table 2: Confusion Matrices for  
Experiment Set-2: CE vs. GN vs. SF 

Total Number of Instances 392; 
CE = 200, GN = 107, SF = 85 

Naïve Bayes 
J48-Decision 

Tree 
Clas. via 

Regression 
CE GN SF CE GN SF CE GN SF 

 187 7 6 174 12 14 189 10 1 CE 
3 95 9 17 77 13 11 86 10 GN 
14 13 58 11 12 62 20 13 52 SF 

Table 2.1 Table 2.2 Table 2.3 
 

Table 3: Confusion Matrices for  
Experiment Set-3: CE vs.NonCE 
Total Number of Instances 392; 

CE = 200,  NonCE  = 192 

Naïve Bayes 
J48-Decision 

Tree 
Clas. via 

Regression 
 CE NonCE CE Non CE CE Non CE 
 154 46 183 17 178 22 CE 

10 182 19 173 17 175 NonCE 

Table 3.1 Table 3.2 Table 3.3 
 

 

Table 4: Confusion Matrices for  
Experiment Set-4: CE vs. NonCE 
Total Number of Instances 392; 

CE = 200,  NonCE = 192 

Naïve Bayes 
J48-Decision 

Tree 
Clas. via 

Regression 
 CE NonCE CE Non CE CE Non CE 
 188 12 170 30 182 18 CE 

22 170 20 172 37 155 NonCE 

Table 4.1 Table 4.2 Table 4.3 
 

 

Table 5: Confusion Matrices for  
Experiment Set-5: CE vs. SF 

Total Number of Instances 285; 
CE = 200, SF = 85 

Naïve 
Bayes 

J48-Decision 
Tree 

Clas. via 
Regression  

CE SF CE SF CE SF  
179 21 179 21 188 12 CE 

3 82 18 67 12 73 SF 

Table 5.1 Table 5.2 Table 5.3   

Table 6: Confusion Matrices for  
Experiment Set-6: CE vs. SF 

Total Number of Instances 285; 
CE = 200, SF = 85 

Naïve 
Bayes 

J48-Decision 
Tree 

Clas. via 
Regression 

 CE SF CE SF CE SF 
 190 10 176 24 185 15 CE 

18 67 17 68 24 61 SF 

Table 6.1 Table 6.2 Table 6.3 
 

 

Table 7: Confusion Matrices for  
Experiment Set-7: CE vs. GN 

Total Number of Instances 307;  
CE = 200, GN = 107 

Naïve 
Bayes 

J48-Decision 
Tree 

Clas. via 
Regression  

CE GN CE GN CE GN  
171 29 186 14 185 15 CE 
4 103 11 96 15 92 GN 

Table 7.1 Table 7.2 Table 7.3   

Table 8: Confusion Matrices for  
Experiment Set-8: CE vs. GN 

Total Number of Instances 307; 
CE = 200, GN = 107 

Naïve 
Bayes 

J48-Decision 
Tree 

Clas. via 
Regression  

CE GN CE GN CE GN  
190 10 192 8 188 12 CE 
4 103 14 93 21 86 GN 

Table 8.1 Table 8.2 Table 8.3   

X
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(False positive) but should minimize Type-II error 
(False negative) as much as possible. Considering 
this, we try to find out the classifier which is per-
forming best among the three classifiers. In multic-
lass classifications, in the case of term-based 
feature set (Table1) CvR is detecting the highest 
number of CE chats. It is predicting 188 chats as 
CE whereas prediction by NB is 168 and predic-
tion by J48-DT is 181. Both NB and CvR  are 
competing with each other when psychometric in-
formation are used (Table 2).  Both of them are 
detecting almost the same number of CE chats 
(187 and 189). The number of false negative is also 
about the same (13 and 11). 

In binary classification in Table 3 and 4, NB with 
psychometric information (Table 4.1), is perform-
ing the best. It is detecting 188 CE chats out of 200 
and CvR (Table 4.3) is catching 182, whereas J48-
DT (Table3.2) catching 183.  

5 Conclusion and Future Work 

Psychometric and categorical information can be 
used by classifiers as a feature set to predict the 
suspected child exploitation in chats. The new fea-
ture set significantly improves the performance of 
Naïve Bayes (NB) classifiers to predict CE type 
chats. In some cases it also improves the perfor-
mance of Classification via Regression (CvR) clas-
sifier. It seems that the chat dataset is enriched by 
the psychometric and categorical information. 
However it is interesting that while it is improving 
the performance of two classifier (NB and CvR), 
the same enriched dataset does not improve the 
performance of another classifier (J48-DT). It can 
be a future scope to look at the profile of CE chats 
and investigate the interesting behavior of different 
classifiers. 

Though the text classifiers are classifying logs 
of chat text into predefined suspected CE type they 
do not provide any particular aspect of the chat that 
can be used as evidence of the chat being an arti-
fact of child exploitation. Therefore, further analy-
sis is required to detect specific evidences inside 
the suspected CE chat. This is another future scope 
of this research. 
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Abstract 

There is a rapidly growing body of work 
in the use of Embodied Conversational 
Agents (ECA) to convey complex con-
textual relationships through verbal and 
non-verbal communication, in domains 
ranging from military C2 to e-learning. In 
these applications the subject matter ex-
pert is often naïve to the technical re-
quirements of ECAs. ENGAGE (the Ex-
tensible Natural Gesture Animation Gen-
eration Engine) is designed to automati-
cally generate appropriate and ‘realistic’ 
animation for ECAs based on the content 
provided to them. It employs syntactic 
analysis of the surface text and uses pre-
defined behaviour models to generate ap-
propriate behaviours for the ECA. We 
discuss the design of this system, its cur-
rent applications and plans for its future 
development. 

1 Introduction 

The Defence Science and Technology Organisa-
tion has an active research program into the use 
of multimedia narrative to provide situational 
awareness for military C2 (Wark and Lambert 
2007). In common usage, face-to-face communi-
cation is the predominant, and often most effec-
tive, way for people to give and obtain complex 
contextual information. Embodied Conversa-
tional Agents (ECA) provide verbal and non-
verbal communication modes similar to face-to-
face communication. Gestures such as nods and 
facial expressions are very important in listener 
engagement with the speaker and their message. 

Programming these gestures into an ECA ani-
mation is time consuming and requires special-
ised expertise. The subject matter experts devel-

oping content for ECAs are often naïve with re-
spect to these technical requirements.  A system 
to automatically generate appropriate non-verbal 
behaviour allows the content creator to concen-
trate on the information and not on how the ECA 
will animate it.  

The BEAT system from MIT (Cassell et al. 
2001) demonstrated this capability. DSTO has 
developed ENGAGE (Extensible Natural Ges-
ture Animation Generation Engine) based on the 
principles demonstrated in BEAT, and extended 
them to incorporate modifiers such as confi-
dence, importance, and urgency.  

1.1 Virtual Adviser 

DSTO has been using ECAs dubbed Virtual Ad-
visers (VAs) as a mechanism for augmenting 
situational awareness in military C2 (Taplin et al. 
2001; Wark and Lambert 2007; Wark et al. 
2009). Virtual Advisers are computer generated 
talking heads using photo realistic textures with 
real-time animation and commercial-off-the-shelf 
text-to-speech (TTS) generation. Virtual Advis-
ers can also include rolling text captions and 
multimedia monitors à la television news ser-

 
Figure 1 – Virtual Advisers present photo-realistic 

models of people 
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vices. Virtual Advisers have been designed for 
modularity and can be delivered to users in a 
number of ways. 

VAs are used to present situation briefs incor-
porating other media such as tables and dia-
grams, images, video, 3D models and so on. 
They are being used to provide prepared presen-
tations, or dynamically generated content incor-
porating a dialog management system with a 
conversational interface (Estival et al. 2003). 
When connected to a decision support system 
they can also alert people to new or changing 
situations (Lambert 1999; Wark et al. 2003). 

Virtual Advisers augment human support staff 
by providing a capability that can be deployed 
and accessed simultaneously from multiple geo-
graphically distributed locations. They can pre-
sent the same information numerous times, on 
demand, without imposing an additional staffing 
burden. Virtual Advisers can augment existing 
decision support systems by explaining the in-
formation produced, not just showing it. 

1.2 Talking Head Markup Language 

Content is provided to VAs in the form of Talk-
ing Head Markup Language (THML). THML is 
tagged text that describes what the VA is to say 
and do. It includes commands to direct the VA: 
to say text; to adopt degrees of fundamental fa-
cial expressions (happy, sad, angry, afraid, sur-
prised, contempt, disgust) (Ekman and Friesen 
1977); to make eyebrow and head movements; 
and to direct gaze. It also includes commands to 
control the underlying TTS system, the appear-
ance of the VA and its environment, and syn-
chronise with other applications. 

THML is designed to be simple for humans to 
read and write and to support on-the-fly author-
ship. 

2 VA Architecture 

Virtual Advisers are implemented using a modu-
lar, distributed architecture. All components 
communicate using a client-server model. The 
system consists of three core components; a ren-
dering engine, system controller (THConsole), 
and Text-to-Speech service. Automated behav-
iour generation can be provided by ENGAGE. 
The content to be delivered by the VA can either 
be authored by a user or by a dynamic content 
generation system that feeds the THConsole the 
THML to be presented on demand.  

2.1 Rendering Engines 

Rendering Engines are used to display the VA. 
They receive low-bandwidth rendering and tim-
ing instructions from the THConsole and output 
correctly synchronised 3D graphics, video, audio 
and application control.  

C++ and Java toolkits have been developed to 
provide reusable, cross platform, core compo-
nents to help facilitate the rapid development of 
new Rendering Engines for novel delivery medi-
ums. These toolkits provide common underlying 
functionality such as: character animation; plug-
gable audio; instruction parsing; event based 
timeline; and networking support. The character 
animation system is built on top of the Cal3D 
library (Cal3D Team 2011). It provides skeletal 
and morph target character animation and a flexi-
ble model loading system. The Java Abstract 
Gaming Tools library (JAGaToo 2011) provides 
a port of the Cal3D library from C++ and is used 
in our Java toolkit.  

Rendering Engines are developed by extend-
ing the core toolkits and providing environment 
specific support, such as accelerated 3D graphics 
and any other capabilities appropriate for the tar-
get medium.  

Currently, VAs can be delivered in one of 
three ways: as a Desktop Application that can be 
controlled via an integrated Desktop service or 
invoked independently; embedded as an overlay 
or 3D model inside other applications such as 
DSTO’s Virtual Battlespace II geospatial display 
(Wark et al. 2009); and as an Applet displayed 
on web pages and integrated into mainstream 
wiki systems, such as Atlassian’s Confluence and 
the ubiquitous, open source, MediaWiki. 

Desktop and embedded delivery is facilitated 
by a Rendering Engine built with the high per-
formance OpenSceneGraph 3D library 

Figure 2 – The Virtual Adviser system 
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(OSG Community 2011). Highlights of this solu-
tion include: integrated video and multimedia 
display; tickertape captioning; stereoscopic view-
ing; and Render-to-Texture support. The Render-
to-Texture support allows the Virtual Adviser to 
be rendered as an overlay or texture in other ap-
plications. 

Web delivery is via a Java-based Applet using 
the Java OpenGL (JOGL) bindings. The Applet 
works on all major platforms and web browsers 
that support the Java plug-in. Wiki integration 
for Confluence and MediaWiki allow users to 
easily embed and control a Virtual Adviser on a 
wiki page. A system for automatically presenting 
a converted PowerPoint presentation on a web or 
wiki page has also been developed and demon-
strated. 

2.2 THConsole 

The Talking Head Console (THConsole) acts as 
the system controller. It interprets THML pro-
vided to it by a content generation system or user 
and coordinates the use of ENGAGE and the 
TTS service to produce the necessary animation 
instructions, synthesised audio and timing infor-
mation, which is used by Rendering Engines to 
display VAs. Where ENGAGE is unavailable, 
the THConsole will process the script as is using 
only the marked up behaviour in the input 
THML. 

The THConsole provides a flexible deploy-
ment capability. It is written as a small Java li-
brary that can be run in a number of different 
ways including: as an interactive CLI application 
that can have data either typed directly into it or 
piped from other processes or files; a TCP server 
that can be controlled via remote clients; or em-

bedded as a component inside other applications 
and controlled using its public API. 

How THML is handled depends on its context. 
Where commands are not inside an utterance, the 
THConsole can process them directly and send 
them to the Rendering Engine for immediate dis-
play. In contrast, utterances and the commands 
nested inside utterances are handled using a three 
pass process that requires the use of external ser-
vices. The first pass optimises the input by 
chunking the say statement at sentence bounda-
ries. The advantage of chunked input is that it 
greatly improves the throughput of both EN-
GAGE and the TTS and provides concurrency by 
allowing the Rendering Engine to begin execut-
ing one sentence while subsequent sentences are 
still being processed by the THConsole. The sec-
ond pass expands the script using ENGAGE, if 
the service is available, to automatically generate 
behaviour. The final pass calls on the TTS ser-
vice to generate synthesized audio and timing 
information for all events in utterance. The TTS 
results are then processed by the THConsole with 
timing information applied to all behaviour and 
actions in the utterance. Finally, rendering in-
structions are sent to the Rendering Engine for 
display. 

2.3 Text-to-Speech Service  

The Text-to-Speech service provides synthe-
sized audio and timing information to enable 
synchronization of audio with animation and 
other events. In addition the service provides the 
ability to change the current voice, alter the 
speech rate and control volume. A TCP client-
server architecture is used for service control. 
Generated files are served using a HTTP server 
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Figure 3 – Virtual Advisers can be embedded on web pages to give dynamic presentations 
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to allowing a pull model where clients retrieve 
the audio and timing information as they need 
them. 

Currently the TTS service uses Nuance’s Re-
alSpeak Solo 4 TTS engine (Nuance 2011). 
Other systems that have been used include Rhe-
torical System’s rVoice TTS and the open source 
Festival Speech Synthesis System.  

3 ENGAGE System 

ENGAGE uses syntactic analysis of THML and 
behaviour models to generate appropriate syn-
chronised behaviour. Parameters that control the 
application of these behaviour models can be 
embedded in the input speech instructions. 

There are five main components in the EN-
GAGE system. Four of these components are 
arranged in a strict processing chain. The input 
stream is first sent to the Pre-processor, which 
prepares the input’s speech instructions for syn-
tax analysis. The Language component then adds 
syntax analysis to the speech parts of the input. 
The Behaviour component generates appropriate 
behaviours. Finally the post-processor produces 
mark-up for the virtual character system consist-
ing of speech and synchronised behaviour. The 
fifth component of the system, the Behaviour 
Models, are used in both the language and behav-
iour components of the system to produce behav-
iour that is tailored to the current personality pro-
file in use and model parameters provided in the 
input. 

Following Cassell et al. (2001) and Lee and 
Marsella (2006), we use an XML document to 
store the processing results of each stage in the 
pipeline process. Each processing node is im-
plemented as XSL transforms that can modify 
and augment the XML document. This pipeline 
approach ensures the separation of gesture gen-
eration from gesture realisation. This means that 
different behaviour models can be easily plugged 
in to achieve different behaviours in the VAs. 
The following sections examine each component 
in detail. 

3.1 Pre-processor 

The pre-processor prepares the THML input for 
processing. It takes as input a character stream of 
speech and other instructions and produces as 
output an XML tree ready for language syntax 
analysis. In the current implementation the Pre-
processor uses a three stage process where input 
is first tokenised, then filtered and finally serial-
ised to XML. 

3.1.1 Tokeniser 

The tokeniser is responsible for separating and 
extracting the various components of the input 
ready for filtering and serialisation to XML. It 
takes the character stream as input and produces 
an ordered list of “word” and “tag” tokens as 
output. The “word” tokens represent the dialogue 
that is to be spoken by the animated character, 
while the “tag” tokens represent all other instruc-
tions in the input stream, usually THML tags or 

 
Figure 4 – The ENGAGE system. 
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ENGAGE processing instructions. The ordered 
list of tokens is then returned ready for filtering. 

3.1.2 Filters 

The filtering stage of the Pre-processor examines 
the input tokens and performs any additional 
processing on them ready for XML serialisation 
and processing. The filter set currently consists 
of an acronym and abbreviation filter and an 
ENGAGE tag filter for marking specific “tag” 
tokens as processing instructions for ENGAGE. 

The acronym and abbreviation filter uses a 
context sensitive Abbreviation Pronunciation 
Management System (APMS) to expand any ac-
ronyms and abbreviated words. This allows cor-
rect phrase structure analysis in the language 
module and provides the Text-to-speech system 
with contextually correct phonetic spellings to 
facilitate correct pronunciation of the abbrevia-
tions. 

3.1.3 Abbreviation Pronunciation Manage-
ment System (APMS) 

The correct pronunciation of some words, par-
ticularly abbreviations, can be difficult to deter-
mine from their written form with pronunciations 
often varying depending on the context in which 
they appear. Text-to-speech engines can do a 
very good job of inferring correct pronunciation 
of written forms, including initialisms and acro-
nyms, but are not perfect, and don’t have mecha-
nisms to distinguish how different contexts can 
change pronunciations. 

Large numbers of abbreviations are used in the 
defence domain, both in written forms such as 
reports, and in the spoken language. To always 
replace written forms with pronunciation forms 
directly in THML scripts would be tedious, and it 
would make the script harder for a reader to un-
derstand. Also, in the future we expect that 
THML scripts will be automatically generated 
from text that was never intended to be spoken 
by a VA. We want to make the process of author-
ing THML scripts simple and natural, to aid both 
authors and future automation. Thus, we want to 
move the problem of deciding how to pronounce 
abbreviations to the Virtual Adviser and away 
from the author. 

We have developed the Abbreviation Pronun-
ciation Management System (APMS) to replace 
written abbreviations with pronunciation spell-
ings in a context-sensitive way in ENGAGE. 

Consider the written abbreviation “RAAF”, 
which can be pronounced as “R double-A F”, 
“raff”, or “Royal Australian Air Force”. The pro-

nunciation chosen can have a significant effect 
on comprehensibility of the speaker’s message. 
For instance, it could be confusing to use the 
pronunciation “raff” when talking of a coalition 
military operation. On the other hand, using the 
longest form, “Royal Australian Air Force”, 
could distract from the content of the message 
and socially separate a speaker from their audi-
ence if the context were an Australian military 
operation, where “raff” is the most common pro-
nunciation. 
In the APMS we use string tokens to identify contexts 
of abbreviation pronunciation. We allow contexts to 
inherit pronunciation replacements from a single par-
ent, forming a branching hierarchy of contexts, or 
ontology. Child contexts may include different pro-
nunciation replacements than its ancestors. This en-
ables the addition of more specific contexts to handle 
more specific pronunciation replacements, while in-
heriting more general pronunciation replacements. For 
example, the context “general.australia.gov” may in-
clude the pronunciation replacement RAAF  “R 
double-A F”, while the context “gen-
eral.australia.gov.mil” may include the pronunciation 
replacement RAAF  “raff”. 

Database: The APMS database provides the 
persistent store of translations between text in-
puts and more vocally accurate textual or pho-
netic spellings. Each of these translations is 
given for a particular context. If no translation 
can be found in the given most specific context, 
progressively more general contexts are searched 
until a translation is found. For instance, the 
search may progress from “ship” to “Navy” to 
“military” contexts.  

 The system is implemented using PostgreSQL 
because of the richness of its stored procedure 
language and integral support for recursion for 
hierarchical data. This allows recursive searches 
to occur entirely within the database, avoiding 
returning intermediate results and executing re-
cursion from the client which could be prohibi-
tively expensive. Pronunciation lookup is done 
entirely server side. In normal operation, the sys-
tem is further optimised by pre-calculating the 
best answer between voice, accent and context 
for any defined word and storing these answers 
in a cache. This noticeably enhances speed at the 
acceptable expense of higher disk usage. 

As pronunciations necessarily drift and evolve, 
a script that had been rendered correctly may 
degrade as the underlying database evolves. The 
database records the times that pronunciations 
are added and when a pronunciation is revised 
the old version is retained. To access prior pro-
nunciations, the caller need only specify a refer-
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ence time and the database provides the pronun-
ciation as it was then. For efficiency the system 
allows each caller their own cache which pre-
calculates pronunciations for the caller’s pre-
ferred reference time. It also provides a table in 
which to record such reference times, along with 
a short name and comment. This schema has the 
advantage of archiving all “snapshots” of the da-
tabase online at very low storage cost, with only 
the snapshots in current use being instantiated 
out into the cache. 

Usage: To use the APMS, THML scripts are 
marked-up to identify the context ontology it is 
to use. Scripts are then marked-up throughout to 
identify the current context for abbreviation re-
placement. As scripts are processed by EN-
GAGE, each space-separated word within 
‘<say>’ tags is analysed, given the current ab-
breviation context, to see if it should be replaced 
by a pronunciation spelling.  

3.1.4 XML Generator 

The XML Generator concludes the pre-
processing stage by producing an XML tree from 
the tokenised and filtered input ready for Lan-
guage and behaviour processing. The filtered 
“word” and “tag” tokens are marked up as XML 
elements in the pre-processed XML tree. Any 
“tag” tokens that have been marked as processing 
instructions for ENGAGE (such as behaviour 
models and parameters) are expanded and added 
as either attributes or elements depending on the 
scope of their behaviour. 

3.2 Behaviour Models 

Behaviour models are used to control and tailor 
the language and behaviour produced by EN-
GAGE. In this first version of the system, behav-
iour can be controlled using a Confidence Engine 
to manage the level of uncertainty displayed by 
the character. It is envisaged that future incarna-
tions of the system will feature Behaviour Mod-
els for controlling the level of importance and 
urgency in the information being presented. 

3.2.1 Personality and Personality Profiles 

The Personality component provides the system 
with a means of varying language and behaviour 
parameters for the Behaviour model based on 
different Personality profiles. 

Each Personality profile represents a set of 
language and behaviour parameters that can be 
used to alter the output of the various Behaviour 
Models. A Personality profile can inherit pa-
rameters from other personality models. This 

allows common traits to be pushed up to a com-
mon ancestor personality profile. In the first cut 
of the system this is achieved through cascading, 
where parameters are overridden by each succes-
sive include and can be further specialised in the 
child personality profile. In future a more power-
ful inheritance model will be implemented that 
allows groups or individual parameters to be in-
cluded from specified parent profiles.  

A User Interface has been developed to help 
generate personality profiles and tweak output 
behaviour. This interface provides the user with a 
set of parameter sliders that allow the various 
Behaviour Model parameters to be modified ei-
ther individually or as grouped sets. The results 
of these changes can be tested and tweaked in 
real time allowing the user to see the results im-
mediately. 

3.2.2 Confidence 

The Confidence Engine allows the system to 
control the level of uncertainty displayed by the 
character based on a confidence measure and 
parametric personality profile that can be as-
signed to the input utterance. Personality profiles 
are used to provide the Confidence module its 
parameters and allow the behaviour to be tailored 
for different personality types.  

Currently the Confidence Behaviour Model is 
used in the Language Modification and Behav-
iour Generation phases of ENGAGE processing; 
how the Confidence Engine is applied will be 
discussed further in their Langauge Modification 
and Behaviour sections.  

3.3 Language 

Our primary intent is to generate natural-looking 
gestures to accompany the VAs speech. There-
fore, and following Cassel (2000), Cassel et al. 
(2001) and Lee and Marsella (2006), syntactic 
analysis of the text to be spoken is important for 
behaviour generation and realisation. The text to 
be spoken is found within ‘<say>’ tags in the 
THML scripts that drive the VA. 

3.3.1 Phrase Structure Analysis 

Each sentence found in THML ‘<say>’ tags are 
sent to an automatic English parser for a full 
phrase structure analysis. At present we use the 
Stanford Parser to perform this function 
(The Stanford NLP Group 2011). The Stanford 
Parser uses a statistical method to perform phrase 
structure analysis. The tag set used is from the 
Penn treebank. 
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Syntactic and POS attributes are assigned as 
attributes to the individual word elements in the 
XML tree. These attributes can then be used in 
later processing stages such as contextual 
markup, language modification and behaviour 
generation. 

3.3.2 Contextual Mark-up 

Hiyakumoto et al. (1997) and Cassell et al (2001) 
use automatic theme/rheme analysis to aid be-
haviour generation, as it is stated that gestures 
are more frequently found in the rheme, or com-
ment, part of the sentences (Cassell 2000). In 
order to perform automatic theme/rheme analysis 
these systems keep a record of all terms men-
tioned, and, broadly, determine that re-
occurrences of those terms or closely related 
terms constitute the theme, or topic, of the 
clause. 

At this stage the ENGAGE system does not 
maintain a history of words previously spoken by 
virtual characters. It is possible to add such a ca-
pability, and once done this will provide the sys-
tem with a context-based approach for identify-
ing the theme and rheme. Currently, for most 
suitable parses we simply identify all those 
words up to and including the head verb of the 
top-level phrase as forming the theme, and the 
remainder forms the rheme. Where the parser 
output is unrecognized, all the words up to and 
including the first verb in the sentence is labelled 
as the theme, and the remainder labelled as the 
rheme. 

3.3.3 Language Modification 

Language Modification is performed by applying 
the Behaviour Models to the language tree. 

The Confidence Engine can insert disfluencies 
(as interjections), hesitations and information to 
alter speech rate into the XML language tree. 
The Confidence Engine uses the current confi-
dence value assigned to the utterance and per-
sonality profile to determine if disfluencies and 
hesitations are added at various points in the ut-
terance. Currently, disfluencies and hesitations 
may be added at any of the following locations:  

• the start of the utterance 
• before prepositions 
• before verbs 
• before nouns 
• before the introduction of new domain words 

Speech rate changes are added at both an ut-
terance level and around inserted disfluencies. 

3.4 Behaviour  

The Behaviour phase of ENGAGE processing 
seeks to assign contextually appropriate non-
verbal behaviours and expressions to the XML 
processing tree based on the markup added dur-
ing the Language phase. As ENGAGE develop-
ment is driven by the needs of the VA system, 
the current library of behaviours covers head ges-
tures, facial gestures and facial expressions. 
Other gestures such as arm and body motion are 
envisioned for future development iterations of 
the system.  

To generate behaviour ENGAGE runs the 
XML processing tree through a number of Be-
haviour Generators and the Behaviour Models. 
The XML tree is then pruned and passed to the 
Post-processing stage. 

3.4.1 Head Gestures 

For characters to emphasise objects and ac-
tions that they are introducing to the context, 
head-nods are generated for nouns and verbs in 
rheme sections of their speech. 

The Confidence Behaviour Model can also 
add head drops and tilts to control the level of 
uncertainty displayed by the character, depend-
ing on the current confidence value and personal-
ity model in use. 

Head drops are generated at changes in confi-
dence value and influence the amplitude of head 
nods generated. 

Head tilts may be added where there are hesi-
tations with no disfluency in the speech. 

3.4.2 Facial Gestures 

For characters to emphasise objects and actions 
that they are introducing to the context, eyebrow 
movements are generated for nouns and verbs in 
rheme sections of their speech. 

Also, in accordance with the way English and 
some other language speakers behave, eyebrow 
movements are added to sentences that end with 
a question-mark or exclamation-mark. 

The Confidence Engine may specify changes 
in the rate and duration of blinks, as well as in-
sert frowns and cheek puffs into the output tree. 
Cheek puffs and changes to blink rate and dura-
tion may be added to hesitations where there is 
no disfluency, while frowns may be added during 
disfluencies. 

3.4.3 Facial Expressions 

The Confidence Engine may specify changes in 
the level of anxiety, a combination of both anger 
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and fear, displayed by the character. Anxiety 
may be changed whenever the confidence value 
changes. 

3.4.4 Filter  

The final stage of behaviour processing generates 
a filtered animation tree representing just the in-
formation that should be marked up in the post 
processing stage. The filtered tree produced con-
sists of just words, tags and behaviours, with all 
extra language and intermediate processing tags 
pruned from the XML tree. 

3.5 Post-processor 

The Post-processor takes the filtered XML tree 
generated by the Language and Behaviour mod-
ules and generates a character stream of process-
ing instructions for the VA. In our current im-
plementation a THML Generator is used to pro-
duce the final ENGAGE output. 

3.5.1 THML Generator  

The THML Generator takes the resulting filtered 
XML tree generated by the Behaviour module as 
input and generates a character stream of syn-
chronised THML instructions as output.  

The output THML stream includes the speech, 
behaviour and other tags to be processed by the 
THConsole to generate appropriate instructions 
for the Virtual Adviser Rendering Engine. 

In the current architecture ENGAGE does not 
use the TTS system to provide timing informa-
tion for any of the marked-up behaviour that it 
produces. Instead, all behaviour is marked rela-
tive to the start or end of word, context or utter-
ance boundaries. Appropriate timing information 
will be applied in the TTS processing pass coor-
dinated by the THConsole. This approach allows 
ENGAGE to be an optional component of the 
system and also allows the THConsole to do fur-
ther processing before generating timing infor-
mation from the TTS without adding an unneces-
sary second TTS pass. 

3.6 Responsiveness 

As one of the usage modes of VAs is as a con-
versational interface, the speed at which it can 
produce results is important. ENGAGE is gener-
ally quicker to respond than TTS engines, so its 
impact on the overall system response time is 
negligible. 

4 Future Work 

Future work will look at semantic analysis of 
surface text to provide more targeted, contextu-
ally appropriate gestural animation.  

The behaviour models currently used with 
ENGAGE have been developed as a proof of 
concept only.  Further work is needed to refine 
these behaviour models to effectively communi-
cate aspects such as uncertainty, importance, and 
urgency. 

We also plan on investigating other Text-to-
Speech solutions to provide finer control of pros-
ody and expressive delivery of content to com-
plement the animation. 

5 Conclusions 

The ENGAGE system developed at DSTO can 
be used to augment the real-time animation of 
ECAs by automatically inserting gesture anima-
tion based on the syntax of the sentences given to 
the system.  This simplifies the task of generating 
‘realistic’ behaviours based on surface text alone, 
supporting content authoring without requiring 
expertise in human behavioural modelling.  In 
most cases observed so far, this has improved 
user engagement with the ECAs.  
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