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Abstract

In this paper we describe machine learn-
ing experiments that aim to characterise
the content selection process for distin-
guishing descriptions. Our experiments
are based on two large corpora of human-
produced descriptions of objects in rela-
tively small visual scenes; the referring ex-
pressions are annotated with their seman-
tic content. The visual context of refer-
ence is widely considered to be a primary
determinant of content in referring expres-
sion generation, so we explore whether a
model can be trained to predict the col-
lection of descriptive attributes that should
be used in a given situation. Our exper-
iments demonstrate that speaker-specific
preferences play a much more important
role than existing approaches to referring
expression generation acknowledge.

1 Introduction

Since at least the late 1980s, referring expression
generation (REG) has been a key topic of inter-
est in the natural language generation community
(see, for example, (Dale, 1989; Dale and Had-
dock, 1991; Dale and Reiter, 1995; van der Sluis,
2001; Krahmer and Theune, 2002; Krahmer et
al., 2003; Jordan and Walker, 2005; van Deemter,
2006; Gatt and van Deemter, 2006; Kelleher and
Kruijff, 2006)); and it has recently served as the
focus for the first major evaluation efforts in nat-
ural language generation (see, for example, (Belz
et al., 2009; Gatt et al., 2009)). This level of atten-
tion is due in large part to the consensus view that
has arisen as to what is involved in referring ex-
pression generation: the task is widely accepted as
involving a process of selecting those attributes of
an intended referent that distinguish it from other
potential distractors in a given context, resulting
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in what is often referred to as a distinguishing de-
scription.

Most existing REG algorithms rely on hand-
crafted decision procedures whose behaviour is ei-
ther entirely deterministic (Dale, 1989; Dale and
Haddock, 1991; Gardent, 2002) or can be influ-
enced to some degree using parameters such as
preference orderings or cost functions over the
available properties in order to choose those that
should appear in a referring expression (Dale and
Reiter, 1995; van der Sluis, 2001; Krahmer and
Theune, 2002; Krahmer et al., 2003; van Deemter,
2006; Gatt and van Deemter, 2006; Kelleher and
Kruijff, 2006). However, only very limited at-
tempts have been made to determine how these
parameters should best be instantiated in order to
allow an algorithm to mimic human-produced re-
ferring expressions. Furthermore, the results of re-
cent evaluation exercises (Gupta and Stent, 2005;
Viethen and Dale, 2006; Belz and Gatt, 2007; Gatt
et al., 2007; Gatt et al., 2008) show that none of
these algorithms can be considered an accurate
model of human production of referring expres-
sions in any of their instantiations.

In this paper, we take a speaker-oriented per-
spective on REG that is aimed in part at exploring
the factors that impact on the choices that humans
make when they refer, and ultimately at finding
models for REG which can claim at least a cer-
tain level of cognitive plausibility by being able
to replicate human referring behaviour. To this
end we use two large corpora of referring expres-
sions to train machine learning models on the task
of content determination. The larger of these cor-
pora is being introduced for the first time here. We
first attempt to build models that are able to predict
the content of a referring expression based only on
the visual characteristics of the surrounding scene.
We then contrast the results of this experiment to
those of a second set of experiments in which the
machine learner was told which participant had
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produced each description. Our results show that,
while there is too much variation in the data to
reliably predict the content of a referring expres-
sion based on the visual features of a scene alone,
much of this variation can be accounted for by ad-
ditionally taking into account participant-specific
preferences. Even models based on the identity of
the participants alone, while not as successful as
the models based solely on scene characteristics,
performed surprisingly well, underlining the im-
portance of speaker preferences in the choice of
semantic content for referring expressions.

In Section 2, we provide an overview of previ-
ous work relevant to the approach we take in this
paper. Section 3 describes the two corpora that
we use for training and testing our models. Sec-
tion 4 details the experimental setup we used, and
in Section 5 we discuss the results of our experi-
ments. Finally, in Section 6, we summarise the key
conclusions of this work and point to some future
research directions we aim to pursue.

2 Related Work

There exist a number of approaches to the use of
machine learning in referring expression genera-
tion, although they are typically focussed on as-
pects of the problem that are distinct from those
considered here.

Poesio et al. (1999) addressed the decision of
what type of NP to use to refer to a given dis-
course entity in the contexts of museum item de-
scriptions and pharmaceutical information leaflets.
They used a statistical model to choose between
a large set of NP types, including proper names,
definite descriptions, or pronouns. More recently,
Stoia et al. (2006) attempted a similar task, but
in an interactive navigational domain; as well as
deciding what type of referring expression to use,
they trained decision trees to determine whether a
modifier should be included. Cheng et al. (2001)
tried to learn rules for the incorporation of non-
referring modifiers into noun phrases. In a domain
of spoken negotiations over apartment furniture,
Jordan and Walker (2005) used features based on
different models of discourse theory to learn rules
about which attributes to include in a referring ex-
pression. The functions performed by the refer-
ring expressions in their corpus went far beyond
the simple identification task at hand in our cor-
pora, and they had to take account of a variety of
discourse-related factors impacting on their data.
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Figure 1: The 20 stimulus scenes for GRE3D3.

Trial Set 1

Trial Set 2

A number of the contributions to the 2008 and
2009 GREC and TUNA evaluation tasks have made
use of machine learning techniques. The GREC
task is primarily concerned with the choice of
form of reference (i.e. whether a proper name, a
descriptive NP or a pronoun should be used), and
so is less relevant to the focus of the present paper.
Much of the work on the TUNA task (Gatt et al.,
2008) is relevant, however, since this also is con-
cerned with determining the content of referring
expressions in terms of the attributes used to build
a distinguishing description. In particular, Fab-
brizio et al. (2008) explored the impact of individ-
ual style and priming on attribute selection for re-
ferring expression generation, and Bohnet (2008;
2009) used a nearest-neighbour learning technique
to acquire an individual referring expression gen-
eration model for each person. Other related ap-
proaches to attribute selection in the context of the
TUNA task are explored in (Gervas et al., 2008; de
Lucena and Paraboni, 2008; Kelleher and Namee,
2008; King, 2008; Hervas and Gervés, 2009; de
Lucena and Paraboni, 2009).

3 Two Corpora of Referring Expressions

3.1 Stimulus Design

The experiments in this paper are based on two
corpora of human-produced referring expressions.
The referring expressions were elicited by show-
ing participants small visual scenes containing a
number of simple abstract objects. One of the ob-
jects was marked by an arrow to indicate its status
as the target referent to be described.

One of the initial intentions underlying both
corpus collections was to investigate the condi-



tions under which participants use spatial relations
to describe the target referent. Therefore, the de-
sign of all scenes is carefully controlled so that the
use of relations is encouraged, but not strictly nec-
essary in order to identify the referent. In particu-
lar, the target referent is always placed on top of or
directly adjacent to a second object, which we call
the landmark object. Each object is either a ball or
a cube, large or small, and of one of two colours.
The landmark object is always a cube in order to
avoid unnatural looking situations where the target
object would be balanced on top of a ball.

The main difference between the stimuli used
to collect the two corpora lies in the number of
objects contained in the scenes. The first corpus,
GRE3D3,! has been described in detail elsewhere
(Viethen and Dale, 2008); here we only summarise
the key points. The stimulus scenes used to collect
GRE3D3 are shown in Figure 1; they contain three
objects each.

The stimuli used for the second corpus,
GRE3D7,” contained seven objects. One of these
objects was always placed on its own to one side
of the scene; the remaining six appeared as three
pairs of directly adjacent objects. The target was
always a member of the most central pair, and one
of the other pairs had the same spatial relation as
that holding between the target and the landmark
object. The 32 stimuli scenes for GRE3D7 are
shown in Figure 2. Their design was balanced for
four within-participant factors and one between-
participant factor, which were chosen based on the
assumption that they might impact on the use of
spatial relations. These factors were the size of
the landmark object, the commonness of the land-
mark’s size (based on the number of objects shar-
ing the landmark’s size), the type of relation hold-
ing between the target and the landmark object
(vertical or lateral), and two Boolean factors cap-
turing whether the landmark and the target shared
size and colour.

3.2 Procedure and Participants

The corpora were collected in two separate self-
paced on-line language production experiments.
Participants were asked to describe the target ref-
erentin each scene in a way that would enable an-
other party looking at the same scene to pick it out

'GRE3D3 stands for Generating Referring Expressions
in 3D scenes with 3 objects.

2GRE3D7 stands for Generating Referring Expressions
in 3D scenes with 7 objects.
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Figure 2: The 32 stimulus scenes for GRE3D7.
The top half constitutes Trial Set 1 and the bottom
half is Trial Set 2.

from the other objects. The scenes were presented
consecutively above a text box into which the par-
ticipants were required to type a description before
clicking ‘DONE’ to move on to the next scene.
In the GRE3D3 collection experiment, the scenes
were presented in a preset order directly follow-
ing each other. For the GRE3D7 experiment, each
stimulus scene was preceded by a filler scene. The
filler scenes were designed to distract the partic-
ipants from noticing the similarities between the
stimulus scenes. Additionally, the order in which
the stimuli and the filler scenes were presented was
randomised before each trial.

To encourage the use of fully distinguishing
referring expressions, participants were told that
they had only one chance at describing the ob-
ject. After being presented with all the scenes in
the trial, participants were asked to complete an
exit questionnaire, which asked for their opinion
on whether the task became easier over time, and
any other comments they might wish to make.

The data from 63 participants in the GRE3D3
collection exercise and from 280 participants in
the GRE3D7 collection exercise were used to form
the final corpora. A small amount of data from
both collections were discarded because the par-
ticipants did not complete the whole experiment
or clearly had not understood the instructions cor-
rectly. All participants were self-reported native
English speakers.

Both sets of stimuli were subdivided into two
trial sets and each participant saw only one of



% Relative Frequency

Content Pattern Example Description GRE3D3 | GRE3D7

R | (tg-size,tg_col, tg_type) the small blue ball 22.70 47.88
D | (tg_col, tg-type) the blue ball 27.30 36.70
W | (tg_size,tg col, tg_type, rel, Im size, Im_col, Im_type) | the small blue ball on top of the large green cube 4.76 5.31
F | (tg_col, tg_type, rel, Im_col, Im_type) the blue ball on top of the green cube 7.78 2.70
T | (tg_size, tg_col, tg_type, rel, Im_col, Im_type) the small blue ball on top of the green cube 4.92 2.08
1| (tg_col,tg type, rel, Im size, Im_col, Im_type) the blue ball on top of the large green cube 1.90 1.03
ZF | (tg_type) the ball 8.25 0.07
Z | (tgsize,tg_type) the small ball 4.44 0.38
N | (tg_size, tg_col, tg_loc, tg_type) the small blue ball in the left 0.32 0.87
ZK | (tg_type,rel, Im_type) the ball on top of the cube 3.49 0.40

Table 1: The ten most common content patterns that occur in both GRE3D3 and GRE3D7.

these trial sets. So, each participant in the
GRE3D3 collection provided ten descriptions,
while each GRE3D7 participant described 16
stimulus scenes. This resulted in 630 GRE3D3 de-
scriptions (30 for each scene in Trial Set 1, and 33
for each scene in Trial Set 2) and 4480 GRE3D7
descriptions (140 for each stimulus scene).

3.3 Annotation of Semantic Content

In order to be able to analyse the semantic content
of the referring expressions, we annotated the at-
tributes and relations contained in each of them.
The attributes that participants used in the refer-
ring expressions contained in the two corpora, and
their possible values, are as follows:

e type [ball, cube]
[

colour [blue, green, red, yellow]

size [large, small|

e location [right, left, front, top]
e relation [on-top-of, in-front-of, left-of,
right-of]

In our annotations, each attribute is prefixed by ei-
ther tg or Im to mark whether it pertains to the tar-
get or the landmark object. For example, tg_size
indicates that the size of the target was mentioned.
This results in nine component properties.>

Each description contained in the GRE3D3 and
GRE3D7 corpora can be characterised in terms of
a content pattern defined by the presence or ab-
sence of each of these nine component proper-
ties. Table 1 lists the ten most common of these

3 As noted by one reviewer, the ethno-cultural background
of speakers can have a large impact especially on the use of
spatial information. The data would look very different if it
had been collected from speakers of languages that mostly

make absolute reference to points of the compass rather than
using relative information such as ‘left’ and ‘right’.
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content patterns along with example descriptions
and the relative frequency with which these pat-
terns occurred in each corpus. 37 different content
patterns can be found across the two corpora; the
GRE3D3 corpus contains 31 of these 37 content
patterns, four more than the much larger GRE3D7
corpus. 21 of the patterns occur in both corpora.

4 Experimental Setup

Most work on referring expression generation at-
tempts to determine what attributes should be used
in a description by taking account of aspects of the
context of reference. An obvious question is then
whether we can learn the content patterns in this
data from the contexts in which they were pro-
duced. To explore this, we define a number of
features that capture the relevant aspects of the vi-
sual context in our stimulus scenes. Importantly,
these features are general enough to be able to
capture both GRE3D3 and GRE3D7 scenes. We
use two types of features: direct property features,
which simply record the attribute value of a cer-
tain object in the scene, and comparative features,
which compare the attribute values of one object
to those of the other objects. In a second step,
we additionally include Participant_ID as a scene-
independent feature. The complete list of 12 fea-
tures used is shown in Table 2.

The features pay particular attention to the prop-
erties of the target and the landmark objects for
two reasons: firstly, the nature of the task is such
that these two objects can be expected to be clos-
est to the participant’s focus of attention; and sec-
ondly, these are the only two objects that can be
identified as corresponding to each other across all
scenes, in particular in the GRE3D7 stimuli.

As direct property features we use the type of
spatial relation holding between target and land-
mark, as people generally show a preference for




‘ Attribute Explanation Values
direct TG.Size size of the target object small, large
property LM_Size size of the landmark object small, large
features Relation_Type type of relation between target and landmark | horizontal, vertical
Num_TG_Size number of objects of same size as the target numeric
Num_LM_Size number of objects of same size as landmark numeric
TG_LM_Same_Size | target and landmark share size Boolean
. Num_TG_Col number of objects of same colour as target numeric
comparative . .
features Num_LM _Col number of objects of same colour as landmark | numeric
TG_LM_Same_Col target and landmark share colour Boolean
Num_TG_Type number of objects of same type as target numeric
Num_LM Type number of objects of same type as landmark numeric
TG_LM_Same_Type | target and landmark share type Boolean
Participant_ID ID number of the description giver alphanumeric

Table 2: The features and their value formats.

vertical relations over horizontal ones (Lyons,
1977; Gapp, 1995; Bryant et al., 2000; Landau,
2003; Arts, 2004; Tenbrink, 2005), and the sizes
of these two objects. We do not include colour or
type as features because the actual values of these
attributes are unlikely to have an impact on their
use. Rather, we expect the proportion of objects
sharing these properties, captured in the compara-
tive features, to be of importance. This is different
for size, as a large object stands out more from
its surroundings than a small one, even indepen-
dently of the sizes of the other objects. location
is not included as it was almost constant across all
scenes and can therefore not be used to distinguish
between them.

We used the C4.5 decision tree learning algo-
rithm (Quinlan, 1993) implemented in the Weka
workbench (Witten and Frank, 2005). We tested
both pruned and unpruned trees, but in what fol-
lows we comment on the results of the unpruned
trees only where they are different from those of
the pruned trees. Decision tree pruning is a post-
training step that simplifies the trees to reduce
over-fitting to the training data. This is especially
relevant if the trained models are used on unseen
data. However, if the ability of a feature set to
characterise a set of natural data is at question, un-
pruned trees can also be of interest.

5 Results and Discussion

In the following, the fit of the trained models is
measured by the Accuracy with which they predict
held-out test data or characterise the training data.
It is defined as the number of instances predicted
correctly divided by the total number of instances
in the test or training set.

5.1 Content Selection Based on Scene
Characteristics

The Accuracy results achieved by the models
trained on the scene-based feature set, without tak-
ing into account Participant_ID, are shown in Ta-
ble 3. As a baseline we report the success rate of
a model that simply chooses the majority class in
each case. We used three different test methods:
(1) testing on the complete training set shows how
well the learned model characterises the data and
thereby gives an indication of the extent to which
the chosen features can explain the variation in the
data; (2) ten-fold cross-validation is used to assess
the ability of the learned model to generalise to
unseen data; and finally, (3) cross-corpus testing
gives insights into the difference in variation be-
tween the two data sets.

Both models significantly outperform the ma-
jority class baseline in all three test methods.* No
difference can be found between the results for
testing on the training sets and cross-corpus test-
ing. However, three interesting observations can
be made from these results:

1. Training and testing on the GRE3D7 corpus
achieves better results than training and test-
ing on the GRE3D3 corpus.

2. Both the baseline and the decision trees
trained on GRE3D3 perform better on
GRE3D7 than on GRE3D3 itself, while the
GRE3D7-trained models achieve the lowest
results when tested on GRE3D3.

3. Overall, none of the decision trees achieve
very high Accuracy levels.

*We used x2 with a maximum p<.05 for all significance
tests in this paper.



training test maj. class | pruned
corpus method baseline tree
training set 27.30% | 46.51%
GRE3D3 | 10 fold X 27.30% | 46.51%
cross-corpus || 36.70% | 47.88%
training set 47.88% | 64.93%
GRE3D7 10 fold X 47.88% | 64.71%
cross-corpus || 22.70% | 36.98%

Table 3: Accuracy for the models purely based on
scene characteristics. (Bold values are statistically
significantly different from the baseline.)

The first two of these points indicate that the
content of the referring expressions found in the
GRE3D7 corpus is easier to predict than thatin the
GRE3D3 corpus, a fact that was already foreshad-
owed by the lower number of different content pat-
terns contained in GRE3D7. The second point in
particular shows that the predicted usage patterns
for the different content patterns for GRE3D7 are
subsumed by the GRE3D3 usage patterns.

One might consider these results to be slightly
surprising, as the GRE3D7 corpus with its much
larger participant base and size could have been
expected to contain more variation than GRE3D3.
Itis possible that the filler items used in GRE3D7
prevented the participants from noticing how sim-
ilar their responses to the stimulus scenes were,
and thereby also prevented them from intention-
ally varying the content in their descriptions. A
second, related, factor could be that the slightly
more complex GRE3D7 scenes forced participants
to concentrate on the task more, which also would
lead to a reduced number of intentionally-varied
descriptions.

From the third observation above we conclude
that neither of the learned decision trees are able
to accurately model the referring behaviour dis-
played by the participants in our corpora. In fact,
both models predict the use of only two content
patterns, patterns R and D, the two most common
ones in both data sets, as shown in Table 1. The
tree trained on GRE3D3 is shown in Figure 3: it
only has three nodes. The GRE3D7-trained tree is
at 15 nodes more complex, but nonetheless only
predicts the same two most common patterns.

The overall low performance of the models
might either be due to some of the variation in the
data being in fact unpredictable (due to factors that
we did not capture in the collection experiments)
or random, or it may indicate that the features we
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Figure 3: The participant-insensitive decision tree
trained on GRE3D3.

made available to the machine learning algorithm
were not sufficient to model the variation.

5.2 Participant-Dependent Modelling

Based on observations we made in (Viethen and
Dale, 2006) for a different data set, we hypoth-
esise that one main factor that might be at play
in producing the variation in the two corpora used
here are the differing preferences of the individ-
ual participants. We therefore introduced the fea-
ture Participant_ID and carried out two further ex-
periments: first, we tested the predictive ability of
this feature on its own by removing all other fea-
tures from the set provided to the machine learner;
and second, we combined the scene-based features
with the Participant_ID feature, in order to as-
sess the extent to which the individual participants
were taking the features of the scene into account
when referring to the target referents.

Table 4 compares the results of the second two
experiments to those of the participant-insensitive
decisions trees from the previous section.’

We firstly observe that the size of the learned de-
cision trees, measured in terms of the number of
nodes they contain, increases dramatically when
Participant_ID is taken into account, even when
the other, scene-based, features are also available.
This indicates that, when given the option to use
this feature, the machine learner chooses to do
so in every case, demonstrating the usefulness of
Participant_ID in characterising our data.

The trees based on Participant_ID alone also
achieved surprisingly good performance, although
these trees are forced to choose one content pat-
tern for all descriptions produced by a given par-
ticipant. Only the Accuracy of the tree trained
on GRE3D3 was significantly lower than that of
the corresponding participant-insensitive tree; the
other scores are surprisingly close to those based

*Because the participants in the two data collection
exercises were not the same, cross-corpus testing of the
participant-sensitive models is not possible.



+[scene features] || —[scene features] +[scene features]
—Participant_ID || +Participant_ID +Participant_ID
training | test pruned n/a pruned unpruned
corpus method Acc ‘ nodes Acc ‘ nodes Acc ‘ nodes Acc ‘ nodes
training set || 46.51% 41.91% 91.27 % 98.10%
GRE3D3 10 fold X 46.51% 3 31.11% o4 54.44% 415 57.61% 373
training set || 64.93% 62.28% 82.59% 93.77 %
GRE3D7 10 fold X 64.71% 15 57.12% 281 67.01% 1023 63.71% 2798

Table 4: Accuracy and tree size for the models based on scene and participant information. (Bold values
are statistically significantly different to the participant-insensitive trees.)

on scene features only.

Combining the scene-based features with
Participant_ID gives better results than either of
the two exclusive models achieve. To the best of
our knowledge, their cross-validation scores are
also higher than any Accuracy scores reported in
the literature for any existing algorithm instanti-
ated with a set parameter setting.” However, in 10-
fold cross-validation, only the unpruned GRE3D3
model achieves a statistically significant improve-
ment over the participant-insensitive model. When
testing on the training set, the pruned and un-
pruned trees for both corpora vastly outperform
the models that do not take participant preferences
into account. In particular, the Accuracy scores
achieved by the unpruned models are very high.

These results confirm the hypothesis that
speaker preferences play a very important role
in shaping the semantic content of referring ex-
pressions in identification tasks. Trees using
Participant_ID as the only feature perform surpris-
ingly well, and the trees that take account of both
the features of the scene and the preferences dis-
played by individual speakers are able to charac-
terise our two data sets with very high accuracy.
Our particular choice of scene-based features is
also supported by these results, as they do seem
to capture the factors that individual speakers rely
on when they build referring expressions.

The fact that they only achieve high scores if
tested directly on the training set shows that these
models are very specific to the data they were
trained on, and would not necessarily generalise
well to unseen data. A likely explanation for the
large differences between the cross-validation re-
sults and results on the training set is the low num-

SNote that pruning has no effect on trees using only one
feature, in this case Participant_ID.

"This comparison must be viewed with caution, as the
other evaluations were carried out on different test corpora.
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ber of instances per participant in both corpora.
We have ten descriptions from each participant in
the GRE3D3 corpus and 16 in GRE3D7, and nei-
ther of the corpora contains multiple descriptions
from the same participant for a given stimulus.

6 Conclusions and Future Work

This paper is based on the view that a primary
consideration in the study of REG should be the
development of systems that are able to explain
and replicate the semantic content found in human
data. We hold this view for two reasons: firstly,
such systems can aid the exploration of factors that
impact on the semantic choices that people make
when they refer and ultimately might be able to
claim some level of psychological reality; and sec-
ondly, generating the same referring expressions
as humans can also serve a utilitarian purpose, as
only human-like reference is likely to be accepted
as fully natural by listeners.

We have chosen a straightforward approach
to building REG models that take into account
what people do by training decision trees on two
human-produced corpora of distinguishing de-
scriptions in visual scenes. We defined a set of
features to capture the relevant visual aspects of
the stimuli used in the data collection exercises for
the two corpora. In our first experiment we estab-
lished that decision trees trained using these fea-
tures are able to outperform a majority class base-
line, but are not able to replicate a large enough
proportion of the data to be considered accurate
models of human reference behaviour. In a sec-
ond experiment we added the Participant_ID fea-
ture, which allowed the machine learner to estab-
lish participant-specific behaviour patterns. Trees
based on this feature alone achieved surprisingly
good results, and the participant-sensitive trees
which also took into account the features of the
scene achieved much higher Accuracy scores than



the participant-insensitive trees.

The main conclusion we draw from these exper-
iments is that speaker-dependent variation is one
of the most important factors shaping content se-
lection processes in the referring behaviour of hu-
mans. This is an observation that has been over-
looked in the development of most existing algo-
rithms for REG. However, if our aim is to build
algorithms that are able to accurately model cor-
pora of human referring expressions, as was the
case in the recent public evaluation campaigns in
REG (Belz and Gatt, 2007; Gatt et al., 2008; Gatt
et al., 2009), then we cannot ignore this fact.

Our next step is to take this work further by
training individual models for each speaker. Such
speaker-specific trees will allow us to explore the
different strategies that people follow when they
refer, and to compare the strategies of different
speakers to each other. We think it unlikely that
every individual speaker is idiosyncratic in this
regard; our hypothesis is that it will be possible
to use automatic clustering techniques to identify
groups of people who follow the same strategies.
Such clusters can then be used to make predic-
tions that are sensitive to between-participant dif-
ferences while benefitting from the commonalities
in people’s behaviour. It might also be interest-
ing to see if non-linguistic characteristics of speak-
ers, such as age, gender, and social or cultural
background, can account for some of the between-
participant variation in reference behaviour.

In a second strand of work we are exploring an
alternative approach to learning human reference
behaviour from this data. We are training attribute-
specific trees that make binary decisions about the
use of each individual attribute in a given refer-
ence situation, instead of predicting whole content
patterns. The attribute-specific trees for a given
participant can then be combined into a speaker
profile predicting complete referring expressions
produced by this speaker.
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