I nformation Extraction of Multiple Categories from Pathology Reports

YuelLi
NICTA VRL
Meboune, Australia

David Martinez
NICTA VRL
Melboune, Australia

y. i 30@ugrad. uni mel b. edu. au davi dm@sse. uni nel b. edu. au

Abstract

Pathdogy reports are used to store infor-
mation abou cdls and tisaues of a patient,
and they are arucial to monitor the hedth
of indviduals and popuiation goups. In
this work we present an evaluation o su-
pervised text clasdfication models for the
prediction o relevant caegoriesin pathd-
ogy reports. Our aim is to integrate au-
tomatic dassfiers to improve the aurrent
workflow of medicd experts, and we im-
plement and evaluate different machine
learning approadhes for a large number
of categories. Our results show that we
are ableto predict nomina caegories with
high average f-score (81.3%), and we can
improve over the magjority class baseline
by relying onNaive Bayes and feaure se-
ledion. We dso find that the dasdfication
of numeric caegoriesisharder, and deeper
analysiswould be required to predict these
[abels.

1 Introduction

A pathoogy report is the summary of the analy-
sis of cdls and tissues under a microscope, and it
may also contain information o the studied spec
imen as it looks to the naked eye. Pathdogy re-
ports play an important role in cancer diagnasis
and staging (describing the extent of cancer within
the body, espedally whether it has gread). These
reports are usualy written by the pathdogist in
natural language, and then the relevant parts are
transcribed into structured form by a diff erent per-
sonto be stored in a database.

Theuse of structured information can help share
the data between institutions, and can also be used
to find petterns in the data. For this reason, some
recent initi atives are exploring better waysto man-
age pathdogy reports. For instance the Depart-

ment of Hedth and Ageing o Austradia is fund
ing the projed Structured Pathdogy Reporting o
Cance since 2008to develop standard reporting
protocols for cancer reports'.  Ancther way to
promote the aedion d structured data is to use
standard terminologies, such as SNOMED CT?,
whichisalarge alledion o medicd termindogy
covering most areas of clinicd information such
asdiseases, findings, procedures, microorganisms,
pharmacauiticds etc. The National E-Hedth Tran-
stion Authority (NEHTA) has recently launched
an adapted termindogy (SNOMED CT-AU) to be
used by the Australian hedth sedor®.

Theseiniti ativeswill help toincrease the repaosi-
tories of structured data, but they will not be asub-
stitute to the flexibility of natural languege. The
relevant fields in structured reports change over
time as different clinicd tests are made avail able,
andit isdifficult to design a spedfic form to cover
al the posshle cases that will be observed in the
pathdogy analysis. Clinicians need time to lean
the diff erent standards, andthey prefer the flexibil -
ity of freetext to record their analyses and conclu-
sions. ldedly their natural language inpu would
be used to automaticdly extrad the structured data
that diff erent protocols demand.

This <enario is promising for text mining re-
seach, because todls that can perform well i n this
space ae likely to make an impad in the way
hedth informationis dored and used. Our gaal in
this work is to explore this areg and develop and
evaluate atext mining tod that aims to work in
ared hospital setting, by predicting peces of in-
formation to popuate adatabase. Spedficdly, we
focus onasystem for the Royal Melbourne Hospi-
tal, where pathdogy reports of cancer patients are

*htt p: // www. r cpa. edu. au/ Publ i cati ons/
Struct uredReporting. htm

2ht t p: / / www. nl m ni h. gov/ research/ um s/
Snoned/ snoned_mai n. ht m

htt p: / / www. neht a. gov. au/ medi a- centre/
neht a- news/ 571- snomed- ct
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kept in natura language, and an eledronic formis
manually fill ed with the most relevant information.
We would like to predict the dasses automaticdly
in order to fadlit ate the process

Our aim is to buld a generic goproach for dif-
ferent prediction caegories, invaving heteroge-
neous classes with a large set of possble values
(e.0. the dass“Tumour site” has 11 dfferent val-
ues in ou data, for instance “Sigmoid Colon”).
Wewill rely onthe avail able document-level anno-
tations of pathdogy reportsto buld ou clasdfiers
using Machine Leaning (ML) algorithms. Anno-
tated datais difficult to oltain in this domain, and
there ae few works evaluating the performance of
supervised clasdgfiers for pathoogy reports, as we
will seein Sedion 2 In this work we will explore
how far we can get with existing annaations, and
simple lexicd fedures that can be extraded with-
out external knowledge sources.

Thus, we present an extensive set of experi-
ments to evaluate the adility of different mod-
€ls and methods to perform classpredictions over
pathoogy reparts. The problem will i nvolve pre-
dicting naminal and numeric dasses, and we test
models that perform sentence-level and daument-
level clasdficdion. Our main challenges in this
projed will be the sparseness of the data, the
coarsenessof the annaations (document-level ca-
egories only), and the high number of heteroge-
neous categories. In the future, the tod resulting
from this work will be integrated in the hospital
workflow, and it will work interadively with the
user, making predictions and all owing corredions.
We will store dl user interadions to continually
add training deta to our classfiers. We will also
highlight the relevant parts of the text as predicted
by our leaning models, by using feaure seledion.

2 Related work

Related work in text mining from pathoogy re-
ports has mainly relied on damain-spedfic lexi-
cons and rules (Dunham et a., 1978 Schadow
and McDonald, 2003 Xu et a., 2004 Hanauer
et a., 2007 Coden et a., 2009 Nguyen et a.,
2010; athough there has been some work us-
ing ML (Nguyen et a., 2007 McCowan et al.,
2007. The ealiest work in this area was per-
fomed by Dunham et a. (1978, who bdlt mor-
phosyntadic rules, synonym expansion, and hand-
crafted rulesin order to extrad termsfrom the Sys-
tematized Nomenclature of Pathdogy (SNOP),
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which was an ealier version d the SNOMED
CT termindogy colledion. More recat works
have used SNOMED CT as the target termina-
ogy to map the raw text into. Hanauer et a.
(2007 relied on custom-made lists containing ap-
proximately 2,500 terms and plrases, and 800
SNOMED codes. Their method was based on
looking uprelevant phrases in order to discrimi-
nate the documents of interest.

Other works have developed their own set of
relevant classes instead of relying on SNOMED.
This is interesting when the focus is on a spe-
cific subdamain, and this is the gpproach that we
explored in ou work. Schadow and McDonald
(2003 relied onasubset of UMLS* (Unified Med-
icd Language System) as target concept inventory
for information extradion from surgicd pathd-
ogy reports. They applied a regular expresson-
based parser with good rformance, but they also
foundthat their target termindogy was too exten-
sive, and this caused false postives. Xu et a.
(2009 also targeted surgicd pathoogy reports,
and they used a restricted set of 12 classs, re-
ferred as “types of findings’. Thisis dmilar to
our approadh, and some of their classes are part of
our relevant clases aswell (e.g. “number of posi-
tive nodes’); however they do nd provide the per-
formance for ead class ®parately, which makes
comparison urfeasible. Regarding the methodd-
ogy, their system is based on rend-crafted rules,
and relies on a domain-spedfic lexicon. Our mo-
tivation is different, and we rely on ML to infer
the knowledge from coarse-grained anndation for
alarger set of classes.

Also in the aeaof information extradion from
pathoogy reports, recent work from the Australian
e-Hedth Research Centre® explored the extradion
of staging information o lung cancer using Sup-
port Vedor Macdhines (Nguyen et a., 2007). Their
initial experiments showed the difficulty of the pri-
mary tumour stage detedion (T), with a top ac
curagy of 64%. In a follow-up peper they ex-
plored richer anndation, anda combination o ML
and rule-based post-procesing (McCowan et a.,
2007). They performed fine-grained annaation o
stage details for ead sentence in order to buld
their system, and they observed improvements
over a aoarse-grained (document-level) multiclass
clasgfier. However, the authors explain that the

http://www.nlm.nih.govireseach/umis
Shttp://aehrc.com/



anndation cost is high, and in their latest work
they rely heavily on the SNOMED CT concepts
and relationships to identify the relevant entities
(Nguyen et d., 2010. They argue that this ap-
proach is more portable than fine-grained anno-
tation, althoughit still requires invavement from
the experts, and there is a lossin acaragy with
resped to their best ML approach. These threepa-
pers evauate their system in the prediction o stag-
ing clases (T, N, and M), which are nat explicit in
our dataset.

Ancather relevant work on this area was corn-
ducted by Coden et al. (2009, where the authors
defined an extensive knowledge model for pathal-
ogy reports. Their model was linked to hand-built
inference rules built to processunseen data. They
reported high performanceover 9 target classes for
a hand-annaated 300report dataset. This gystem
seeks to buld a strong representation o the do-
main by relying on human experts, and its porta-
bility to a different dataset or classset could be
problematic. The dasss they evaluate on are nat
present in our dataset.

Currently there is no dataset of pathoogy re-
ports that is fredy avail able for reseach, and df-
ferent groups have built their own corpora. Pathd-
ogy reports contain sensitive material, and even
after de-identification it is not easy to make them
widely available. However, initiatives as the NLP
challenges leaded by the Informatics for Integrat-
ing Biology and the Bedside (i2b2)8 ill ustrate that
there is growing interest on text mining from clin-
icd data, and show that the reseach community
can collaboratively creae corpora for experimen-
tation. In 2010they organised their fourth chal-
lenge, focused onthe extradion o medicd prob-
lems, tests, and treaments from patient discharge
summaries’. Previous challenges have dso fo-
cused on dscharge summaries and rarrative pa-
tient records for different information extradion
caegaries.  Although this data is different to
pathdogy reports, the initiative is interesting for
the future of text mining from pathology reports.

3 Experimental setting

In this dionwefirst describe the dataset and cat-
egories we will work on, and then introduce the

%i2b2 is a NIH-funded Nationa Center for Biomed-
icd Computing (NCBC), for more information see
https.//www.i2b2 org/about/index.html

"https.//www.i2b2org/NL P/Rel ations/
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Unique

Category Values Highest Lowest

CAV 21 40 0
Distal Distance 48 150 0
Nodes Examined 36 73 0
Nodes Positive 12 15 0
Polyps Number 13 43 0
Radia Distance 9 80 0
Tumour Length 36 110 0
Tumour depth 22 40 0
Tumour width 35 75 0

Table 1. List of numeric caegories, with the num-
ber of unique values and the full range.

models and classfiers we gplied. Finadly we ex-
plain ou feaure set, and ou evaluation method

ology.

3.1 Dataset

For our analysis we rely on a corpus of 203 e
identified clinicd records from the Royal Mel-
boune Hospital. These records were first writ-
ten in natural language, and then structured infor-
mation abou 36 fields of interest was introduced
to the Coloredal Cancer Database of the hospital .
The written records tend to be brief, usualy cov-
ering asinge page, and semanticaly dense. Each
report contains three sedions describing dff erent
parts of theintervention: maaoscopic description,
microscopic description, and dagnasis. All sec
tions contain relevant information for the database.

There ae two types of fields (which will be
the target caegories of our work), depending on
the type of values they take: numeric and nami-
nal. Numeric caegories are those that take only
numeric values, and they are listed in Table 1.
We dso show the number of diff erent values they
can take, and their value range. We ca seethat
most categories exhibit a large number of unique
values. The remaining 27 caegories are nomi-
nal, and the list is shown in Table 2, where we
also provide the number of unique vaues, and the
most frequent value in the corpus for ead cate-
gory. Some of the caegories are linked to alarge
number of values (e.g. Colon Adherent To and Tu-
mour Site). During pre-processng we observed
that the database had some inconsistencies, and
anormali sation step was required with collabora-
tion o the experts. For nominal caegories thisin-
volved mapping empty values, “0”, and “?” into
the dass “N/A”; and for numeric caegories we
mapped empty values into “zero”.

The manual annaation is provided at document



Unique Most
Category Values Frequent
Anastomosis Method 3 Saple
Anastomosis Type 4 End-End
Biopsy Confirmed Mata 3 No
Colon Adherent 3 No
Colon Adherent To 14 N/A
Differentiation 8 Moderate
Inflammeatory Infiltrate 4 Not reported
Liver 3 N/A
Lympholnvasion 4 No
MLH1 4 Not done
MSH2 4 Not done
MSH6 4 Not done
MSI 4 Not done
Margins Distal 3 Not involved
Margins Radial 4 N/A
Microscopic Type 5  Adenocarcinoma
Mucinous 4 Not reported
Neaosis 4 Not reported
Other Meta 3 N/A
Pathologic Resporse 4 N/A
Peritoned 3 N/A
Polyps 3 No
Polyps Type 6 N/A
Primary Tumour Rectum 4 N/A
Reseded Meta 3 No
Staging ACPS 6 B
Tumour Site 11 Sgmoid Colon

Table 2: List of nominal categories, with the num-
ber of unique values, and most frequent class

level, and for numeric caegories we aitomati-
cdly produce fine-grained anndation by looking
upthe gddstandard mentionsin thetext. Wetry to
match bah the string representation and the num-
bers, and orly numbers different to zero are iden-
tified. After this automatic process ead sentence
has individual annaations for eat of the target
caegaries, and this information is used to buld
sentence-level clasdfiers. Because the processis
automatic, some matches will be missed, but our
hypahesisisthat the noisy annaation will be use-
ful for the document-level evaluation.

3.2 Modds

Our godl isto buld document clasdfiers for eat
of the 36 categaries with minimal hand tuning.
We follow diff erent strategies for nomina and nu
meric caegories. For nominal caegories we ob-
served that the information can be given at dif-
ferent paoints in the document, and we dedded to
build amuilti classclasdfier for ead category. This
method makes a single prediction based on the
classannaations in training ceta.

For numeric caegories the information tends to
be montained in a single sentence, and instead of
using the full document, werelied onthe sentence-
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level annatation that we obtained automaticdly. In
this case the target values would be the different
numeric values e in the gadstandard. The first
step is to buld sentence dasdfiers for ead class
by using the sentence-level annaations. Note that
only numbers different to zero are deteded, and
the zeo label is assgned orly in cases where the
sentence dasdfiers fail to identify any number.
After the model identifies the positive sentences,
the numeric values are extraded, and the number
closest to the median of the dass(intraining ceta)
is asdgned. In the cases where no pasitive sen-
tences are identified the number zero is assgned.

3.3 Classfiers

Eadh of our models is tested with a suite of clas-
sifiers provided by the Weka todkit (Witten and
Frank, 2005. We chose aset of clasdfiers that
has been widely used in the text mining literature
in order to compare their performances over our
dataset:

o Naive Bayes (Naive Bayes): A simple prob-
abili stic dassfier based on applying Bayes
theorem (from Bayesian statistics) to ob
tain the condtional probability of ead class
given the feaures in the context. It assumes
independence of the feaures, which in red
cases can be astrong (naive) assumption.

Suppat Vedor Machines (SYM): They map
fedure vedorsinto ahigh-dimensional space
and construct a dassfier by searching for the
hyperplane in that spacethat gives the gred-
est separation between the dasss.

AdaBoost (AdaBoost): This is a meta
leaning algorithm where an underlaying
clasdfier is used to update adistribution o
weights that indicaes the importance of the
training examples. Adabocst is an adaptive
algorithm, and the prediction hits and misses
in ead iteration are used to buld the fina
weight distribution for the mode!.

We use the default parameter settings of Weka
(version 3-6-2) for eath of the dasdfiers. Asun
derlaying classfier for AdaBoost we rely on sim-
ple Dedsion Stumps (one-level dedsion trees).

We dso explore the contribution o fedure se-
ledion to the dasdficdion performance We g-
ply a oorrelationbased feaure subset seledion
method which considers the individual predictive



Category Majority Class Naive Bayes SYM AdaBoost

Prec Rec F-sc| Prec Rec F-sc|Prec Rec F-sc| Prec Rec F-sc
Tumour site 39 197 65| 233 404 277 | 285 384 322 | 124 340 181
Staging ACPS 129 360 190 | 392 438 367 | 441 483 451 | 332 493 375
Anastomosis type 224 473 304 | 466 527 449 | 535 591 550 | 327 502 393
Colon adherent 233 483 314 | 632 670 620 | 674 704 670 | 478 586 514
Lymphoinvasion 238 488 320 | 484 512 429 | 534 557 535 | 323 512 396
Polyps 278 527 364 | 696 729 693 | 831 842 833 | 749 778 743
Colon adherent to 283 532 370 | 599 700 639 | 626 734 674 | 406 473 437
Margins radial 3L0 557 398 | 654 734 686 | 652 709 674 | 599 675 620
MIH1 315 562 404 | 414 507 454 | 467 498 469 | 356 581 434
MSH6 315 562 404 | 415 507 455 | 430 488 457 | 350 576 427
MSH2 315 562 404 | 415 507 455 | 430 488 457 | 350 576 427
MSI 327 571 416 | 445 537 484 | 458 507 479 | 327 571 416
Mucinous 349 591 439 | 426 586 467 | 702 724 688 | 578 734 645
Anastomosis method 416 645 506 | 576 704 620 | 624 719 658 | 569 695 604
Neaosis 429 655 519 | 645 744 687 | 735 773 746 | 628 695 627
Polyps type 496 704 582 | 496 704 582 | 669 729 634 | 496 704 582
Differentiation 510 714 595 | 512 709 595 | 703 783 721 | 660 808 727
Inflammetory infiltrate | 51.0 714 595 | 665 724 626 | 684 768 709 | 689 709 662
Liver 532 729 615 | 530 680 595 | 595 645 617 | 528 709 605
Other meta 532 729 615 | 530 680 595 | 595 645 617 | 531 714 609
Primary tumouwr redum | 532 729 615 | 565 724 627 | 709 803 751 | 675 739 704
Peritoned 532 729 615 | 530 680 595 | 595 645 617 | 527 704 603
Reseded meta 637 798 708 | 686 798 721 | 704 793 732 | 662 778 708
Margins distal 760 872 812 | 760 872 812 | 861 921 890 | 861 921 890
Biopsy corfirmed mata | 804 897 848 | 804 897 848 | 850 897 865 | 803 887 843
Pathologic resporse 813 901 855 | 813 901 855 | 813 901 855 | 8L3 901 855
Microscopic type 876 936 905 | 876 936 905 | 880 931 905 | 876 936 905
Maao-average 435 638 510| 565 671 598 | 633 691 651 | 541 678 590

Table 3: Performances of multi classdocument clasgfiers for nominal caegories withou feaure selec
tion. Results Dorted by baseline f-score performance. Best f-score per category is givenin bdd.

ability of ead feaure and the redundancy of ead
subset (Hall, 1999. We relied on Weka's imple-
mentation o this technique, and wsed Best-First
seach, with a cade-size of one dement, and 5
levels of badtradking.

3.4 Features

Pathology reports tend to be short and dense, and
the seledion o wordstriesto predsaly spedfy the
relevant pieces of information. For this reason we
rely on a bag-of-words (BOW) approach for our
fedure representation, withou any lemmatisation.
We built a simple tokeniser based on regular ex-
pressons to separate words, numbers, and purctu-
ation. We dso use regular expressons to convert
the textual mentions of numbersinto their numeric
representation. Finally, we include the binary fea
ture “NUMBER” to indicae whether thereisanu-
meric referencein the text.

3.5 Evaluation

In order to evaluate the diff erent models and clas-
sifiers we use predsion, recdl, and f-score by
micro-averaging the results over the diff erent class
vaues. The maao-averaged scores over dl cde
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gories are dso provided to compare different sys-
tems. 10-fold crossvalidation is used in al our
experiments.

As a baseline we rely on the Majority Class
clasgfier, which asdgns the most frequent class
from training deta to al test instances. In case
of ties the value is chosen randamly among those
tied.

4 Results

We first present our result over the nomina cae-
garies, and then show the performances over nu-
meric caegories.

4.1 Nominal categories

Our first experiment applies the multiclass docu-
ment clasgfier to namina categaries. The results
are given in Table 3. We can see that the best
performanceis achieved by SVYM, with alarge im-
provement over the mgjority classbaseline. Naive
Bayes and AdaBoost also perform above the base-
line, and attain similar results. However, a max-
imum f-score of 65.1% seams insufficient to be
of use for an applicaion. Regarding the different
caegaries, as expeded these with lowest baseline



Naive Bayes SYM
Category Prec Rec F-sc | Prec Rec F-sc
Tumour site 530 542 511 | 439 448 438
Staging ACPS 711 719 707 | 580 591 583
Anastomosis type 741 719 713 | 694 695 694
MSH6 757 709 714 | 653 650 647
MSH2 757 709 714 | 653 650 647
Colon adherent to 689 749 716 | 644 704 665
MSI 776 729 733 | 715 724 713
Lymphoinvasion 743 754 744 | 698 709 703
MIH1 781 754 752 | 712 714 706
Anastomosis method 778 788 778 | 751 764 755
Marginsradial 791 798 785 | 768 764 755
Colon adherent 782 803 788 | 800 803 797
Other meta 836 837 837 | 756 773 764
Peritoned 839 842 840 | 790 803 786
Inflammatory infiltrate | 829 862 840 | 833 842 829
Polyps type 848 852 844 | 805 823 812
Neaosis 846 857 851 | 799 813 805
Mucinous 845 867 854 | 826 837 828
Liver 869 862 864 | 761 768 764
Primary tumour redum | 878 862 866 | 844 847 838
Ressded meta 898 901 897 | 866 867 862
Margins distal 900 926 903 | 884 916 895
Polyps 903 916 909 | 901 901 901
Differentiation 918 926 919 | 900 921 907
Biopsy corfirmed mata | 938 941 939 | 943 946 939
Microscopic type 966 966 964 | 942 956 946
Pathologic resporse 977 975 975 | 914 931 919
Maao-average 819 821 813 | 773 784 774

Table 4: Performances of multi classdocument classfiers for nominal categories using feaure seledion.
Results sorted by basdline f-score performance Best f-score per category is given in bdd.

performance ae the ones most benefited from our
clasgfier, and the caegories with highest baseline
score ae the only ones that do nd get any im-
provement.

Our next experiment applies fedure seledion
over the initial clasgfiers. The results are given
in Table 4 for Naive Bayes and SYM&. We can
seethat the scenario changes when we ald feaure
seledion, with Naive Bayes achieving the high-
est performance in al cases. The performance
for the hardest caegory (which is again Tumour
site) raises to above 50% f-score, clealy beding
the baseline. The highest-performing caegory is
now Pathologic response, and Naive Bayes amost
readies perfed scores over this caegory, improv-
ingthe baseline again. The maao-averaged results
show that our best clasdfier is able to read an
f-score of 81.3% over the 27 naminal categories,
with an improvement of 30.3% over the majority
classbaseline.

8AdaBoost obtains the same results with and withou fea
ture seledion.
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4.2 Numeric categories

In this sdion we present the results of our nu-
meric dasdfiersin Table 5. In this case the results
of Naive Bayes are worse than the baseline, and
AdaBoost and SVM only achieve small i mprove-
ments. One of the reasons for the low performance
seans to be the strong hias of the cdegories to-
wards the majority value. On these aondtions, the
baseli ne obtains the best result for 6 of the 9 ca-
egories. The maao-averaged performances how
that the performance is insufficient for ared ap-
plicaion.

For our next experiment we gplied feaure se-
ledion to the numeric dassfiers, and the results
are presented in Table 6. We can seethat the over-
al performance goes down when applying feaure
seledion, and the main cause for this sams the
low number of fedures that are left for ead in-
stance

5 Discusson

Our results over nominal caegories show that our
clasdfiers can adieve high performance (abowve
80% f-score in average) by relying on feaure



Category Majority Class Naive Bayes SVM AdaBoost

Prec Rec F-sc| Prec Rec Fsc|Prec Rec F-sc| Prec Rec F-sc
Nodes examined 74 74 74| 831 581 684 | 821 586 684 | 8L8 576 676
Tumour length 429 429 429 | 417 246 310 | 503 370 426 | 449 394 420
Tumour width 478 478 478 | 414 261 320 | 518 424 466 | 465 429 446
Distal distance 522 522 522 | 633 340 442 | 701 532 605 | 520 517 518
Polyps number 621 621 621 | 489 434 460 | 570 542 556 | 589 586 588
Nodes pasitive 640 640 640 | 665 586 623 | 790 759 774 | 675 675 675
Tumour depth 700 700 700 | 701 498 582 | 747 611 672 | 700 700 700
Cav 724 724 724 | 721 714 718 | 731 695 712 | 724 724 724
Radial distance 941 941 941 | 941 941 941 | 954 921 937 | 941 941 941
Maao-average 570 570 570 | 646 511 564 | 704 604 648 | 653 616 632

Table 5: Performances for numeric caegories withou feaure seledion.

Results orted by basdline f-

score performance Best f-score per category is givenin bdd.

Categary Majority Class Naive Bayes SVM AdaBoost

Prec Rec F-sc| Prec Rec F-sc | Prec Rec F-sc| Prec Rec F-sc
Nodes examined 7.4 7.4 74 | 353 320 336 | 227 217 222 | 267 251 259
Tumour length 429 429 429 | 394 310 347 | 423 379 400 | 437 409 422
Tumour width 478 478 478 | 535 493 513 | 533 517 525 | 490 488 489
Distal distance 522 522 522 | 538 315 398 | 525 517 521 | 522 522 522
Polyps number 621 621 621 | 528 512 520 | 644 640 642 | 602 596 599
Nodes positive 640 640 640 | 690 670 680 | 685 675 680 | 682 675 678
Tumour depth 700 700 700 | 702 626 661 | 708 704 706 | 700 700 700
Cav 724 724 724 | 711 655 682 | 724 724 724 | 724 724 724
Radial distance 941 941 941 | 941 941 941 | 941 941 941 | 941 941 941
Maao-average 570 570 570 | 599 538 564 | 601 591 596 | 596 589 593

Table 6: Performances for numeric caegories with feaure seledion. Results rted by basdline f-score
performance Best f-score per category isgiven in bdd.

seledion. These results have been attained us-
ing BOW fedures, and this indicates that pathol-
ogy reports tend to use similar lexicd elements
to refer to the relevant classs. The results how
promise to incorporate an extradion prototype
into the medicd workflow for nomina classs,
which would aid the wlledion o structured infor-
mation, and benefit from the interadion with the
user.

One of the most interesting findings has been
the dfed of the feaure seledion step to achieve
high performance Apart from the increment of
the f-score, feaure seledion would allow us to
highlight the relevant terms in the document, and
present them to the user for a better interadion.

Regarding the results for numeric caegories,
our strategy has not been succesgul, andtheincre-
ments over the mgjority class baseline have been
small. The basdline for these caegories is higher
than for nominal caegaries, and there is a strong
bias towards the “zero” value. We observed that
the main difficulty was to discriminate between
“zero” and aher classs, and a 2-step classfier
would have been a better option to buld upon
Our results over numeric caegories also indicae
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that the generic BOW approac succesdully eval-
uated over nominal categories may not be enough
and deeger anaysis of the feaure space may be
required for these cdegories.

6 Conclusion

We have presented the results of a set of su-
pervised text classficaion systems over diff erent
prediction caegories in the domain of pathoogy
records. Our results how that we ae ale to
predict nomina labels with high average f-score
(81.3%) and improve the majority class baseline
by relying on Naive Bayes and fedure seledion.
These results are positive for the integration o au-
tomatic ads in the medicd workflow, and they il -
lustrate that pathology reports contain repetitive
lexicd items that can be catured by a bag-of-
words model. Our experiments also show that this
is nat the case for numeric labels, and richer fea
tures would be required in order to improve the
baseli nes.

For future work one of owr goals is to im-
prove numeric dassfiers by adding aninitial clas-
sifier that identifies zero-valued instances before
looking for the final value. We observed that



lexicd items expressng regation may be rele-
vant for this caegory (e.g. “No pdasitive nodes
werefound'), we plan to incorporate the negation-
clasgfier Negex (Chapman et al., 200]) to the fea
ture extradion.

Finaly, wewant to combine our classfiers with
a user interface that will alow clinicians to up-
load structured information into the database with
the help of automatic predictions. The users will
be ale to copy the pathdogy reports, and the
database fields will be pre-filled with the cde-
gories from the predictors. We will aso highlight
the top feaures from the seledion process andthe
user will be ale to corred the automatic predic-
tions before saving. All i nteradions will be kept
and used to improve our clasdfiers.
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