
Corpus Based Classification of Text in Australian Contracts

Michael Curtotti

Australian National University

Canberra, Australia

michael.curtotti@anu.edu.au

Eric Mccreath

Australian National University

Canberra, Australia

eric.mccreath@anu.edu.au

Abstract

Written contracts are a fundamental

framework for commercial and coopera-

tive transactions and relationships. Lim-

ited research has been published on the ap-

plication of machine learning and natural

language processing (NLP) to contracts.

In this paper we report the classification

of components of contract texts using ma-

chine learning and hand-coded methods.

Authors studying a range of domains have

found that combining machine learning

and rule based approaches increases accu-

racy of machine learning. We find similar

results which suggest the utility of consid-

ering leveraging hand coded classification

rules for machine learning. We attained an

average accuracy of 83.48% on a multi-

class labelling task on 20 contracts com-

bining machine learning and rule based

approaches, increasing performance over

machine learning alone.

1 Introduction

Contracts govern economic transactions and com-

mercial or organisational relationships from triv-

ial purchases to major national infrastructure

projects. Any large organisation (whether private

or public) must unavoidably invest significant re-

sources in developing and concluding contracts, as

the contracts it enters define its legal relations with

organisations and individuals with which it inter-

acts. As one author has noted, contracts are an

integral part of any business enterprise and it is

“difficult to overstate their importance to the busi-

ness world” (Khoury and Yamouni, 2007, p16). In

addition, drafting contracts represents a major eco-

nomic activity for the legal industry.

Ambiguity is an unresolved problem in natu-

ral language processing. It is also an important

problem affecting the drafting and operation of

contracts. The costs of ambiguity in a contract

can be enormous. The presence of ambiguity in-

creases the risk of litigation, project failure and

loss of commercial relationships. Instances of lit-

igated ambiguity are used in drafting manuals as

instructional tales for the unwary drafter (Aitken

and Butt, 2004, p37).

Our future research goal is to investigate ap-

proaches that will help identify such ambiguity,

however, a precursor for addressing the problem

of ambiguity is accurate labelling or classification

of the constituent parts of contract documents.1 In

this paper we report work on classifying ‘lines’ in

contracts into 32 classes. We compare three dif-

ferent classification approaches in order to deter-

mine which approach may provide the best per-

formance with respect to this task: supervised

machine learning; a hand-crafted rule based tag-

ger; or combining hand-crafted rules based tag-

ging with machine learning.

2 Background

Natural language processing involves applying a

pipeline of transformations to text. A typical first

step is to segment the text into its sentences, af-

ter which further processing is applied (Jurafsky

and Martin, 2009, p 69). This works well in usual

English prose, but is not necessarily well suited to

contracts because of the heavy use of layout to em-

body structure and semantics. In a contract, a sen-

tence may occur within a single paragraph of text,

or may be spread over several line breaks due to

the use of sub-paragraphing as an aid to compre-

hension. Such sub-paragraphs may embody dis-

junctive or conjunctive conditions associated with

1This task can also be thought of as a document segmen-
tation task, although we here consider it as a classification
exercise.

Michael Curtotti and Eric McCreath. 2010. Michael Curtotti and Eric McCreath. In Proceedings of

Australasian Language Technology Association Workshop, pages 18−26

a rule. A ‘clause’2 is the typical structural unit

which embodies a legal rule or set of rules. Some-

times clauses are organised into sub-clauses and

clauses and sub-clauses may be numbered in hier-

archical fashion (e.g. 1, 1.1, (a), (i), (A))(Aitken

and Butt, 2004, pp 23, 27). Line breaks often

occur immediately before data such as headings,

clauses, sub-clauses, party names, dates or execu-

tion blocks. Being able to label a line as to its char-

acter, key content or function thus enriches avail-

able information for later NLP. The line is thus a

valuable starting point for applying NLP.

3 Related Work

3.1 Classification and Segmentation of

Contracts and Legislative Documents

There would appear to be little published work

on the application of natural language process-

ing (NLP) or machine learning specifically for the

classification of text in legal contracts. An excep-

tion to this is (Indukuri and Krishna, 2010) who

apply a support vector machine over feature vec-

tors extracted from contract clauses. These feature

vectors are comprised of n-grams up to size n = 4.

They classify contract sentences as clauses or non-

clauses and then sub-classify clauses as concerned

with payment terms or not. Indukuri and Krishna

note the lack of published work on classification

of sentences in contract documents for workflow

and monitoring purposes.

While also limited, there has been some work

on segmentation or classification of legislative cor-

pora using machine learning. (Mencı́a, 2009) re-

ports 100% precision and recall in machine learn-

ing on classification of legislation into articles,

sections and parts (although to a task for which he

is able to craft an equally accurate regular expres-

sion based segmenter). (Bacci et al., 2009) auto-

matically classify plain text legislative documents

for the purpose of XML mark up. (Francesconi,

2006), on whose work Bacci et al. build, describes

four separate modules for dealing with plain text

legacy content which they are seeking to convert

to XML tagged text. (Hasan et al., 2008) carry

out segmentation of Spanish legislative bulletins

using the table of contents as an aid to segmenta-

tion. This work, in the legislative field, provides

a parallel application domain for the work under-

taken here in respect of contracts, although it is

2The term ‘clause’ here refers to a legal rule or rules ap-
pearing in a contract, rather than the linguistic entity.

generally true that legislation will tend to conform

to far tighter stylistic rules, because of the central

control of legislative drafting.

3.2 Combining Machine Learning and Hand

Coded Approaches

A number of researchers have combined hand-

coded approaches and machine learning to pro-

duce better overall results.

(Kipp, 2006) augments handcrafted rules with

machine learnt rules for gesture generation.

(McCreath and Kay, 2003) used such a com-

bined approach to improve performance on cate-

gorizing emails.

(Park and Zhang, 2003) address the problem of

text chunking for the Korean language, combining

hand-crafted rules with a memory based machine

learning method. A rule based method is used to

determine whether an instance may constitute an

exceptional case, with machine learning used to

correct classifications assigned by the rule based

method. They report up to a 2.83% improvement

in F-scores over memory-based learning alone.

(Rochery et al., 2002) report the use of hand-

crafted rules to enhance the accuracy of machine

learning utilising boosting. They apply the method

to a multi-labelling classification problem where

they are seeking to classify spoken utterances.

They attribute increased accuracy to the fact that

the rules they develop are not represented in their

data at all or do not appear sufficiently to have sta-

tistical impact during the training process. They

note that the combination has the greatest effect

when there are less then 100 examples, with the

benefit of the combination decreasing as the num-

ber of training examples increases. The method

therefore has direct applicability to reducing the

data requirement for machine learning (a costly as-

pect of supervised machine learning).

(Takahashi et al., 2005) utilise a combination

of SVM based learning and hand-crafted rules for

the task of classifying occupations from social sur-

veys. They effect a combination by using rule de-

rived labels as features for the machine learner.

Again the work occurs in a multi-class labelling

context (with around 200 occupation codes). They

find that SVM approaches are superior to rule-

based approaches alone but that combining rule-

based and SVM learning produces the best results.

They also examine the effect of the number of

training examples, noting that the differential ben-

19

efits of combining methods reduces with increas-

ing data.

In our study we use class labels assigned by a

hand-coded tagger as additional features for ma-

chine learning to obtain an increase in accuracy in

the domain of text classification.

The work reported above, and our own paper,

come from diverse domains and illustrate the ap-

plication of combined rule/ML approaches using a

variety of machine learning algorithms.

This suggests the wide utility of using hand-

coded rules to improve accuracy of machine learn-

ing. Symetrically we may say that machine learn-

ing may potentially be used to improve the accu-

racy of hand-coded rules. Here we essentially fol-

low a hybrid model of development that examines

each method separately as well as in combination.

4 Data

4.1 Australian Contract Corpus

The data which forms the basis of this study is a

corpus of 256 contracts (‘the Australian Contract

Corpus’) which has been compiled from the web

using the Google Australia web search: http:

//www.google.com.au.3 The corpus is con-

stituted of 1043364 tokens (words and punctua-

tion), 42910 sentences, and a vocabulary of 14217.

The lexical diversity of this corpus is 73.39.4 As

far as we are aware there is no published work

based on a corpus of Australian contract language,

however space does not permit a fuller discussion

of the design and analysis of the corpus.

4.2 Data Representation

For the purpose of this study we randomly selected

30 contracts from the Australian Contract Corpus

to produce data sets for application of machine

learning. The 30 contracts were divided into three

3The search phrase we employed was: “clause party
agreement” , limiting the search to “pages from Australia”
and the filetype to “.doc”. The collection of the corpus was
undertaken in the period 6 - 24 December 2009. Each doc-
ument was visually inspected by one of the authors to verify
that it was an Australian contract and documents were added
to the corpus in order of their appearance in Google search
results. We have made available the list of URLs of the docu-
ments that make up the corpus at: http://cs.anu.edu.
au/people/Michael.Curtotti/. We also make code
and data referred to in this paper available at the same loca-
tion.

4Lexical diversity refers to the ratio of the total number of
tokens in the corpus to the total number of types of tokens i.e.
tokens/vocabulary. The statistics and information provided
here were extracted using the NLTK. (Bird et al., 2009).

sets: a training set (Set A)5, a second set (Set B)6

(primarily used as a test set, although sometimes

combined with Set A to form a larger training set)

and an additional test set (Set C)7, each of 10 con-

tracts. Set C was added to increase both available

data and the number of contracts on which testing

could be carried out.

To simplify processing all contracts were con-

verted into text files as a preprocessing step.8 Also

we removed material that typically does not ap-

pear in contracts (primarily guideline notes for

drafters).

For purposes of our study each ‘line’ or ‘para-

graph’ in a contract constituted a data point.

Sets A, B and C provided 1825, 2157 and 2231

lines/data points, respectively.

To classify our data for machine learning we

first employed our hand-coded tagger to produce

a labelled data set constituted of a line and pri-

mary and secondary labels according to our clas-

sification system (see below). The classifications

applied by the hand-coded tagger were then manu-

ally corrected to remove any labelling errors. Both

for the reason that hand tagging data from scratch

is more error prone than correcting previously ma-

chine tagged data, and because of the high labour

in manual tagging, machine assisted tagging is a

standard method used in corpus creation (Biber

et al., 1998, p 262), ((ed) Christopher S. Butler,

1992, p 131).

4.3 Feature Selection

Features were then extracted from our labelled

lines using a hand-coded feature extractor to ex-

tract up to 40 features to be used for machine

learning, with the primary class label earlier ap-

plied to each line serving as the target for machine

learning.9 Features for machine learning were se-

lected based on assumed relevance to the intended

classification.10 While a bag of word representa-

5Contracts numbered in our corpus: 55, 74, 77, 91, 94,
144, 174, 185, 208 and 213

6Contracts 11, 12, 164, 193, 196, 199, 249, 59, 64, 9
7Contracts 200, 254, 175, 180, 120, 102, 207, 127, 75 and

79
8Notably, this step does have the downside of discarding

valuable style and layout information found in the word doc-
ument format.

9In some instances the assignment of class is not entirely
disjunctive and implies a priority ordering of potential classi-
fications. For instance a clause may contain address details,
and be classified as such rather than as a clause. The feature
extractor removed secondary labels.

10The full list of features is as follows: 1. relative position
of a line within the contract; 2. line end punctuation; 3. num-

20

tion with automatic feature extraction was trialed,

this was found to result in lower accuracy than

a manually selected (but small) number of fea-

tures. Traditionally, ‘feature engineering’ or ‘se-

lection’ in text classification has focussed on ‘bag

of words’ or proximate features such as n-grams

or noun phrases (Scott and Matwin, 1999). Our

selection of features might be regarded as ‘hybrid’

in that they implicitly encode domain knowledge

and ‘rules’. For example, we expect a definition

line to contain the widely used word ‘means’ as in

‘x means y’. We would expect clause headings to

display a different pattern of parts of speech occur-

rence, as compared to clauses themselves. We also

consider features such as the relationship between

the particular line/datapoint and its neighbouring

lines (e.g. is the preceding line long or short), or

the document as a whole (e.g. relative placement

of the line within the document).

Features used in the related work carried out

by others on contracts and legislation include: n-

grams (Indukuri), bag of word together with capi-

talisation and character patterns (Mencia), the use

of sequential word and token data as a HMM to

predict state where state is the classification of the

portion of text (Bacci/Francesconi) and the use of

word terms identifying titles and lists of indexed

terms (Hasan).

4.4 Classes

We adopted 32 classes for our classification

scheme. These classes represented significant

bering at the beginning of the line; 4. line length in charac-
ters; 5. line length in tokens; 6. number of nouns; 7. number
of adjectives; 8. number of verbs; 9. number of preposi-
tions; 10. number of coordinating conjunctions and cardinal
numbers; 11. number of modal verbs; 12. number of personal
pronouns, possessives; 13. number of adjectives; 14. whether
must occurs; 15. whether may occurs; 16. whether shall oc-
curs; 17. whether means occurs;18. the position of the word
means in the line; 19. whether the word ‘include’ occurs; 20.
the position of the word ‘includes’ in the line; 21. whether
the phase ‘has the same meaning’ occurs; 22. whether the
line begins with a capital letter followed by a stop or a space;
23. do the letters ’abn’ or ’acn’ appear; 24. does the word ad-
dress appear near the beginning of the line; 25. does the word
‘contact’ appear near the beginning of the line; 26. does the
word ‘email’ appear near the beginning of the line; 27. does
the word ‘fax’ appear near the beginning of the line; 28. does
the word ‘note’ appear at the beginning of the line; 29. does
the word ‘phone’ appear at the beginning of the line; 30. do
the terms ‘web’ or ‘www’ appear near the beginning of the
line; 31-36. token lengths of 3 lines before and after the data
line; 37. the tag applied by the hand coded tagger to the data
line; 38. whether the contract from which the line comes has
clause headings; 39. whether the contract from which the line
comes has clause sub-headings; 40. whether the contract has
a schedule.

structural elements (such as clause headings or

content lines) or sometimes key contract meta data

(for instance the parties, the date on which an

agreement is made, email addresses, ABNs etc).11

Of particular interest to us, was an ability to accu-

rately identify clausematter (the primary location

of legal rules of a contract) and clause headings

(which in some contracts effectively mark bound-

aries between major rule sets).

5 Experimental Evaluation

Analysis of our data sets was carried out using two

major methods: analysis using the training Set A

measuring peformance on test Set B (i.e. testing

for accuracy of classification of lines in Set B); and

analysis using training Set A where each contract

in test Sets B and C was used individually as a test

set (testing for accuracy of classification of lines

of each individual contract). The former testing

approach is more widely used but the latter is more

consistent with our intended end application: that

is, developing an ability to accurately classify lines

in a previously unseen contract as an individual

document.

Set A consisted of 1825 lines of data, Set B con-

sisted of 2157 lines of data and Set C consisted of

2231 lines of data.

5.1 Tools

The following tools were used to carry out ma-

chine learning tasks reported in this paper:

1. the python programming language was used

to develop a hand coded line tagger, a feature

extractor and code for evaluation of the per-

formance of the hand coded tagger;

2. the Natural Language Toolkit (NLTK)(Bird

et al., 2009) was used in corpus development

and in the hand coded tagger for application

of parts of speech tags; and

3. the Weka data mining software(Hall et al.,

2009) was used to carry out machine learn-

ing.

11The following class labels were applied: CLAUSE-
MATTER, CLAUSEHEAD, DEF, CONTENTSHEAD,
BLANK, DROSS, AND, BETWEEN, DATEMADE-
LINE, PARTIESHEAD, PARTYLINE, RECITALHEAD,
RECITALLINE, HEAD, CONTENTLINE, PRELIM, OP-
ERATIVEPROVISIONLINE, NUMBEREDLINE, SCHED-
ULEHEAD, SCHEDULEITEM, EXECUTIONBLOCK,
NOTE, ABNLINE, ADDRESSLINE, EMAILLINE,
WEBLINE, FAXLINE, PH-LINE, REF-LINE, SCH-
OTHERMATTER, CONTACTOFFICER, TITLELINE.

21

5.2 Hand-Coded Tagger

Our hand-coded tagger follows a pipeline method-

ology. A contract is separated into a list of lines. In

the first phase, each line is passed through a series

of “if-then-else” routines (essentially utilising reg-

ular expressions) to assign primary and secondary

labels to the line. This produces a contract with

enhanced information content, in the form of a tu-

ple of labels and line text. This output is then fed

through a series of methods, progressively boot-

strapping improvements to labelling, based on the

information available when the method is applied.

For instance content lines will be identified, these

are then used in later methods to seek to identify

clause headings. In addition, the tagger extracts

contract meta data such as: a list of definitions,

a list of clause headings, where the beginning of

operative provisions occurs, where the schedule

begins. Such features may or may not occur in

a contract. In addition the tagger also provided

a method for hand correcting tagging which was

used to create our data set for supervised machine

learning purposes.

Development of the tagger relied heavily on do-

main knowledge to identify logical tests for label

application. For instance the occurrence of num-

bering at the beginning a line was used to identify

clause headings, or the presence of a common text

pattern which occur in definitions i.e. (the pattern

[“word[1-3]] means [...]” was used as a criterion

for identifying a line as a definition).

x s

On Set B Contracts 86.27% NA

Contract x Contract 82.84% 10.85%

Table 1: Accuracy of Line Tagger.

The first row of Table 1 reports accuracy of the

hand coded tagger when applied to Set B as the

test set (the % accuracy of tagging of individual

lines in Set B is reported). The second row of

Table 1 reports average accuracy with which the

lines in each of 20 contracts in Sets B and C are

tagged (standard deviation is also reported). The

high variance of the results at a contract by con-

tract level suggests a need for future work to iden-

tify if issues such as contract ‘type’ may account

for the differences (the lowest level of accuracy

was around 50% and the highest around 95%).

Table 2 provides measures of precision, recall

and F-measure attained by the hand coded tag-

Precision Recall F-Measure

CL.HEAD 0.98 0.83 0.89

CL.MATTER 0.91 0.91 0.91

DEF 1.00 0.66 0.80

Table 2: Performance results for Hand-Coded

Line Tagger

ger on Set B for key data items: clause headings,

clauses themselves and definitions.12 These re-

sults on key measures are sufficient for our ini-

tial purposes and will allow us to focus subsequent

work on addressing ambiguity in the substantive

rules found in a contract.

5.3 Supervised Machine Learning

Column 1 of Table 3 reports the accuracy of var-

ious supervised machine learning algorithms with

Set A as training set and Set B as test set. Of

the algorithms applied, Random Forest (imple-

mented using 100 trees and 30 random features)

performed best. No ML method performed better

than the hand coded tagger tested on the same test

set (see row 1 of Table 1).

5.4 Machine Learning vs Hand-coded

methods

Given our ultimate focus on developing applied

tools, we are primarily concerned to identify the

best methods to maximise the accuracy of our clas-

sification task. Whether this proves to be ma-

chine learning methods or hand-coded methods or

a combination of the two is immaterial from this

viewpoint (other than in regard of development

costs).

Also it is useful to consider whether methods

and insights from one method may assist in the

other. For instance, hand-coded rules that success-

fully labelled lines directly suggested ‘features’ to

be extracted for machine learning purposes. Con-

versely the identification of ‘features’ for machine

learning can be regarded as a programming ab-

straction where the algorithm is ‘under the hood’

but human intervention is required in the form of

feature selection for ‘learning’ to occur (implic-

itly encoding of rules in the feature set). In de-

riving our results we used a confusion matrix as a

tool to assist in identifying areas where the hand-

12Precision is TP

TP+FP
, Recall is TP

TP+FN
, and F-Measure

is 2PR

P+R
, where TP is true positives, FP is false positives,

FN is false negatives, P is precision, and R is recall.

22

coded tagger required improvement and as a com-

mon baseline for performance. In certain forms

of machine learning, the resulting machine learn-

ing model can be represented as code in “if, then,

else” form (as in the output of a decision list or de-

cision tree learner). We may thus conceive of ma-

chine learning and hand coding of rules as differ-

ent ‘programming paradigms’ - a perspective that

encourages us to apply insights across the bound-

ary between them.

Further, we wished to explore the relative accu-

racy of machine learning vs hand coding for this

particular task. Such an exploration is valuable

from a cost benefit point of view. Supervised ma-

chine learning (where we have focused our atten-

tion) requires the production of human annotated

data (which is costly to produce) as well as fea-

ture testing and refinement. Also machine learn-

ing may be computationally intensive. Production

of an accurate hand-coded tagger requires expert

knowledge and considerable testing and code re-

finement in order to achieve a high level of ac-

curacy (which again is resource intensive). We

did not undertake quantitative data collection in

respect of time employed in the two methods,

particularly as we followed an iterative develop-

ment model that switched between rule based and

machine learning focussed work and as we were

searching for optimal outcomes. Nonetheless we

anecdotally report that each method presented sig-

nificant demands in terms of development time.

In the results reported above we note that no

machine learning approach alone exceeded the

performance of the hand coded tagger when con-

sidering performance on test Set B as a whole.

This is the result also found at contract by contract

level (see below Table 4).

5.5 Leveraging Hand-Coded Labels for

Machine Learning

As noted above we also wished to explore whether

utilising the output from the hand coded tagger

as input features for machine learning might im-

prove the accuracy of machine learning alone. A

converse question that could be framed is whether

the rule based tagger’s performance could be im-

proved by combination with machine learning.

We carried out two trials that bear on these ques-

tions:

1. machine learning alone and machine learning

enhanced with rule based input on an entire

test set (Set B); and

2. machine learning alone, rule alone and ma-

chine learning enhanced with rule based in-

put at contract by contract level.

ML Algorithm ML Alone ML + Rule

Naive Bayes 82.38% 84.75%

SMO (SVM) 82.80% 85.40%

Cl. via Regression 83.91% 87.07%

Decision Tree 82.01% 87.02%

Bagging 83.54% 87.76%

Majority Vote 84.42% 87.11%

Random Forest 85.12% 86.69%

Table 3: Comparative Performance ML alone and

ML + Rule on train and test set

Column 2 of Table 3 shows the improvement in

performance of various machine learning methods

when tags applied by the hand coded tagger were

provided as input features. All methods show im-

provement with addition of the rule derived feature

on Set B as a whole.13

We report below a comparison of accuracy of

machine learning, rule based tagging and a com-

bination of both in respect of Decision Trees. De-

cision trees offer the advantage that the output is

easily interpretable as a rule set for tagging.

Method x s

ML Alone 79.12% 10.71%

Rule Alone 82.84% 10.85%

ML + Rule 83.48% 9.83%

Table 4: Tagging Accuracy Mean and Standard

Deviation - Contract by Contract

Although the results reported in Table 4 are

different (as different contracts are included in

the tested contracts)14 average accuracy continued

to show a differential between machine learning

alone, and machine learning leveraged with hand

rules, as described above. On this combination

ML + Rule also outperformed the rule based tag-

ger alone, but by a very narrow margin. In 17 of

20 cases ML + Rule improved or did not worsen

performance of ML alone. In 15 of 20 cases, ML +

13The training set for the results reported in Table 3 was
Set A. The test set was Set B.

14The training set was Set A. Sets B and C provided 20
individual contracts (effectively 20 test sets) for testing.

23

rule was no worse or outperformed the hand coded

tagger alone. Notably variation is quite high as

compared to the mean. Testing for statistical sig-

nificance we can reject a null hypothesis that the

mean accuracy for ML + Rule is the same as for

ML alone. We cannot reject a null hypothesis that

ML + Rule is the same as Rule alone.15 We note

also that this investigation was only carried out in

respect of the decision tree learner.

5.5.1 Is it more effective to increase data or

use rule based features?

To further explore the question of how much ef-

fort might be saved by combining rule based ap-

proaches with machine learning alone we tested

the effect of adding random noise to the feature

set provided by the hand coded tagger. We found

that we had to randomly flip over 45% of these

tags before they ceased to impact positively on

classification accuracy. This suggests that even

poorly prepared hand coded rules can improve per-

formance.16

We also tested the effect of incrementally in-

creasing the amount of available training data

to explore any decrease in differential in perfor-

mance. Testing using Set C as the test set and

taking training data from Sets A and B, we pro-

gressively increased training data by increments

of 500 instances of data. Differential performance

decreases progressively, starting around 5% and

reducing to 2.5% as more training data is made

available.17 (See Table 5.) Extrapolating from

these figures we would expect at a minimum that

training data would have to be doubled to remove

differential accuracy. Relatively little effort in de-

veloping rule based features may substitute for

considerable work in creating additional super-

vised data.

15We gratefully acknowledge the assistance of Bob For-
rester of the ANU Statistical Consulting Unit in deriving
this result, undertaken utilising a generalised linear model
to undertake model fitting adjusting for different file (con-
tract) types. Predictions of estimated mean proportions were:
ML Alone 0.7760 (s.e. 0.007181), Rule alone 0.8106 (s.e.
0.006775), ML+ Rule 0.8181 (s.e. 0.006677).

16Using a Decision Tree, ML + Rule accuracy on test Set B
with training Set A, was 87.0% with zero noise, 86.9% with
5% noise, 84.7% with 10% noise, 85.2% with 20% noise,
84.4% with 30% noise, 83.9% with 40% noise, 82.8% with
45% noise, 82.4% with 50% noise. Decision Tree accuracy
on ML alone on this training and test set was 82.0%.

17The data has a negative correlation of -0.70

Data 0.5 1K 1.5 2K 2.5 3K 3.5 4K

Diff. 5.1 3.4 5 4.2 3.3 3.1 3.9 2.6

Table 5: Difference in % accuracy of ML alone

and ML with rule based feature with increasing

training data.

5.5.2 Decision tree output

An examination of the decision tree produced af-

ter adding the output of the hand-coded tagger to

machine learning is of interest.

LTlabel = #CLAUSEMATTER#

| tknLngth <= 4

|| nounNum <= 1: #CLAUSEMATTER# (6.0/2.0)

|| nounNum > 1

||| linePos. <= 0.383929: #PRELIM# (2.0)

||| linePos. > 0.383929: #CLAUSEHEAD# (2.0)

| tknLngth > 4: #CLAUSEMATTER# (508.0/7.0)

: :

: :

LTlabel = #PH-LINE#

| prepNum <= 1: #PH-LINE# (5.0)

| prepNum > 1: #CLAUSEMATTER# (2.0)

LTlabel = #EMAILLINE#: #EMAILLINE# (3.0)

LTlabel = #ABNLINE#

| preLine2 <= 0: #TITLELINE# (2.0/1.0)

| preLine2 > 0: #ABNLINE# (3.0)

Figure 1: Part of the decision tree learnt when the

labels from the hand-coded are provided as an at-

tribute.

Using only the machine learning feature set, the

size of the pruned tree is 199 with 108 leaves.

After addition of labels provided by our hand-

coded tagger the size of the decision tree is re-

duced to 105 with 69 leaves. Figure 1 shows part

of this decision tree and as illustrated, the deci-

sion tree generally begins with the label assigned

by the hand-coded tagger ‘LTlabel’ and amends

the label (where necessary) utilizing other fea-

tures available to the machine learner. Some labels

(e.g. EMAILLINE) were simply adopted without

change. In the case of the CLAUSEMATTER la-

bel, the machine learner used the number of to-

kens in the line (‘tknLngth’), number of nouns in

the line (‘nounNum’) and the relative position of

the line in the contract (‘linePos.’) to re-assign the

class of the line. The significance of the use of la-

bels assigned by the hand-coded tagger is that the

decision-tree identifies that attribute as providing

the most significant information gain (that is re-

duction in entropy) and therefore partitions on that

feature (Callan, 2003, p245). This remains true

in this example irrespective of the class to which

24

the data is being assigned.18 It is obvious that the

best feature for assigning the correct label for an

item of data is the correct or probably correct la-

bel (if one can obtain it without undue endeavour).

From a practical viewpoint some effort directing

to hand-crafting code to extract appropriate class

labels may thus assist machine learning.

6 Conclusions and Future Work

In terms of the overall performance of the methods

described in this paper the closest point of compar-

ison is the work reported by Indukuri and Krishna

(Indukuri and Krishna, 2010). While comparisons

using different methods, software and data are of

dubious validity, we may note their broad similar-

ity. With a training set of 10 contracts and a test set

of 20 contracts, the contract-by-contract average

F-measure for the clausematter class was 0.8632.

Also in 14 contracts of the 20 tested the F-measure

for the clausematter class was above 0.85. With a

training set of 10 contracts (Set A) and a test set

of 10 contracts (Set B) (as a single test set) the

F-measure for the clausematter class was 0.921.19

Using 4-grams as features, Indukuri and Krishna

report an accuracy of 83.48% on the task of clas-

sification clauses from non-clauses, applied to 73

sentences to be so classified. Whereas the task in

that case was a binary classification task over one

contract, we report results on multi-class classifi-

cation over test sets of up to 20 contracts.20

The work we have undertaken and related work

reviewed in this paper (Section 3) suggests the po-

tentially broad utility of combining rule based and

machine learning methods. One potential hybrid

classification method in its simplest formulation

may look something like this:

1. determine the required or anticipated level of

accuracy for the intended application;

2. develop a simple code rule set for the classifi-

cation task (i.e. with minimal expenditure of

resources);

3. if classification accuracy is sufficient ma-

chine learning would not be required, if not

18The Weka decision tree implementation, “J.48”, is based
on the Quinlan’s C4.5(Quinlan, 1986).

19The results reported here are derived using a random for-
est algorithm and using the hand coded tag as an input feature
for classification.

20Coincidentally the 83.48% figure is the same as our av-
erage result over all classes for 20 contracts.

proceed as usual in development of machine

learning using the output of hand coded rules

as an input to machine learning.

Such a development model does not avoid the de-

velopment of a supervised training set, as such a

set is required both to assess the accuracy of the

rule based tagger as well as the machine learner

(should development proceed to that stage). How-

ever it may reduce the amount of data required

to attain a desired level of accuracy. The method

could of course be applied iteratively, if the accu-

racy level is insufficient after a first iteration.

Future work to be explored includes the effec-

tive “typing” of contracts (particularly in light of

the high variance of performance on individual

contracts). For instance, some contracts use clause

headings, others do not. Some use schedules, oth-

ers do not, etc. Such type information may fur-

ther assist in the classification task (the accuracy of

which varies considerably depending on the con-

tract to which it is applied). In typical preprocess-

ing, documents in corpora are converted to plain

text. This results in the loss of layout and hierar-

chical information found in word documents. The

preservation of such information for use in classi-

fication tasks may improve accuracy.

The preliminary work here is also a precursor to

work on identification of ambiguity and the devel-

opment of practical tools to assist in contract draft-

ing. In separate work, we intend also to describe

and analyse the contract corpus that is referred to

here as the basis of this work.

References

J. K. Aitken and P. Butt. 2004. Piesse The Elements of
Drafting. Lawbook Co, 10th edition.

L. Bacci, P. Spinosa, C. Marchetti, R. Battistoni, I. Flo-
rence, I. Senate, and I. Rome. 2009. Automatic
mark-up of legislative documents and its application
to parallel text generation. In Proc. of LOAIT Work-
shop, pages 45–54.

D. Biber, S. Conrad, and R. Reppen. 1998. Corpus lin-
guistics: Investigating language structure and use.
Cambridge University Press.

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Rob Callan. 2003. Artificial Intelligence. Palgrave
Macmillan.

25

(ed) Christopher S. Butler. 1992. Computers and writ-
ten texts. Blackwell.

E. Francesconi. 2006. The Norme in Rete Project:
Standards and Tools for Italian Legislation. Interna-
tional Journal Legal Information, 34:358.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software. SIGKDD
Explorations, 11(1).

I. Hasan, J. Parapar, and R. Blanco. 2008. Seg-
mentation of legislative documents using a domain-
specific lexicon. In Proceedings of the 19th Interna-
tional Conference on Database and Expert Systems
Application, pages 665–669.

Kishore Varma Indukuri and P. Radha Krishna. 2010.
Mining e-contract documents to classify clauses. In
COMPUTE ’10: Proceedings of the Third Annual
ACM Bangalore Conference, pages 1–5, New York,
NY, USA. ACM.

Daniel Jurafsky and James H. Martin. 2009. Speech
and Language Processing: An introduction to natu-
ral language processing, computational linguistics,
and speech recognition. Pearson Prentice Hall, 2nd
edition.

D. Khoury and Y. S. Yamouni. 2007. Understanding
Contract Law. Lexis Nexis Butterworths, 7th edi-
tion.

M. Kipp. 2006. Creativity meets automation: Combin-
ing nonverbal action authoring with rules and ma-
chine learning. In Intelligent Virtual Agents, pages
230–242. Springer.

Eric McCreath and Judy Kay. 2003. Iems: Helping
Users Manage Email. User Modeling 2003, pages
146–146.

Eneldo Loza Mencı́a. 2009. Segmentation of legal
documents. In Proceedings of the 12th International
Conference on Artificial Intelligence and Law, pages
88–97. ACM.

Seong-Bae Park and Byoung-Tak Zhang. 2003.
Text chunking by combining hand-crafted rules and
memory-based learning. In Proceedings of the 41st
Annual Meeting on Association for Computational
Linguistics, pages 497–504.

J.R. Quinlan. 1986. Induction of decision trees. Ma-
chine Learning, 1:81–106.

M. Rochery, R. Schapire, M. Rahim, N. Gupta, G. Ric-
cardi, S. Bangalore, H. Alshawi, and S. Douglas.
2002. Combining prior knowledge and boosting for
call classification in spoken language dialogue. In
Proceedings of the IEEE International Conference
of Acoustics and Speech and Signal Processing.

S. Scott and S. Matwin. 1999. Feature Engineering
for Text Classification. In Machine learning: pro-
ceedings of the Sixteenth International Conference
(ICML’99), Bled, Slovenia, June 27-30, 1999, page
379. Morgan Kaufmann Pub.

K. Takahashi, H. Takamura, and M. Okumura. 2005.
Automatic occupation coding with combination of
machine learning and hand-crafted rules. Advances
in Knowledge Discovery and Data Mining, pages
269–279.

26

