
An Update on PENG Light

Colin White
Department of Computing

Macquarie University
Sydney NSW 2109, Australia
colcwhite@gmail.com

Rolf Schwitter
Centre for Language Technology

Macquarie University
Sydney NSW 2109, Australia

Rolf.Schwitter@mq.edu.au

Abstract

This paper presents an update on PENG
Light, a lightweight and portable controlled
natural language processor that can be used
to translate a well-defined subset of En-
glish unambiguously into a formal target
language. We illustrate by example of a
Firefox extension that provides a simple in-
terface to the controlled natural language
processor how web pages can be annotated
with textual information written in con-
trolled natural language and how these an-
notations can be translated incrementally
into first-order logic. We focus in partic-
ular on technical aspects of the controlled
language processor and show in detail how
look-ahead information that can be used to
guide the writing process of the author is
generated during the parsing process. Ad-
ditionally, we discuss what kind of user
interaction is required for processing un-
known content words.

1 Introduction

Computer-processable controlled natural lan-
guages are well-defined and tractable subsets of
natural languages that have been carefully de-
signed to avoid constructions that may cause am-
biguities (Fuchs et al., 1998; Schwitter, 2002;
Sowa, 2004; Barker et al., 2007). Instead of
encoding a piece of knowledge in a formal lan-
guage that is difficult to understand for humans,
a controlled natural language can be used to ex-
press the same information in a direct way using
the vocabulary of the application domain. There
is no need to formally encode this information

since a computer-processable controlled natural
language can be translated automatically and un-
ambiguously into a formal target language by a
machine. This has the advantage that everybody
who knows English can understand a text writ-
ten in controlled natural language and that a ma-
chine can process this text since it corresponds to
a formal notation. In order to support the writ-
ing of these texts, text- and menu-based predic-
tive editing techniques have been suggested that
guide the writing process of the author (Tennant
et al., 1983; Schwitter et al., 2003; Thompson
et al., 2005; Kuhn, 2008). These techniques
give the author a way to match what he or she
wants to express with the processing capabili-
ties of the machine and result in user-friendly
and self-explanatory interfaces. However, prac-
tically no details have been published so far how
these predictive techniques can actually be imple-
mented in a controlled natural language proces-
sor that processes a text incrementally. In this pa-
per, we will make up for this neglect and show
how these predictive techniques have been imple-
mented for the controlled natural language pro-
cessor of PENG Light and discuss how the lan-
guage processor uses these techniques while com-
municating over an HTTP connection with a sim-
ple AJAX-based tool designed for annotating web
pages in controlled natural language.

The rest of this paper is structured as follows:
In Section 2, we give a brief overview of exist-
ing computer-processable controlled natural lan-
guages. In Section 3, we introduce FoxPENG,
a simple Firefox extension that we have built
for annotating web pages with controlled natu-

ral language and use this extension as a vehi-
cle for motivating predictive editing techniques.
In Section 4, we give a brief introduction to
the controlled natural language PENG Light and
show how sentences can be anaphorically linked
and finally translated into discourse representa-
tion structures. In Section 5, we present the lat-
est version of the chart parser of PENG Light
and focus on the incremental processing of sim-
ple and compound words. In Section 6, we dis-
cuss what user interaction is required for process-
ing unknown content words and suggest a linear
microformat for specifying feature structures. In
Section 7, we summarise the advantages of our
controlled natural language approach for specify-
ing a piece of knowledge.

2 Related Controlled Natural Languages

During the last decade, a number of computer-
processable controlled natural languages have
been designed and used for specification pur-
poses, knowledge acquisition and knowledge
representation, and as interface languages to
the Semantic Web – among them Attempto
Controlled English (ACE) (Fuchs et al., 1998;
Fuchs et al., 2008), Processable English (Schwit-
ter, 2002), Common Logic Controlled English
(Sowa, 2004), and recently Boeing’s Computer-
Processable Language (Clark et al., 2005; Clark
et al., 2007). Some machine-oriented controlled
natural languages require the author to learn a
small number of construction and interpretation
rules (Fuchs et al., 2008), while other controlled
natural languages provide writing support which
takes most of the burden of learning and remem-
bering the language from the author (Thompson
et al., 2005). The commercial success of the
human-oriented controlled natural language ASD
Simplified Technical English (ASD, 2007) sug-
gests that people can learn to work with restricted
English and that good authoring tools can drasti-
cally reduce the learning curve of the language.

The language processors of ACE and PENG
Light are both based on grammars that are writ-
ten in a definite clause grammar (DCG) nota-
tion (Pereira and Shieber, 1987). These DCGs
are enhanced with feature structures and specif-
ically designed to translate declarative and inter-
rogative sentences into a first-order logic notation

via discourse representation structures (Kamp and
Reyle, 1993). In contrast to ACE that uses the
DCG directly and resolves anaphoric references
only after a discourse representation structure has
been constructed, PENG Light transforms the
DCG into a format that can be processed by a
top-down chart parser and resolves anaphoric ref-
erences during the parsing process while a dis-
course representation structure is built up.

3 The FoxPENG Toolbar

In order to annotate web pages with informa-
tion that is at the same time human-readable and
machine-processable, we developed FoxPENG,
an AJAX-based Firefox extension (see Figure 1).
FoxPENG supports the writing of annotations
with the help of look-ahead information that in-
dicates what syntactic categories or word forms
can follow the current input. This look-ahead in-
formation is dynamically generated and updated
by the language processor while an annotation is
written. This application has some similarities to
Google Suggest1 and other autocomplete mecha-
nisms2 provided by source code editors, database
query tools, and command line interpreters.

In contrast to Google Suggest that guesses what
an author writes, the look-ahead information dis-
played in FoxPENG is a side-effect of the parsing
process of the controlled natural language. Fox-
PENG communicates asynchronously with the
language processor of PENG Light via a Prolog
HTTP server3 using JSON4 (JavaScript Object
Notation) as data-interchange format.

Once a connection to the Prolog server has
been established, FoxPENG makes a request for
the initial look-ahead categories to be displayed
along the lower section of the toolbar. The au-
thor can now start typing an annotation that be-
gins with a word form that falls under the corre-
sponding look-ahead categories. Once a simple
word form has been entered and the space bar has
been pressed, an HTTP request is sent to the lan-
guage processor containing the word form as well
as the position of the word in the sentence.

1http://www.google.com/support/websearch/bin/ans-
wer.py?answer=106230

2http://en.wikipedia.org/wiki/Autocomplete/
3http://www.swi-prolog.org/packages/http.html
4http://json.org/

Figure 1: FoxPENG – Firefox Extension

The chart parser of PENG Light processes this
information and either replies with a set of new
look-ahead categories and word forms to choose
from or with spelling suggestions in case of an er-
ror. The spelling suggestions are derived from the
entries in the linguistic lexicon of PENG Light.
If a content word is not misspelled and cannot be
found in the linguistic lexicon, then the author can
specify this word directly in the text area of Fox-
PENG using a microformat for linearised feature
structures (see Section 6). An annotation can con-
sist of more than one PENG Light sentence, and
the language processor can resolve anaphoric ref-
erences during the writing process using the stan-
dard accessibility constraints imposed by the dis-
course representation structures (see Section 4).
The resulting discourse representation structure
can be further translated into the input format of
an automated reasoning engine and then be used
for various reasoning tasks, among them for ques-
tion answering. We have used the theorem prover
and model builder E-KRHyper (Baumgartner et
al., 2007) as reasoning service for PENG Light.

The author can publish a FoxPENG annotation
as part of an RSS feed that contains a link to the
annotated web page. In principle, any RSS feed
aggregator can subscribe to such an RSS feed that
is written in controlled natural language. This has
the benefit that annotations are not only human-
readable but also machine-processable (with the
help of a PENG-compliant language processor).

4 PENG Light

PENG Light is a computer-processable controlled
natural language that can be used for knowledge
representation (Schwitter, 2008). At first glance,

PENG Light looks like a subset of natural lan-
guage, but PENG Light is actually a formal lan-
guage since the language is designed in such a
way that it can be translated unambiguously into
a formal target representation. The vocabulary
of PENG Light consists of predefined function
words (determiners, coordinators, subordinators,
prepositions and query words), a small number of
predefined phrases (e.g. there is, it is false that)
and content words (nouns, proper nouns, verbs,
adjectives and adverbs) that can be defined by the
author. A PENG text is a sequence of anaphori-
cally interrelated sentences that consist of simple
and complex sentences.

4.1 Sentences in PENG Light
PENG Light distinguishes between simple, com-
plex, and interrogative sentences. Simple sen-
tences consist of a subject and a verb (1-6), nec-
essary complements (2-5), and optional adjuncts
(5+6):

1. David Miller works.

2. David Miller teaches COMP249.

3. David Miller sends a letter to Mary.

4. David Miller is in the lecture hall.

5. David Miller teaches COMP249 on Monday.

6. David Miller works fast.

Complex sentences are built from simpler sen-
tences through quantification (7+8), negation (9-
11), subordination (12), and coordination (13):

7. Every professor teaches a unit.

8. David Miller teaches [exactly | at least | at most] two
units.

9. If is false that a professor teaches COMP225.

10. No professor teaches COMP225.

11. David Miller is not a professor.

[drs([A, B, C],

[theta(A, theme, C)#[1],

event(A, working)#[1],

theta(A, location, B)#[1],

named(B, macquarie university)#[1, [third, sg, neut],

[’Macquarie’,’University’]],

named(C, david miller)#[1, [third, sg, masc],[’David’,’Miller’]]])]

Figure 2: Annotated Discourse Representation Structure in PENG Light

12. David who teaches a unit supervises Mary.

13. David teaches COMP249 and supervises Mary.

A special form of complex sentences are con-
ditionals (14) and definitions (15):

14. If David Miller works on Monday then Sue
Rosenkrantz works on Tuesday.

15. A professor is defined as an academic who leads a re-
search group and who teaches at least two units.

PENG Light distinguishes two types of inter-
rogative sentences: yes/no-questions (16) and wh-
questions (17):

16. Does David Miller teach a tutorial on Monday?

17. When does David Miller who convenes COMP249
teach a tutorial?

Interrogative sentences are derived from simple
PENG Light sentences and serve the same pur-
pose as queries in a formal query language.

4.2 Anaphora Resolution

In PENG Light, proper nouns, definite noun
phrases and variables (that build an unambigu-
ous alternative to pronouns) can be used anaphor-
ically. The anaphora resolution algorithm of
PENG Light resolves an anaphorically used noun
phrase with the most recent accessible noun
phrase antecedent that matches fully or partially
with the anaphor and that agrees in person, num-
ber and gender with that anaphor. The anaphora
resolution algorithm of PENG Light is embedded
into the grammar and triggered whenever a noun
phrase has been processed.

If a definite noun phrase can not be resolved by
the anaphora resolution algorithm, it is interpreted
as an indefinite noun phrase and introduces a new
discourse referent into the universe of discourse.

4.3 Discourse Representation Structures
The language processor (DRS version) of the
PENG Light system translates texts incrementally
into TPTP notation (Sutcliffe and Suttner, 1998)
with the help of discourse representation struc-
tures (DRSs) (Kamp and Reyle, 1993). The DRSs
used in PENG Light rely on an event based nota-
tion (Davidson, 1967; Parsons, 1994) and a small
number of thematic roles similar to (Kipper et
al., 2008). Some of the conditions in the result-
ing DRS are annotated with syntactic informa-
tion in order to improve the processability of the
DRS by other system components (for example,
the anaphora resolution algorithm). These condi-
tions have the form Pred#Anno whereas Pred
is a predefined predicate and Anno is a list that
contains syntactic information. Figure 2 shows a
simple DRS for the sentence (18):

18. David Miller works at Macquarie University.

The grammar of PENG Light contains not only
feature structures for DRSs but also feature struc-
tures for syntactic and pragmatic information. In
PENG Light, the construction of a DRS always
runs in parallel with the construction of a syntax
tree and a paraphrase. The paraphrase clarifies
how the input has been interpreted by the gram-
mar and can be used to show the author all rele-
vant substitutions.

5 Chart Parsing in PENG Light

The grammar of PENG Light is specified in def-
inite clause grammar (DCG) notation. How-
ever, the direct execution of a DCG would create
many partial structures and destroy them while
backtracking. This is not particularly efficient
for generating look-ahead information (Kuhn and
Schwitter, 2008). In order to avoid unneces-
sary repetition of work and to generate look-

ahead information efficiently, the DCG is trans-
formed via term expansion (a well-known logic
programming technique) into a notation that can
be processed by the chart parser of PENG Light.
The chart parser is based on work by (Gazdar
and Mellish, 1989) but has been substantially ex-
tended to better support the incremental process-
ing of PENG Light sentences, in particular to al-
low for generating look-ahead information, for
processing compound words, and for resolving
anaphoric references during the parsing process.

5.1 Basics of Chart Parsing

In general, a chart parser stores well-formed con-
stituents and partial constituents in a chart (= ta-
ble) that consists of a series of numbered vertices
that are linked by edges (Kay, 1980). The ver-
tices mark positions in the input and edges tell us
what constituents have been recognised where for
a given set of grammar rules. The chart parser of
PENG Light represents edges as predicates with
six arguments:

edge(SN,V1,V2,LHS,RHSFound,RHSToFind)

The first argument SN stores the sentence num-
ber, the subsequent two arguments state the exis-
tence of an edge between vertex V1 and vertex V2,
and the next three arguments represent informa-
tion about the grammar rule. LHS is a category on
the left-hand side of a grammar rule, RHSFound
is a list of confirmed categories that have been
found on the right-hand side of the grammar rule,
and RHSToFind is a list of categories on the right-
hand side that still need to be confirmed.

Inactive edges represent well-formed con-
stituents where the right-hand side RHSToFind

is empty, and active edges represent partial con-
stituents where the right-hand side is not empty.
The fundamental rule of chart parsing states what
should happen when an inactive edge and an ac-
tive edge meet. It specifies that whenever an in-
active edge can extend an active edge, then a new
edge (that is either active or inactive) is built and
added to the chart. Finally, the prediction rule of
chart parsing generates new active edges and is
dependent on the first category on the right-hand
side of a grammar rule and the previous state of
the fundamental rule.

5.2 Initialising the Chart

We initialise the chart top-down and guarantee
that a number of active edges are added to the
chart using a failure-driven loop (see (Kuhn and
Schwitter, 2008) for details). This initialisation
process creates, for example, the following (radi-
cally simplified) set of active edges that start and
end at vertex 0for the first sentence:

edge(1,0,0,d(_),[],[s(_),pm(_)]).
edge(1 0,0,s(_),[],[np(_),vp(_)]).
edge(1,0,0,np(_),[],[det(_),noun(_)]).
edge(1,0,0,np(_),[],[pn(_)]).
edge(1,0,0,det(_),[],[lexicon(_)]).
edge(1,0,0,pn(_),[],[lexicon(_)]).
...

Additionally, the initialisation process adds the
initial look-ahead information to the knowledge
base. This look-ahead information consists of all
those lexical categories (lexicon()) that occur
as the first element in the list of unconfirmed cat-
egories and is stored in the following way in the
knowledge base:

lookahead(FeatureStructures).

This makes it easy to extract the look-
ahead information since the argument
FeatureStructures consists of a list of
feature-value pairs that contain the required
syntactic and semantic information; additionally,
the language processor can use this information
to extract all word forms from the linguistic
lexicon for a specific category that obey the
current grammatical constraints.

5.3 Processing Simple Words

Once the chart has been initialised and a set of
look-ahead categories has been displayed, the au-
thor can enter the first word form that belongs
to one of these categories. Simple word forms
are stored in the following way in the lexicon of
PENG Light:

lexicon([
cat:pn,
wform:[’John’],
syn:[third, sg, masc],
sem:[[I, person], atomic],
con:named(I, john)]).

The chart parser uses the rule below together
with Rule 4 in Figure 4 to look up a simple word
(for example, John) in the lexicon:

(1) add edge(SN,V1,V2,LHS,Found,RHS) :-

edge(SN,V1,V2,LHS,Found,RHS), !.

(2) add edge(SN,V1,V2,LHS,Found,[]) :-

assert edge(SN,V1,V2,LHS,Found,[]),

apply fundamental rule(SN,V1,V2,LHS,[]).

(3) add edge(SN,V1,V2,LHS,Found,[RHS|RHSs]) :-

assert edge(SN,V1,V2,LHS,Found,[RHS|RHSs]),

apply fundamental rule(SN,V1,V2,LHS,[RHS|RHSs]),

predict active edges(SN,V2,RHS),

update lookahead cats(SN,V2,RHS).

Figure 3: Add Edges

start_chart(SN,V1,V2,Word) :-
foreach(word(T,SN,V1,V2,Word,LHS),

add_edge(SN,V1,V2,LHS,Word,[])).

In a first step, the chart parser generates inac-
tive edges for each occurrence of the word form in
the lexicon using Rule 2 in Figure 3, after check-
ing if such an edge does not already exist (Rule 1
in Figure 3). In the second step, the chart parser
applies the fundamental rule of chart parsing re-
cursively to inactive edges (Rule 2 in Figure 3)
and active edges (Rule 3 in Figure 3). In the next
step, the prediction rule of chart parsing is applied
that looks for each grammar rule that has the cate-
gory RHS previously used by the fundamental rule
on the left-hand side (LHS), and generates new
active edges for these categories. Once this has
been done, the look-ahead information is updated
(Rule 3 in Figure 3). For our example, this results
in the following update of the chart:

edge(1,0,1,s(_),[np(_)],[vp(_)]).
edge(1,0,1,np(_),[pn(_)],[]).
edge(1,0,1,pn(_),[’John’],[]).
edge(1,1,1,vp(_),[],[iv(_)])
edge(1,1,1,iv(_),[],[lexicon(_)])
...

Note that for each subsequent simple word
form that the author enters, new grammar rules
are triggered, new edges are added to the chart,
and a new set of look-ahead categories is gener-
ated, extracted and then – in our case – sent to
FoxPENG.

5.4 Processing Compound Words
As we have seen in the last section, the chart
parser of PENG Light handles the input in an

incremental fashion on a word by word basis.
This creates problems for compound words. Each
compound word is stored in the linguistic lexicon
as a single entry of the following form:
lexicon([

cat:noun,
wform:[laptop,computer,bag],
syn:[third,sg,neut],
sem:[[I,entity],atomic],
con:object(I,laptop_computer_bag)]).

This requires a special treatment of compound
words by the chart parser since there are no gram-
mar rules that describe the structure of these com-
pound words, and a compound word can com-
pete with other compound words or a simple word
during processing. The chart parser of PENG
Light uses three different rules (Rules 1-3 in Fig-
ure 4) to process compound words. The basic
idea behind these rules is to retrieve each com-
pound word only once from the linguistic lexi-
con as soon as the first element of a compound
word becomes available and then maintain a store
(compound word/6) that is used to process all
subsequent elements of the compound word (sim-
ilar to edges). This will finally result in a single
edge for the compound word in the chart.

Let us assume that the author is in the process
of writing the compound noun laptop computer
bag. After the first word (laptop) becomes avail-
able, the chart parser looks this word up in the
linguistic lexicon using Rule 3 (and 4) in Fig-
ure 4, finds that this word is the first element
of a compound word, and then checks if an ac-
tive edge exists that corresponds to the category
(LHS) on left-hand side of the grammar rule that

(1) word(compound,SN,V1,V2,[Word],LHS) :-

compound word(SN,V0,V1,LHS,Found,[Word]),

add edge(SN,V0,V2,LHS,[Word|Found],[]).

(2) word(compound,SN,V1,[Word],LHS) :-

compound word(SN,V0,V1,LHS,Found,[Word,LAH|LAHs]),

edge(SN,V0,V0,LHS,[],[RHS|RHSs]),

update compound word(SN,V0,V2,LHS,[Word|Found],[LAH|LAHs]),

update lookahead cats(SN,V2,[LAH|LAHs]).

(3) word(compound,SN,V1,[Word],LHS) :-

call(LHS ==> [lexicon([cat:Cat,wform:[Word,LAH|LAHs]|Rest],)]),

edge(SN,V1,V1,LHS,[],[RHS|RHSs]),

call(lexicon([cat:Cat,wform:[Word,LAH|LAHs]|Rest],)),

update compound word(SN,V1,V2,LHS,[Word],[LAH|LAHs]),

update lookahead cats(SN,V2,[LAH|LAHs]).

(4) word(simple,SN,V1,V2,[Word],LHS) :-

\+ compound word(SN,V0,V1, ,Found,[Word]),

call(LHS ==> [lexicon([cat:Cat,wform:[Word]|Rest],)]),

call(lexicon([cat:Cat,wform:[Word]|Rest],)).

Figure 4: Processing Simple and Compound Words

has been used for the lexicon lookup. In the next
step, the chart parser updates the compound noun
using the predicate update compound word/6.
This predicate stores the sentence number (SN),
the starting position (V1) and end position (V2) of
the first element of the compound word, the cate-
gory (LHS) on the left-hand side of the grammar
rule, the found word ([Word]), and the remain-
ing elements ([LAH|LAHs]) of the compound
word. These remaining elements serve as new
look-ahead information. If the author enters the
next word (computer), the chart parser looks up
this word in the store of compound words using
Rule 2 in Figure 4, removes this word, checks if
an active edge exists for this word, and then up-
dates the store for compound words and the look-
ahead categories. Finally, if the author enters the
last element (bag) of the compound word, then
the chart parser uses Rule 1 in Figure 4 and checks
if the word is the last element of a compound
noun, and adds a new edge to the chart that spans
the entire compound word using Rule 2 in Figure
3, followed by a call to the fundamental rule. Note
that this is a generic solution that can be used to
process all categories of compound words.

6 Unknown Content Words

In principle, most function words can be dis-
played directly in the interface since there number
is relatively small in controlled natural languages,
but content words need to be structured in menus.
These menus can be updated dynamically while a
text is written. If the number of content words is
large, then a copy of the linguistic lexicon can be
loaded and maintained on the client side, and the
task of the language processor is then reduced to
inform the client about which categories of con-
tent words can follow the current input. In our
case, PENG Light communicates with the client
via a JSON object that has the following (simpli-
fied) form:
{"lookahead": [

["adj",["colour",
"shape"]],

["noun",["masculine",
"feminine",
"masculine-feminine",
"neuter-time",
"neuter-entity"]]],

"paraphrase": ["A"] }

This object tells the client that either an adjec-
tive or a noun can follow the current input (in
our case an indefinite determiner) and specifies

syntactic and semantic constraints for these cat-
egories. This information becomes also useful –
as we will see below – if a content word is not
available in the linguistic lexicon.

In real world applications, there are always
cases where a required content word is missing
from the linguistic lexicon. PENG Light allows
the author to define a content word during the
writing process. If the author enters a content
word into the input field of the editor that is not
yet defined in the lexicon, then the spelling cor-
rector of PENG Light is used and provides alter-
native spellings that correspond to available lexi-
cal entries. PENG Light uses the Daumerau rules
for this purpose that cover about 80% of human
spelling errors (Damerau, 1964). These rules deal
with the insertion, deletion, and substitution of
single characters, and the transposition of two
characters.

If a content word is not misspelled and not in
the lexicon, then the author has to add the word
form to the linguistic lexicon. The grammar al-
ready constrains the set of syntactic and semantic
features that the author has to specify for a new
content word. Let us assume that the word laptop
is not yet in the lexicon. In this case the author
has to specify only that this word is neuter and
belongs to the sortal category entity but not that it
is singular since this information can be derived
from the current position of the word in the sen-
tence and the information in the grammar. PENG
Light accepts in-line specifications of linearised
feature structures in a “microformat” notation, for
example:
Input: A +n-n-e:laptop+

Note that this feature structure is an abbrevi-
ated notation that contains syntactic and seman-
tic information derived from the feature structure
provided by the JSON object. The plus symbol
(+) functions as a control character that switches
from the text entry mode to the vocabulary entry
mode. The subsequent character sequence (n-n-e)
represents the required feature structure, followed
by a colon (:), the actual word form (laptop), and
a plus symbol (+) that quits the vocabulary entry
mode. The plus sign at the end of the word is nec-
essary in order to deal with compound words, for
example:
Input: A +n-n-e:laptop computer bag+

Using this approach, the author needs to spec-
ify only a minimal set of features and does not
need to leave the text area in order to add a new
content word to the user lexicon. For each cate-
gory of content words, PENG Light maintains a
list of unapproved words. A new content word is
always checked against this list, before it is added
to the user lexicon. Once a new word form has
been successfully added to the linguistic lexicon,
it is immediately parsed by the language proces-
sor and new look-ahead information is generated.
Note that the author can only add new content
words (adjectives, nouns, verbs and adverbs) us-
ing this microformat but not function words.

Similar to adding new content words, existing
content words can be removed from the user lex-
icon. Alternatively, the microformat for feature
structures is available from a menu of options.

7 Conclusions

In this paper, we presented an update on the
controlled natural processor of PENG Light and
showed how the language processor communi-
cates with FoxPENG, an AJAX-based Firefox ex-
tension, using JSON as data-interchange format.
For each approved word form that the author en-
ters into the text area of this tool, the chart parser
of PENG Light generates a set of look-ahead cat-
egories that determine what categories of word
forms can follow the current input. This way only
syntactically correct input is accepted by the lan-
guage processor that can be translated unambigu-
ously into a formal target notation. We focused
in particular on an extension of the chart parser
of PENG Light and showed in detail how com-
pound words for which no grammar rules exist
can be parsed incrementally during the writing
process. We solved the unknown word problem
with the help of a microformat for linearised fea-
ture structures that allows an author to specify un-
known content words during the parsing process
using minimal linguistic information. The con-
trolled natural language PENG Light can be used
as a high-level specification language for different
kinds of knowledge systems and can help to solve
the knowledge acquisition problem. Depending
on the expressivity of the controlled language, the
input can currently be translated into first-order
logic or into a variant of description logic.

References
ASD 2007. ASD Simplified Technical English. Spec-

ification ASD-STE100, International specification
for the preparation of maintenance documentation
in a controlled language, Issue 4, January.

K. Barker, B. Agashe, S.-Y. Chaw, J. Fan, N. Fried-
land, M. Glass, J. Hobbs, E. Hovy, D. Israel, D.S.
Kim, R. Mulkar-Mehta, S. Patwardhan, B. Porter,
D. Tecuci, and P. Yeh. 2007. Learning by Read-
ing: A Prototype System, Performance Baseline
and Lessons Learned. In: Proceedings of the
22nd AAAI Conference on Artificial Intelligence,
pp. 280–286.

P. Baumgartner, U. Furbach, and B. Pelzer. 2007.
Hyper Tableaux with Equality. In: Proceedings of
CADE-21, LNAI 4603, pp. 492–507.

P. Clark, P. Harrison, T. Jenkins, T. Thompson, and R.
Wojcik. 2005. Acquiring and Using World Knowl-
edge Using a Restricted Subset of English. In: Pro-
ceedings of FLAIRS’05, pp. 506–511.

P. Clark, P. Harrison, J. Thompson, R. Wojcik, T. Jenk-
ins, and D. Israel. 2007. Reading to Learn: An In-
vestigation into Language Understanding. In: Pro-
ceedings of AAAI 2007 Spring Symposium on Ma-
chine Reading, pp. 29–35.

F.J. Damerau. 1964. A technique for computer detec-
tion and correction of spelling errors. In: Commu-
nications of the ACM, 7(3), pp. 171–176.

D. Davidson. 1967. The logical form of action sen-
tences. In: Rescher, N. (ed.): The Logic of Deci-
sion and Action. University of Pittsburgh Press, pp.
81–95.

N.E. Fuchs, U. Schwertel, and R. Schwitter. 1998.
Attempto Controlled English – Not Just Another
Logic Specification Language. In: Proceedings of
LOPSTR’98, pp. 1–20.

N.E. Fuchs, K. Kaljurand, and T. Kuhn. 2008. At-
tempto Controlled English for Knowledge Repre-
sentation. In: Reasoning Web, Fourth International
Summer School 2008, LNCS 5224, pp. 104–124.

G. Gazdar, C. Mellish. 1989. Natural Language Pro-
cessing in Prolog. An Introduction to Computa-
tional Linguistics, Addison-Wesley.

H. Kamp, U. Reyle. 1993. From Discourse to Logic.
Introduction to Modeltheoretic Semantics of Natu-
ral Language, Formal Logic and Discourse Repre-
sentation Theory, Kluwer.

M. Kay. 1980. Algorithm Schemata and Data Struc-
tures in Syntactic Processing. In: CSL-80-12, Xe-
rox Parc, Palo Alto, California.

K. Kipper, A. Korhonen, N. Ryant, and M. Palmer.
2008. A large-scale classification of english verbs.
In: Language Resources and Evaluation 42(1), pp.
21–40.

T. Kuhn. 2008. AceWiki: A Natural and Expres-
sive Semantic Wiki. In: Proceedings of Semantic
Web User Interaction at CHI 2008: Exploring HCI
Challenges.

T. Kuhn, R. Schwitter. 2008. Writing Support for
Controlled Natural Languages. In: Proceedings of
ALTA 2008, Tasmania, Australia, pp. 46–54.

T. Parsons. 1994. Events in the Semantics of English.
A Study in Subatomic Semantics. MIT Press.

F.C.N. Pereira, S.M. Shieber. 1987. Prolog and
Natural-Language Analysis. CSLI, Lecture Notes,
Number 10.

R. Schwitter. 2002. English as a Formal Specifica-
tion Language. In: Proceedings of DEXA 2002,
September 2-6, Aix-en-Provence, France, pp. 228–
232.

R. Schwitter, A. Ljungberg, and D. Hood. 2003.
ECOLE – A Look-ahead Editor for a Controlled
Language, In: Proceedings of EAMT-CLAW03,
May 15-17, Dublin City University, Ireland, pp.
141–150.

R. Schwitter. 2008. Working for Two: a Bidirectional
Grammar for a Controlled Natural Language. In:
LNAI 5360, pp. 168–179.

J.F. Sowa. 2004. Common Logic Controlled En-
glish. Technical Report, 24 February 2004. http:
//www.jfsowa.com/clce/specs.htm

G. Sutcliffe, C.B. Suttner. 1998. The TPTP Problem
Library: CNF Release v1.2.1. In: Journal of Auto-
mated Reasoning, 21(2), pp. 177–203.

H.R. Tennant, K.M. Ross, R.M. Saenz, C.W. Thomp-
son, and J.R. Miller. 1983. Menu-Based Natural
Language Understanding. In: Proceedings of the
21st Meeting of the Association for Computational
Linguistics (ACL), MIT Press, pp. 51–58.

C. Thompson, P. Pazandak, and H. Tennant. 2005.
Talk to Your Semantic Web. In: IEEE Internet
Computing, 9(6), pp. 75–78.

