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Abstract

Parsers are often the bottleneck for data ac-
quisition, processing text too slowly to be
widely applied. One way to improve the
efficiency of parsers is to construct more
confident statistical models. More training
data would enable the use of more sophis-
ticated features and also provide more ev-
idence for current features, but gold stan-
dard annotated data is limited and expen-
sive to produce.

We demonstrate faster methods for training
a supertagger using hundreds of millions of
automatically annotated words, construct-
ing statistical models that further constrain
the number of derivations the parser must
consider. By introducing new features and
using an automatically annotated corpus
we are able to double parsing speed on
Wikipedia and the Wall Street Journal, and
gain accuracy slightly when parsing Sec-
tion 00 of the Wall Street Journal.

1 Introduction

Many systems in NLP for tasks such as Question–
Answering rely on large volumes of data. Parsers
are a useful means of extracting extra informa-
tion about text, providing the syntactic structure
of sentences. However, when they are the bot-
tleneck in the data acquisition phase of a system
simple solutions are to use less data, or not use
a parser at all. If we can improve the speed of
parsers this will be unnecessary.

For lexicalised grammars such as Combinatory
Categorial Grammar (CCG) (Steedman, 2000) the
step in which words are labelled with lexical cat-
egories has great influence on parsing speed and
accuracy. In these formalisms, the labels chosen
constrain the set of possible derivations so much
that the process of choosing them, supertagging,

is described as ‘almost parsing’ (Joshi and Ban-
galore, 1994). If the supertagger is more accurate
it can further constrain the set of possible deriva-
tions by supplying fewer categories, leaving the
parser with less to do.

One means of improving the supertagger’s sta-
tistical model of language is to provide more evi-
dence, in this case, more annotated text. However,
creating a significant amount of extra gold stan-
dard annotated text is not feasible. An alternative
approach is ‘semi-supervised training’, in which
a small set of annotated data and a much larger
set of unannotated data is used. Training a sys-
tem directly on its own output, ‘self-training’, is
not normally effective (Clark et al., 2003), but re-
cently McClosky et al. (2006) demonstrated that
parser output can be made useful for retraining by
the application of a reranker.

To enable the use of more training data we have
parallelised the C&C parser’s supertagger train-
ing process and implemented perceptron–based
algorithms for parameter estimation. In the pro-
cess of this work we also modified the C&C
parser’s use of a particular CCG rule, based on
observations of its behaviour. Our unlabeled
training data was part of the English section of
Wikipedia, consisting of 47 million sentences.
We used the C&C parser to label the data with
supertags, producing training data that could then
be used to retrain its supertagger. The reasoning
behind the use of this data is that the supertag-
ger will provide categories that the parser is most
likely to use in a spanning analysis.

Models trained on WSJ and Wikipedia data
parsed sentences up to twice as fast, without de-
creasing accuracy. And the perceptron–based al-
gorithms enabled the use of much larger data sets,
without loss in parsing speed or accuracy.



2 Background

Parsing is the process of analysing a set of tokens
and extracting syntactic structure. In the con-
text of natural language we are faced with sev-
eral challenges, including ambiguous sentences
that are context sensitive and a grammar that is
unknown and constantly changing.

Two main classes of grammars have been used
to try to understand and model natural language,
phrasal and lexicalised grammars. Phrasal gram-
mars generally define a small set of labels that
capture the syntactic behaviour of a word in a sen-
tence, such as noun and adverb, and then use a
large set of rules to construct a phrase structure
tree in which the leaves are the words and the in-
ternal nodes are applications of rules. Lexicalised
grammars provide a much larger set of categories
for lexical items and only a few rules. The cat-
egories provide a more detailed description of a
word’s purpose in a sentence, while the rules are
simple descriptions of how pairs of categories can
combine to form the parse tree.

We use the lexicalised grammar formalism
Combinatory Categorial Grammar (CCG) (Steed-
man, 2000). In CCG, there are two types of
categories, atomic, which are one of S, N, NP
and PP, and complex, which contain two parts,
an argument and a result, denoted by either ‘Re-
sult / Argument’ or ‘Result \ Argument’, where
the slashes indicate whether the Argument is ex-
pected to lie to the right or left respectively, and
the result and argument are categories themselves.
To form a derivation for English sentences these
categories are combined according to seven rules,
forward and backward application, forward and
backward composition, backward crossed com-
position, type raising and coordination.

Figure 1 presents two example CCG deriva-
tions. In both examples, the line directly beneath
the words contains the category that was assigned
to each word, NP for ‘I’, (S\NP)/NP for ‘ate’ and
so on. The lines that follow show a series of rule
applications, building up the parse tree.

The lines with a > sign at the end indicate for-
ward application, which occurs when a complex
category is of the form ‘Result / Argument’ and its
argument is the same as the category to its right.
The lines with a < sign at the end are instances of

backward application, which works in the same
way, but in the opposite direction.

Note in particular the change of tag for ‘with’ in
the two examples and its affect on the subsequent
rule applications. The decision made by the su-
pertagger effectively decides which analysis will
be found, or if both are provided the parser must
consider more possible derivations.

I ate pizza with cutlery

NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP
> >

S\NP (S\NP)\(S\NP)
<

S\NP
<

S
I ate pizza with anchovies

NP (S\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

S\NP
<

S

Figure 1: Two CCG derivations with PP ambiguity.

The CCG parser and associated supertagger we
have used is the C&C parser (Clark and Curran,
2003; Clark and Curran, 2007b). The supertag-
ger applies categories to words using the for-
ward backward algorithm, and the parser forms
a derivation by applying the Cocke–Younger–
Kasami (CKY) chart parsing algorithm (Younger,
1967; Kasami, 1967) and dynamic programming.

2.1 Supertagging

Supertags were first proposed by Joshi and Ban-
galore (1994) for Lexicalized Tree-Adjoining
Grammar (LTAG). Like POS tags, supertags are
assigned to each word in the sentence prior to
parsing, but supertags contain much more de-
tailed syntactic information. This leads to tag
sets that are up to two orders of magnitude larger.
The first supertaggers gave each word a single tag
based only on the POS tags in the local context
and had an accuracy below 90% (Chandrasekar
and Bangalore, 1997b). While this is not accurate
enough for incorporation into a wide–coverage
parser, it was enough to be useful in an infor-
mation retrieval system (Chandrasekar and Ban-
galore, 1997a), attaining an F-score of 92% for
filtering out irrelevant documents. Accuracy was
improved by the use of multitaggers (Chen et al.,
1999), but as more tags are supplied the parsing
efficiency decreases (Chen et al., 2002), demon-



strating that lexical ambiguity is an important fac-
tor in parsing complexity (Sarkar et al., 2000).

Supertagging was first applied to CCG by Clark
(2002). Rather than defining a fixed number of
tags to be produced per word, the CCG supertag-
ger includes all tags with probabilities within
some factor, β, of the most probable tag. Also,
during parsing the β value starts high, and if
a derivation is not found it is progressively de-
creased. This provides similar speed benefits to a
single tagger, but without a loss in coverage. Pre-
vious attempts to expand the feature set used by
the CCG supertagger were unsuccessful because
of data sparseness issues (Cooper, 2007).

Perhaps the closest previous work was by
(Sarkar, 2007), who incorporated a supertagger
with a full LTAG parser, and demonstrated im-
proved efficiency through the use of training data
annotated by the parser. This led to higher perfor-
mance than entirely supervised training methods.

2.2 Semi-supervised training

One of the first demonstrations of semi-
supervised training in NLP was the use of a
‘co-training’ method by Yarowsky (1995), who
achieved 96% accuracy on a word sense disam-
biguation task. A similar method was subse-
quently applied to statistical parsing by Sarkar
(2001), leading to a 9% increase in F-score for
an LTAG parser.

Co-training relies upon two independent views
of the data to construct models that can inform
each other. Another method of semi-supervised
training is to apply a re-ranker to the output of a
system to generate new training data. By applying
a re-ranker to the output of a parser McClosky et
al. (2006) were able to improve on the best result
for Wall Street Journal parsing by 0.8%, but with
no significant change in efficiency.

2.3 Perceptron Algorithms

The perceptron is an online classification method
that was proposed by Rosenblatt (1958). How-
ever, the algorithm only converges for linearly
separable datasets. Recently Freund and Schapire
(1999) developed the Averaged Perceptron (AP),
which stores all weight vectors during training
and combines them in a weighted majority vote
to create the final weight vector. This variation

led to performance competitive with modern tech-
niques, such as Support Vector Machines, on a
handwritten digit classification task.

Another recent variation is the Margin In-
fused Relaxed Algorithm (MIRA) (Crammer and
Singer, 2003), which adjusts the weight vector
only enough to cause the current instance to be
correctly classified with a specified margin. This
method generally has a lower relative error than
the standard perceptron but makes more updates.

Collins (2002) showed that applying these
methods to tasks in NLP produced better perfor-
mance than maximum entropy models. Specifi-
cally, using a voted perceptron and trigram fea-
tures for training, a Viterbi based system achieved
an F-score of 93.53% for NP Chunking and an er-
ror rate of 2.93% for POS tagging, compared to
92.65% and 3.28% respectively for a similar sys-
tem trained with a maximum entropy model.

Collins and Roark (2004) applied these meth-
ods to parsing, using an incremental beam search
parser. The parser performed similarly to another
based on a generative model, with an F-score of
87.8% for data with gold standard POS tags, and
86.6% for tags generated by a tagger. Similar
methods were recently applied to the C&C parser
(Clark and Curran, 2007a), leading to similar per-
formance to a log-linear model, but with much
lower system requirements. Zhang et al. (2009)
used the averaged perceptron algorithm to train
an HPSG supertagger, with similar improvements
to training time as described here.

3 Implementation

The parser uses the CKY algorithm to construct
the ‘chart’, an efficient representation of all pos-
sible analyses for a sentence. The most proba-
ble derivation is found using the Viterbi algorithm
and probabilities are calculated based on a condi-
tional log-linear model.

The supertagger uses a maximum entropy
based model to assign a set of possible lexical cat-
egories to each word in the sentence. The main
aspect of the tagging process relevant to this work
is the role of beta levels.

If the supertagger assigns only one category to
each word its accuracy is too low to be effec-
tively incorporated into a parser. By multitagging
we can make the supertagger more accurate, but



at the cost of speed as the parser must consider
larger sets of possible categories. The beta levels
define cutoffs for multitagging based on the prob-
abilities from the maximum entropy model. If the
parser is unable to form a spanning analysis the
beta level is decreased and the supertagger is re-
run to retrieve larger sets of supertags.

These levels have a large influence on parsing
accuracy and speed. Accuracy varies because the
set of possible derivations increases as more tags
are supplied, leading the parser to choose differ-
ent derivations at different levels. Speed varies
as the time spent attempting to form a parse in-
creases as more tags are supplied. Also, for sen-
tences that are not parsed at the first level each
attempt at another level requires more time.

The initial feature set used for tagging included
unigrams of POS tags and words and bigrams of
POS tags, all in a five word window surrounding
the word being tagged. The weights for these fea-
tures were estimated on a single CPU using either
Generalised Iterative Scaling (GIS) (Darroch and
Ratcliff, 1972) or the Broyden-Fletcher-Goldfarb-
Shanno method (BFGS) (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970). Here we
consider two other algorithms, a parallelised form
of the process, and a range of extra features.

3.1 Averaged Perceptron

The standard multi-class perceptron maintains a
matrix of weights, containing a row for each at-
tribute and a column for each class. When all at-
tributes are binary valued the class is assigned by
ignoring all rows for attributes that do not occur
and determining which column has the greatest
sum. During training the class that corresponds
to the column with the greatest sum is compared
to the true class and if it is correct no change
is made. If the predicted class is incorrect the
weights are updated by subtracting 1.0 from all
weights for the predicted class and adding 1.0 to
all weights for the true class. The averaged per-
ceptron follows the same algorithm, but returns
the average of the weight matrix over the course
of training, rather than its final state.

3.2 Margin Infused Relaxed Algorithm

MIRA also follows the standard multi-class per-
ceptron algorithm, but applies a different update

method. The intention is to make the smallest
change to the weights such that the correct class is
produced by a given margin. We use a slight vari-
ation of the update function defined by Crammer
and Singer (2003), expressed as follows:

min
(

max,
margin+

∑
f

pw−tw

|features|(1+ 1
nabove

)

)
where margin is the absolute difference that will
be created between the true classification and
those that previously ranked above it, the sum is
over all features, pw and tw are the weights asso-
ciated with the feature f for the predicted and true
classes respectively, |features| is the number of
active features, and nabove is the number of cate-
gories that had higher sums than the correct cate-
gory. The constant max is introduced to prevent
a single event causing extremely large changes to
the model.

We have also applied shuffling between itera-
tions of the algorithm to prevents the model from
overfitting to the particular order of training in-
stances.

3.3 Parallelisation

To enable the use of more data and features
we increased the amount of accessible RAM and
processing power by parallelising the supertag-
ger training using the Message Passing Interface
(MPI) and the MapReduce library MRMPI1.

The first stages of supertagging are feature ex-
traction and aggregation. Extraction was paral-
lelised by dividing the data amongst a set of com-
puters and having each one extract the features
in its set. Aggregation is necessary to determine
overall frequencies for features, and to reorder the
features to maximise efficiency. For the aggrega-
tion process we used the MRMPI library.

For weight estimation using maximum en-
tropy methods the main calculations are sums of
weights across all training instances. The paral-
lel versions of GIS and BFGS differ in three main
ways. First, the data is divided between a set of
computers. Second, sums are calculated across
all computers to determine necessary changes to
weights. And third, after each update the changes
are distributed to all nodes.

1http://www.sandia.gov/ sjplimp/mapreduce.html



The perceptron methods adjust the weights
based on each training instance individually and
so the parallelisation above was not applicable.
The training instances are still distributed across
a cluster of computers, but only one computer is
working at a time, adjusting the weights based on
each of its instances and then passing the weights
to the next node. This saves time by removing the
cost of loading the training instances from disk
when there are too many to fit in RAM.

3.4 Blocking Excess Backward Composition

In the process of debugging the parser, we investi-
gated the number of times particular pairs of cate-
gories were combined. We were surprised to dis-
cover that a very large number of backward com-
positions were being performed in the chart, even
though backward composition rarely occurred in
the parser output (or in the gold standard itself).

Backward composition is normally used for
non-constituent coordination between pairs of
type-raised categories, but the parser was also us-
ing it for combining non-type-raised and type-
raised categories. This is an instance where the
Eisner (1996) normal form constraints have failed
to stop non-normal form derivations, because Eis-
ner’s constraints were not designed to work with
type-raising. We added a constraint that only al-
lows backward composition to occur if both chil-
dren are type-raised.

4 Methodology

4.1 Data

Evaluation has been performed using Section 00
of CCGBank, a translation of the Penn Treebank
to CCG (Hockenmaier, 2003). Sections 02-21
were used as training data and are simply re-
ferred to as WSJ in the following section. The raw
Wikipedia data was tokenised using Punkt (Kiss
and Strunk, 2006) and the NLTK tokeniser (Bird et
al., 2009), and parsed using the C&C parser and
models version 1.022. The WSJ sentences had an
average length of 23.5 words and a variance of
122.0 while the Wikipedia sentences had an aver-
age length of 21.7 words and a variance of 151.0.

2http://svn.ask.it.usyd.edu.au/trac/candc

4.2 Evaluation

For a given beta level the number of categories as-
signed to each word by the supertagger will vary
greatly between models. This presents a problem
because as described in Section 3 the number of
categories assigned has a large influence on pars-
ing speed and accuracy. To fairly compare the
models presented here we have tuned all five beta
levels on the test set to ensure all models assign
the same number of categories per word on av-
erage. When testing on Wikipedia text we have
used the same beta levels as for WSJ and included
the ambiguity this leads to in the tables of results.

F-scores are calculated based on comparisons
with gold standard labelled dependencies for Sec-
tion 00. Category accuracies (Cat.) are for
the first beta level only, and are the percentage
of words in the sentence that were assigned a
tagset that includes the correct category. Cate-
gory accuracy for Wikipedia was measured over
three hundred Wikipedia sentences that were
hand–annotated with supertags and grammatical
relations, containing 6696 word–category pairs
(Clark et al., 2009).

Statistical significance testing was used to de-
termine if changes in performance were meaning-
ful. The test applied reports whether two sets of
responses are drawn from the same distribution,
where scores of 0.05 and lower are considered
significant (Chinchor, 1992).

To measure parsing speed we used ten thou-
sand unseen WSJ sentences from 1988 and ten
thousand unseen Wikipedia sentences. The WSJ

set was chosen as it is similar to the CCGBank
WSJ evaluation set, but much larger and so the
per sentence speed should be more accurate. The
Wikipedia set is used as the two domains con-
tain different writing styles, meaning the use of
Wikipedia based self-training data should lead to
particular improvement in speed on that form of
text. The datasets only contain sentences of at
least six and at most two hundred and fifty tokens.

As the amount of training data scales up, so too
does the time it takes to train models. To demon-
strate the benefits of perceptron based techniques
we measured the amount of time models take to
train. These measurements were performed using
a 3GHz Intel Core 2 Duo CPU, and 4Gb of RAM.



Accuracy (%) Speed
WSJ WSJ Wiki

Parser Cat. F (sent / sec)
C&C 1.02 96.07 83.22 31.7 30.8
Modified 96.07 83.41 47.8 45.8

Table 1: The effect of introducing extra constraints on
the use of backward composition on speed and accu-
racy. The supertagging model was constructed using
BFGS and sections 02–21 of the WSJ.

5 Results

In this section we present four sets of experi-
ments. First, the change in backward composition
handling is evaluated, comparing the speed and
accuracy of the standard model before and after
the change. Second we consider the benefits of
larger data sets, training models using the same
algorithm but a range of training sets. Next we
compare the new estimation algorithms described
above with GIS and BFGS. Finally we explore the
impact of introducing extra features.

5.1 Modified Backward Composition

The influence of the change to backward compo-
sition handling is shown in Table 1. A clear speed
increase of more than 45% is achieved, and a sta-
tistically significant increase in F-score occurred.

5.2 Training Data Type and Volume

To investigate the effectiveness of semi-
supervised training we constructed a series
of models using the GIS algorithm and a selection
of datasets. In Table 5.2 we can see that the
use of Wikipedia data labelled by the parser
causes a clear improvement in parsing speed on
Wikipedia. We also observe that when the WSJ

accounts for less than 10% of the training set,
parsing speed on the WSJ decreases.

It is interesting to compare the baseline model
and the models trained on Wikipedia. The model
trained on forty thousand Wikipedia sentences
only, approximately the same amount of text as
in section 02-21 of the WSJ, has much lower
supertagging accuracy, but much higher parsing
speed. This makes sense as the text the model is
trained on is not the true derivation, but rather the
derivation that the parser chose. This means that
the supertagging model is trained to produce the
set of tags that the parser is most likely to com-

Accuracy (%) Amb. Speed
WSJ Wiki Wiki WSJ Wiki

Data Cat. F Cat. (sent / sec)
WSJ

0k 96.32 83.82 95.34 1.32 51.7 46.8
Wiki

40k 93.90 79.83 94.79 1.26 48.1 61.3
400k 95.07 81.75 95.71 1.27 46.9 61.3

2000k 95.54 82.57 95.80 1.28 45.0 57.3
WSJ + Wiki

40k 96.31 83.90 95.37 1.29 54.3 58.9
400k 96.22 83.69 95.68 1.28 50.6 59.7

2000k 96.27 83.70 95.73 1.28 47.9 59.7

Table 2: The effect of self-training on supertagging
accuracy and parsing F-score. Numbers in the ‘Data’
column indicate how much Wikipedia text was used.

bine into its final analysis. As a result, the set
assigned at the first beta level is less accurate, but
more likely to form a spanning analysis.

The decreases in F-score when training on only
Wikipedia are statistically significant, while the
changes when training on a combination of the
WSJ and Wikipedia are not. Interestingly, the
models trained on only Wikipedia are also slower
when parsing the WSJ than the baseline, and the
models trained on a mixture of data are progres-
sively slower as more Wikipedia data is used.

5.3 Algorithm Comparison

Using larger datasets for training can take a pro-
hibitive amount of time for the GIS and BFGS al-
gorithms. However, any time benefits provided
by other algorithms need to be balanced with their
influence on accuracy. Table 3 shows the results
of experiments investigating this trade-off.

It is clear from the training speed column
that the perceptron based algorithms, AP and
MIRA, train approximately two orders of magni-
tude faster than GIS and BFGS.

It is also interesting to note the change in
the average number of categories assigned for
Wikipedia sentences. As expected, the ambiguity
level is decreasing as more Wikipedia text is used,
but at the same time the tagging accuracy remains
fairly constant or improves slightly. This indi-
cates that the automatically labelled data is use-
ful in adapting the supertagger to the Wikipedia
domain.

Importantly, the changes in F-score between



Accuracy (%) Amb. Speed
Wiki WSJ Wiki Wiki Train WSJ Wiki
Data Cat. F Cat. (sec) (sent / sec)

WSJ
GIS 96.32 83.82 95.34 1.32 7,200 51.7 46.8

BFGS 96.29 83.73 95.33 1.31 6,300 52.1 48.5
AP 95.65 83.74 94.49 1.35 76 59.2 57.1

MIRA 96.19 83.69 95.19 1.33 96 50.6 47.9
WSJ + 40k Wiki

GIS 96.31 83.90 95.37 1.29 14,000 54.3 58.9
BFGS 96.14 83.86 95.24 1.29 13,000 52.1 60.7

AP 95.68 83.79 94.61 1.28 160 62.8 69.7
MIRA 96.18 83.77 95.28 1.30 200 54.0 58.6

WSJ + 400k Wiki
GIS 96.22 83.69 95.68 1.28 * 50.6 59.7
AP 95.77 83.56 95.16 1.27 950 57.8 69.4

MIRA 96.19 83.41 95.58 1.28 1,200 52.3 61.4
WSJ + 2,000k Wiki

GIS 96.27 83.70 95.73 1.28 * 47.9 59.7
MIRA 96.22 83.52 95.62 1.28 * 52.0 59.3

Table 3: Comparison of model estimation algorithms.
The models missing times were trained on a different
computer with more RAM and are provided for accu-
racy comparison.

models in each section are not statistically sig-
nificant. This indicates that the perceptron based
algorithms are just as effective as GIS and BFGS.

5.4 Feature Extension

The final set of experiments involved the explo-
ration of extra features. Using the MIRA training
method we were able to quickly construct a large
set of models, as shown in Table 4.

The standard features used by the supertagger
are unigrams of words and unigrams and bigrams
of POS tags in a five word window. We considered
expansions of this set to include bigrams of words
and trigrams of POS tags, and all of the features
extended to consider a seven word window, which
are indicated by the word ‘far’.

The results in the first section of the table, train-
ing on the WSJ only, are unsurprising. With such a
small amount of data these features are too rare to
have a significant impact, and it is likely that they
lead the model to over-fit. The best result in this
section does not produce a statistically significant
improvement over the baseline. However, in the
second and third sections of the table the differ-
ences between the best models and the baseline
are statistically significant. Also, the model with

Accuracy (%) Speed
WSJ Wiki WSJ Wiki

Features Cat. F Cat. (sent / sec)
WSJ

All 96.25 83.69 95.12 45.1 42.8
- far tags 96.13 83.68 95.15 46.4 42.9

- bitags 96.15 83.84 95.24 45.2 42.1
- far bitags 96.22 83.83 95.24 45.3 43.2

- tritags 96.23 83.79 95.34 45.2 42.6
- far tritags 96.22 83.86 95.31 45.5 43.2
- far words 96.28 83.83 95.27 46.2 43.1

- biwords 96.22 83.81 95.19 45.9 45.4
- far biwords 96.26 83.89 95.19 45.5 43.7

- triwords 96.31 83.80 95.16 48.0 46.0
- far triwords 96.25 83.91 95.24 46.2 43.6

Baseline 96.19 83.69 95.19 50.6 47.9
WSJ + 40k Wiki

All 96.29 84.00 95.45 48.7 55.9
- far tags 96.20 83.96 95.45 48.1 53.6

- bitags 96.15 83.84 95.24 45.2 42.3
- far bitags 96.28 84.17 95.33 48.3 55.8

- tritags 96.25 83.88 95.47 48.2 54.5
- far tritags 96.34 83.85 95.49 49.7 54.9
- far words 96.32 84.04 95.47 48.1 55.7

- biwords 96.31 84.04 95.31 50.5 57.4
- far biwords 96.35 84.10 95.42 49.2 55.0

- triwords 96.39 84.17 95.42 50.0 57.8
- far triwords 96.32 84.00 95.47 49.6 55.5

Baseline 96.18 83.77 95.28 54.0 58.6
WSJ + 400k Wiki

All 96.42 83.80 95.82 48.2 57.4
- far tags 96.38 83.72 95.79 48.3 57.3

- bitags 96.34 83.79 95.85 42.0 56.9
- far bitags 96.34 83.85 95.79 49.4 57.8

- tritags 96.38 83.81 95.91 49.2 57.9
- far tritags 96.39 83.94 95.91 50.2 56.8
- far words 96.46 83.73 95.91 48.8 57.4

- biwords 96.35 83.74 95.74 50.0 58.3
- far biwords 96.40 83.97 95.82 49.7 57.8

- triwords 96.37 83.96 95.74 49.7 58.8
- far triwords 96.40 83.86 95.83 49.9 58.4

Baseline 96.19 83.41 95.58 52.3 61.4

Table 4: Subtractive analysis of various feature sets.
In each section the category accuracy values that are
lower than those for ‘All’ have been underlined as re-
moving these features decreases accuracy. The bold
values are the best in each column for each section.
The baseline model uses the default feature set for the
C&C parser.



the best result in the table produces a statistically
significant improvement in recall over the models
in Table 3 constructed using the same data.

6 Future Work

A wide range of directions exist for extension of
this work. The most direct extensions would be
to perform experiments using more of Wikipedia,
particularly for the feature exploration.

As well as the simple extensions of current fea-
tures that are described here, extra data may en-
able the use of more complex features. For ex-
ample, a feature to encode the presence of one
attribute and the absence of another.

Now that we have a range of different algo-
rithms for model estimation it may be possible
to perform co-training style experiments. Even a
simpler method, such as using the set of weights
found by one algorithm as the initial weights for
another, may lead to improved results. Addition-
ally, the current system takes the weights pro-
duced by the perceptron algorithms, normalises
them and treats them as a probability distribu-
tion in the same way as the weights from GIS and
BFGS are treated. It would be interesting to ex-
plore the possibility of multi-tagging with a per-
ceptron instead. The perceptron based algorithms
can also be adjusted at run time, making it feasi-
ble to learn continuously.

Here we have presented results for training
on automatically labelled Wikipedia text, but we
could perform the same experiments on effec-
tively any corpus. It would be interesting to ex-
plore the ability of the system to adapt to new do-
mains through semi-supervised training.

7 Conclusion

This work has shown that semi-supervised su-
pertagger training can boost parsing speed con-
siderably and demonstrated that perceptron based
algorithms can effectively estimate supertagger
model parameters. To achieve this we adjusted
the C&C parser’s handling of backward composi-
tion, parallelised the supertagger training process,
and implemented the MIRA and AP algorithms for
feature weight estimation.

The change in backward composition han-
dling provided a 50% speed boost and a further

30% was gained for parsing Wikipedia by using
parsed Wikipedia as extra training data. As more
Wikipedia data was used speed on the WSJ fell
below the baseline, indicating that domain adap-
tation was occurring.

Models trained using perceptron based algo-
rithms performed just as well, but were trained
two orders of magnitude faster. Extending the
feature set led to small but statistically significant
improvements, including two models that achieve
an F-score of 84.17% for labelled dependencies
on Section 00 of the WSJ.

Initially the system produced an F-score of
83.22% on Section 00 of the WSJ, could parse the
WSJ and Wikipedia at 31.7 and 30.8 sentences per
second respectively, and took two hours to train
the supertagging model, using only forty thou-
sand sentences for training. Our changes enabled
the construction of a model in under four min-
utes that achieves an F-score of 83.79 on WSJ,
and speeds of 62.8 and 69.7 sentences per second
for WSJ and Wikipedia respectively, ie. 2.0 times
faster for WSJ, and 2.3 times faster for Wikipedia.
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