
Fit it in but say it well! 

Cécile Paris, Nathalie Colineau, 
Andrew Lampert  

CSIRO – ICT Centre 
Locked Bag 17 

North Ryde, NSW 1670, Australia 
FirstName.LastName@csiro.au 

Joan Giralt Duran 
 

Barcelona School of Informatics 
Technical University of Catalonia 

Barcelona, Spain 
joangi@gmail.com 

 

Abstract 

Reasoning about how much content to 
generate when space is limited presents an 
increasingly important challenge for 
generation systems, as the diversity of 
potential delivery channels continues to 
grow. The problem is multi-facetted: the 
generated text must fit into the allocated 
space, the space available must be well 
utilised, and the resulting text must convey 
its intended message, and be coherent, well 
structured and balanced. To address this 
problem, we use a discourse planning 
approach. Our system reasons about the 
discourse structure to decide how much 
content to realise. In this paper, we present 
two algorithms that perform this reasoning 
and analyse their effectiveness.  

1 Introduction 

The ability to reason about how much content to 
realise in order to convey a message when the 
allocated space is fixed is an important 
consideration for Natural Language Generation 
(NLG) systems. It will become even more pressing 
as the amount of available information increases 
(e.g., via the web or content management systems) 
and the space constraints on the delivery media 
become more diverse (e.g., via web browsers, email, 
PDAs, cell phones). 

We, as humans, address this problem by shorten-
ing our sentences or by restricting the content we 
include. We can achieve the former by 
manipulating vocabulary and syntax. This, however, 
is of limited value in reclaiming significant 
amounts of space and requires careful attention to 
sentence-level grammar and vocabulary choice. We 
can achieve the latter by dropping those pieces of 
content whose contribution to the communicative 
goal is most limited. For instance, we might 
question the need for a long elaboration or an 

example to illustrate our point. This approach can 
reclaim significant amounts of space but requires an 
understanding of the text’s discourse structure.  

Many organisations today store information in 
content management systems or other types of 
organisational databases. This information is 
typically stored at the level of paragraphs, along 
with images and database entries (e.g., directories 
of contact information). Such information systems 
provide an interesting opportunity for NLG systems, 
by reducing the cost of acquiring the underlying 
semantic knowledge base and removing the need to 
construct text from first principles. However, they 
also present challenges: how can a system still 
perform the type of reasoning typically expected of 
NLG systems when it has no control over the text at 
the sentence level?  In particular, how can a system 
produce a coherent and well structured text that 
meets some specific space limitations?  In these 
cases, a system only has one method available to 
ensure it produces an appropriate amount of text: it 
must reason about the text at the discourse level.  

Many of our application domains are such that 
information is stored at the paragraph level in one 
or more data repositories. Our system answers 
people’s information needs by retrieving 
appropriate pre-authored text fragments from such 
repositories and delivering that content via a variety 
of media, each with their own space requirements. 
The specific application we discuss in this paper is 
SciFly, a system that generates brochures about the 
work carried out in our organisation. The output is 
delivered as a two-page flyer, as shown in Figure 11, 
and can also be displayed as a web output and as a 
plain text summary in the body of an email. As our 
underlying text fragments are pre-authored, we 
cannot manipulate the realisation of their sentences. 
We thus concentrate on reasoning about the 
discourse structure to generate text fitting specific 
space constraints. Importantly, the brochures we

                                                 
1 Though the text is too small to read, the figure gives an 
idea of the document and its layout. 



 

 

 

 

Figure 1: A brochure generated by our system 

generate need to look professional, as if manually 
written. Coherence and good structure is paramount. 

In the remainder of this paper, we discuss other 
work which has looked at controlling the amount of 
generated text. We then present our approach to 
generation when a text has to fit into some specific 
space and the system has no control over the text at 
the sentence level. We show how we can exploit the 
discourse structure to decide how much content to 
realise. We present two algorithms that perform this 
reasoning and analyse their comparative 
performance.  

2 Related work 

Generation systems have often exploited the dis-
course structure for a number of reasoning tasks. To 
achieve this, systems build a discourse tree during 
discourse planning.  The tree includes the commu-
nicative goals that were achieved and the rhetorical 
relations holding between text spans, frequently 
represented using Rhetorical Structure Theory 
(RST) (Mann and Thompson, 1988). The systems 
then reason about this discourse tree to allow them 
to participate in a dialogue (e.g., Moore and 
Swartout, 1989), generate appropriate cue phrases 
to link two spans of text (e.g., Scott and de Souza, 
1990) or reason about layout (e.g., Bateman et al., 
2001). See Taboada and Mann (2006) for other ap-
plications. 

Our system uses discourse trees to reason about 
how much content to express in order to fill some 
specific available space. Other systems have 
performed reasoning at the discourse structure level 
to control how much text is generated. Moore and 
Paris (1993), for example, allowed their discourse 
planner to be set in terse or verbose mode to 
produce short or long texts. Their approach thus 
constrained the length of the generated content at 
the onset of the process. However, this can be 
overly restrictive. In contexts such as ours, for 
example, in which similar content must be 
delivered via several media, it is desirable to pro-
duce one discourse tree that can then be delivered 
appropriately to the different delivery channels and 
conform to different space constraints. 

During discourse planning, our system specifies 
the RST relations that hold between the retrieved 
pre-authored text fragments and exploits the RST 
principle of nuclearity to shorten a text. In RST, a 
relation holds between the nucleus, usually consid-
ered the main information to be conveyed, and a 
satellite, which provides supporting information.2 
The intuition is that nuclei are more important 
while satellites can be dropped. Systems that use 
the discourse structure to produce summaries are 
also based on this intuition (e.g., Spark-Jones, 
1993; Ono et al., 1994; Rino and Scott, 1994; 
Marcu, 1998). However, while techniques used in 
                                                 
2 There are a few exceptions for multinuclear relations. 



both approaches are similar, the purpose and chal-
lenges of the two tasks are different: in a summary, 
one wishes to convey only the most essential part of 
a message, leaving out all the content that could be 
considered optional. In our task, we want to pro-
duce a text that fits the available space. In some 
cases, the original content is only, let’s say, one 
paragraph too long to fit into the required space. 
The issue is to find the least essential paragraph to 
convey the message and still obtain a balanced text, 
as opposed to summarising the text per se.  This is 
akin to the distinctions between shortening a paper 
by ½ a page to fit into the required 8-page limit and 
writing its abstract. In addition, shortening a text 
(rather than summarising it) raises a new challenge: 
that of ensuring that the final text is still balanced. 
Consider for example cases in which there are 
bulleted items. When shortening the text, one needs 
to ensure that all the items remain at about the same 
length, or the text will appear odd. 

Our approach exploits the semantics of the rhe-
torical relations and the notion that some relations 
are more important than others. O’Donnell (1997) 
used the same principle to assign relevance scores 
to text nodes in the discourse structure to produce 
documents of variable length. While our approach 
is similar to O’Donnell’s in that respect, his ap-
proach required individual sentences to be manually 
marked up with rhetorical relations. This allowed 
his system to manipulate the text at or below the 
sentence level, although repair had to occur after 
the process to ensure coherence and grammatical-
ity.  O’Donnell’s approach was thus close to tradi-
tional NLG systems that build text from first prin-
ciples and are able to vary the amount of text at the 
lexico-grammatical level (e.g., Reiter, 2000).  

Like most NLG-based approaches to constrain-
ing the length of a text, we use greedy algorithms to 
cut content. Vander Linden (2008) reports on an 
alternate approach that used dynamic programming. 
His work has not yet been evaluated, so it is unclear 
how valuable it could be in our context. 

3 System Architecture 

To achieve our goal of delivering tailored and 
coherent information, we build upon both NLG and 
document synthesis technology to retrieve and re-
purpose information (Colineau et al., 2004). The 
retrieval process is orchestrated by a discourse 
planner that, using discourse plans, builds a 
discourse tree specifying what to extract, for which 
purpose and how the various pieces of information 
relate to each other (Paris et al., 2008).  

We use SciFly to illustrate how our system 
reasons about space constraints. Given a query from 
a user (one or more topic(s) of interest), SciFly 

consults a repository of text fragments to assemble 
the relevant information. The fragments, written by 
the marketing team of our organisation, are self 
contained and comprised of typically one para-
graph, two at most.3  SciFly integrates all the 
relevant fragments into a coherent whole (see 
Figure 1) using meta-data describing each frag-
ment. The meta-data chosen is that envisaged for a 
new content management system for our organisa-
tion’s website. Note that this meta-data does not 
correspond to rhetorical relations. It is the discourse 
plans that later determine which relation holds be-
tween fragments given their role in a specific com-
municative goal. As a result, a text fragment can be 
used with different relations in different brochures. 

SciFly also produces a web output, and a PDF 
version of the paper brochure is emailed to the user 
with a summary in the email body. This summary is 
also built by reasoning about the discourse tree. As 
in discourse-based approaches to summarisation, 
only the nuclei are kept leaving out all the satellites 
corresponding to content considered as optional. 

SciFly follows a two-stage approach: during dis-
course planning, content and organisation are se-
lected, and a discourse tree is built, as in (Moore 
and Paris, 1993). The discourse plans specify the 
RST that hold between text spans. They were writ-
ten for SciFly, based on an analysis of a corpus of 
sample human-authored brochures. In the second 
stage, the presentation stage, the system reasons 
about the discourse tree and the characteristics of 
the delivery channel to decide how much content to 
include and how to present it. 

The following section presents two algorithms 
that reason about how much to express based on the 
space available. The first one is fairly naïve, 
implementing the basic notions of how RST can 
help with this reasoning. The second algorithm 
addresses limitations discovered when we deployed 
the system as an information kiosk at a major IT 
fair.  

4 Determining how much content to 
realise 

During the discourse planning stage, SciFly 
retrieves all the information corresponding to the 
user’s topics of interest and organises it into a co-
herent whole. As the output is to be a brochure-like 
document, presenting the work carried out in our 
organisation (e.g., projects and capabilities), the 
system includes more information than is strictly 
required. For example, an introduction about the 
organisation and relevant contact details are always 

                                                 
3 It is worth noting that it took one person in the marketing 
team just a few days to write the content. 



included, and, in the case of a brochure about a 
project, a description of the research laboratory in 
which the project resides is also provided.  

At the end of this stage, the system has produced 
a discourse tree. It includes the top level 
communicative goal, the intermediate goals and the 
rhetorical relations that exist between text spans.  It 
thus encodes both the purpose of each retrieved text 
fragment and how these fragments relate to each 
other. This provides a basis to reason about which 
information to realise when there is too much 
content for some delivery medium (e.g., a double-
sided A4 page).  

As noted earlier, our two algorithms embody the 
principle of nuclearity. They also both exploit the 
notion that some relations are more important than 
others. For example, context (providing the context 
in which to understand the information in the 
nucleus) might be considered more important than 
elaboration (providing more details). By assigning 
an importance value to relations, it becomes possi-
ble to rank the relations based on their contribution 
to the communicative goal. Our assignment, 
presented in Table 1, is based on judgments from 
our marketing staff.4  The importance of each 
relation is defined in a declarative configuration file 
that can be easily modified to suit different 
preferences and application contexts. 

Shading Discourse Relations Importance 
Black Illustration, Background, 

Circumstance, Elaboration 
Low  
Low-Medium 

Dark 
Grey 

Context, Motivation, 
Evidence, Summary , 
Justification,  

Medium 

Light 
Grey 

Preparation, Enablement Medium-High 
High 

Table 1: Some discourse relations and their ranking 

To explain our algorithms, we represent the 
discourse tree using an abstract view, as shown in 
Figure 2. The communicative goals are represented 
as nodes. A white node indicates a nucleus; the 
other nodes, the satellites, are all shaded in grey 
corresponding to the importance of the rhetorical 
relation linking them to the nucleus.  

Each node is the root of a subtree (empty if the 
node is a leaf) which generates some content. In 
both algorithms, the system computes for each node 
the approximate space required for that content in 
number of lines. This is computed bottom-up in an 
iterative manner by looking at the retrieved content 
at each node. Note, however, that the system can 
only compute an approximation of the number of 

                                                 
4 SciFly actually has 5 levels of importance. We have 
merged “low” with “low-medium” and “high” with “me-
dium-high” here to avoid too many shades of grey. 

lines of content to be generated, as this depends on 
style, line-wrapping and other formatting attributes 
within the text fragments and global spacing 
decisions in the PDF rendering process. In Figure 2, 
the number inside each node indicates the 
approximate amount of content that node produces 
(in lines). 

 
Figure 2: Discourse tree annotated with how much 
content would be generated for each node. 

4.1 Naïve algorithm  

From the two features of RST mentioned above 
(nuclearity and relative importance of relations), we 
designed a straighforward algorithm to exploit the 
discourse structure in order to decide how much 
content to realise. This is our “naïve algorithm”. 
With this algorithm, the system examines the top 
level node to determine if the current structure will 
result in too much content, given the properties of 
the output medium (e.g., lines of content per page). 
If so, the system selects the relation with the lowest 
importance and traverses the tree, dropping all the 
satellite nodes (including their sub-trees) that are 
related to a nucleus with this relation. The 
algorithm repeats this process until the amount of 
content meets the device space constraint.  

Consider the example in Figure 2; the top node 
indicates 337 lines of content, while the space 
available for the device is 200 lines (specified in a 
device model). The illustration relation is the least 
important relation present. The algorithms thus 
drops all the satellites related by illustration. Since 
this is not enough, it picks the next least important 
relation (background in this case) and repeats the 
process until the space requirements are met. The 
resulting discourse tree and the ordered list of 
dropped nodes are shown in Figure 3. It is 
important to note that, with this approach, the 
resulting document is shorter but still coherent. This 
is because reasoning is done with the discourse tree 
and the rhetorical relations holding between 
subgoals. 

We deployed the system with this algorithm at a 
trade fair in 2005 and 2006 and measured the 
general experience visitors had with the system. On 
average, people rated the system positively, 



emphasising the nice layout of the brochure, its 
conciseness and its informative content. The area 
identified as needing improvement was the amount 
of blank space in brochures (as seen in Figure 1), 
where it seems that more information could have 

 
Figure 3: The resulting discourse tree after applying the 
naïve space constraint algorithm. 

been included. This is because our naïve algorithm 
drops many sub-tree(s) at once, thus potentially 
deleting a lot of content at each step. For example, 
in its third pass, the algorithm deleted 45 lines in 
one go. This can be too much, and indeed, the 
resulting brochure can appear odd because of the 
excessive blank space. This led us to our enhanced 
algorithm. 

4.2 The enhanced algorithm 

We redesigned the algorithm to gain finer control 
over the text length. To do so, we take into account 
the depth of a node in addition to its rhetorical 
status.  We first converted the importance value of 
a rhetorical relation (e.g., low, medium, high) into a 
penalty score. In our system, penalty scores range 
from 1 to 6, in increments of 1: from high impor-
tance relations with a score of 2, through to low 
importance relations with a score of 6. A nucleus is 
given a score of 1 to take the increment in tree 
depth into account. 

We then assign each node an importance rating 
called its weight. It is computed by adding (1) the 
weight of the node’s parent, to take into account the 
depth of the node in the whole tree, and (2) the 
penalty score of the rhetorical relation which relates 
the node to its nucleus. A child node is thus heavier 
than its parent. The larger the weight, the less 
important the node is to the overall discourse 
structure.5  

Once the weights have been computed, the 
system orders the nodes by their weight, and the 

                                                 
5 Note that this is similar in concept to the relevance rating 

proposed by O’Donnell (1997), but computed differently. 
O’Donnell’s rating penalises only nodes in a satellite scope, 
thus only partially taking the depth of the tree into account. 

heaviest nodes get dropped first. Thus, nodes 
deeper in the tree and linked by a discourse relation 
with a high penalty score (low importance) get 
removed first. Nodes are now dropped one by one 
until the top level node has an amount of content 
that satisfies the space requirement. This provides 
finer control over the amount of realised content 
and avoids the limitation of the first algorithm. 

We illustrate this process through the same 
example. We annotate the tree of Figure 2 with 
node weights, as shown in Figure 4 (the weights 
appear outside the nodes). The system can now 
order the satellite nodes, from heaviest to lightest. 
As we consider that nuclei are important, other 
nodes (i.e., satellites) are dropped preferentially at 
any given depth of the tree. This is why we do not 
include the nuclei in our ordered list (shown at the 
bottom of Figure 4). A nucleus will get dropped 
only if its parent is dropped. The system takes the 
nodes with the heaviest weight and drops them one 
by one, until the top node has the appropriate 
amount of content. In our example, the seven left 
most nodes of the ordered list will be dropped (as 
indicated in the Figure in the boxed area). This 
results in much less text being dropped than with 
the naïve algorithm to satisfy the same requirement 
(e.g., 137 lines dropped instead of 180). As before, 
pruning the tree does not affect the coherence of the 
resulting document.  

 
Figure 4: Tree annotated with weights and ordered list 
of (satellite) nodes 

As mentioned previously, techniques used in dis-
course-based approaches to summarisation are quite 
similar to our algorithm. Like we do, they take ad-
vantage of the discourse structure and exploit the 
difference between nuclei and satellites to deter-
mine the most important units in a text. However, 
there are a number of differences that influence the 
ordering based on the importance of the nodes 
(units of text) and how much gets deleted. For ex-
ample, the granularity of the units of text is differ-
ent. This might have an impact on the type of dis-
course representation built (e.g., our satellites nodes 



are rarely further decomposed). Moreover, although 
Marcu (1998) has suggested that the semantics of 
rhetorical relations may play a major role in deter-
mining the important units in a text, this was not 
integrated in his scoring function because of lack of 
empirical evidence in his data. We believe that 
these semantics not only influence the ordering of 
the nodes but also lead to a finer grained partial 
ordering, thus giving us finer grained control. 

To illustrate this, we applied Marcu’s scoring 
function to the discourse tree of Figure 2. Figure 5 
shows the partially ordered list of nodes we ob-
tained (ranked from most to least important). While 
the two lists are not fundamentally different, the 
way nodes get dropped is different. With Marcu’s 
scoring function, we would have dropped 159 lines 
instead of 137 using a partial ordering with 4 levels 
instead of the 6 with our enhanced algorithm. Fi-
nally, our treatment of lists and itemised items is 
substantially different, as described below.  

 
Figure 5: Ordered list of nodes when applying Marcu’s 
scoring function 
 

This enhancement to the algorithm allows the 
system to have finer control over what is generated. 
However, as noted earlier, shortening a text, rather 
than summarising it, raises a new challenge: that of 
ensuring that the final text is still balanced. 
Sometimes, a discourse structure contains several 
parallel sub-structures that, if pruned unevenly, 
results in text that is unbalanced and appears odd. 
This happens for example in a paper, when we 
itemise or enumerate to provide a list of topics. We 
typically try to balance the amount of text each 
topic contains, avoiding having one topic with one 
sentence while another topic has several 
paragraphs. In our case, we have such parallel 
structures when describing a list of projects 
(belonging to a research laboratory, for example, or 
when the user has indicated interest in several 
projects). In these cases, the discourse structure 
contains several sub-trees which are likely to be of 
the same structure, as illustrated schematically in 
Table 2. This structure is generated during dis-
course planning by a plan containing a foreach 
statement, e.g., (foreach project in project-list 
(describe project)). 
 

Project 1 Project 2 Project 3 
• Introduction • Introduction • Introduction 
• Description • Description • Description 
• Illustration • Illustration • Illustration 

Table 2. Example of parallel and balanced structures 

To keep the overall structure balanced, the system 
annotates all sub-structures issued from such a 
foreach statement. Then, when constructing the 
ordered list of satellites, the system clusters nodes 
at the same level of depth in the sub-structures, 
taking into account their relationship to the nucleus, 
as shown in Figure 6. (Note that, since these sub-
trees are generally identical, the nodes will often 
have similar weights.) When dropping nodes, the 
whole cluster will be deleted at the same time, 
rather than node by node. 

 
Figure 6: Ordered list of (satellite) cluster nodes 

In the structure of Table 2, illustrated in Figure 6, 
for example, illustrations for all projects (cluster of 
weight 10) will be dropped together, then all 
introduction sections (cluster of weight 8). This 
prevents one sub-structure from being pruned more 
than its sibling structures and thus ensures the 
resulting brochure is balanced.  

5 Comparative Performance Analysis 

We performed an analysis of the two algorithms to 
assess their comparative effectiveness with respect 
to filling the space of a two-page brochure. In 
particular, we wanted to find out whether the 
enhanced algorithm reduced the amount of dropped 
content, filling up the available space more 
effectively.  

We automatically generated 1605 brochures 
about randomly selected topics, using both 
algorithms. For each brochure, we stored data about 
the total amount of content initially assembled and 
the amount of content withheld from the generated 
brochure (none if nothing was dropped). For our 
analysis, we kept only the brochures for which 
content was withheld. This left us with 1507 
brochures. We observed the following improve-
ments, as shown in Figure 7: 

• 82.5% of the brochures generated with the 
enhanced algorithm filled over 96% of the 
available space (leaving at most 8 lines of 
empty space). Only 29% of brochures 



generated with the naïve algorithm achieved 
this performance. 

• 96.5% of the brochures generated with the 
enhanced algorithm filled at least 90% of the 
space, compared with 44.5% of brochures 
generated using the naïve algorithm.  

 
Figure 7: Percentage of fullness of the brochures 
(vertical axis is the number of brochures, in percentage) 

Given the discourse planning approach employed 
by our system, we know that the generated text is 
coherent with both algorithms.  The results on the 
amount of text generated show that our enhanced 
algorithm results in a much better use of the 
available space than the naïve algorithm. Finally, 
because the algorithm prunes parallel structures in a 
synchronised manner, we know that the resulting 
text is balanced. We have thus achieved our goal of 
producing a well structured coherent text that fills 
as much of the space available as possible, when 
fine-grained control over the text generated is not 
possible.  We can also conclude that it is useful to 
exploit the discourse structure to reason about what 
to include when we have specific space 
requirements. 

In further analysing the results, we found the 
following: 

• 75% of brochures included more content 
using the enhanced algorithm , as we desired; 

• 13% had the same amount of content 
regardless of the algorithm used. (Note that the 
same amount of content does not necessarily 
mean that the content is identical, as the 
algorithms select the content to drop 
differently.); and  

• 12% of the brochures actually contained less 
content with the enhanced algorithm than with 
the naïve one.  

We examined these results in more detail to 
understand what was happening. 

In the brochures that gained content with the new 
algorithm, an average of 32 new lines of content 
was included, which represents about 15% of the 
whole brochure. More specifically, as shown in 

Figure 8: 36% of the brochures gained between 1 
and 20 lines of relevant content (representing 1-
10% of the brochure); 28% gained between 21 and 
40 lines (11-20% of the brochure); and 30% gained 
41 to 60 lines (21-30% of the brochure).  

36%

28%
30%

4%

2% 0% 0%
0

50

100

150

200

250

300

350

400

450

1-20  21-40   41-60  61-80  81-100  101-120 121-140

N
um

be
r 

o
f b

ro
ch

ur
es

 
Figure 8: Percentage of gained lines with the enhanced 
algorithm 

An example of brochure generated with the 
enhanced algorithm is shown in Figure 9. The 
content kept by the enhanced algorithm that would 
have been dropped by the naïve one is highlighted 
in grey. 

 
Figure 9: Example showing the differences in content 
between the two algorithms 

In the 12% of cases where the enhanced algo-
rithm drops more content than the naïve one, we 
noted that, on average, the naïve algorithm had 
produced a brochure which was about 3 lines away 
from a full brochure, while the enhanced one 
produced a brochure which was, on average, 7 lines 
away from such a brochure. Thus, these brochures 
were at least 96% filled for both algorithms. The 
reduction in realised content for the new algorithm 
was due to our treatment of parallel discourse 
structures, thus representing a desirable loss of 
content to create balanced brochures, as described 
earlier. This illustrates a limitation of this metric for 
comparative performance analysis: it only takes 
into account the space used rather than the overall 

0 

10 

20 

30 

40 

50 

60 

0-50% 51-90% 91-95% 96-98% 99-100% 

enhanced algorithm naive algorithm 



quality of the output. Clearly loss of content is 
desirable in some cases to maintain a well 
structured and balanced text. To measure the 
overall quality of the brochures produced by the 
two algorithms, we performed a user evaluation. 

6 User evaluation 

In our user evaluation, we asked users to com-
pare pairs of brochures, where one brochure was 
produced by the naïve algorithm and the other by 
the enhanced algorithm. The users were asked to 
choose which brochure, if any, they preferred. The 
aim was to ensure that the improved use of space 
did not have any negative impact on the overall 
quality of the brochure and the users’ satisfaction.  
The layout for all brochures was kept constant. 

Seventeen users participated in the evaluation 
and were presented with seven pairs of brochures. 
The pairs of brochures were selected to represent 
the variety of output produced by both algorithms. 
As mentioned earlier, in the majority of the cases, 
the enhanced algorithm uses the available space 
more effectively by including more content in the 
brochure. However, in a number of cases, due to 
our treatment of parallel structures, and also be-
cause the two algorithms select the content to drop 
differently, the enhanced algorithm produces bro-
chures with the same amount or less content than 
using the naïve one. To represent these cases and 
evaluate whether this has an impact on how users 
assess the quality of the brochures, we selected the 
brochures as follows: in three pairs, the brochures 
generated by the enhanced algorithm contained 
more content (cluster 1), in two pairs, both bro-
chures had the same amount of content regardless 
of the algorithm used (cluster 2), and in two pairs, 
the brochures generated by the enhanced algorithm 
contained a bit less content (cluster 3). To control 
any order effect, the pairs were randomly presented 
from user to user, and in each pair, each brochure 
was randomly assigned a left-right configuration. 
The results are shown in Table 3.  

Pairs ENHANCED NAIVE EQUIV 

Cluster 1 26 9 11 

Cluster 2 8 14 12 

Cluster 3 17 9 8 

Total 51 37 31 

Table 3: Users’ ratings of preference 

Table 3 shows that participants generally pre-
ferred the brochures generated with the enhanced 
algorithm over the ones produced with the naive 
algorithm, or found them equivalent. If we group 
together the participants’ preference for the bro-
chures generated by the enhanced algorithm (51 

votes) with the 31 cases where participants found 
the pair of brochures equivalent, we see that we 
have not lost any performance in terms of users’ 
satisfaction with the enhanced algorithm, while we 
gain significantly in the amount of text included. 

Interestingly, most users preferred the enhanced 
algorithm for cluster 3, where the enhanced algo-
rithm produced less text but pruned parallel sub-
structures in an even manner, resulting in more bal-
anced documents. Also, users seem to prefer the 
naïve algorithm for cluster 2, when both algorithms 
produce the same amount of text. After further 
analysis, we found that users liked having text pre-
sented as summary, a relation which got dropped 
more often with the new algorithm. This can be 
addressed by changing the importance of this rela-
tion. We also asked the users to explain their 
choice. ‘Good presentation’ and ‘good flow of in-
formation’ were the reasons given for preferring the 
brochures generated with the enhanced algorithm. 

7 Conclusions 

The ability to reason about how much content to 
generate in order to convey a message under space 
constraints is an important consideration for NLG 
systems. In our applications, we cannot resort to the 
traditional method of controlling the lexical-
grammatical resources to that effect. We generate 
text by re-using existing text fragments over which 
we do not have any control, and we need to produce, 
at discourse planning stage, a discourse tree with all 
the appropriate available content, in order to realise 
the output on several delivery channels (e.g., full 
structure for a web output, subset of the structure to 
fit specific space constraints such as a double-sided 
A4 page and only nucleus content for the email 
summary). We thus had to find other ways to 
satisfy space requirements. To this end, we 
implemented two algorithms that reason about the 
discourse tree. The first naïve algorithm, 
embodying in a straighforward manner the notions 
of nuclearity and the rhetorical relations’ relative 
importance, resulted in a sub-optimal use of space. 
The enhanced algorithm addressed this limitation 
and ensured a balanced text. Our comparative 
analysis showed that our enhanced algorithm 
produces documents filling most of the available 
space, while maintaining users’ satisfaction. 

Acknowledgements 

We would like to thank Meriem Raji for her work 
on the user experiment, all the people who took part 
in our evaluation, our group and Keith Vander Lin-
den for their input throughout the project. 



References 

John Bateman, Thomas Kamps, Jörg Kleinz and Klaus 
Reichenberger (2001). Constructive text, diagram and 
layout generation for information presentation: the 
DArt_bio system. Computational Linguistics, 
27(3):409-449. 

Nathalie Colineau, Cécile Paris and Mingfang Wu. 
(2004). Actionable Information Delivery. Revue 
d’Intelligence Artificielle (RSTI – RIA), Special Issue 
on Tailored Information Delivery, 18(4), 549-576. 

William C. Mann and Sandra A. Thompson. (1988). 
Rhetorical Structure Theory: Toward a functional 
theory of text organisation. Text 8(3):243-281. 

Daniel Marcu. (1998). To build text summaries of high 
quality, nuclearity is not sufficient. In Working Notes 
of the AAAI-98 Spring Symposium on Intelli-gent Text 
Summarization, Stanford, CA, 1–8. 

Johanna D. Moore and William R. Swartout. (1989). A 
Reactive Approach to Explanation. In Proceedings of 
the 1989 International Joint Conference on Artificial 
Intelligence (IJCAI 1989), 1504-1510. 

Johanna D. Moore and Cécile L. Paris. (1993). Planning 
Text for Advisory Dialogues: Capturing Intentional 
and Rhetorical Information, Computational 
Linguistics, 19 (4):651-694, Cambridge, MA. 

Kenji Ono, Kazuo Sumita and Seiji Miike (1994). 
Abstract generation based on rhetorical structure 
extraction. In Proceedings of the 15th Conference on 
Computational Linguistics (CoLing 1994), Volume 1, 
Kyoto, Japan, 344 – 348. 

Mick O’Donnell (1997). Variable Length On-Line 
Document Presentation. Proceedings of the 6th 
European Workshop on Natural Language 
Generation. Gerhard-Mercator University, Duisburg, 
Germany.  

Cécile Paris, Nathalie Colineau, Keith Vander Linden 
and Andrew Lampert (2008). Myriad: A Reusable 
Platform for Tailored Information Delivery. CSIRO 
Technical Report 08/050.  

Ehud Reiter. (2000). Pipelines and Size Constraints. 
Computational Linguistics, 26:251-259. 

Lucia H.M. Rino and Donia R. Scott. (1994). Automatic 
generation of draft summaries: heuristics for content 
selection. In Proceedings of the 3rd International 
Conference on the Cognitive Science of Natural 
Language Processing, Dublin.  

Donia R. Scott and Clarisse S. de Souza. (1990). Getting 
the message across in RST-based text generation. In 
Dale, Mellish & Zock (eds). Current Resarch in 
Natural Language Generation. London: Academic 
Press. 119-128. 

Karen Spark Jones (1993). What might be in a 
summary? Information Retrieval 93: Von der 
Modellierung zur Anwendung. (Ed: Knorz, Krause 
and Womse-Hacker), Konstanz: Universitatsverlag 
Konstanz, 0-26. 

Maite Taboada and William C. Mann. (2006). 
Applications of Rhetorical Structure Theory. 
Discourse Studies, 8(4):567-588. 

Keith Vander Linden. (2008). A Dynamic Programming 
Approach to Document Length Constraints. In 
Proceedings of the Fifth International Conference on 
Natural Language Generation, June 12-14, 2008, 
177-180. 


