Automatic Acquisition of Training Data for Statistical Parsers

Susan Howlett and James R. Curran
School of Information Technologies
University of Sydney
NSW 2006, Australia

{show0556, james}@it.usyd.edu.au

Abstract

The limitations of existing data sets for train-
ing parsers has led to a need for additional
data. However, the cost of manually annotat-
ing the amount and range of data required is
prohibitive. For a number of simple facts like
those sought in Question Answering, we com-
pile a corpus of sentences extracted from the
Web that contain the fact keywords. We use a
state-of-the-art parser to parse these sentences,
constraining the analysis of the more complex
sentences using information from the simpler
sentences. This allows us to automatically cre-
ate additional annotated sentences which we
then use to augment our existing training data.

1 Introduction

Determining the syntactic structure of sentences is a
necessary step in analysing the content of text for a
range of language processing tasks such as Ques-
tion Answering (Harabagiu et al., 2000) and Ma-
chine Translation (Melamed, 2004).

The structures that a parsing system assigns to
sentences are governed by the grammar used. While
some parsers make use of hand-crafted grammars,
e.g. Riezler et al. (2002) and Briscoe et al. (2006),
these typically cannot accommodate a wide variety
of sentences and increasing coverage incurs signif-
icant development costs (Cabhill et al., 2008). This
has led to interest in automatic acquisition of gram-
mars from raw text or automatically annotated data
such as the Penn Treebank (Marcus et al., 1993).

Automatically-acquired grammars may be clas-
sified according to whether the learning algorithm
used to estimate the language model is supervised or
unsupervised. Supervised algorithms, e.g. Collins

(1999) and Charniak (2000), require a large num-
ber of sentences already parsed according to the
desired formalism, while unsupervised approaches,
e.g. Bod (2006) and Seginer (2007), operate directly
on raw text. While supervised approaches have gen-
erally proven more successful, the need for anno-
tated training data is a major bottleneck.

Although the emergence of the Penn Treebank
as a standard resource has been beneficial in parser
development and evaluation, parsing performance
drops when analysing text from domains other than
that represented in the training data (Sekine, 1997;
Gildea, 2001). In addition, there is evidence that lan-
guage processing performance can still benefit from
orders of magnitude more data (e.g. Banko and Brill
(2001)). However, the cost of manually annotating
the necessary amount of data is prohibitive.

We investigate a method of automatically creat-
ing annotated data to supplement existing training
corpora. We constructed a list of facts based on fac-
toid questions from the TREC 2004 Question An-
swering track (Voorhees, 2004) and the ISI Question
Answer Typology (Hovy et al., 2002). For each of
these facts, we extracted sentences from Web text
that contained all the keywords of the fact. These
sentences were then parsed using a state-of-the-art
parser (Clark and Curran, 2007).

By assuming that the same grammatical relations
always hold between the keywords, we use the anal-
yses of simple sentences to constrain the analysis of
more complex sentences expressing the same fact.
The constrained parses then form additional training
data for the parser. The results here show that parser
performance has not been adversely affected; when
the scale of the data collection is increased, we ex-
pect to see a corresponding increase in performance.

2 Background

The grammars used in parsing systems may be clas-
sified as either hand-crafted or automatically ac-
quired. Hand-crafted grammars, e.g. Riezler et al.
(2002) and Briscoe et al. (2006), have the advan-
tage of not being dependent on any particular cor-
pus, however extending them to unrestricted input is
difficult as new rules and their interactions with ex-
isting rules are determined by hand, a process which
can be prohibitively expensive (Cahill et al., 2008).

In contrast, the rules in acquired grammars are
learned automatically from external resources, typ-
ically annotated corpora such as the Penn Treebank
(Marcus et al., 1993). Here, the system automat-
ically determines all the rules necessary to gener-
ate the structures exemplified in the corpus. Due to
the automatic nature of this process, the rules deter-
mined may not be linguistically motivated, leading
to a potentially noisy grammar.

Systems that learn their model of syntax from an-
notated corpora like the Penn Treebank are termed
supervised systems; in unsupervised learning algo-
rithms, possible sentence structures are determined
directly from raw text. Bod (2006) presents an un-
supervised parsing algorithm that out-performs a su-
pervised, binarised PCFG and claims that this her-
alds the end of purely supervised parsing. However
these results and others, e.g. Seginer (2007), are still
well below the performance of state-of-the-art su-
pervised parsers; Bod explicitly says that the PCFG
used is not state-of-the-art, and that binarising the
PCFG causes a drop in its performance.

By extracting the grammar from an annotated cor-
pus, the bottleneck is shifted from writing rules to
the creation of the corpus. The 1.1 million words
of newswire text in the Penn Treebank has certainly
been invaluable in the development and evaluation
of English parsers, however for supervised parsing
to improve further, more data is required, from a
larger variety of texts.

To investigate the importance of training data in
language processing tasks, Banko and Brill (2001)
consider the problem of confusion set disambigua-
tion, where the task is to determine which of a set
of words (e.g. {to, too, two}) is correct in a partic-
ular context. Note that this is a problem for which
large amounts of training data can be constructed ex-

tremely cheaply. They compare four different ma-
chine learning algorithms and find that with a train-
ing corpus of 1 billion words, there is little differ-
ence between the algorithms, and performance ap-
pears not to be asymptoting. This result suggests
that for other language processing tasks, perhaps in-
cluding parsing, performance can still be improved
by large quantities of additional training data, and
that the amount of data is more important than the
particular learning algorithm used.

Quantity of data is not the only consideration,
however. It has been shown that there is consider-
able variation in the syntactic structures used in dif-
ferent genres of text (Biber, 1993), suggesting that
a parser trained solely on newswire text will show
reduced performance when parsing other genres.

Evaluating parser performance on the Brown cor-
pus, Sekine (1997) found that the best performance
was achieved when the grammar was extracted from
a corpus of the same domain as the test set, followed
by one extracted from an equivalent size corpus con-
taining texts from the same class (fiction or non-
fiction), while parsers trained on a different class or
different domain performed noticeably worse.

Comparing parsers trained on the Penn Treebank
and Brown corpora, Gildea (2001) found that a small
amount of training data from the same genre as the
test set was more useful than a large amount of un-
matched data, and that adding unmatched training
data neither helped nor hindered performance.

To improve parsing performance on non-
newswire genres, then, training data for these
additional domains are necessary. The Penn Tree-
bank project took 8 years and was an expensive
exercise (Marcus et al., 1993), so larger and more
varied annotated corpora are not likely to be
forthcoming. Since unsupervised approaches still
under-perform, it is necessary to explore how exist-
ing annotated data can be automatically extended,
turning supervised into semi-supervised approaches.

3 Parsing with cCG

Combinatory Categorial Grammar (CCG; Steedman
(2000)) is a mildly context sensitive, lexicalised
grammar formalism, where each word in the sen-
tence is assigned a lexical category (or supertag),
either atomic or complex, which are then combined

Mozart was

born in

1756

NP

(S[del]\NP)/(S[pss]\NP) S[pss]|\NP ((S\NP)\(S\NP))/NP NP

(S\NP)\(5\NP)

S[pss]\NP

S[dcl]\NP

Sldel]

>

Figure 1: CCG derivation for the sentence Mozart was born in 1756.

using a small number of generic combinatory rules.

The possible atomic categories are N, NP, PP
and S, representing nouns, noun phrases, preposi-
tional phrases and clauses, respectively. They may
carry additional features, e.g. S[dcl] represents a
declarative clause. Complex categories are binary
structures consisting of two categories and a slash,
in the form X /Y or X\Y. These represent con-
stituents that when combined with a constituent with
category Y (argument category) form a constituent
with category X (result category). The forward and
backward slashes indicate that the Y is to be found
to the right and left of X, respectively. Examples
of complex categories are NP /N (determiner) and
(S\NP)/NP (transitive verb).

The basic combinatory rules are forward and
backward application, where complex categories are
combined directly with their arguments to form the
result. Thatis, X/Y Y = X andY X\Y =
X. Instances of these rules are marked by the
symbols > and < respectively. A derivation il-
lustrating these rules is given in Figure 1. Here,
the word in with category ((S\NP)\(S\NP))/NP
combines with 1756, an NP, using forward applica-
tion to produce the constituent in 1756 with category
(S\NP)\(S\NP).

In addition, CCG has a number of rules such as
forward composition (>B) (XY Y /7 = X/Z)
and type-raising capabilities (e.g. X = T/(T\X),
represented by >T) that increase the grammar’s
expressive power from context free to mildly con-
text sensitive. These allow more complex analyses
where, instead of the verb taking its subject NP as
an argument, the VP takes the verb as an argument.
These additional rules mean that the sentence in Fig-
ure 1 may have alternative CCG analyses, for exam-
ple the one shown in Figure 2. This spurious ambi-

guity has been shown not to pose a problem to effi-
cient parsing with cCG (Clark and Curran, 2007).

As each of the combinatory rules is applied,
predicate-argument dependencies are created, of the
form (hy, f, s, hq,l), where f is the category that
governs the dependency, h is the word carrying the
category f, s specifies which dependency of f is be-
ing filled, h,, is the head word of the argument, and
[indicates whether the dependency is local or long-
range. For example, in Figure 1, the word in results
in the creation of two dependencies, both local:

(in, ((S\NP)\(S,\NP))/NP,, 1, born, —)
(in, ((S\NP)\(S,\NP))/NP,, 2, 1756, —)

The values for s refer back to the subscripts given
on the category f. Although the spurious derivations
such as those in Figure 2 have a different shape, they
result in the creation of the same set of dependen-
cies, and are therefore equally valid analyses.

The predicate-argument dependencies to be
formed are governed by variables associated with
the categories nested within the category f. For
example, in is more fully represented by the cat-
egory (((SY\NP,)y\(Sy,\NP;)y)x/NPy;)x. These
variables represent the heads of the corresponding
constituents; the variable X always refers to the
word bearing the lexical category, in this case in.

During the derivation, dependencies form be-
tween the word filling variable X and the word fill-
ing the variable directly associated with the depen-
dency. In this example, the first dependency forms
between in and the word filling variable Y, and the
second forms between in and the word filling W.
When in combines with 7756 through forward appli-
cation, 7756 is identified with the argument NPy,
causing W to be filled by 7756, and so a dependency
forms between in and 1756.

Mozart was

born in 1756

NP . (S[dcl]\NP)/(S[pss]\NP) S[pss]\NP ((S\NP)\(S\NP))/NP NP
S/(S\NP e (S\NP)\(S\NP)
S/(S[pss\NP) S[pss]\NP

>

S|del]

Figure 2: Alternative derivation for the sentence in Figure 1, illustrating CCG’s spurious ambiguity.

4 The C&C Parser

The parser we use (Clark and Curran, 2007) is a
state-of-the-art parser based on CCG. The grammar
is automatically extracted from CCGbank, a conver-
sion of the Penn Treebank into CCG (Hockenmaier,
2003). As the training data is ultimately from the
Penn Treebank, the grammar is subject to the same
difficulties mentioned in Section 2.

The two main components of this parser are the
supertagger, responsible for assigning each word
its possible CCG lexical categories, and the parser,
which combines the lexical categories to form the
full derivation, using the CKY chart parsing algo-
rithm as described in Steedman (2000). The su-
pertagger and parser are tightly integrated so that,
for example, if a spanning analysis is not found,
more lexical categories can be requested.

The third component, the decoder, chooses the
most probable of the spanning analyses found by
the parser, according to the statistical model used.
Clark and Curran (2007) discuss three separate mod-
els, one of which involves finding the most probable
derivation directly, while the other two involve opti-
mising the dependency structure returned. Here we
use the first model, called the normal-form model.

Clark and Curran (2007) evaluate their parser in
two different ways. Their main method of evaluation
is to compare the parser’s predicate-argument de-
pendency output against the dependencies in CCG-
bank. They calculate labelled and unlabelled preci-
sion, recall and F-score for the CCG dependencies
plus category accuracy, the percentage of words as-
signed the correct lexical category.

This method of evaluation, however, does not al-
low easy comparison with non-CCG systems. Evalu-
ating a CCG parser using the traditional metrics of
precision, recall and F-score over Penn Treebank
bracketings is problematic since CCG derivations,

being binary-branching, can have a very different
shape from the trees found in the Penn Treebank.
This is particularly true of the spurious derivations,
which will be heavily penalised even though they are
correct analyses that lead to the correct predicate-
argument dependencies.

To address this problem, Clark and Curran (2007)
also evaluate their parser against the Briscoe and
Carroll (2006) re-annotation of the PARC Depen-
dency Bank (DepBank; King et al. (2003)), which
contains 700 sentences from section 23 of the Penn
Treebank, represented in the form of grammatical
relations, e.g. ncsubj (non-clausal subject) and
dobj (direct object). To do this, they convert the
predicate-argument dependency output of the parser
into grammatical relations, a non-trivial, many-to-
many mapping. The conversion process puts the
c&c parser at a disadvantage, however the its per-
formance still rivals that of the RASP parser (Briscoe
et al., 2006) that returns DepBank grammatical rela-
tions natively. Figure 3 illustrates the grammatical
relations obtained from the analysis in Figure 1.

5 Getting Past the Bottleneck

Although some work has aimed at reducing the cost
of training the c&c parser (Clark and Curran, 2006),
the question remains of whether annotated training
data can be obtained for free.

In their first entry to the TREC Question-
Answering task, Brill et al. (2001) reasoned that
while finding the correct answer in the given cor-
pus may sometimes require sophisticated linguistic
or logical processing, a preliminary answer found on
the Web can help to identify the final answer in the
corpus. They argue that the sheer size of the Web
means that an answer can often be found using sim-
ple or shallow processing. We exploit the same idea
of the redundancy of information on the Web here.

ncmod -
ncmod ’

L
ncsubj #
7

ncmod

Figure 4: Desired analysis for the more complex sentence, with the analysis in Figure 3 indicated by dashed lines.

A parsing model trained on existing data can al-
ready confidently parse a simple sentence such as
Mozart was born in 1756 (Figure 3). Given the size
of the Web, many such sentences should be eas-
ily found. A longer sentence, such as Wolfgang
Amadeus Mozart (baptized Johannes Chrysosto-
mus Wolfgangus Theophilus) was born in Salzburg
in 1756, the second survivor out of six children, is
more complex and thus contains more opportunities
for the parser to produce an incorrect analysis. How-
ever, this more complex sentence contains the same
grammatical relations between the same words as in
the simple sentence (Figure 4).

Similar to the one sense per collocation constraint
(Yarowsky, 1993), we assume that any sentence con-
taining the words Mozart, born and 1756 will con-
tain the same relationships between these words. We
hypothesise that by constraining the parser to out-
put an analysis consistent with these relationships,
the correct analysis of the complex sentences can be
found without manual intervention. These complex
sentences can then be used as additional training
data, allowing the parser to learn the general pattern
of the sentence. For this process, we use grammat-
ical relations rather than CCG dependencies as the
former generalise across the latter and are therefore
more transferable between sentences.

6 Method

Our procedure may be outlined as follows:

1. Manually select facts and identify keywords.

2. Collect sentences from HTML documents con-
taining all keywords of a given fact.

3. Manually identify grammatical relations con-
necting fact keywords.

4. Parse all sentences for the fact, using these
grammatical relations as constraints.

5. Add successful parses to training corpus.

Further detail is given below. Section 6.1 covers
items 1 and 2, 6.2 item 3 and 6.3 items 4 and 5.

6.1 Sentence collection

First, we compiled a list of 43 facts based on factoid
questions from the TREC 2004 Question Answering
track (Voorhees, 2004) and the ISI Question Answer
Typology (Hovy et al., 2002). In order for our hy-
pothesis to hold, it is necessary for the facts used
to refer to relatively unambiguous entities. For each
fact, we identified a set of keywords and submitted
these as queries through the Google SOAP Search
API. The query was restricted to files with . html
or .htm extensions to simplify document process-
ing. Each unique page returned was saved.

Prior to splitting the documents into sentences,
HTML tags were stripped from the text and HTML
character entities replaced with their character
equivalents. In order to incorporate some HTML
markup information in the sentence boundary iden-
tification process, each page was split into a number
of chunks by dividing at certain manually-identified
HTML tags, such as heading and paragraph markers,
which are unlikely to occur mid-sentence. Each of
these chunks was then passed through the sentence
boundary identifier available in NLTK v.0.9.3! (Kiss
and Strunk, 2006). Ideally, the process would use a
boundary identifier trained on HTML text including
markup, to avoid these heuristic divisions.

To further simplify processing, sentences were
discarded if they contained characters other than
standard ASCII alphanumeric characters or a small
number of additional punctuation characters. We
also regarded as noisy and discarded sentences con-
taining whitespace-delimited tokens that contained
fewer alphanumeric characters than other characters.

Sentences were then tokenised using a tokeniser
developed the c&c parser for the TREC competi-
tion (Bos et al., 2007). Sentences longer than 40 to-
kens were discarded as this might indicate noise or
an error in sentence identification. Finally, sentences
were only kept if each fact keyword appeared ex-
actly once in the tokenised sentence, to avoid having
to disambiguate between repetitions of keywords.

At the conclusion of this process, each fact had
between 0 and 299 associated sentences, for a to-
tal of 3472 sentences. 10 facts produced less than
10 sentences; the average yield of the remaining 33
facts was just over 100 sentences each. This pro-
cessing does result in the loss of a considerable num-
ber of sentences, however we believe the quality and
level of noise in the sentences to be a more impor-
tant consideration than the quantity, since there are
still many facts that could yet be used.

6.2 Constraint identification

For each of the 33 facts that yielded more than 10
sentences, we identified a set of grammatical re-
lations that connects the keywords in simple sen-
tences. These sets contained between two and six
grammatical relations; for example the relations for

"http:/nltk.sourceforge.net

the Mozart fact were (ncsubj born Mozart),
(ncmod born in) and (dobj in 1756). Since
we assume that the keywords will be related by
the same grammatical relations in all sentences (see
Section 5), we use these grammatical relations as
constraints on the analyses of all sentences for the
corresponding fact. Future work will automate this
constraint identification process.

To avoid the need to disambiguate between in-
stances of particular words, when constraints are
applied each word must be identified in the sen-
tence uniquely. Although sentences that contained
repetitions of fact keywords were discarded dur-
ing the collection stage, the constraints identified in
this stage of the process may incorporate additional
words. In the Mozart fact, the constraints contain the
word in in addition to the keywords Mozart, born
and 7756. The sentence in Figure 4, for example,
contains two instances of in, so this sentence is dis-
carded at this point, along with other sentences that
contain multiple copies of a constraint word.

6.3 Parsing with constraints

Having identified the grammatical relations to use as
constraints, the sentences for the corresponding fact
are parsed with the constraints enforced using the
process described below. Sentences from two of the
33 facts were discarded at this point because their
constraints included grammatical relations of type
conj, which cannot be enforced by this method.
As described in Section 3, dependencies are
formed between variables on lexical categories. For
example, a dependency is created between the words
inand 1756 in Figure 1 by filling a variable IV in the
category of in. To force a particular dependency to
be formed, we determine which of the two words
will bear the category that lists the dependencys; this
word we call the head. We identify the variable as-
sociated with the desired dependency and pre-fill it
with the second word. The parser’s own unification
processes then ensure that the constraint is satisfied.
Since the constraints are expressed in terms of
grammatical relations and not CCG dependencies,
each constraint must first be mapped back to a num-
ber of possible dependencies. First, the head word
may be assigned several possible categories by the
supertagger. In this case, if any category does not
license the desired dependency, it is removed from

Normal Constrained

Keywords # Pages | # Sents | # Parse # Fail | # Discarded # Parse # Fail
Armstrong landed Moon 1969 805 20 20 0 14 0 6
CNN Cable News Network 286 62 62 0 41 8 13
Canberra capital Australia 601 78 77 1 64 0 14
Columbus discovered America 683 299 291 8 0 174 125
Martin Luther King Jr 675 6 6 0 - - -
assassinated 1968

Mozart born 1756 734 161 160 1 93 30 38
hydrogen lightest element 582 85 83 2 51 9 25
Total (all 43 facts) 24934 3472 3421 51 - - -
Total (31 facts for which 19019 3237 3190 47 1661 662 914
constraints successfully applied)

Table 1: Number of sentences acquired for a selection of facts. Figures are given for the number of sentences parsed

and failed by the normal (unconstrained) parser as an indication of parser coverage on Web sentences.

the list; all others have a variable filled. In this
way, no matter which category is chosen, the con-
straint is enforced. Secondly, one grammatical rela-
tion may map to some dependencies governed by the
first word and some governed by the second. That
is, in some constraints, either word may operate as
the head. To account for this, we parse the sentence
several times, with different combinations of head
choices, and keep the highest probability analysis.
When parsing with constraints, not all sentences
can be successfully parsed. Those where a span-
ning analysis consistent with the constraints cannot
be found are discarded; the remainder are added to
the training corpus. From the 31 facts still repre-
sented at this stage, we obtained 662 sentences.

7 Results

Table 1 traces the quantity of data throughout the
process described in Section 6, for a sample of the
facts used. It also gives totals for all 43 facts and for
the 31 facts represented at completion.

The first column lists the fact keywords. We
used a range of fact types, including abbreviations
(CNN stands for Cable News Network) and identi-
ties (Canberra is the capital of Australia, hydrogen is
the lightest element) as well as actions (Armstrong
landed on the Moon in 1969) and passive structures
(Martin Luther King, Jr. was assassinated in 1969).
This last example is one where fewer than 10 sen-
tences were collected, most likely due to the large

number of keywords.

The # Pages column in Table 1 shows the num-
ber of unique Web pages saved for each fact, while
Sents indicates the number of unique sentences
containing all fact keywords, after tokenisation. The
next two figures show the coverage of the baseline
parser on the Web sentences. The # Discarded col-
umn indicates the number of these sentences that
were discarded during the constraining process due
to constraint words being absent or appearing more
than once. The final two columns show how many of
the remaining sentences the parser found a spanning
analysis for that was consistent with the constraints.

It is clear that there is considerable variation in the
number of sentences discarded during the constrain-
ing process. For some facts, such as the Columbus
fact, the keywords form a chain of grammatical re-
lations with no additional words necessary. In such
cases, no sentences were discarded since any sen-
tences that reached this point already met the unique
keyword restriction.

The main reason for sentences being discarded
during constraining is that some relationships are ex-
pressed in a number of different ways. Prepositions
and punctuation are frequently responsible for this.
For example, the date of the Moon landing can be
expressed as both in 1969 and on July 20, 1969,
while the expansion of the abbreviation CNN may
be expressed as CNN: Cable News Network, CNN
(Cable News Network) and indeed Cable News Net-

Model LP LR LF LF(pos) SENT AcCc UP UR UF CAT ACC coVv
Baseline 85.53 84.71 85.12 83.38 32.14 92.37 91.49 91.93 93.05 99.06
New 85.64 84.77 85.21 83.54 32.03 9241 9147 9194 93.08 99.06

Table 2: Performance of the baseline (Clark and Curran (2007) normal-form model) and new parser models on CCG-
bank section 23. Most results use gold standard POS tags; LF (POS) uses automatically assigned tags.

work (CNN). By selecting only one set of constraints,
only one option can be used; sentences involving
other formats are therefore discarded. To overcome
these difficulties, it would be necessary to allow sev-
eral different constraint chains to be applied to each
sentence, taking the highest probability parse from
all resulting analyses. This could also be used to
overcome the word-uniqueness restriction.

To evaluate the effectiveness of the 662 addi-
tional sentences, we trained two models for the c&c
parser, a baseline using the parser’s standard train-
ing data, sections 02-21 of CCGbank, and a sec-
ond model using CCGbank plus the extra data. For
details of the training process, see Clark and Cur-
ran (2007). Following Clark and Curran (2007), we
evaluate the performance of the two parsing models
by calculating labelled and unlabelled precision, re-
call and F-score over CCGbank dependencies, plus
coverage, category accuracy (percentage of words
with the correct lexical category) and sentence accu-
racy (percentage of sentences where all dependen-
cies are correct).

The difficulty we face here is that the additional
data is Web text, while the evaluation data is still
newswire text. Since genre effects are important, we
cannot expect to see a large difference in results in
this evaluation. Future work will compare the two
models on a corpus of Web sentences collected ac-
cording to the same procedure, using different facts.

Table 2 summarises the results of our evaluation.
The figures for the performance of the baseline sys-
tem are the latest for the parser, and slightly higher
than those given in Clark and Curran (2007). It is
clear that the results for the two systems are very
similar and that adding 662 sentences, increasing the
amount of data by approximately 1.7%, has had a
very small effect. However, now that the automated
procedure has been developed, we are in a position
to substantially increase this amount of data without
requiring manual annotation.

8 Conclusion

We have described a procedure for automatically an-
notating sentences from Web text for use as train-
ing data for a statistical parser. We assume that if
several sentences contain the same set of relatively
unambiguous keywords, for example Mozart, born
and 1756, then those words will be connected by the
same chain of grammatical relations in all sentences.
On this basis, we constrain a state-of-the-art parser
to produce analyses for these sentences that contain
this chain of relations. The constrained analyses are
then used as additional training data for the parser.

Aside from the initial identification of facts, the
only manual step of this process is the the choice of
constraints. The automation of this step will involve
the identification of reliable sentences, most likely
short sentences consisting of only a single clause,
from which the relation chain can be extracted. The
chain will need to be supported by a number of such
sentences in order to be accepted. This is the step
that truly exploits the redundancy of information on
the Web, as advocated by Brill et al. (2001).

Once the choice of constraints has been auto-
mated, we will have a fully automatic procedure for
creating additional annotated training data for a sta-
tistical parser. Our initial results show that the train-
ing data acquired in this manner can be used to aug-
ment existing training corpora while still maintain-
ing high parser performance. We are now in a po-
sition to increase the scale of our data collection to
determine how performance is affected by a training
corpus that has been significantly increased in size.

Acknowledgements

We would like to thank the anonymous reviewers
and the Language Technology Research Group at
the University of Sydney for their comments. The
first author is supported by a University of Sydney
Honours scholarship.

References

Michele Banko and Eric Brill. 2001. Scaling to very very
large corpora for natural language disambiguation. In
Proceedings of the 39th Annual Meeting of the Asso-
cation for Computational Linguistics, pages 26-33.

Douglas Biber. 1993. Using register-diversified corpora
for general language studies. Computational Linguis-
tics, 19(2):219-241, June.

Rens Bod. 2006. An all-subtrees approach to unsuper-
vised parsing. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th
Annual Meeting of the Association for Computational
Linguistics, pages 865-872.

Johan Bos, James R. Curran, and Edoardo Guzetti. 2007.
The Pronto QA system at TREC-2007. In Proceedings
of the Sixteenth Text REtreival Conference.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
and Andrew Y. Ng. 2001. Data-intensive question
answering. In Proceedings of the Tenth Text REtreival
Conference, pages 393-400, November.

Ted Briscoe and John Carroll. 2006. Evaluating the
accuracy of an unlexicalized statistical parser on the
PARC DepBank. In Proceedings of the Poster Session
of the Joint Conference of the International Committee
on Computational Linguistics and the Association for
Computational Linguistics, pages 41-48, July.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006.
The second release of the RASP system. In Proceed-
ings of the COLING/ACL 2006 Interactive Presenta-
tion Sessions, pages 77-80, Sydney, Australia, July.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Stefan
Riezler, Josef van Genabith, and Andy Way. 2008.
Wide-coverage deep statistical parsing using auto-
matic dependency structure annotation. Computa-
tional Linguistics, 34(1):81-124, March.

Eugene Charniak. 2000. A maxmium entropy inspired
parser. In Proceedings of the First Annual Meeting
of the North American Chapter of the Association for
Computational Linguistics, pages 132—139.

Stephen Clark and James R. Curran. 2006. Partial train-
ing for a lexicalized-grammar parser. In Proceedings
of the Human Language Technology Conference of the
NAACL, Main Conference, pages 144-151, June.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics,
33(4):493-552, December.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania, Philadelphia, PA.

Daniel Gildea. 2001. Corpus variation and parser per-
formance. In Lillian Lee and Donna Harman, edi-
tors, Proceedings of the 2001 Conference on Empir-

ical Methods in Natural Language Processing, pages
167-202.

Sanda Harabagiu, Dan Moldovan, Marius Pasca, Rada
Milhalcea, Mihai Surdeanu, Razvan Bunescu, Roxana
Girju, Vasile Rus, and Paul Morarescu. 2000. FAL-
CON: Boosting knowledge for answer engines. In
Proceedings of the Ninth Text REtreival Conference.

Julia Hockenmaier. 2003. Data and Models for Statis-
tical Parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh, Edinburgh, UK.

Eduard Hovy, Ulf Hermjakob, and Deepak Ravichan-
dran. 2002. A question/answer typology with surface
text patterns. In Proceedings of the DARPA Human
Language Technology conference, pages 247-251.

Tracy Holloway King, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ronald M. Kaplan. 2003. The
PARC 700 dependency bank. In Proceedings of the
EACLO3: 4th International Workshop on Linguisti-
cally Interpreted Corpora, pages 1-8.

Tibor Kiss and Jan Strunk. 2006. Unsupervised multi-
lingual sentence boundary detection. Computational
Linguistics, 32(4):485-525.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

I. Dan Melamed. 2004. Statistical machine translation
by parsing. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguistics,
pages 653-660.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan,
Richard Crouch, John T Maxwell III, and Mark John-
son. 2002. Parsing the Wall Street Journal using a
lexical-functional gramar and discriminative estima-
tion techniques. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics, pages 271-278.

Yoav Seginer. 2007. Fast unsupervised incremental pars-
ing. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics, pages
384-391, Prague, Czech Republic, June.

Satoshi Sekine. 1997. The domain dependence of pars-
ing. In Proceedings of the fifth conference on Applied
Natural Language Processing, pages 96—102.

Mark Steedman. 2000. The Syntactic Process. Lan-
guage, Speech, and Communication series. The MIT
Press, Cambridge, MA.

Ellen M. Voorhees. 2004. Overview of the TREC 2004
Question Answering track. In Proceedings of the Thir-
teenth Text REtreival Conference.

David Yarowsky. 1993. One sense per collocation. In
Proceedings of the workshop on Human Language
Technology, pages 266-271.

